JP2007036271A - Cerium oxide abrasive, and method of polishing substrate - Google Patents

Cerium oxide abrasive, and method of polishing substrate Download PDF

Info

Publication number
JP2007036271A
JP2007036271A JP2006246046A JP2006246046A JP2007036271A JP 2007036271 A JP2007036271 A JP 2007036271A JP 2006246046 A JP2006246046 A JP 2006246046A JP 2006246046 A JP2006246046 A JP 2006246046A JP 2007036271 A JP2007036271 A JP 2007036271A
Authority
JP
Japan
Prior art keywords
cerium oxide
polishing
particles
slurry
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006246046A
Other languages
Japanese (ja)
Other versions
JP5023626B2 (en
Inventor
Masato Yoshida
誠人 吉田
Toranosuke Ashizawa
寅之助 芦沢
Hiroki Terasaki
裕樹 寺崎
Yasushi Kurata
靖 倉田
Jun Matsuzawa
純 松沢
Kiyohito Tanno
清仁 丹野
Hiroto Otsuki
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27478488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2007036271(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006246046A priority Critical patent/JP5023626B2/en
Publication of JP2007036271A publication Critical patent/JP2007036271A/en
Application granted granted Critical
Publication of JP5023626B2 publication Critical patent/JP5023626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cerium oxide abrasive for speedily polishing a surface to be polished, such as an SiO<SB>2</SB>insulating film, without any flaws. <P>SOLUTION: An Si wafer for forming the SiO<SB>2</SB>insulating film manufactured by a TEOS-CVD method is polished by the cerium oxide abrasive for polishing a semiconductor substrate containing cerium oxide particles, a polyacrylic acid ammonium salt having a molecular weight of 5,000-20,000, and water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化セリウム研磨剤及び基板の研磨法に関する。   The present invention relates to a cerium oxide abrasive and a method for polishing a substrate.

従来、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成されるSiO絶縁膜等無機絶縁膜層を平坦化するための化学機械研磨剤としてコロイダルシリカ系の研磨剤が一般的に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持たず、実用化には低研磨速度という技術課題がある。 Conventionally, colloidal silica-based abrasives have been used as chemical mechanical abrasives for planarizing inorganic insulating film layers such as SiO 2 insulating films formed by methods such as plasma-CVD and low-pressure CVD in the manufacturing process of semiconductor devices. Generally considered. Colloidal silica-based abrasives are produced by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.

一方、フォトマスク用ガラス表面研磨として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。また、酸化セリウムは強い酸化剤として知られるように化学的活性な性質を有している。この利点を活かし、絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、フォトマスク用ガラス表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に適用すると、1次粒子径が大きく、そのため絶縁膜表面に目視で観察できる研磨傷が入ってしまう。   On the other hand, a cerium oxide abrasive is used for photomask glass surface polishing. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finishing mirror polishing because they do not easily scratch the polished surface. Moreover, cerium oxide has a chemically active property as known as a strong oxidizing agent. Taking advantage of this advantage, application to a chemical mechanical polishing agent for insulating films is useful. However, when the cerium oxide abrasive for polishing a glass surface for a photomask is applied as it is to the polishing of an inorganic insulating film, the primary particle size is large, so that a polishing flaw that can be visually observed enters the insulating film surface.

本発明は、SiO絶縁膜等の被研磨面を傷なく高速に研磨することが可能な酸化セリウム研磨剤及び基板の研磨法を提供するものである。 The present invention provides a cerium oxide abrasive capable of polishing a surface to be polished such as a SiO 2 insulating film at a high speed without damage and a method for polishing a substrate.

本発明の酸化セリウム研磨剤は、一次粒子径の中央値が30〜250nmであり粒子径の中央値が150〜600nmである酸化セリウム粒子を媒体に分散させたスラリーを含むものである。また本発明の酸化セリウム研磨剤は、一次粒子径の中央値が100〜250nmであり粒子径の中央値が150〜350nmである酸化セリウム粒子を媒体に分散させたスラリーを含むものであることができる。上記の酸化セリウム粒子では、一次粒子の最大径は600nm以下が好ましく、一次粒子径は10〜600nmであることが好ましい。   The cerium oxide abrasive of the present invention contains a slurry in which cerium oxide particles having a median primary particle diameter of 30 to 250 nm and a median particle diameter of 150 to 600 nm are dispersed in a medium. Moreover, the cerium oxide abrasive | polishing agent of this invention can contain the slurry which disperse | distributed to the medium the cerium oxide particle | grains whose median value of a primary particle diameter is 100-250 nm and whose median value of particle diameter is 150-350 nm. In the cerium oxide particles, the maximum primary particle diameter is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm.

また本発明の酸化セリウム研磨剤は、一次粒子径の中央値が30〜70nmであり粒子径の中央値が250〜600nmである酸化セリウム粒子を媒体に分散させたスラリーを含むものであることができる。上記の酸化セリウム粒子では、一次粒子径は10〜100nmであることが好ましい。本発明の酸化セリウム研磨剤では、酸化セリウム粒子の最大径は3000nm以下であることが好ましい。   Moreover, the cerium oxide abrasive | polishing agent of this invention can contain the slurry which disperse | distributed to the medium the cerium oxide particle | grains whose median value of a primary particle diameter is 30-70 nm and whose median value of particle diameter is 250-600 nm. In the cerium oxide particles, the primary particle diameter is preferably 10 to 100 nm. In the cerium oxide abrasive of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less.

媒体として水を使用することができ、例えば水溶性有機高分子、水溶性陰イオン界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンから選ばれる少なくとも1種である分散剤が使用され、ポリアクリル酸アンモニウム塩が好ましい。酸化セリウム粒子は炭酸セリウムを焼成した酸化セリウムが好ましく使用される。本発明の酸化セリウム研磨剤で、例えばシリカ膜が形成された半導体チップ等の所定の基板を研磨することができる。   Water can be used as the medium. For example, a dispersant that is at least one selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant, and a water-soluble amine is used. Polyacrylic acid ammonium salt is preferred. The cerium oxide particles are preferably cerium oxide obtained by firing cerium carbonate. For example, a predetermined substrate such as a semiconductor chip on which a silica film is formed can be polished with the cerium oxide abrasive of the present invention.

本発明の研磨剤により、SiO絶縁膜等の被研磨面を傷なく高速に研磨することが可能となる。 The polishing agent of the present invention, it is possible to polish the surface to be polished such as SiO 2 insulating film is wound without a high speed.

一般に酸化セリウムは、炭酸塩、硫酸塩、蓚酸塩等のセリウム化合物を焼成することによって得られる。TEOS−CVD法等で形成されるSiO絶縁膜は1次粒子径が大きく、かつ結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子は、あまり結晶性を上げないで作製される。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。本発明の研磨剤は高純度のもので、Na、K、Si、Mg、Ca、Zr、Ti、Ni、Cr、Feはそれぞれ1ppm以下、Alは10ppm以下である。 In general, cerium oxide is obtained by firing a cerium compound such as carbonate, sulfate, or oxalate. The SiO 2 insulating film formed by TEOS-CVD or the like has a larger primary particle diameter and a smaller crystal distortion, that is, a higher crystallinity allows higher-speed polishing, but there is a tendency for polishing flaws to occur. . Therefore, the cerium oxide particles used in the present invention are produced without increasing crystallinity. Moreover, since it uses for semiconductor chip grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 1 ppm or less. The abrasive | polishing agent of this invention is a highly purified thing, Na, K, Si, Mg, Ca, Zr, Ti, Ni, Cr, and Fe are 1 ppm or less respectively, and Al is 10 ppm or less.

本発明において、酸化セリウム粒子を作製する方法として焼成法が使用できる。ただし、研磨傷が入らない粒子を作製するためにできるだけ結晶性を上げない低温焼成が好ましい。セリウム化合物の酸化温度が300℃であることから、焼成温度は600℃以上900℃以下が好ましい。炭酸セリウムを600℃以上900℃以下で5〜300分、酸素ガス等の酸化雰囲気で焼成すること好ましい。焼成された酸化セリウムは、ジェットミル等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕することができる。ジェットミルは例えば化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。焼成された酸化セリウムをジェットミル等の乾式粉砕で粉砕すると粉砕残りの発生が観察された。   In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, low temperature firing that does not increase the crystallinity as much as possible is preferable in order to produce particles free from abrasive scratches. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is preferably 600 ° C or higher and 900 ° C or lower. It is preferable to calcine cerium carbonate at 600 ° C. or higher and 900 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas. The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. The jet mill is described, for example, in Chemical Industrial Papers Vol. 6 No. 5 (1980) pp. 527-532. When the calcined cerium oxide was pulverized by dry pulverization such as a jet mill, generation of pulverized residue was observed.

本発明における酸化セリウムスラリーは、上記の方法により製造された酸化セリウム粒子を含有する水溶液又はこの水溶液から回収した酸化セリウム粒子、水及び必要に応じて分散剤からなる組成物を分散させることによって得られる。ここで酸化セリウム粒子の濃度には制限は無いが、懸濁液の取り扱い易さから0.1〜10重量%の範囲が好ましい。また分散剤としては、金属イオン類を含まないものとして、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類などが挙げられる。   The cerium oxide slurry in the present invention is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method, or a composition comprising cerium oxide particles recovered from this aqueous solution, water and, if necessary, a dispersant. It is done. Although there is no restriction | limiting in the density | concentration of a cerium oxide particle here, the range of 0.1-10 weight% is preferable from the ease of handling of suspension. The dispersant does not contain metal ions, and includes acrylic acid polymer and its ammonium salt, methacrylic acid polymer and its ammonium salt, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Water-soluble anionic surfactants such as ammonium lauryl ether sulfate, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and water-soluble amines such as monoethanolamine and diethanolamine It is done.

ポリアクリル酸アンモニウム塩、特に重量平均分子量5000〜20000のポリアクリル酸アンモニウム塩が好ましい。これらの分散剤の添加量は、スラリー中の粒子の分散性及び沈降防止性などから酸化セリウム粒子100重量部に対して0.01重量部から5重量部の範囲が好ましく、その分散効果を高めるためには分散処理時に分散機の中に粒子と同時に入れることが好ましい。   Polyacrylic acid ammonium salts, particularly polyacrylic acid ammonium salts having a weight average molecular weight of 5000 to 20000 are preferred. The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the anti-settling property. For this purpose, it is preferable to put the particles in the disperser at the same time as the particles during the dispersion treatment.

これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミルなどを用いることができる。特に酸化セリウム粒子を1μm以下の微粒子として分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの湿式分散機を用いることが好ましい。また、スラリーのアルカリ性を高めたい場合には、分散処理時又は処理後にアンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。   As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer. In particular, in order to disperse the cerium oxide particles as fine particles having a size of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibration ball mill, a planetary ball mill, or a medium stirring mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance that does not contain metal ions such as aqueous ammonia can be added during or after the dispersion treatment.

本発明の酸化セリウム研磨剤は、上記スラリ−をそのまま使用してもよいが、N,N−ジエチルエタノ−ルアミン、N,N−ジメチルエタノ−ルアミン、アミノエチルエタノ−ルアミン等の添加剤を添加して研磨剤とすることができる。   The cerium oxide abrasive of the present invention may use the above slurry as it is, but an additive such as N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine is added. Thus, an abrasive can be obtained.

本発明のスラリーに分散される酸化セリウム粒子を構成する一次粒子径の中央値は30〜250nmであり、粒子径の中央値は150〜600nmである。一次粒子径の中央値が30nm未満又は粒子径の中央値が150nm未満であればSiO絶縁膜等の被研磨面を高速に研磨することができず、一次粒子径の中央値が250nmを越える又は粒子径の中央値が600nmを越えるとSiO絶縁膜等の被研磨面に傷が発生する。 The median primary particle size constituting the cerium oxide particles dispersed in the slurry of the present invention is 30 to 250 nm, and the median particle size is 150 to 600 nm. If the median of the primary particle diameter is less than 30 nm or the median of the particle diameter is less than 150 nm, the surface to be polished such as the SiO 2 insulating film cannot be polished at high speed, and the median of the primary particle diameter exceeds 250 nm. Alternatively, when the median particle diameter exceeds 600 nm, scratches occur on the surface to be polished such as the SiO 2 insulating film.

また一次粒子径の中央値が100〜250nmであり粒子径の中央値が150〜350nmである酸化セリウム粒子が好ましく、それぞれの中央値が上記下限値未満であると研磨速度が小さくなり、上限値を越えると傷が発生しやすい。上記の酸化セリウム粒子では、一次粒子の最大径は600nm以下が好ましく、一次粒子径は10〜600nmであることが好ましい。一次粒子が600nmを上限値を越えると傷が発生しやすく、10nm未満であると研磨速度が小さくなる。   Further, cerium oxide particles having a median primary particle diameter of 100 to 250 nm and a median particle diameter of 150 to 350 nm are preferable. When each median value is less than the above lower limit value, the polishing rate is decreased, and the upper limit value is reached. If it exceeds, scratches are likely to occur. In the cerium oxide particles, the maximum primary particle diameter is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm. If the primary particle exceeds 600 nm, scratches are likely to occur, and if it is less than 10 nm, the polishing rate decreases.

また一次粒子径の中央値が30〜70nmであり粒子径の中央値が250〜600nmである酸化セリウム粒子が好ましく、それぞれの中央値が上記下限値未満であると研磨速度が小さくなり、上限値を越えると傷が発生しやすい。   Further, cerium oxide particles having a median primary particle diameter of 30 to 70 nm and a median particle diameter of 250 to 600 nm are preferable. When each median value is less than the above lower limit value, the polishing rate is reduced, and the upper limit value is reached. If it exceeds, scratches are likely to occur.

上記の酸化セリウム粒子では、一次粒子径は10〜100nmであることが好ましく、一次粒子が10nm未満であると研磨速度が小さくなり、100nmを上限値を越えると傷が発生しやすくなる。   In the cerium oxide particles, the primary particle diameter is preferably 10 to 100 nm. When the primary particles are less than 10 nm, the polishing rate is low, and when the primary particles exceed 100 nm, scratches tend to occur.

本発明の酸化セリウム研磨剤では、酸化セリウム粒子の最大径は3000nm以下であることが好ましい。酸化セリウム粒子の最大径が3000nmを越えると傷が発生しやすい。   In the cerium oxide abrasive of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less. If the maximum diameter of the cerium oxide particles exceeds 3000 nm, scratches are likely to occur.

焼成酸化セリウムをジェットミル等の乾式粉砕で粉砕した酸化セリウム粒子には粉砕残りが含まれ、この粉砕残り粒子は一次粒子が再凝集した凝集体とは異なっており、研磨時の応力により破壊され活性面を発生すると推定され、SiO絶縁膜等の被研磨面を傷なく高速に研磨することに寄与していると考えられる。本発明のスラリ−には、3000nm以下の粉砕残り粒子を含むことができる。 The cerium oxide particles obtained by pulverizing calcined cerium oxide by dry pulverization such as a jet mill contain pulverized residue, and this pulverized residual particle is different from the aggregate in which primary particles are re-agglomerated, and is destroyed by stress during polishing. It is estimated that an active surface is generated, and it is considered that it contributes to polishing the surface to be polished such as the SiO 2 insulating film at high speed without scratches. The slurry of the present invention can contain residual grinding particles of 3000 nm or less.

本発明で、一次粒子径は走査型電子顕微鏡(例えば(株)日立製作所製 S−900型)による観察で測定する。スラリ−粒子である酸化セリウム粒子径はレ−ザ回折法(例えばマルバーンインスツルメンツ社製 Master Sizer microplus、屈折率:1.9285、光源:He−Neレーザー、吸収0)によって測定する。   In the present invention, the primary particle diameter is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). The cerium oxide particle diameter, which is a slurry particle, is measured by a laser diffraction method (for example, Master Sizer microplus, refractive index: 1.9285, light source: He—Ne laser, absorption 0) manufactured by Malvern Instruments.

本発明のスラリ−に分散された酸化セリウム粒子を構成する一次粒子のアスペクト比は1〜2、中央値1.3が好ましい。アスペクト比は走査型電子顕微鏡(例えば(株)日立製作所製 S−900型)による観察で測定する。   The aspect ratio of the primary particles constituting the cerium oxide particles dispersed in the slurry of the present invention is preferably 1 to 2, and the median value is 1.3. The aspect ratio is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.).

本発明のスラリ−に分散された酸化セリウム粒子として、粉末X線リートベルト法(RIETAN−94)による解析で等方的微小歪を表わす構造パラメーター:Yの値が0.01以上0.70以下である酸化セリウム粒子を使用することができる。このような結晶歪みを有する酸化セリウム粒子を使用することにより、被研磨表面に傷をつけることなく、かつ高速に研磨することができる。   As the cerium oxide particles dispersed in the slurry of the present invention, a structural parameter representing an isotropic fine strain as analyzed by the powder X-ray Rietveld method (RIETAN-94): the value of Y is 0.01 or more and 0.70 or less The cerium oxide particles can be used. By using cerium oxide particles having such crystal distortion, polishing can be performed at high speed without damaging the surface to be polished.

本発明のスラリ−に分散された酸化セリウム粒子の比表面積は7〜45m/gが好ましい。比表面積が7m/g未満だと被研磨表面に傷をつけるやすくなり、45m/gを越えると研磨速度が遅くなる傾向にある。スラリ−の酸化セリウム粒子の比表面積は分散される酸化セリウム粒子の比表面積と同じである。 The specific surface area of the cerium oxide particles dispersed in the slurry of the present invention is preferably 7 to 45 m 2 / g. When the specific surface area is less than 7 m 2 / g, the surface to be polished tends to be damaged, and when it exceeds 45 m 2 / g, the polishing rate tends to be slow. The specific surface area of the slurry cerium oxide particles is the same as that of the dispersed cerium oxide particles.

本発明のスラリ−中の酸化セリウム粒子のゼ−タ電位は−100mV以上−10mVが好ましい。これにより酸化セリウム粒子の分散性を良好にし被研磨表面に傷をつけることなく、かつ高速に研磨することができる。   The zeta potential of the cerium oxide particles in the slurry of the present invention is preferably -100 mV or more and -10 mV. As a result, the dispersibility of the cerium oxide particles is improved, and the surface to be polished can be polished at a high speed without being damaged.

本発明のスラリ−に分散された酸化セリウム粒子は平均粒径が200nm以上400nm以下で粒度分布の半値幅が300nm以下とすることができる。本発明のスラリ−のpHは7以上10以下が好ましく、8以上9以下がより好ましい。   The cerium oxide particles dispersed in the slurry of the present invention can have an average particle size of 200 nm to 400 nm and a half width of the particle size distribution of 300 nm or less. The pH of the slurry of the present invention is preferably from 7 to 10, more preferably from 8 to 9.

スラリ−調整後、ポリエチレン等の容器に入れ5〜55℃で7日以上、より好ましくは30日以上放置して使用すれば傷の発生が少なくなる。   After the slurry is adjusted, if it is used in a container such as polyethylene at 5 to 55 ° C. for 7 days or longer, more preferably 30 days or longer, the generation of scratches is reduced.

本発明のスラリ−は分散性に優れ沈降速度が遅く、直径10cm高さ1mの円中のどの高さの位置でも2時間放置濃度変化率が10%未満である。   The slurry of the present invention is excellent in dispersibility and has a slow sedimentation rate, and the rate of change in the concentration for 2 hours is less than 10% at any height position in a circle having a diameter of 10 cm and a height of 1 m.

本発明の酸化セリウム研磨剤が使用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。低圧CVD法によるSiO絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明のSiO絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。 Examples of a method for manufacturing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used include a low pressure CVD method and a plasma CVD method. In the formation of the SiO 2 insulating film by the low pressure CVD method, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 reaction gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, elements such as phosphorus and boron may be doped in the SiO 2 insulating film of the present invention.

所定の基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上にSiO絶縁膜層が形成された基板が使用できる。このような半導体基板上に形成されたSiO絶縁膜層を上記酸化セリウム研磨剤で研磨することによって、SiO絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはスラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は半導体が飛び出さない様に100rpm以下の低回転が好ましく、半導体基板にかける圧力は研磨後に傷が発生しない様に1kg/cm以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。 As the predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and a wiring pattern are formed, or a substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element is formed is used. it can. By polishing the SiO 2 insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the SiO 2 insulating film layer is eliminated and a smooth surface is formed over the entire surface of the semiconductor substrate. . Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is subjected to groove processing so that slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 or less so that no scratches are generated after polishing. preferable. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the slurry.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化されたSiO絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法によりSiO絶縁膜を形成後、上記酸化セリウム研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after completion of polishing is preferably washed in running water and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer aluminum wiring is formed on the thus planarized SiO 2 insulating film layer, and the SiO 2 insulating film is formed again between the wirings and on the wiring by the above method, and then the cerium oxide. By polishing with an abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.

本発明の酸化セリウム研磨剤は、半導体基板に形成されたSiO絶縁膜だけでなく、所定の配線を有する配線板に形成されたSiO絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。 Cerium oxide abrasive of the present invention is not only SiO 2 insulating film formed on a semiconductor substrate, SiO 2 insulating film formed on the wiring board having a predetermined wiring, glass, inorganic insulating films such as silicon nitride, Photo Optical glass for masks, lenses, prisms, etc., optical conductive circuits such as ITO, inorganic conductive films such as ITO, glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It is used to polish single crystals, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, magnetic heads, and the like.

このように本発明において所定の基板とは、SiO絶縁膜が形成された半導体基板、SiO絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。 The predetermined substrate in the present invention as described above, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, glass, inorganic insulating films such as silicon nitride, photomask lenses and prisms Optical glass such as ITO, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, solid layers, etc. -The single crystal, LED sapphire substrate for blue laser, semiconductor single crystal such as SiC, GaP, GaAS, etc., glass substrate for magnetic disk, magnetic head, etc.

実施例1
(酸化セリウム粒子の作製1)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が190nm、最大値が500nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.080、等方的微少歪みを表わす構造パラメータ−:Yの値が0.223であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1ミクロンから3ミクロンの大きな粉砕残り粒子と0.5から1ミクロンの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.085、等方的微少歪みを表わす構造パラメータ−:Yの値が0.264であった。この結果、粉砕による一次粒子径変量はほとんどなく、また粉砕により粒子に歪みが導入されていた。さらにBET法による比表面積測定の結果、10m/gであることがわかった。
Example 1
(Preparation of cerium oxide particles 1)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate into a platinum container and firing in air at 800 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 190 nm and the maximum value was 500 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: X value is 0.080, and isotropic isometric strain Structure parameter-: The value of Y was 0.223. 1 kg of cerium oxide powder was dry pulverized using a jet mill. When the pulverized particles were observed with a scanning electron microscope, a large pulverized residual particle of 1 to 3 microns and a pulverized residual particle of 0.5 to 1 micron were mixed in addition to small particles having the same size as the primary particle size. It was. The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: the value of X is 0.085, and isotropic strain is expressed. Structural parameter-: Y value was 0.264. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 10 m 2 / g.

(酸化セリウム粒子の作製2)
炭酸セリウム水和物2kgを白金製容器に入れ、750℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が141nm、最大値が400nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.101、等方的微少歪みを表わす構造パラメータ−:Yの値が0.223であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1ミクロンから3ミクロンの大きな粉砕残り粒子と0.5から1ミクロンの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.104、等方的微少歪みを表わす構造パラメータ−:Yの値が0.315であった。この結果、粉砕による一次粒子径変量はほとんどなく、また粉砕により粒子に歪みが導入されていた。さらにBET法による比表面積測定の結果、16m/gであることがわかった。
(Preparation of cerium oxide particles 2)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 750 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 141 nm and the maximum value was 400 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle size: X value is 0.101, and isotropic strain is represented. Structure parameter-: The value of Y was 0.223. 1 kg of cerium oxide powder was dry pulverized using a jet mill. When the pulverized particles were observed with a scanning electron microscope, a large pulverized residual particle of 1 to 3 microns and a pulverized residual particle of 0.5 to 1 micron were mixed in addition to small particles having the same size as the primary particle size. It was. The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: X value is 0.104, and isotropic strain is represented. Structural parameter-: Y value was 0.315. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 16 m 2 / g.

(酸化セリウムスラリーの作製)
上記作製1,2の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより3wt.%研磨剤を得た。スラリーpHは8.3であった。スラリー粒子の粒度分布をレーザー回折法(測定装置:マルバーンインスツルメンツ社製Master Sizer microplus、屈折率:1.9285、光源:He−Neレーザー、吸収0で測定)を用いて調べたところ、中央値がともに200nmであった。最大粒子径は780nm以上の粒子が0体積%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子はその電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、それぞれマイナスに荷電し、−50mV、−63mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles of Preparations 1 and 2 above, 23 g of ammonium polyacrylate aqueous solution (40% by weight) and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered through a 1 micron filter and further deionized water was added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.3. When the particle size distribution of the slurry particles was examined using a laser diffraction method (measuring device: Master Sizer microplus manufactured by Malvern Instruments, refractive index: 1.9285, light source: He-Ne laser, measured by absorption 0), the median value was Both were 200 nm. The maximum particle size was 0% by volume of particles having a particle size of 780 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that each was negatively charged and had a large absolute value of −50 mV and −63 mV and good dispersibility.

(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーにTEOS−プラズマCVD法で作製したSiO絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が300g/cmになるように重しを載せた。定盤上に上記の酸化セリウムスラリー(固形分:3重量%)を50cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨によりそれぞれ600nm、580nm(研磨速度:300nm/min.、290nm/min.)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A surface plate on which a Si wafer on which a SiO 2 insulating film produced by TEOS-plasma CVD method is formed is set in a holder on which a holding pad for attaching a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed thereon with the insulating film face down, and a weight was placed so that the processing load would be 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a speed of 50 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, 600 nm and 580 nm (polishing rate: 300 nm / min., 290 nm / min.) Of the insulating film were removed by this polishing, It was found that the thickness was uniform over the entire wafer surface. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

実施例2
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、700℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が50nm、最大値が100nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.300、等方的微少歪みを表わす構造パラメータ−:Yの値が0.350であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、2ミクロンから4ミクロンの大きな粉砕残り粒子と0.5から1.2ミクロンの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.302、等方的微少歪みを表わす構造パラメータ−:Yの値が0.412であった。この結果、粉砕による一次粒子径変量はほとんどなく、また粉砕により粒子に歪みが導入されていた。さらにBET法による比表面積測定の結果、40m/gであることがわかった。
Example 2
(Production of cerium oxide particles)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 700 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 50 nm, and the maximum value was 100 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: X value is 0.300, representing isotropic strain Structure parameter-: The value of Y was 0.350. 1 kg of cerium oxide powder was dry pulverized using a jet mill. When pulverized particles were observed with a scanning electron microscope, small particles of the same size as the primary particle size were mixed with large pulverized residual particles of 2 to 4 microns and pulverized residual particles of 0.5 to 1.2 microns. Was. The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: X value is 0.302, and isotropic isometric strain is represented. Structure parameter-: The value of Y was 0.412. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 40 m 2 / g.

(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを2ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより3wt.%研磨剤を得た。スラリーpHは8.0であった。スラリー粒子の粒度分布をレーザー回折法(測定装置:Master Sizer製microplus、屈折率:1.9285)を用いて調べたところ、中央値が510nmで、最大粒子径は1430nm以上の粒子が0%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子はその電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、マイナスに荷電し、−64mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered through a 2 micron filter and deionized water was added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.0. The particle size distribution of the slurry particles was examined using a laser diffraction method (measuring device: Microplus manufactured by Master Sizer, refractive index: 1.9285). The median value was 510 nm and the maximum particle size was 0% for particles having a particle size of 1430 nm or more. there were. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that it was negatively charged, had an absolute value of -64 mV and a large dispersibility.

(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーにTEOS−プラズマCVD法で作製したSiO絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工加重が300g/cmになるように重しを載せた。定盤上に上記の酸化セリウムスラリー(固形分:3重量%)を35cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨により740nm(研磨速度:370nm/min.)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A surface plate on which a Si wafer on which a SiO 2 insulating film produced by TEOS-plasma CVD method is formed is set in a holder on which a holding pad for attaching a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed thereon with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a rate of 35 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring apparatus, the insulating film having a thickness of 740 nm (polishing rate: 370 nm / min.) Was cut by this polishing, and the thickness was uniform over the entire surface of the wafer. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

実施例3
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が190nm、最大値が500nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.080、等方的微少歪みを表わす構造パラメータ−:Yの値が0.223であった。酸化セリウム粉末1kgをビーズミルを用いて湿式粉砕を行った。粉砕粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの粒子まで粉砕されており、大きな粉砕残りは見られなかった。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.085、等方的微少歪みを表わす構造パラメータ−:Yの値が0.300であった。この結果、粉砕による一次粒子径変量はほとんどなく、また粉砕により粒子に歪みが導入されていた。さらにBET法による比表面積測定の結果、10m/gであることがわかった。
Example 3
(Production of cerium oxide particles)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate into a platinum container and firing in air at 800 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 190 nm and the maximum value was 500 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: X value is 0.080, and isotropic isometric strain Structure parameter-: The value of Y was 0.223. 1 kg of cerium oxide powder was wet-ground using a bead mill. The liquid containing the pulverized particles was dried, and the dried particles were ball milled. Observation of the pulverized particles with a scanning electron microscope revealed that the pulverized particles were pulverized to the same size as the primary particle size, and no large pulverized residue was observed. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: the value of X is 0.085, and isotropic strain is expressed. Structure parameter-: Y value was 0.300. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 10 m 2 / g.

(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより3wt.%研磨剤を得た。スラリーpHは8.3であった。スラリー粒子の粒度分布をレーザー回折法(測定装置:MasterSizer製microplus、屈折率:1.9285)を用いて調べたところ、中央値が290nmで、最大粒子径は780nm以上の粒子が0%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子はその電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、マイナスに荷電し、−50mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered through a 1 micron filter and further deionized water was added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.3. When the particle size distribution of the slurry particles was examined using a laser diffraction method (measuring device: Microplus manufactured by MasterSizer, refractive index: 1.9285), the median value was 290 nm, and the maximum particle size was 0% for particles having a particle size of 780 nm or more. It was. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that it was negatively charged, had an absolute value of −50 mV and a large dispersibility.

(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーにTEOS−プラズマCVD法で作製したSiO絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工加重が300g/cmになるように重しを載せた。定盤上に上記の酸化セリウムスラリー(固形分:3重量%)を35cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨により560nm(研磨速度:280nm/min.)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A surface plate on which a Si wafer on which a SiO 2 insulating film produced by TEOS-plasma CVD method is formed is set in a holder on which a holding pad for attaching a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed thereon with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a rate of 35 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring device, an insulating film of 560 nm (polishing rate: 280 nm / min.) Was shaved by this polishing, and the thickness was uniform over the entire wafer surface. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

実施例4
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、700℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が50nm、最大値が100nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.300、等方的微少歪みを表わす構造パラメータ−:Yの値が0.350であった。酸化セリウム粉末1kgをビーズミルを用いて湿式粉砕を行った。粉砕粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの粒子まで粉砕されており、大きな粉砕残りは見られなかった。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメータ−:Xの値が0.302、等方的微少歪みを表わす構造パラメータ−:Yの値が0.450であった。この結果、粉砕による一次粒子径変量はほとんどなく、また粉砕により粒子に歪みが導入されていた。さらにBET法による比表面積測定の結果、40m/gであることがわかった。
Example 4
(Production of cerium oxide particles)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 700 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 50 nm, and the maximum value was 100 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: X value is 0.300, representing isotropic strain Structure parameter-: The value of Y was 0.350. 1 kg of cerium oxide powder was wet-ground using a bead mill. The liquid containing the pulverized particles was dried, and the dried particles were ball milled. Observation of the pulverized particles with a scanning electron microscope revealed that the pulverized particles were pulverized to the same size as the primary particle size, and no large pulverized residue was observed. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: X value is 0.302, and isotropic isometric strain is represented. Structure parameter-: The value of Y was 0.450. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 40 m 2 / g.

(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより3wt.%研磨剤を得た。スラリーpHは8.5であった。スラリー粒子の粒度分布をレーザー回折法(測定装置:MasterSizer製microplus、屈折率:1.9285)を用いて調べたところ、中央値が290nmで、最大粒子径は780nm以上の粒子が0%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子はその電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、マイナスに荷電し、−65mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered through a 1 micron filter and further deionized water was added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.5. When the particle size distribution of the slurry particles was examined using a laser diffraction method (measuring device: Microplus manufactured by MasterSizer, refractive index: 1.9285), the median value was 290 nm, and the maximum particle size was 0% for particles having a particle size of 780 nm or more. It was. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that it was negatively charged and had a large absolute value of -65 mV and good dispersibility.

(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーにTEOS−プラズマCVD法で作製したSiO絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工加重が300g/cmになるように重しを載せた。定盤上に上記の酸化セリウムスラリー(固形分:3重量%)を35cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨により400nm(研磨速度:200nm/min.)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A surface plate on which a Si wafer on which a SiO 2 insulating film produced by TEOS-plasma CVD method is formed is set in a holder on which a holding pad for attaching a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed thereon with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a rate of 35 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring apparatus, the insulating film having a thickness of 400 nm (polishing rate: 200 nm / min.) Was cut by this polishing, and the thickness was uniform over the entire surface of the wafer. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

比較例
実施例と同様にTEOS−CVD法で作製したSiO絶縁膜を形成させたSiウエハについて、市販シリカスラリー(キャボット社製、商品名SS225)を用いて研磨を行った。この市販スラリーのpHは10.3で、SiO粒子を12.5wt%含んでいるものである。研磨条件は実施例と同一である。その結果、研磨による傷は見られず、また均一に研磨がなされたが、2分間の研磨により150nm(研磨速度:75nm/min.)の絶縁膜層しか削れなかった。
For Si wafer having formed an SiO 2 insulating film was prepared in the same manner as in Comparative Example Example in TEOS-CVD method, it was polished using a commercially available silica slurry (manufactured by Cabot Corporation, trade name SS225). In this pH commercial slurry 10.3 are those containing a SiO 2 particles 12.5 wt%. The polishing conditions are the same as in the example. As a result, scratches due to polishing were not observed, and polishing was performed uniformly, but only an insulating film layer having a thickness of 150 nm (polishing rate: 75 nm / min.) Was removed by polishing for 2 minutes.

Claims (14)

酸化セリウム粒子、分子量5000〜20000のポリアクリル酸アンモニウム塩および水を含む半導体基板研磨用酸化セリウム研磨剤。   A cerium oxide abrasive for polishing a semiconductor substrate, comprising cerium oxide particles, a polyacrylic acid ammonium salt having a molecular weight of 5000 to 20000, and water. 酸化セリウム粒子の一次粒子径の中央値が30〜250nmであり粒子径の中央値が150〜600nmである酸化セリウム粒子を水に分散させた請求項1記載の半導体基板研磨用酸化セリウム研磨剤。   The cerium oxide abrasive for polishing a semiconductor substrate according to claim 1, wherein cerium oxide particles having a median primary particle diameter of 30 to 250 nm and a median particle diameter of 150 to 600 nm are dispersed in water. 酸化セリウムの一次粒子径の中央値が100〜250nmであり粒子径の中央値が150〜350nmである酸化セリウム粒子を水に分散させた請求項1記載の半導体基板研磨用酸化セリウム研磨剤。   The cerium oxide polishing agent for polishing a semiconductor substrate according to claim 1, wherein cerium oxide particles having a median primary particle diameter of 100 to 250 nm and a median particle diameter of 150 to 350 nm are dispersed in water. 酸化セリウムの一次粒子径の中央値が30〜70nmであり粒子径の中央値が250〜600nmである酸化セリウム粒子を水に分散させた請求項1記載の半導体基板研磨用酸化セリウム研磨剤。   The cerium oxide polishing agent for polishing a semiconductor substrate according to claim 1, wherein cerium oxide particles having a median primary particle diameter of 30 to 70 nm and a median particle diameter of 250 to 600 nm are dispersed in water. スラリー中の酸化セリウム粒子の最大径が3000nm以下である請求項1〜3のいずれかに記載の半導体基板研磨用酸化セリウム研磨剤。   The cerium oxide abrasive for polishing a semiconductor substrate according to any one of claims 1 to 3, wherein the maximum diameter of the cerium oxide particles in the slurry is 3000 nm or less. 酸化セリウムの一次粒子の最大径が600nm以下である請求項1〜4のいずれかに記載の半導体基板研磨用酸化セリウム研磨剤。   The cerium oxide abrasive for polishing a semiconductor substrate according to any one of claims 1 to 4, wherein the maximum diameter of primary particles of cerium oxide is 600 nm or less. 酸化セリウム粒子、分子量5000〜20000のポリアクリル酸アンモニウム塩および水を含む半導体基板研磨用酸化セリウム研磨剤に使用されるスラリー。   A slurry used for a cerium oxide abrasive for polishing a semiconductor substrate, comprising cerium oxide particles, a polyacrylic acid ammonium salt having a molecular weight of 5000 to 20000, and water. 酸化セリウム粒子の一次粒子径の中央値が30〜250nmであり粒子径の中央値が150〜600nmである酸化セリウム粒子を水に分散させた請求項7記載のスラリー。   The slurry according to claim 7, wherein cerium oxide particles having a median primary particle diameter of 30 to 250 nm and a median particle diameter of 150 to 600 nm are dispersed in water. 酸化セリウムの一次粒子径の中央値が100〜250nmであり粒子径の中央値が150〜350nmである酸化セリウム粒子を水に分散させた請求項7記載のスラリー。   The slurry according to claim 7, wherein cerium oxide particles having a median primary particle diameter of 100 to 250 nm and a median particle diameter of 150 to 350 nm are dispersed in water. 酸化セリウムの一次粒子径の中央値が30〜70nmであり粒子径の中央値が250〜600nmである酸化セリウム粒子を水に分散させた請求項7記載のスラリー。   The slurry according to claim 7, wherein cerium oxide particles having a median primary particle diameter of 30 to 70 nm and a median particle diameter of 250 to 600 nm are dispersed in water. スラリー中の酸化セリウム粒子の最大径が3000nm以下である請求項7〜9のいずれかに記載のスラリー。   The slurry according to any one of claims 7 to 9, wherein the maximum diameter of the cerium oxide particles in the slurry is 3000 nm or less. 酸化セリウムの一次粒子の最大径が600nm以下である請求項7〜10のいずれかに記載のスラリー。   The slurry according to any one of claims 7 to 10, wherein the maximum diameter of primary particles of cerium oxide is 600 nm or less. 請求項1〜6のいずれかに記載の半導体基板研磨用酸化セリウム研磨剤または請求項7〜12のいずれかに記載のスラリーを用いて所定の基板を研磨することを特徴とする基板の研磨法。   A method for polishing a substrate, comprising polishing a predetermined substrate using the cerium oxide abrasive for polishing a semiconductor substrate according to any one of claims 1 to 6 or the slurry according to any one of claims 7 to 12. . 所定の基板がシリカ膜が形成された半導体基板である請求項13記載の基板の研磨法。   14. The method for polishing a substrate according to claim 13, wherein the predetermined substrate is a semiconductor substrate on which a silica film is formed.
JP2006246046A 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate Expired - Lifetime JP5023626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246046A JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP25877096 1996-09-30
JP1996258776 1996-09-30
JP25877496 1996-09-30
JP1996258770 1996-09-30
JP25877696 1996-09-30
JP1996258774 1996-09-30
JP2006246046A JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001103920A Division JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012089594A Division JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Publications (2)

Publication Number Publication Date
JP2007036271A true JP2007036271A (en) 2007-02-08
JP5023626B2 JP5023626B2 (en) 2012-09-12

Family

ID=27478488

Family Applications (7)

Application Number Title Priority Date Filing Date
JP26597997A Expired - Fee Related JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Withdrawn JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2006246046A Expired - Lifetime JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP26597997A Expired - Fee Related JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Withdrawn JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Country Status (1)

Country Link
JP (7) JP3462052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128576A (en) * 2016-02-01 2016-07-14 株式会社フジミインコーポレーテッド Composition for polishing and method for producing substrate using the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761636B1 (en) 1996-09-30 2007-09-27 히다치 가세고교 가부시끼가이샤 A Cerium Oxide Particle
JPH11181403A (en) 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
US6299659B1 (en) 1998-08-05 2001-10-09 Showa Denko K.K. Polishing material composition and polishing method for polishing LSI devices
JP3560484B2 (en) * 1998-08-05 2004-09-02 昭和電工株式会社 Abrasive composition for polishing LSI devices and polishing method
KR100384311B1 (en) 1998-11-13 2003-05-16 미쯔이카가쿠 가부시기가이샤 Organic polymer/fine inorganic particle aqueous dispersion with excellent dispersion stability and use thereof
JP4604727B2 (en) * 1998-12-25 2011-01-05 日立化成工業株式会社 Additive for CMP abrasives
JP4608925B2 (en) * 1998-12-25 2011-01-12 日立化成工業株式会社 Additive for CMP abrasives
US6783434B1 (en) * 1998-12-25 2004-08-31 Hitachi Chemical Company, Ltd. CMP abrasive, liquid additive for CMP abrasive and method for polishing substrate
KR20000055131A (en) * 1999-02-03 2000-09-05 유현식 Method for preparing metaloxide slurry for semiconductor element cmp
US6740590B1 (en) * 1999-03-18 2004-05-25 Kabushiki Kaisha Toshiba Aqueous dispersion, aqueous dispersion for chemical mechanical polishing used for manufacture of semiconductor devices, method for manufacture of semiconductor devices, and method for formation of embedded writing
WO2000073211A1 (en) * 1999-05-28 2000-12-07 Hitachi Chemical Co., Ltd. Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same and method for manufacturing semiconductor device
WO2001000744A1 (en) 1999-06-28 2001-01-04 Nissan Chemical Industries, Ltd. Abrasive compound for glass hard disk platter
JP4544379B2 (en) * 1999-06-28 2010-09-15 日産化学工業株式会社 Glass hard disk abrasive
WO2001017006A1 (en) 1999-08-26 2001-03-08 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and polishing method
JP2002217140A (en) * 2001-01-19 2002-08-02 Hitachi Chem Co Ltd Cmp abrasive and polishing method of substrate
EP1369906B1 (en) * 2001-02-20 2012-06-27 Hitachi Chemical Company, Ltd. Polishing compound and method for polishing substrate
JP2002359216A (en) 2001-05-30 2002-12-13 Mitsubishi Electric Corp Polishing method using ceria slurry, and method of manufacturing semiconductor device
JP2005519761A (en) * 2002-02-04 2005-07-07 ナノフェイズ テクノロジーズ コーポレイション Stable nanoparticle dispersions in aqueous media
WO2004037722A1 (en) 2002-10-28 2004-05-06 Nissan Chemical Industries, Ltd. Cerium oxide particles and process for the production thereof
JP4951218B2 (en) * 2004-07-15 2012-06-13 三星電子株式会社 Cerium oxide abrasive particles and composition comprising the abrasive particles
KR100630691B1 (en) 2004-07-15 2006-10-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
KR100574984B1 (en) * 2004-08-16 2006-05-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
KR100641348B1 (en) 2005-06-03 2006-11-03 주식회사 케이씨텍 Slurry for cmp and method of fabricating the same and method of polishing substrate
KR100753994B1 (en) 2005-08-05 2007-09-06 정인 Producing method for cerium-based glass polishing material and method for using the same
CN101039876B (en) * 2005-10-14 2011-07-27 Lg化学株式会社 Method for preparing of cerium oxide powder for chemical mechanical polishing and method for preparing of chemical mechanical polishing slurry using the same
KR100812052B1 (en) * 2005-11-14 2008-03-10 주식회사 엘지화학 Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
JP2009113993A (en) * 2006-03-03 2009-05-28 Hitachi Chem Co Ltd Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
FR2923400B1 (en) * 2007-11-09 2009-12-04 Rhodia Operations COLLOIDAL DISPERSION OF MINERAL PARTICLES IN A LIQUID PHASE COMPRISING AN AMPHOLYTE COPOLYMER
JP5221979B2 (en) * 2008-02-25 2013-06-26 シャープ株式会社 Manufacturing method of semiconductor device
JP2009010406A (en) * 2008-08-18 2009-01-15 Hitachi Chem Co Ltd Abrasive powder and polishing method for substrate
KR101075491B1 (en) 2009-01-16 2011-10-21 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
CN102686360A (en) 2009-11-12 2012-09-19 日立化成工业株式会社 CMP polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP6088953B2 (en) * 2013-09-24 2017-03-01 三井金属鉱業株式会社 Abrasive slurry and substrate manufacturing method using the same
CN106029572B (en) * 2013-12-16 2018-03-20 罗地亚经营管理公司 The liquid suspension of cerium oxide particle
CN110358453A (en) * 2018-04-10 2019-10-22 蓝思科技(长沙)有限公司 A kind of glass polishing nano-cerium oxide polishing fluid and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536756B2 (en) * 1974-05-13 1978-03-10
JPH06330025A (en) * 1993-05-18 1994-11-29 Mitsui Mining & Smelting Co Ltd Polishing material for glass
JPH0822970A (en) * 1994-07-08 1996-01-23 Toshiba Corp Polishing method
JPH08134435A (en) * 1994-11-07 1996-05-28 Mitsui Mining & Smelting Co Ltd Abrasive and method for polishing
JPH08153696A (en) * 1994-09-30 1996-06-11 Hitachi Ltd Abrasive and polishing
WO1997029510A1 (en) * 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536756B2 (en) * 1974-05-13 1978-03-10
JPH06330025A (en) * 1993-05-18 1994-11-29 Mitsui Mining & Smelting Co Ltd Polishing material for glass
JPH0822970A (en) * 1994-07-08 1996-01-23 Toshiba Corp Polishing method
JPH08153696A (en) * 1994-09-30 1996-06-11 Hitachi Ltd Abrasive and polishing
JPH08134435A (en) * 1994-11-07 1996-05-28 Mitsui Mining & Smelting Co Ltd Abrasive and method for polishing
WO1997029510A1 (en) * 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128576A (en) * 2016-02-01 2016-07-14 株式会社フジミインコーポレーテッド Composition for polishing and method for producing substrate using the same

Also Published As

Publication number Publication date
JP2012169648A (en) 2012-09-06
JP3462052B2 (en) 2003-11-05
JP2001329250A (en) 2001-11-27
JPH10152673A (en) 1998-06-09
JP5023626B2 (en) 2012-09-12
JP2002138275A (en) 2002-05-14
JP4971731B2 (en) 2012-07-11
JP2001329251A (en) 2001-11-27
JP2007036270A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4971731B2 (en) Polishing method of cerium oxide slurry and substrate
JP4788586B2 (en) Abrasive and slurry
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP4788585B2 (en) Abrasive and slurry
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP4776519B2 (en) Abrasive and slurry
JP4776518B2 (en) Abrasive and slurry
JP4788588B2 (en) Polishing method
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JP2007129249A (en) Abrasive and slurry
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JP2006148158A (en) Cerium oxide polishing material and substrate-polishing method
JP2008132593A (en) Cerium oxide slurry, cerium oxide abrasive and base board polishing method
JP2005039287A (en) Cerium oxide abrasive and method for polishing substrate
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2004282092A (en) Cerium oxide abrasive and substrate polishing method
JP2005012231A (en) Ceric dioxide abrasive and substrate-polishing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120308

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term