JP2007047323A - 光学機器及びその制御方法 - Google Patents

光学機器及びその制御方法 Download PDF

Info

Publication number
JP2007047323A
JP2007047323A JP2005230081A JP2005230081A JP2007047323A JP 2007047323 A JP2007047323 A JP 2007047323A JP 2005230081 A JP2005230081 A JP 2005230081A JP 2005230081 A JP2005230081 A JP 2005230081A JP 2007047323 A JP2007047323 A JP 2007047323A
Authority
JP
Japan
Prior art keywords
vibration
foreign matter
unit
camera
imaging unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005230081A
Other languages
English (en)
Other versions
JP2007047323A5 (ja
JP4863440B2 (ja
Inventor
Koichi Washisu
晃一 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005230081A priority Critical patent/JP4863440B2/ja
Publication of JP2007047323A publication Critical patent/JP2007047323A/ja
Publication of JP2007047323A5 publication Critical patent/JP2007047323A5/ja
Application granted granted Critical
Publication of JP4863440B2 publication Critical patent/JP4863440B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】手ブレ検出中に振動を利用した光学部材表面の異物除去機能を作動させることによる手ブレ検出精度の劣化を防止する。
【解決手段】振動検出部の作動(S4,S18)と、振動により光学部材表面の異物を除去する異物除去部の作動(S1〜S3、S15〜S17)を同時に行わない構成にする。あるいは、異物除去中の手ブレを検出する演算時定数を小さくすることにより、異物除去動作中における手ブレの検出精度の劣化を防止する。
【選択図】図2

Description

本発明はデジタルカメラ等の光学機器に関し、特に光学機器に組み込まれている固体撮像素子や光学フィルタやレンズ等、焦点面もしくは焦点面近傍に配設された光学部材の表面に付着した異物を除去する機能を有する光学機器及びその制御方法に関する。
従来から、レンズ交換式デジタル一眼レフカメラの撮影レンズの焦点面近傍に塵埃等の異物が存在すると、その異物の影が固体撮像素子に写り込んでしまうという問題がある。このような異物は、レンズ交換時に塵埃が外部から侵入したり、カメラ内部でのシャッタやミラーの動作に伴って発生する、その構造部材である樹脂等の微細な磨耗紛が原因と考えられている。このような原因で発生した異物が、特に固体撮像素子の保護用のカバーガラスとカバーガラスの全面に配設されている赤外カットフィルタや、光学ローパスフィルタ(以下、LPFと略す)等の光学フィルタの間に入り込んでしまう場合がある。このような場合は、その異物を除去するためにカメラを分解しなければならなかった。このため、固体撮像素子のカバーガラスと光学フィルタとの間に異物が入り込まないように密閉構造にすることは極めて有効なものであった。
しかしながら、光学フィルタの固体撮像素子に対向する側と反対側(レンズ側)の表面に異物が付着した場合、それが焦点面の近傍である場合にはその異物が影となって固体撮像素子に写り込んでしまうという問題が依然として残っている。そこで、このような問題点を解決するために、撮像部前面に振動可能な防塵フィルタを設け、圧電素子によりこの防塵フィルタを振動させることにより、その防塵フィルタに付着している異物を除去する構造が提案されている(特許文献1)。
この特許文献1のようなカメラ構成にすると、レンズを外さず、またカメラを分解することなく固体撮像素子のカバーガラス表面或は防塵構造の最外面(例えば光学フィルタ表面)に付着した異物を除去できる。
一方、最近のカメラには、撮影時に発生する手ブレを検出し、その手ブレを打ち消すように光学系の一部或いは全部を撮影光軸と略垂直に駆動して手ブレによる像劣化を防止する防振システムが搭載されいる(特許文献2)。このような異物の除去及び手ブレの防止機能は、最近広く展開されて機能であり、ユーザへのメリットが大きく、今後のデジタルカメラにおいてはなくてはならない機能と言える。
特開2005−020078号公報 特開2003−107553号公報
上述した防振システムは、大きく分けて手ブレを検出する振動検出手段と、その検出した手ブレ信号(振動信号)に基づいて手ブレを補正する補正手段から構成されている。ここで振動検出手段は、一般的に圧電的に検出体を励振させ、その振動に働く慣性力(コリオリの力)により手ブレ角速度を検出している。また異物を除去するための防塵フィルタの振動も圧電的に行っている。そのため、異物を除去するために防塵フィルタを振動させる際、その振動周波数と、振動検出手段の検出体の励振による振動周波数の差分がビートになってしまい手ブレの検出精度が劣化するという問題がある。
また防塵フィルタの振動周波数と検出体の振動周波数との間の影響を少なくするために、これら周波数値を互いに十分に離れた値に設定することが考えられる。しかし、このように設定しても、防塵フィルタの振動の影響により振動検出手段の検出体が揺すられて、手ブレの検出精度を劣化させてしまう。しかも一度検出体が揺すられると、その検出体の励振がしばらくの間不安定になり、その間、正確な手ブレ検出ができなくなる。
更に、振動検出手段の出力を演算する演算手段は演算時定数が大きく、一度、振動を検出した検出信号に誤信号が重畳してしまうと、手ブレ検出の演算結果がしばらくの間安定しなくなるといった問題がある。そのため防塵フィルタを用いて異物を除去すると、その後、しばらくの間、手ブレ補正が不安定になってしまう。これにより撮影者がカメラを通して被写体を観察している間でも被写体像が安定せず、撮影者に不快感を与えるだけでなく、その間、精度の良い撮影ができなくなるという問題がある。
本発明の目的は、上記従来技術の欠点を解決することにある。
本発明の特徴は、異物の除去機能と防振機能を両立させた光学機器とその制御方法を提供することにある。
本発明の一態様に係る光学機器は以下のような構成を備える。即ち、
光学機器に加えられる振動を検出する振動検出手段と、
撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
前記異物除去手段の作動と、前記振動検出手段による振動の検出動作のタイミングをずらすように制御する制御手段と、
を有することを特徴とする。
本発明の一態様に係る光学機器の制御方法は以下のような工程を備える。即ち、
光学機器に加えられる振動を検出する振動検出工程と、
撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
前記異物除去工程と、前記振動検出工程での振動の検出動作のタイミングをずらすように制御する制御工程とを有することを特徴とする。
本発明によれば、異物の除去機能と防振機能を両立できる。
以下、添付図面を参照して本発明の好適な実施の形態を詳しく説明する。尚、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また本実施の形態で説明されている特徴の組み合わせの全てが発明の解決手段に必須のものとは限らない。
以下、本発明の実施の形態に係るレンズ交換式デジタル一眼レフカメラ(以下、単にカメラと略す)について、図1から図4を参照して説明する。
図1は、本実施の形態に係るカメラの撮像部及びフォーカルプレンシャッタの概略構成を説明するための側方断面図である。
図1において、撮像部10は以下の構成を備える。光学素子11(ローパスフィルタ)と、この光学素子11を保持する保持部材12、及び光学素子11の表面と当接した状態で光学素子11と保持部材12とを一体化させている支持板13を有している。また固体撮像装置15は、固体撮像素子15bを保護するためのカバー部材15aとを具備している。シール部材16は、固体撮像装置15のカバー部材15aと光学素子11との間を密封している。基板17は、固体撮像装置15の接続端子15cと接続するとともに、このカメラの動作を制御する制御回路を構成する電気素子を搭載している。また保持板18は、固体撮像装置15と一体化して固体撮像装置15をカメラのシャーシ(不図示)にビス(不図示)によって固定されている。
一方、フォーカルプレンシャッタ50は、複数のシャッタ羽根21a〜21dで構成されている先幕21、同じく複数のシャッタ羽根で構成されている後幕22を有している。中間板23は、フォーカルプレンシャッタ50において先幕21及び後幕22の駆動スペースを分割している。押え板24は、後幕22の押え板であると同時に、撮像のためにその略中央部に開口24aが設けられている。またカバー板25は、先幕21の押え板であると同時に、撮像のためにその略中央部に開口25aが設けられている。
32は光学素子11上に貼り付けられた圧電体を示し、この圧電体32に通電することにより、光学素子11の表面を振動させて光学素子11上に付着している塵埃(以下、異物)30を剥離させる。
図2は、本実施の形態に係るカメラシステムの構成を示す概略図である。このカメラシステムは、カメラ本体(撮像装置)と、このカメラ本体に着脱可能に装着されるレンズ装置とを有している。尚、図2において、図1と共通する部分は同じ記号で示している。
このカメラは、CCD或はCMOSセンサ等の撮像素子を用いた単板式のデジタルカラーカメラであり、撮像素子を連続的又は単発的に駆動して、動画像或は静止画像を表わす画像信号を得ることができる。ここで、撮像素子は、露光した光を画素毎に電気信号に変換して受光量に応じた電荷を蓄積し、蓄積された電荷を読み出すタイプのエリアセンサである。
図2において、100はカメラ本体を示している。101はカメラ100に対して取り外し可能なレンズ装置102を接続するマウント機構であって、このマウント機構101を介してレンズ装置102とカメラ100とが電気的、機械的に接続される。114は絞りである。そして、焦点距離の異なるレンズ装置102をカメラ100に装着することによって、様々な画角の撮影画面を得ることが可能である。このレンズ装置102の撮影光学系103から固体撮像装置15に至る光路L1中に、物体像(光学像)に含まれる必要以上に高い空間周波数成分の光をカットオフする光学素子が設けられている。これにより、固体撮像装置15には必要以上に高い空間周波数成分の光が伝達されるのを防止している。この固体撮像装置15から読み出された信号は、後述するように所定の処理が施された後、画像データとして表示部107上に表示される。この表示部107は、カメラ100の背面に取り付けられており、使用者は表示部107での表示を直接観察できるようになっている。この表示部107を、有機EL空間変調素子や液晶空間変調素子、微粒子の電気泳動を利用した空間変調素子などで構成すれば、消費電力を小さくでき、かつ表示部107の薄型化を図ることができる。これによりカメラ100の省電力化及び小型化を実現できる。
固体撮像装置15は、具体的には、増幅型固体撮像素子の1つであるCMOSプロセスコンパチブルのセンサ(以降CMOSセンサと略す)である。CMOSセンサの特長の1つに、エリアセンサ部のMOSトランジスタと撮像装置の駆動回路、A/D変換回路、画像処理回路といった周辺回路を同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できる。また、任意の画素へのランダムアクセスが可能といった特長も有し、表示用に間引いた信号の読み出しが容易であって、表示部107において高い表示レートでリアルタイム表示が行える。この固体撮像装置15は、上述した特長を利用し、表示画像出力動作(固体撮像装置15の受光領域のうち一部を間引いた領域での読み出し)、及び高精彩な画像出力動作(全受光領域での読み出し)を行う。
111は可動型のハーフミラーで、撮影光学系103からの光束のうち一部を反射させるとともに残りを透過させる。このハーフミラー111の屈折率は約1.5であり、厚さは0.5mmである。105は撮影光学系によって形成される物体像の予定結像面に配置されたフォーカシングスクリーン、112はペンタプリズムである。109はフォーカシングスクリーン上に結像された物体像を観察するためのファインダレンズであり、単数もしくは複数のファインダレンズ(不図示)で構成されている。フォーカシングスクリーン105、ペンタプリズム112及びファインダレンズ109は、ファインダ光学系を構成する。
ハーフミラー111の背後(像面側)には可動型のサブミラー122が設けられ、ハーフミラー111を透過した光束のうち光軸L1に近い光束を反射させて焦点検出ユニット121に導いている。サブミラー122は、ハーフミラー111の保持部材(不図示)に設けられた回転軸を中央に回転し、ハーフミラー111の動きに連動して移動する。尚、焦点検出ユニット121は、サブミラー122からの光束を受光して位相差検出方式による焦点検出を行う。またハーフミラー111とサブミラー122から成る光路分割系は、ファインダ光学系に光を導くための第1の光路分割状態、結像レンズ(不図示)からの光束をダイレクトに固体撮像装置15に導くために撮影光路から退避した第2の光路分割状態(図2中破線で示した位置:111´及び122´)をとることが出来る。104は可動式の閃光発光ユニットであり、カメラ100に収納される収納位置とカメラ100から突出した発光位置との間で移動可能である。50は像面に入射する光量を調節するフォーカルプレンシャッタ、119はカメラ100を起動させるためのメインスイッチである。120は2段階で押圧操作されるレリーズボタンであり、半押し操作で撮影準備動作(測光動作や焦点調節動作等)が開始され、全押し操作で撮影動作(固体撮像装置15から読み出された画像データの記録媒体への記録)が開始される。
123はカメラ100の光学素子11の表面に付着した異物を除去するためにカメラ100を被写体の撮像を行う撮像モードから強制的にクリーニングモードにするためのモード切り換えスイッチである。通常、メインスイッチ119の投入直後に自動的にクリーニングモードになるが、ユーザが任意に撮像前面のクリーニングを実施したい時に操作する。180は、フォーカシングスクリーン105上に特定の情報を表示させるための光学ファインダ内情報表示ユニットである。
図3は、本実施の形態に係るカメラ100のカメラシステムの電気的構成を示すブロック図である。ここで図2で説明した部材と同じ部材については同一符号を用い、その説明を省略する。
まず物体像の撮像、記録に関する部分から説明する。
このカメラシステムは、撮像系、画像処理系、記録再生系及び制御系を有する。撮像系は、撮影光学系103及び固体撮像装置15を有し、画像処理系は、A/D変換器130、RGB画像処理回路131及びYC処理回路132を有する。また記録再生系は、記録処理回路133及び再生処理回路134を有し、制御系は、カメラシステム制御回路(制御手段)135、操作検出回路136(レリーズボタン120やモード切換スイッチ123などの操作状態を検出する)、撮像装置の駆動回路137を有する。138は、外部のコンピュータ等に接続され、データの送受信を行うために規格化された、例えばUSB等の接続端子である。
撮像系は、物体からの光を、撮影光学系103を介して固体撮像装置15の撮像面に結像させる光学処理系である。この撮影光学系103内に設けられた絞り114の駆動を制御するとともに、必要に応じてフォーカルプレンシャッタ50の駆動をシャッタ制御回路145を介して行うことによって、適切な光量の物体光を固体撮像装置15で受光させることができる。ここでは固体撮像装置15として、正方画素が長辺方向に3700個、短辺方向に2800個並べられ、合計約1000万個の画素数を有する撮像素子が用いられている。そして各画素にR(赤色)G(緑色)B(青色)のカラーフィルタが交互に配置され、4画素が一組となるいわゆるベイヤー配列を構成している。このベイヤー配列では、観察者が画像を見たときに強く感じやすいGの画素をRやBの画素よりも多く配置することで、総合的な画像性能を上げている。一般に、この方式の撮像素子を用いる画像処理では、輝度信号は主にGから生成し、色信号はR、G、Bから生成する。
この固体撮像装置15から読み出された信号は、A/D変換器130を介して画像処理系に供給される。この画像処理系での画像処理によって画像データが生成される。A/D変換器130は、固体撮像装置15の各画素から読み出された信号の振幅に応じて、例えば固体撮像装置15の出力信号を10ビットのデジタル信号に変換して出力する。これにより、これ以降の画像処理はデジタル処理にて実行される。画像処理系は、R,G,Bのデジタル信号から所望の形式の画像信号を得る信号処理回路であり、R,G,Bの色信号を輝度信号Y及び色差信号(R−Y),(B−Y)で表わされるYC信号などに変換する。
RGB画像処理回路131は、A/D変換器130の出力信号を処理する信号処理回路であり、ホワイトバランス回路、ガンマ補正回路、補間演算による高解像度化を行う補間演算回路を有する。YC処理回路132は、輝度信号Y及び色差信号R−Y,B−Yを生成する信号処理回路である。このYC処理回路132は、高域輝度信号YHを生成する高域輝度信号発生回路、低域輝度信号YLを生成する低域輝度信号発生回路及び、色差信号R−Y、B−Yを生成する色差信号発生回路を有している。輝度信号Yは、高域輝度信号YHと低域輝度信号YLを合成することによって形成される。
記録再生系は、メモリ(不図示)への画像信号の出力と、表示部107への画像信号の出力とを行う。記録処理回路133はメモリへの画像信号の書き込み処理及び読み出し処理を行い、再生処理回路134はメモリから読み出した画像信号を再生して、表示部107に出力する。また記録処理回路133は、静止画データ及び動画データを表わすYC信号を所定の圧縮形式にて圧縮するとともに、圧縮されたデータを伸張させる圧縮伸張回路を内部に有する。この圧縮伸張回路は、信号処理のためのフレームメモリ等を有しており、このフレームメモリに画像処理系からのYC信号をフレーム毎に蓄積し、複数のブロックのうち各ブロックから蓄積された信号を読み出して圧縮符号化する。この圧縮符号化は、例えば、ブロック毎の画像信号を2次元直交変換、正規化及びハフマン符号化することにより行われる。再生処理回路134は、輝度信号Y及び色差信号R−Y,B−Yをマトリクス変換して、例えばRGB信号に変換する回路である。こうして再生処理回路134によって変換された信号は表示部107に出力され、可視画像として表示(再生)される。再生処理回路134及び表示部107は、Bluetoothなどの無線通信を介して接続されていてもよく、このように構成すれば、このカメラで撮像された画像を離れたところからモニタすることができる。
一方、制御系における操作検出回路136は、メインスイッチ119、レリーズボタン120、モード切り換えスイッチ123等(他のスイッチは不図示)の操作を検出して、この検出結果をカメラシステム制御回路135(カメラマイコン)に出力する。カメラシステム制御回路135は、CPU135aや、そのCPU135aで実行されるプログラムなどを記憶しているメモリ1135bを有している。カメラシステム制御回路135は、操作検出回路136からの検出信号を受けることで、検出結果に応じた動作を行う。またカメラシステム制御回路135は、撮像動作を行う際のタイミング信号を生成して、撮像装置駆動回路137に出力する。撮像装置駆動回路137は、カメラシステム制御回路135からの制御信号を受けることで固体撮像装置15を駆動させるための駆動信号を生成する。情報表示回路142は、カメラシステム制御回路135からの制御信号を受けて光学ファインダ内情報表示ユニット180の駆動を制御する。制御系は、カメラ100に設けられた各種スイッチの操作に応じて撮像系、画像処理系及び記録再生系での駆動を制御する。例えば、レリーズボタン120の操作によってSW2がONとなった場合、制御系(カメラシステム制御回路135)は、固体撮像装置15の駆動、RGB画像処理回路131の動作、記録処理回路133の圧縮処理などを制御する。さらに制御系は、情報表示回路142を介して光学ファインダ内情報表示ユニットの駆動を制御することによって、光学ファインダ内での表示(表示セグメントの状態)を変更する。
次に、撮影光学系103の焦点調節動作に関して説明する。
カメラシステム制御回路135はAF制御回路140と接続している。またレンズ装置101をカメラ100に装着することで、カメラシステム制御回路135は、マウント接点101a、102aを介してレンズ装置101内のレンズシステム制御回路141(レンズマイコン)と接続される。そして、AF制御回路140及びレンズシステム制御回路141と、カメラシステム制御回路135とは、特定の処理の際に必要となるデータを相互に通信する。焦点検出ユニット121(図2)(図3の焦点検出センサ167)は、撮影画面内の所定位置に設けられた焦点検出領域での検出信号をAF制御回路140に出力する。AF制御回路140は、焦点検出ユニット121からの出力信号に基づいて焦点検出信号を生成し、AF光学系103の焦点調節状態(デフォーカス量)を検出する。そしてAF制御回路140は、その検出したデフォーカス量を撮影光学系103の一部の要素であるフォーカスレンズの駆動量に変換し、フォーカスレンズの駆動量に関する情報を、カメラシステム制御回路135を介してレンズシステム制御回路141に送信する。ここで、移動する物体に対して焦点調節を行う場合、AF制御回路140は、レリーズボタン120が全押し操作されてから実際の撮像制御が開始されるまでのタイムラグを勘案して、フォーカスレンズの適切な停止位置を予測する。そして、その予測した停止位置へのフォーカスレンズの駆動量に関する情報をレンズシステム制御回路141に送信する。
一方、カメラシステム制御回路135が、固体撮像装置15の出力信号に基づいて物体の輝度が低く、十分な焦点検出精度が得られないと判定したときには、閃光発光ユニット104又は、カメラ100に設けられた白色LEDや蛍光管(不図示)を駆動することによって物体を照明する。レンズシステム制御回路141は、カメラシステム制御回路135からフォーカスレンズの駆動量に関する情報を受信すると、レンズ装置101内に配置されたAFモータ147の駆動を制御することによって、駆動機構(不図示)を介してフォーカスレンズを上記駆動量の分だけ光軸L1方向に移動させる。これにより、撮影光学系103が合焦状態となる。
尚、上述したようにフォーカスレンズが液体レンズ等で構成されている場合には、界面形状を変化させることになる。
また、レンズシステム制御回路141は、カメラシステム制御回路135から露出値(絞り値)に関する情報を受信すると、レンズ装置101内の絞り駆動アクチュエータ143の駆動を制御することによって、上記絞り値に応じた絞り開口径となるように絞り114を動作させる。
また、シャッタ制御回路145は、カメラシステム制御回路135からのシャッタ速度に関する情報を受信すると、フォーカルプレンシャッタ50の先幕22、後幕21の駆動源である駆動源35〜36及びチャージ部37の駆動を制御することによって、上記シャッタ速度になるように先幕22及び後幕21を動作させる。このフォーカルプレンシャッタ50と絞り114の動作により、適切な光量の物体光を像面側に向かわせることができる。
またAF制御回路140において物体にピントが合ったことが検出されると、この情報はカメラシステム制御回路135に送信される。このとき、レリーズボタン120の全押し操作によってSW2がON状態になれば、上述したように撮像系、画像処理系及び記録再生系によって撮影動作が行われる。148はレンズ装置102のマウント近傍に配置された振動ジャイロなどの振動検出部であり、レンズ装置102及びそれ結合されたカメラ100に加わる手ブレの角速度を検出している。この振動検出部148で検出された信号はレンズシステム制御回路141に入力され、そこで適宜演算処理されてブレ補正目標値信号となる。レンズシステム制御回路141は、そのブレ補正目標値に基づいてIS(ブレ補正)光学系149をISモータ150を介して駆動制御してブレ補正を行う。圧電駆動部39は、カメラシステム制御回路135からの指令を受けて圧電体32を駆動して光学素子11表面に付着した異物を剥離させる。ここで圧電駆動部39は、通常はカメラのメインスイッチ119オンに同期して所定時間(例えば1秒)駆動されて光学素子11上の異物除去を行い、モード切換スイッチ123(図2)が操作された時も、その操作から所定時間(例えば1秒)駆動されて光学素子11上の異物除去を行う。
図4は、本実施の形態に係るレンズシステム制御回路141の振動検出及び演算処理を説明するための機能ブロック図である。振動検出部148はカメラ100の縦方向の回転(ピッチ)及び横方向の回転(ヨー)の2方向の振動を検出するために、縦方向及び横方向にそれぞれ設けられており、以下に説明する回路や各部は各振動検出部に対応して設けられている。
演算部151は、一点鎖線で囲まれるDCカットフィルタ兼増幅部148a、ローパスフィルタ兼増幅部148b、A/D変換部(以下、A/D)141a、駆動部153を有している。更に、レンズシステム制御回路141におけるデジタル演算処理部152内の記憶部152a、差動回路152b、DCカットフィルタ152c、積分回路152d、敏感度調整部152e、記憶部152f、差動回路152g、PWMデューティ変換部152hを有している。
ここでは振動検出部148は、カメラ100のメインスイッチ119がオンされることにより駆動され、レンズ装置102に加わるブレ角速度の検出を開始する。この振動検出部148からの信号は、アナログ回路で構成されるDCカットフィルタ兼増幅部148aにより、その信号に重畳しているDCバイアス成分がカットされると共に、その信号が増幅される。このDCカットフィルタ兼増幅部148aは、0.1Hz以下の周波数成分の信号を遮断する周波数特性を有している。これによりカメラ100に加わる1乃至10Hzの手ブレ周波数帯域が影響しないようにしている。しかしながら、0.1Hz以下をカットする特性にすると振動検出部148からブレ信号が入力されてから完全にDCがカットされるまでには10秒近くかかってしまうという問題が有る。そこでカメラのメインスイッチ119がオンされてから例えば0.1秒まではDCカットフィルタ兼増幅部148aの時定数を小さく(例えば10Hz以下の周波数成分の信号をカットする特性にする)しておく。これにより、0.1秒位の短い時間でDC成分をカットし、その後に時定数を大きくして0.1Hz以下の周波数成分のみをカットする特性にして、DCカットフィルタ兼増幅部148aによりブレ角速度信号が劣化しない様にしている。このDCカットフィルタ兼増幅部148aの出力は、アナログ回路で構成されるローパスフィルタ兼増幅部148bにより、後段のA/D変換回路のA/D分解能に合わせてわせて適宜増幅される。またブレ角速度信号に重畳する高周波のノイズ成分がカットされる。これはブレ角速度信号をレンズシステム制御回路141に入力する際、A/D141aから出力されるデジタル値がブレ角速度信号のノイズにより誤って読み取られるのを防止するためである。ローパスフィルタ兼増幅部148bから出力される信号は、A/D141aによりサンプリングされてレンズシステム制御回路(レンズマイコン)141に取り込まれる。
ここで上述のように、DCカットフィルタ兼増幅部148aによりDCバイアス成分がカットされているが、その後のローパスフィルタ兼増幅部148bの増幅により、再びDCバイアス成分がブレ角速度信号に重畳する。よって、ディジタル演算処理部152において再度DC成分をカットする必要がある。そこで例えば振動検出部148を起動してから0.2秒後にサンプリングされたブレ角速度信号を記憶部152aに記憶する。そして差動回路152bにより、その記憶部152aに記憶した値とブレ角速度信号の差を求めてDC成分をカットする。尚、この動作では、大雑把なDC成分のカットしかできない(振動検出部148が起動してから0.2秒後に記憶されたブレ角速度信号の中にはDC成分ばかりでなく、実際の手ブレも含まれている)。このため、デジタルフィルタで構成されたDCカットフィルタ152cにより十分にDC成分をカットしている。このDCカットフィルタ152cの時定数もアナログのDCカットフィルタ兼増幅器部148aと同様に変更可能であり、振動検出部148起動から0.2秒後から更に0.2秒後にその時定数を徐々に大きくしている。具体的には、このDCカットフィルタ152cは、振動検出部148を起動してから0.2秒経過した時には10Hz以下の周波数成分をカットするフィルタ特性を有している。そして、その後50m秒毎に、このフィルタでカットする周波数成分を5Hz,1Hz,0.5Hz,0.2Hzと順次下げてゆく。但し、これでは上記動作の間に、撮影者がシャッタレリーズボタン120を半押しして測光測距を行った後、直ちに撮影を行う可能性がある。このため、時間を費やして時定数変更を行うのが好ましくない場合もある。そこで撮影条件に応じて時定数変更を途中で中止する。例えば測光結果により撮影シャッタースピードが1/60となる事が判明し、撮影焦点距離が150mmの場合は、防振の精度はさほど要求されない。このためDCカットフィルタ152cは0.5Hz以下の周波数成分をカットする特性まで時定数変更した時点で完了とする(シャッタスピードと撮影焦点距離の積により時定数変更量を制御する)。これにより時定数変更の時間を短縮でき、シャッターチャンスを優先できる。勿論、より速いシャッタスピード、或いはより短い焦点距離の場合には、DCカットフィルタ152cの特性は1Hz以下の周波数成分をカットする特性まで時定数を変更した時点で完了とする。また、より遅いシャッタスピード、長い焦点距離の場合には、時定数を目標値に変更するまで撮影を禁止する。
積分回路152dは、DCカットフィルタ152cからの信号を積分するとともに、角速度信号を角度信号に変換する。敏感度調整部152eは、積分回路152dで積分された角度信号を、その時のカメラの焦点距離、被写体距離情報に応じて増幅し、ブレ角度に応じて適切に2つのブレ補正部が駆動される信号に変換する。これはズーム、フォーカスにより撮影光学系が変化し、ブレ補正部の駆動量に対し光軸偏心量が変わるために必要である。ブレ補正部は、シャッタレリーズボタン120の半押しにより駆動され始める。尚、この時点で、ブレ補正部のブレ補正動作が急激に始まらない様に注意する必要がある。記憶部152f及び差動回路152gは、この対策のために設けられている。記憶部152fはシャッタレリーズボタン120の半押しの時点で積分回路152dのブレ角度信号を記憶する。差動回路152gは、この積分回路152dからの信号と記憶部152fに記憶されている信号との差を求める。そのためシャッタレリーズボタン120の半押し時点における差動回路152gの2つの信号入力は等しく、差動回路152gのブレ補正部の駆動目標値信号はゼロであり、その後ゼロより連続的に出力される。尚、記憶部152fは、シャッタレリーズボタン120の半押し時点の積分信号を原点にする役割を担っている。これによりブレ補正部は急激に駆動されることが無くなる。差動回路152gからの目標値信号は、PWMデューティ変更部152hに入力される。ブレ補正のためのISモータ150(図3)には、ブレ角度に対応した電圧或いは電流を印加することにより、IS光学系149はそのブレ角度に対応して駆動される。しかしブレ補正部の駆動消費電力及び駆動トランジスタの省電力化のためにはPWM駆動が望ましい。そこでPWMデューティ変更部152hは、目標値に応じて駆動デューティを変更している。例えば、周波数成分が20KHzのPWMにおいて差動回路152gの目標値が「2048」の場合、デューティを「0」にし、目標値が「4096」の場合は、デューティを「100」とする。そして、これらの間を等分割し、デューティを目標値に応じて決定している。尚、デューティの決定は目標値ばかりではなく、その時のカメラの撮影条件(温度やカメラの姿勢、バッテリの状態)によって細かく制御して精度良いブレ補正が行われる様にする。このPWMデューティ変更部152hの出力は、PWMドライバ等の公知の駆動部153に入力され駆動部153の出力をISモータ150に供給してブレ補正を行っている。この駆動部153は、シャッタレリーズボタン120の半押しに同期して駆動される。尚、このブロック図では示していないが、撮影者はカメラのレリーズ部押し切りを行い露光を開始したときも、このままブレ補正を継続しているので、撮影像のぶれによる画質劣化を防ぐことが出来る。又、手ブレ補正は、レリーズボタン120の半押しが継続される限り継続して実行する。そして半押しが解除されると、記憶部152fは、敏感度調整部152eからの信号を記憶するのを止める(サンプリング状態になる)。これにより差動回路152gに入力される敏感度調整部152e及び記憶部152fの信号は等しくなり、差動回路152gの出力は「0」になる。このために駆動目標値が「0」になり、手ブレ補正が行われない。またカメラのメインスイッチ119をオフにしない限り積分回路152dは積分を継続しており、次のシャッタレリーズボタン120の半押しで、再び記憶部152fが新たな積分出力を記憶(信号ホールド)する。そしてメインスイッチ119がオフされると振動検出部148の駆動が停止されて防振シーケンスを終了する。
尚、積分回路152dの出力信号が所定値より大きくなった場合は、カメラのパンニングが行われたと判断してDCカットフィルタ152cの時定数を変更する。例えば0.2Hz以下の周波数成分をカットする特性であったものを、1Hz以下の周波数成分をカットする特性に変更し再び所定時間で時定数を元に戻していく。この時定数の変更量も積分回路152dからの出力の大きさにより制御される。即ち、出力が第1の閾値を超えた時にはDCカットフィルタ152cの特性を、0.5Hz以下をカットする特性にする。また第2の閾値を超えた時は、1Hz以下の周波数成分をカットする特性に、第3の閾値を超えた時は、5Hz以下の周波数成分をカットする特性にする。又、積分回路152dの出力が非常に大きくなった場合(例えばカメラのパンニングなどの極めて大きな角速度が生じた場合)は、積分回路を一旦リセットして演算上の飽和(オーバーフロー)を防止している。
尚、図4では、演算部151内にDCカットフィルタ兼増幅部148a及びローパスフィルタ兼増幅部148bが設けられているが、これらは振動検出部148内に設けられても良いのは言うまでもない。
以上説明した異物除去機能及び防振システムを作動させる際、カメラシステム制御回路135(カメラマイコン)は、レンズシステム制御回路141(レンズマイコン)と連携して圧電駆動部39及び振動検出部148を以下の様な順番で駆動する。
(A)カメラのメインスイッチ119が操作されたとき
(1)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(2)圧電体32の駆動終了後、振動検出部148を起動する。
(B)モード切換スイッチ123が操作されたとき
(1)振動検出部148の動作を一旦停止する
(2)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(3)圧電体32の駆動終了後に振動検出部148を起動する。
図5は、本実施の形態1に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、この処理を実行するプログラムはメモリ135bに記憶されており、CPU135aの制御の下に実行される。
このフローチャートで示す処理は、カメラ100のメインスイッチ119がオンされることにより開始され、メインスイッチ119がオフされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。尚、このフローチャートでは、動作を分かり易く説明するために、カメラの他の機能(例えばバッテリーチェックなど)の動作を省いて簡略化している。
カメラ100のメインスイッチ119がオンされると、まずステップS1で、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。次にステップS2で、例えば1秒間、光学素子11の振動を継続する。次にステップS3で、圧電体32の駆動を停止する。そしてステップS4で、振動検出部148の駆動を開始し、手ブレの検出を始める。このように異物除去と手ブレ検出処理を同時に実行しないようにして、異物除去の振動が手ブレ検出処理に影響を与えないようにしている。
次にステップS5で、モード切換スイッチ123の操作状態を検出し、モード切換スイッチ123が操作されている(手動で異物除去機能を作動させる)場合にはステップS14に進み、そうでない時はステップS6に進む。ステップS6では、レリーズボタン120の半押し操作がなされるまで待機する。ここでレリーズボタン120が半押しされるとステップS7に進み、測光、測距、AF(自動焦点)のための合焦駆動、及び振れ補正を開始する。そしてステップS8で、レリーズボタン120の全押し操作がなされるまで待機する。尚、ここでは省略しているが、ステップS8の待機中にレリーズボタン120の半押し操作がオフされた場合はステップS6に戻り、再びレリーズボタン120の半押し操作がなされるまで待機する。こうしてステップS8でレリーズボタン120が全押しされるとステップS9に進み、シャッタ50を開いて露光を開始する。なお、実際はそれに先立って固体撮像素子15の電荷リセットを行っている。そしてステップS10で、ステップS7で求めた測光値に基づく露光時間が終了するまで待機する。こうして設定された露光時間が経過するとステップS11で、シャッタ50を閉じる。又、この後、固体撮像素子15に蓄積された電荷を読み出してメモリに記憶する。次にステップS12で、レリーズボタン120の半押し操作がオフされるまで待機する。尚、ここで再びレリーズボタン120の全押し操作がなされた場合はステップS9に戻り、次の露光を開始する。そしてレリーズボタン120の半押し操作がオフされるとステップS13に進み、振れ補正を停止してステップS5に戻る。
一方、前述のステップS5で、モード切換スイッチ123が操作されている場合はステップ#1014に進み、振動検出部148の駆動を停止する。次にステップS15に進み、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。そしてステップS16で、例えば1秒間光学素子11の振動を継続した後ステップS17に進み、圧電体32の駆動を停止する。そしてステップS18で、振動検出部148の駆動を開始し、手ブレの検出を開始してステップS6に戻る。
このように手動で異物除去機能を作動させる場合には、振動検出部148の動作を停止している。これは振動検出部148が作動中に圧電体32が作動すると、その圧電体32の振動により手ブレの検出精度が低下し、その後、圧電体32の作動が停止してもしばらくの間(例えば4秒間)振動検出の精度が保証できないためである。
以上説明したように本実施の形態1によれば、異物除去のための動作により、振動検出部148による手ブレ検出の精度が低下するといった問題を解決できる。
即ち、本実施の形態1によれば、カメラのブレを検出する振動検出部148と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器(カメラ100、レンズ装置102)において、振動検出部と異物除去部の動作タイミングを重複させない。例えば、異物除去部作動中の振動検出部の作動を禁止する(図5のステップS3からS4のずらしタイミング、ステップS14からS15のずらしタイミング)ので、振動検出中に異物除去のための振動が入力されることがなくなる。これにより安定した手ブレ検出、手ブレ補正が可能になる。
又、カメラのブレを検出する振動検出部148と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、異物除去部の動作が終了した後に振動検出部による手ブレの検出動作を開始する(図5のステップS3からS4)。これにより、異物除去部の作動による手ブレ検出誤差の発生を防止できる。
[実施の形態2]
図6は、本発明の実施の形態2に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、図6において図5の実施の形態1と同じ機能は同じステップ番号で示し、その説明を省略する。またこの実施の形態2に係るカメラ100のカメラシステムのハードウェア構成は前述の実施の形態1の構成と同じであるため、その説明を省略する。この実施の形態2に係る処理も、カメラ100のメインスイッチ119のオンで作動を開始し、オフにされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。
カメラ100のメインスイッチ119がオンされるとステップS21で、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。このとき同時に振動検出部148の駆動も開始する。しかしこの時点では、演算部151のDCカットフィルタ148a,152cの演算時の定数はまだ小さいままにしている。このとき、積分回路152dはリセット状態にしておいてもよい。即ち、DCカットフィルタ148aは、0.1Hz以下の周波数成分の信号をカットする大きな時定数の特性を有しているが、この時点においては時定数を小さく(例えば、10Hz以下の周波数成分の信号をカットする特性にする)維持している。これはDCカットフィルタ152cについても同様である。このため振動検出部148に重畳する誤差成分(圧電体32の振動に起因する)は演算されず、信号の誤差が継続して発生することは無い。
次にステップS2で、例えば1秒間、光学素子11の振動を継続させる。そしてステップS3で、圧電体32の駆動を停止する。次にステップS22で、演算部151の時定数を大きくして(元に戻して)いる。即ち、DCカットフィルタ148aは、例えば10Hz以下の周波数成分の信号をカットする特性であったのを、0.1Hz以下の周波数成分のみカットする特性に変更している。又、DCカットフィルタ152cでは、10Hz以下の周波数成分をカットするフィルタ特性であったものを、ステップS23から後では、フィルタでカットする周波数成分を、50m秒毎に5Hz,1Hz,0.5Hz,0.2Hzと下げてゆく。但し、上記動作の間に撮影者がシャッタレリーズボタン120を半押しして測光測距を行った場合は直ちに撮影を行う可能性があり、時間を費やして時定数変更を行うのが好ましくない場合もある。そこでその様な時には撮影条件に応じて時定数の変更を途中で中止する。例えば、測光結果により、撮影シャッタースピードが1/60となる事が判明し、撮影焦点距離が150mmの場合は、防振の精度はさほど要求されない。このため、DCカットフィルタ152cは、0.5Hz以下の周波数成分をカットする特性まで時定数を変更した時点で完了とする(シャッタスピードと撮影焦点距離の積により時定数変更量を制御する)。これにより時定数の変更に要する時間を短縮でき、シャッターチャンスを優先できる。勿論、より速いシャッタスピード、或いはより短い焦点距離の場合は、DCカットフィルタ152cの特性は1Hz以下の周波数成分をカットする特性まで時定数を変更した時点で完了とする。またより遅いシャッタスピード、長い焦点距離の場合は、時定数が目標値に変更されるまで撮影を禁止する。このように異物除去の動作と、演算部151の演算時の定数が大きい状態とが同時に発生しないようにしている。
ステップS5では、モード切換スイッチ123の操作状態を検出し、モード切換スイッチ123が操作されている(手動で異物除去機能を作動させる)場合はステップS23に進むが、そうでない時はステップS6に進む。ステップS6〜S13の処理は前述の実施の形態1と同様であるため、その説明を省略する。
ステップS23では、演算部151の演算時定数を小さくする。即ち、DCカットフィルタ148a,152cを10Hz以下の周波数成分の信号をカットする時定数の小さな特性に変更する。次にステップS15で、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。次にステップS16で、例えば1秒間、光学素子11の振動を継続した後ステップS17で、圧電体32の駆動を停止する。次にステップS24で、演算部151の時定数を大きくし(ステップS22と同じ)てステップS6に戻る。
このように本実施の形態2では、手動で異物除去機能を作動する場合に演算部151の演算時定数を小さくしている。これは振動検出部148の作動中に圧電体32が作動すると、手ブレの検出精度が低下し、かつその誤差信号が演算部151の大きな演算時定数により長期に亘って影響するのを防止するためである。
以上説明した実施の形態2に係るカメラシステム制御回路135(カメラマイコン)は、レンズシステム制御回路141(レンズマイコン)と連携して圧電駆動部39及び振動検出部148を以下の様な順番で駆動する。
(A)カメラのメインスイッチ119が操作されたとき
(1)振動検出部148及び圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(2)異物除去中は、振動検出部148の信号を演算する演算部151演算時定数を小さくし、異物除去動作の終了後に演算時定数を大きくする。
(B)モード切換スイッチ123が操作されたとき
(1)振動検出部148からの信号を演算する演算部151による演算時定数を小さくする。
(2)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(3)振動検出部148からの信号を演算する演算部151の演算時定数を大きくしてゆく。
以上説明したように本実施の形態2によれば、カメラのブレを検出する振動検出部148と、振動検出部の出力を演算する演算部151と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、異物除去部の作動中は演算部の演算時定数を小さくする(図6のステップS21からS22、S23からS24)ので、異物除去部が動作中であっても、手ブレ検出のための演算が不安定になることがなくなる。これにより、異物除去部の動作終了後、直ぐに安定した手ブレ補正が可能になる。
[実施の形態3]
図7は、本発明の実施の形態3に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、図7において図5の実施の形態1と同じ機能は同じステップ番号で示し、その説明を省略する。またこの実施の形態3に係るカメラ100のカメラシステムのハードウェア構成は前述の実施の形態1の構成と同じであるため、その説明を省略する。尚、この処理フローもカメラ100のメインスイッチ119がオンされることにより開始され、オフにされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。
カメラ100のメインスイッチ119がオンされるとステップS31で、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。このとき同時に振動検出部148も駆動を始める。しかしこのとき、演算部151の駆動は行っていない。そしてステップS2で、例えば1秒間、光学素子11の振動を継続した後ステップS3で、圧電体32の駆動を停止する。次にステップS32で、演算部151の駆動を開始する。
これは図4を参照して説明した様に、初めにDCカットフィルタ148aで、例えば10Hz以下の周波数成分の信号をカットする特性として初期化し、その後、0.1Hz以下の周波数成分のみカットする特性に変更している。又、DCカットフィルタ152cも10Hz以下の周波数成分をカットするフィルタ特性で初期化し、ステップS31から後のステップで、50m秒毎にフィルタ152cでカットする周波数成分を5Hz,1Hz,0.5Hz,0.2Hzと下げてゆく。但し、この動作の間に撮影者がシャッタレリーズボタン120を半押しして測光測距を行った場合は、直ちに撮影を行う可能性がある。このような場合は、時間を費やして時定数を変更するのは好ましくない。そこでその様な場合には、撮影条件に応じて時定数の変更を途中で中止する。例えば、測光結果により撮影シャッタースピードが1/60となる事が判明し、撮影焦点距離が150mmの場合は防振の精度はさほど要求されないためにDCカットフィルタ152cでは、0.5Hz以下の周波数成分をカットする特性まで時定数を変更すると処理の完了とする。こうしてシャッタスピードと撮影焦点距離の積により時定数変更量を制御する。これにより時定数変更の時間を短縮でき、シャッターチャンスを優先できる。ここで、より速いシャッタスピード、或いはより短い焦点距離の場合には、DCカットフィルタ152cの特性の変更は、1Hz以下の周波数成分をカットする特性まで時定数を変更した時点で完了とする。尚、より遅いシャッタスピード、長い焦点距離の場合には、時定数が目標値に変更されるまで撮影を禁止する。このようにして、異物除去の動作と演算部151の駆動とが同時に発生しないようにしている。
そしてステップS5で、モード切換スイッチ123が操作されている(手動で異物除去機能を作動させる)場合はステップS33に進むが、そうでない時はステップS6に進み、前述の図5とステップS5〜S12と同様の処理を実行する。
一方、ステップS5でモード切換スイッチ123が操作されている場合にはステップS33に進み、演算部151の駆動を停止する。次にステップS15で、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。こうしてステップS16で、例えば1秒間、光学素子11の振動を継続するとステップS17に進み、圧電体32の駆動を停止する。次にステップS34で、演算部151の駆動を開始する。このときDCカットフィルタ148aでは、例えば10Hz以下の周波数成分の信号をカットする特性として初期化し、その後、0.1Hz以下の周波数成分のみをカットする特性に変更している。又、DCカットフィルタ152cも10Hz以下の周波数成分をカットするフィルタ特性で初期化される。そして、ステップS31から後、50msec毎にフィルタでカットする周波数成分を5Hz,1Hz,0.5Hz,0.2Hzと下げてゆく。
このように手動で異物除去処理を実行させる場合には、一旦演算部151の駆動を停止している。これは振動検出部148の動作中に圧電体32が動作すると、振動を検出するための演算精度が低下するためである。そして、その誤差信号が演算部151の大きな演算時定数により長期に亘って影響するのを防止するためである。
以上説明した異物除去機能及び防振システムを作動させる際、カメラシステム制御回路135(カメラマイコン)は、レンズシステム制御回路141(レンズマイコン)と連携して圧電駆動部39及び振動検出部148を以下の様な順番で駆動する。
(A)カメラのメインスイッチ119が操作されたとき
(1)振動検出部148及び圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(2)異物除去中は、振動検出部148の信号を演算する演算部151を駆動しない。
(B)モード切換スイッチ123が操作されたとき
(1)振動検出部148からの信号を演算する演算部151の駆動を停止する。
(2)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(3)振動検出部148から出力される信号を演算する演算部151を初期化して駆動を始める。
以上説明したように、異物除去のための動作と振動検出部148の動作とが同時に並行して実行されないように制御する。これにより、異物除去により手ブレ検出精度が大幅に低下するのを防止できる。
このように本実施の形態3によれば、カメラのブレを検出する振動検出部148と、振動検出部出力を演算する演算部151と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する撮影装置において、振動検出部出力を演算する演算部と異物除去部を同時に作動させない(図7のステップS31からS32、S33からS34)。そして、異物除去部が動作中に演算部の動作を禁止しているので、振動検出信号の演算中に異物除去のための不要な振動が入力されず、安定した手ブレ検出、手ブレ補正が可能になる。
又、カメラのブレを検出する振動検出部148と、振動検出部出力を演算する演算部151と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、異物除去部の動作終了後に演算部を初期化する(図7のステップS32,S34)構成にしているので、異物除去部の作動による手ブレ検出誤差が継続して発生するのを防止できる。
[実施の形態4]
図8は、本発明の実施の形態4に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、図8において図5の実施の形態1と同じ機能は同じステップ番号で示し、その説明を省略する。またこの実施の形態4に係るカメラ100のカメラシステムのハードウェア構成は前述の実施の形態1の構成と同じであるため、その説明を省略する。尚、この処理フローもカメラ100のメインスイッチ119がオンされることにより開始され、オフにされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。
ステップS5で、モード切換スイッチ123が操作されている(手動で異物除去機能を作動させる)場合はステップS41に進み、そうでない時はステップS6に進む。ステップS6〜S13の処理は説明を省略する。
ステップS41では、防振システムをユーザが選択しているか否かを判定する。ここで防振システムをオフ(非選択)している場合はステップS15に進み、前述の図5と同じステップS15〜S17を実行してステップS6に進む。一方、ステップS41で、防振システムがオンに設定されているときはステップS42に進み、異物除去機能が働かないことを、カメラの表示部107などに表示してステップS6に戻る。
このように本実施の形態4によれば、手動で異物除去作動を行う場合で、且つ防振システムを使用する状態の場合は、異物除去機能の作動を禁止(禁止したことを表示する)する。これにより、圧電体32が作動することにより振動検出の演算精度が低下し、その誤差信号が演算部151の大きな演算時定数により、長期に亘って影響するのを防止している。
以上説明した異物除去機能及び防振システムを作動させる際、カメラシステム制御回路135(カメラマイコン)は、レンズシステム制御回路141(レンズマイコン)と連携して圧電駆動部39及び振動検出部148を以下の様な順番で駆動する。
(A)カメラのメインスイッチ119が操作されたとき
(1)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(2)圧電体32の駆動終了後に、振動検出部148を起動する。
(B)モード切換スイッチ123が操作されたとき
(1)防振システムを使用しているときは圧電体32の駆動を禁止し、異物除去機能を働かせない旨を表示する。
(2)防振システムをオフにしている時は、圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
以上説明したように本実施の形態4によれば、異物除去のための動作と振動検出部148の同時動作をなくして、手ブレ検出精度が大幅に低下するのを防止できる。
即ち、この実施の形態4によれば、カメラのブレを検出する振動検出部148と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、振動検出部と異物除去部を同時に作動させない、詳しく振動検出部が作動中の異物除去部の作動を禁止する(図8のステップS41,S42)ので、振動検出中に異物除去のための不要な振動が入力されず、安定した手ブレ検出、手ブレ補正が可能になる。
[実施の形態5]
図9は、本発明の実施の形態5に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、図9において図8の実施の形態4と同じ機能は同じステップ番号で示し、その説明を省略する。またこの実施の形態5に係るカメラ100のカメラシステムのハードウェア構成は前述の実施の形態1の構成と同じであるため、その説明を省略する。尚、この処理フローもカメラ100のメインスイッチ119がオンされることにより開始され、オフにされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。
ステップS5で、モード切換スイッチ123が操作されている(手動で異物除去機能を作動させる)場合はステップS41に進み、防振システムをユーザが選択しているか否かを判定する。ここで防振システムをオフ(非選択)している場合は、前述したステップS15〜S17の処理を実行する。一方、ステップS41で、防振システムをオンにしているときはステップS51に進み、圧電体32を駆動して光学素子11を振動させて光学素子11に付着した異物を除去(剥離)する。しかしこのステップS51における圧電体32の駆動振幅は、ステップS1,S15の場合より小さく設定している。これにより、振動検出部148の検出精度が低下しないようにしている。尚、この圧電体32の振動に際して、振幅だけではなく、振動周波数を変化させてもよい。そしてステップS52で、例えば2秒間光学素子11の振動を継続させる。ここではステップS2,S16のように1秒間ではなく、より長い2秒間光学素子11を振動させている。ここではより長く振動させることで、振動振幅の不足(或いは周波数の変化)による異物除去能力の低下を補っている。そしてステップS53で、圧電体32の駆動を停止してステップS6に戻る。
このように本実施の形態5によれば、手動で異物除去を作動させる場合で、且つ防振システムを使用している状態の場合は、異物除去機能の能力を低下させることにより、振動検出の精度が低下するのを防止している。また、その誤差信号が演算部151の大きな演算時定数により長期に亘って影響するのを防止している。
このように本実施の形態5によれば、
(A)カメラのメインスイッチ119が操作されたとき
(1)圧電駆動部39により圧電体32を1秒間駆動し、光学素子11上の異物除去を行う。
(2)圧電体32の駆動終了後に振動検出部148の起動を行う。
(B)モード切換スイッチ123が操作されたとき
(1)防振システムを使用しているときは圧電体32の駆動様式を変更(例えば小振幅にする、振動周波数を変化させる)する(異物除去能力をおとす)。
(2)防振システムをオフにしている場合は、圧電駆動部39により圧電体32を1秒間駆動して光学素子11上の異物除去を行う。
以上説明したように本実施の形態5によれば、カメラのブレを検出する振動検出部148と、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、振動検出部作動中に異物除去部を作動させる時は異物除去能力を低く設定する(図9のステップS41,S51〜S53)ことにより、異物除去部の作動による振動検出部における検出信号の精度の低下を防止でき、安定した手ブレ補正が継続できる。
[実施の形態6]
図10は、本発明の実施の形態6に係るカメラ100のカメラシステム制御回路135による制御処理を説明するフローチャートである。尚、図10において図5の実施の形態1と同じ機能は同じステップ番号で示し、その説明を省略する。またこの実施の形態6に係るカメラ100のカメラシステムのハードウェア構成は前述の実施の形態1の構成と同じであるため、その説明を省略する。尚、この処理フローもカメラ100のメインスイッチ119がオンされることにより開始され、オフにされると、どのステップの段階であっても動作を終了(作動していた機能も動作終了)する。
尚、図10のフローチャートでは、説明を明瞭にするためにメインスイッチ119がオフにされると、どのステップの段階であっても動作を終了するステップを追加して示している。
即ち、ステップS61では、メインスイッチ119がオフされたかを検出しており、オフされた場合はステップS66に進み、そうでないい時はステップS6に戻る。即ち、レリーズボタン120が半押し操作されるまではメインスイッチ120の状態を検出しつつ待機する。
またステップS8では、レリーズボタン120の全押し操作がなされるとステップS9に進むが、そうでない時はステップS62で、レリーズボタン120の半押し解除操作がなされたかを判定し、解除操作が成されるとステップS63で、メインスイッチ119がオフされたかを検出する。そしてメインスイッチ119がオフされた場合はステップS66に進み、異物除去機能を動作させ、そうでない時はステップS6に戻る。即ち、レリーズボタン120が全押し操作されるまでは、レリーズボタン120半押し解除状態を検出しつつ待機し、レリーズボタン120の半押し解除操作がなされた後、メインスイッチ119がオフされるまでは、再度レリーズボタン120の半押しを待機しており、メインスイッチ119がオフされた場合は、異物除去を行う構成にしている。
ここでステップS66〜S68の処理は、図5のステップS1〜S3の処理と同様にして、圧電体32を1秒間駆動して光学素子11を振動させ、光学素子11に付着した異物を除去(剥離)させる。
このようにして、手動で異物の除去動作を実行させる場合には、一旦振動検出部148の動作を停止している。これは振動検出部148の作動中に圧電体32が作動すると振動検出精度が低下し、その後、圧電体32の作動が停止しても、暫くの間(例えば4秒)振動検出精度が保てないためである。このように振動検出部148による手ブレ検出が不要になるタイミング(カメラのメインスイッチ119がオフされた時)に圧電駆動部39により圧電体32を1秒間駆動して光学素子11上の異物除去を行うので、異物除去動作により手ブレ検出精度が低下するのを防止できる。
以上説明したように本実施の形態5によれば、撮像部前面に付着した異物を除去する異物除去部(圧電体32、圧電駆動部32、光学素子11)を有する光学機器において、撮影装置の撮影完了後に異物除去部を作動させる作動制御部(図10のステップS61,S63〜S65)を有する。これにより、撮影装置の主電源を有し、作動制御部は主電源がオフ(メインスイッチ119のオフ操作)されるのに応答して異物除去部を作動させる構成にしている。そのため異物除去部の作動後にカメラの他の機能の作動が無く、異物除去部の作動がカメラの他の機能の性能を低下させることがなくなる。
[変形例]
以上説明した実施の形態1〜6では、固体撮像素子15の前面に配置されたローパスフィルタを圧電体32で振動させて異物の除去を行った。
これに対してこの変形例では、図11に示す様にローパスフィルタの前面に透明の板(光学素子11)を設け、その透明板11を圧電体32で振動させても良い。
図11は、本実施の形態の変形例に係るカメラの撮像部及びフォーカルプレンシャッタの概略構成を説明するための側方断面図である。この図11において、前述の図1と共通する部分は同じ記号で示し、その説明を省略する。
図11では、図1のように光学素子11(ローパスフィルタ)保持部材12及び支持板13により支持されておらず、支持板13から離れて取り付けられている。この状態で、光学素子11上に貼り付けられた圧電体32に通電することにより、光学素子11の表面を振動させて光学素子11上に付着している異物30を剥離させる。
尚、この撮像部及びフォーカルプレンシャッタは、レンズ交換式のカメラだけでなく、カメラボディとレンズ装置が一体になった(交換不能な)カメラや、ビデオカメラ、カメラ付き携帯電話などの装置においても適用可能である。
また、振動検出部148をカメラのメインスイッチ120で駆動させるのではなく、レリーズボタン120の半押しなどのタイミングで駆動させる防振システムの場合であって適用できる。更には、振動検出部148の作動中に異物除去動作をユーザが要求した場合においても適用可能(振動検出を止めて異物除去に移行、或いは振動検出中は異物除去を行わない、異物除去能力を落とすなど)である。
本実施の形態に係るカメラの撮像部及びフォーカルプレンシャッタの概略構成を説明するための側方断面図である。 本実施の形態に係るカメラシステムの構成を示す概略図である。 本実施の形態に係るカメラのカメラシステムの電気的構成を示すブロック図である。 本実施の形態に係るレンズシステム制御回路の振動検出及び演算処理を説明するための機能ブロック図である。 本実施の形態1に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本発明の実施の形態2に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本発明の実施の形態3に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本発明の実施の形態4に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本発明の実施の形態5に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本発明の実施の形態6に係るカメラのカメラシステム制御回路による制御処理を説明するフローチャートである。 本実施の形態の変形例に係るカメラの撮像部及びフォーカルプレンシャッタの概略構成を説明するための側方断面図である。

Claims (22)

  1. 光学機器に加えられる振動を検出する振動検出手段と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
    前記異物除去手段の作動と、前記振動検出手段による振動の検出動作のタイミングをずらすように制御する制御手段と、
    を有することを特徴とする光学機器。
  2. 前記制御手段は、前記異物除去手段の作動停止後、前記振動検出手段による検出処理を開始させることを特徴とする請求項1に記載の光学機器。
  3. 前記制御手段は、前記振動検出手段による検出処理が終了した後、前記異物除去手段の作動を開始させることを特徴とする請求項1に記載の光学機器。
  4. 前記振動検出手段は、
    電圧の印加に応じて振動する圧電素子と、
    前記圧電素子の振動に対して、前記光学機器に与えられる振動の慣性力による角速度を検出するセンサとを有することを特徴とする請求項1乃至3のいずれか1項に記載の光学機器。
  5. 光学機器に加えられる振動を検出する振動検出手段と、
    前記振動検出手段の出力信号を演算して手ブレ量を演算する演算手段と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
    前記異物除去手段の作動と、前記演算手段による演算処理のタイミングをずらすように制御する制御手段と、
    を有することを特徴とする光学機器。
  6. 前記制御手段は、前記異物除去手段の作動中、前記演算手段の作動を禁止することを特徴とする請求項5に記載の光学機器。
  7. 光学機器に加えられる振動を検出する振動検出手段と、
    前記振動検出手段の出力信号を演算して手ブレ量を演算する演算手段と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
    前記異物除去手段が作動中であるか否かに応じて、前記演算手段における演算様式を変更する制御手段と、
    を有することを特徴とする光学機器。
  8. 前記制御手段は、前記異物除去手段が作動中の場合、前記演算手段の演算時定数を小さくすることを特徴とする請求項7に記載の光学機器。
  9. 光学機器に加えられる振動を検出する振動検出手段と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
    前記振動検出手段の作動中、前記異物除去手段による除去能力を変更して前記異物除去手段を作動させるように制御する制御手段と、
    を有することを特徴とする光学機器。
  10. 前記制御手段は、前記振動検出手段が作動中、前記異物除去手段による異物除去能力を低く設定することを特徴とする請求項9に記載の光学機器。
  11. 光学機器に加えられる振動を検出する振動検出手段と、
    前記振動検出手段の出力信号を演算して手ブレ量を演算する演算手段と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去手段と、
    前記異物除去手段の動作終了後、前記演算手段を初期化するように制御する制御手段と、
    を有することを特徴とする光学機器。
  12. 光学機器に加えられる振動を検出する振動検出工程と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
    前記異物除去工程と、前記振動検出工程での振動の検出動作のタイミングをずらすように制御する制御工程と、
    を有することを特徴とする光学機器の制御方法。
  13. 前記制御工程では、前記異物除去工程の停止後、前記振動検出工程による検出処理を開始させることを特徴とする請求項12に記載の光学機器の制御方法。
  14. 前記制御工程では、前記振動検出工程での検出処理が終了した後、前記異物除去工程を開始させることを特徴とする請求項12に記載の光学機器の制御方法。
  15. 前記振動検出工程は、
    電圧の印加に応じて振動する圧電素子の振動に対して、前記光学機器に与えられる振動の慣性力による角速度を検出することを特徴とする請求項12乃至14のいずれか1項に記載の光学機器の制御方法。
  16. 光学機器に加えられる振動を検出する振動検出工程と、
    前記振動検出工程の出力信号を演算して手ブレ量を演算する演算工程と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
    前記異物除去工程と、前記演算工程での演算処理のタイミングをずらすように制御する制御工程と、
    を有することを特徴とする光学機器の制御方法。
  17. 前記制御工程では、前記異物除去工程中、前記演算工程の開始を禁止することを特徴とする請求項16に記載の光学機器の制御方法。
  18. 光学機器に加えられる振動を検出する振動検出工程と、
    前記振動検出工程からの出力信号を演算して手ブレ量を演算する演算工程と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
    前記異物除去工程中であるか否かに応じて、前記演算工程における演算様式を変更する制御工程と、
    を有することを特徴とする光学機器の制御方法。
  19. 前記制御工程は、前記異物除去工程中、前記演算工程の演算時定数を小さくすることを特徴とする請求項18に記載の光学機器の制御方法。
  20. 光学機器に加えられる振動を検出する振動検出工程と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
    前記振動検出工程の間、前記異物除去工程による除去能力を変更して前記異物除去工程を作動させるように制御する制御工程と、
    を有することを特徴とする光学機器の制御方法。
  21. 前記制御工程では、前記振動検出工程中、前記異物除去工程による異物除去能力を低く設定することを特徴とする請求項20に記載の光学機器の制御方法。
  22. 光学機器に加えられる振動を検出する振動検出工程と、
    前記振動検出工程からの出力信号を演算して手ブレ量を演算する演算工程と、
    撮像部或は当該撮像部近傍に付着した異物を振動により除去する異物除去工程と、
    前記異物除去工程の終了後、前記演算工程を初期化するように制御する制御工程と、
    を有することを特徴とする光学機器の制御方法。
JP2005230081A 2005-08-08 2005-08-08 光学機器及びその制御方法 Expired - Fee Related JP4863440B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230081A JP4863440B2 (ja) 2005-08-08 2005-08-08 光学機器及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005230081A JP4863440B2 (ja) 2005-08-08 2005-08-08 光学機器及びその制御方法

Publications (3)

Publication Number Publication Date
JP2007047323A true JP2007047323A (ja) 2007-02-22
JP2007047323A5 JP2007047323A5 (ja) 2008-09-04
JP4863440B2 JP4863440B2 (ja) 2012-01-25

Family

ID=37850212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230081A Expired - Fee Related JP4863440B2 (ja) 2005-08-08 2005-08-08 光学機器及びその制御方法

Country Status (1)

Country Link
JP (1) JP4863440B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035150A (ja) * 2008-06-26 2010-02-12 Nikon Corp 撮像装置
WO2012157407A1 (ja) * 2011-05-13 2012-11-22 富士フイルム株式会社 撮像装置及び合焦制御方法
JP2020012907A (ja) * 2018-07-13 2020-01-23 株式会社ニコン 交換レンズ及びカメラボディ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265577B1 (ja) 2016-09-08 2018-01-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 撮像装置、撮像システム、移動体、方法及びプログラム
EP3477934B1 (en) 2016-09-08 2021-03-10 SZ DJI Technology Co., Ltd. Imaging system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181932A (ja) * 1990-11-16 1992-06-29 Minolta Camera Co Ltd ぶれ検出機能付カメラ
JPH04195127A (ja) * 1990-11-28 1992-07-15 Olympus Optical Co Ltd カメラの振動検出装置
JPH07295006A (ja) * 1994-04-28 1995-11-10 Nikon Corp 振れ補正カメラ
JPH08146481A (ja) * 1994-11-22 1996-06-07 Canon Inc 防振カメラ
JPH08334804A (ja) * 1995-06-05 1996-12-17 Nikon Corp 振れ補正機構を備える撮影装置及びレンズ装置
JPH09200591A (ja) * 1996-01-17 1997-07-31 Canon Inc ビデオカメラ装置
JP2000023022A (ja) * 1998-07-03 2000-01-21 Sony Corp 手振れ補正装置
JP2003130647A (ja) * 2001-10-24 2003-05-08 Canon Inc 電子機器
JP2005159711A (ja) * 2003-11-26 2005-06-16 Konica Minolta Photo Imaging Inc 撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181932A (ja) * 1990-11-16 1992-06-29 Minolta Camera Co Ltd ぶれ検出機能付カメラ
JPH04195127A (ja) * 1990-11-28 1992-07-15 Olympus Optical Co Ltd カメラの振動検出装置
JPH07295006A (ja) * 1994-04-28 1995-11-10 Nikon Corp 振れ補正カメラ
JPH08146481A (ja) * 1994-11-22 1996-06-07 Canon Inc 防振カメラ
JPH08334804A (ja) * 1995-06-05 1996-12-17 Nikon Corp 振れ補正機構を備える撮影装置及びレンズ装置
JPH09200591A (ja) * 1996-01-17 1997-07-31 Canon Inc ビデオカメラ装置
JP2000023022A (ja) * 1998-07-03 2000-01-21 Sony Corp 手振れ補正装置
JP2003130647A (ja) * 2001-10-24 2003-05-08 Canon Inc 電子機器
JP2005159711A (ja) * 2003-11-26 2005-06-16 Konica Minolta Photo Imaging Inc 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035150A (ja) * 2008-06-26 2010-02-12 Nikon Corp 撮像装置
WO2012157407A1 (ja) * 2011-05-13 2012-11-22 富士フイルム株式会社 撮像装置及び合焦制御方法
JP2020012907A (ja) * 2018-07-13 2020-01-23 株式会社ニコン 交換レンズ及びカメラボディ
JP7099108B2 (ja) 2018-07-13 2022-07-12 株式会社ニコン 交換レンズ及びカメラボディ

Also Published As

Publication number Publication date
JP4863440B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5203018B2 (ja) 撮像装置およびカメラ
JP2001203930A (ja) 撮像装置
JP5052389B2 (ja) 撮像装置
JP2008053845A (ja) レンズ交換式カメラ
JP2007150740A (ja) 撮像装置
JP2009251491A (ja) 撮像装置および撮像装置の制御方法
JP2005215388A (ja) 交換レンズ及びそれを用いたカメラシステム
JP2010103921A (ja) 撮像装置および撮像装置の制御方法
JP2005292404A (ja) アクセサリ装置
JP4863440B2 (ja) 光学機器及びその制御方法
JP4662333B2 (ja) 撮像装置
JP2013104921A (ja) 撮像装置、撮像システム、撮像装置の制御方法
JP4876550B2 (ja) 撮像装置、制御方法および制御プログラム
JP5478677B2 (ja) 撮像装置および撮像装置の制御方法
JP2007199182A (ja) 防振機能付きカメラ
JP4399668B2 (ja) 撮影装置
JP2009284117A (ja) 撮像装置および撮像装置の制御方法
JP2010226185A (ja) 撮像装置および撮像装置の制御方法
JP5203155B2 (ja) 撮像装置および撮像装置の制御方法
JP2006293036A (ja) 光学機器及び当該光学機器における異物除去方法
JP2003061048A (ja) 電子カメラ、撮像方法、プログラムおよび記憶媒体
JP5810304B2 (ja) 撮像装置及び撮像装置における情報表示方法
JP2007124194A (ja) 電子カメラ
JP2012182700A (ja) カメラ
JP2007248672A (ja) 撮影装置、制御方法および制御プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees