JP2009113993A - Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing - Google Patents

Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing Download PDF

Info

Publication number
JP2009113993A
JP2009113993A JP2006057718A JP2006057718A JP2009113993A JP 2009113993 A JP2009113993 A JP 2009113993A JP 2006057718 A JP2006057718 A JP 2006057718A JP 2006057718 A JP2006057718 A JP 2006057718A JP 2009113993 A JP2009113993 A JP 2009113993A
Authority
JP
Japan
Prior art keywords
polishing
fine particles
metal oxide
metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057718A
Other languages
Japanese (ja)
Inventor
Yoichi Machii
洋一 町井
Masato Yoshida
誠人 吉田
Hiroki Terasaki
裕樹 寺崎
Hirotaka Akimoto
啓孝 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006057718A priority Critical patent/JP2009113993A/en
Priority to PCT/JP2007/054038 priority patent/WO2007100093A1/en
Priority to TW096107127A priority patent/TW200738858A/en
Publication of JP2009113993A publication Critical patent/JP2009113993A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal oxide particles by which CMP capable of preventing or reducing the occurrence of polishing scratches on a silicon oxide film, a metal buried film and the like can be performed, a polishing material containing it, a method for polishing a substrate using the polishing material and a method for producing a semiconductor device manufactured by polishing. <P>SOLUTION: Disclosed are metal oxide particles which are produced by heat-treating a metal compound at 1,000°C or higher and which have a crystallite size of 30 nm or more and a crystalline deformation of 1% or less, a polishing material containing the fine metal oxide particles, a method for polishing a substrate characterized in that a specified substrate is polished using the polishing material, a method for producing the semiconductor device characterized in that a semiconductor chip having a silicon oxide film formed thereon is polished with the polishing material and a method for producing the semiconductor device characterized in that the semiconductor chip having a metal film formed thereon is polished with the polishing material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種部材の表面の平坦化、平滑化に利用される。特にCMP(以下、化学機械研磨とする)に有効な金属酸化物粒子、これを含む研磨材、この研磨材を用いた基板の研磨方法及び研磨して得られる半導体装置の製造方法に関する。   The present invention is used for flattening and smoothing the surfaces of various members. In particular, the present invention relates to metal oxide particles effective for CMP (hereinafter referred to as chemical mechanical polishing), an abrasive containing the same, a method for polishing a substrate using the abrasive, and a method for manufacturing a semiconductor device obtained by polishing.

現在、半導体素子の高密度・高精細化が進み、デザインルールは0.1ミクロン前後になっている。このような厳しい微細化の要求に対して開発されている技術として、CMPがある。
この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、歩留まりを安定させることができる。
Currently, semiconductor elements are becoming denser and more precise, and the design rule is around 0.1 microns. CMP has been developed as a technology that has been developed to meet such a demand for miniaturization.
This technique can completely planarize the layer to be exposed in the manufacturing process of the semiconductor device, reduce the burden of the exposure technique, and stabilize the yield.

例えば、層間絶縁膜の平坦化、トレンチ分離時の埋め込み絶縁膜の平坦化、また銅配線等の平坦化処理の際に必須となる技術である。
この技術は例えば特許文献1に開示されている。
米国特許第4944836号公報
For example, this technique is indispensable for planarizing an interlayer insulating film, planarizing a buried insulating film at the time of trench isolation, and planarizing a copper wiring or the like.
This technique is disclosed in Patent Document 1, for example.
U.S. Pat. No. 4,944,836

集積回路内の素子分離形成技術において、デザインルール0.5ミクロン以上の世代ではLOCOS(シリコン局所酸化)が用いられてきたが、加工寸法の更なる微細化に伴い、素子分離幅の小さいシャロートレンチ分離技術が採用されている。シャロートレンチ分離では基板上に埋め込んだ余分な酸化珪素膜を除去するためにCMPが必須な技術となる。   LOCOS (Silicon Local Oxidation) has been used in the element isolation formation technology in integrated circuits for generations with design rules of 0.5 microns or more, but shallow trenches with a small element isolation width have come along with further miniaturization of processing dimensions. Separation technology is adopted. In shallow trench isolation, CMP is an essential technique for removing an excess silicon oxide film embedded on a substrate.

金属配線形成技術においても、加工寸法の微細化に伴い要求される電気特性を満たすためにCuやCuAl合金が採用されている。CuやCuAl合金の配線技術としては、ダマシン、デュアルダマシン等の埋め込み配線技術があり、基板上に埋め込んだ余分な金属を取り除くためにCMPが必須となる。ダマシン法については、例えば、特許文献1に開示されている。
特開平2−278822号公報
Also in the metal wiring formation technology, Cu or CuAl alloy is employed in order to satisfy the electrical characteristics required with the miniaturization of processing dimensions. Cu and CuAl alloy wiring techniques include embedded wiring techniques such as damascene and dual damascene, and CMP is essential to remove excess metal embedded on the substrate. The damascene method is disclosed in Patent Document 1, for example.
JP-A-2-278822

従来、半導体素子の製造工程において、プラズマ−CVD、低圧−CVD、スパッタ、電気メッキ等の方法で形成される酸化珪素などの絶縁膜、キャパシタ強誘電体膜、配線用金属や金属合金などの平坦化及び埋め込み層を形成するためのCMP研磨材としてフュームドシリカ、コロイダルシリカ、アルミナ、セリア系砥粒を使用している。   Conventionally, in a semiconductor device manufacturing process, an insulating film such as silicon oxide, a capacitor ferroelectric film, a wiring metal or a metal alloy formed by a method such as plasma-CVD, low-pressure CVD, sputtering, or electroplating is flat. Fumed silica, colloidal silica, alumina, and ceria-based abrasive grains are used as the CMP abrasive for forming the chemical and buried layers.

デザインルールの縮小に伴い、層間絶縁膜、シャロートレッチ分離用絶縁膜、金属埋め込み層に導入される研磨傷による半導体チップ不良がクローズアップされてきている。研磨傷は、配線ショートの原因となり、半導体チップの歩留まり低下に繋がる。   With the reduction of design rules, semiconductor chip defects due to polishing flaws introduced into interlayer insulating films, shallow trech isolation insulating films, and metal buried layers have been highlighted. Polishing scratches cause wiring shorts and lead to a decrease in the yield of semiconductor chips.

本発明は、層間絶縁膜平坦化、シャロートレンチ分離形成、金属埋め込み配線形成等のCMP技術において、酸化珪素膜、金属埋め込み膜等へ研磨傷の発生を防止又は低減することが可能なCMPが実施できる金属酸化物粒子、これを含む研磨材、この研磨材を用いた基板の研磨方法及び研磨して得られる半導体装置の製造方法を提供するものである。   The present invention implements CMP capable of preventing or reducing the occurrence of polishing scratches on a silicon oxide film, a metal buried film, etc. in CMP techniques such as interlayer insulation film planarization, shallow trench isolation formation, metal buried wiring formation, etc. The present invention provides a metal oxide particle that can be produced, an abrasive containing the same, a method for polishing a substrate using the abrasive, and a method for producing a semiconductor device obtained by polishing.

シャロートレンチ分離埋め込み絶縁膜や金属埋め込み層表面は、研磨材中の砥粒の粒子サイズが大きいと傷が入りやすい。粒子サイズを小さくすれば研磨傷は低減されるが、研磨速度が遅くなってしまう。   The surface of the shallow trench isolation buried insulating film and the metal buried layer is easily damaged when the grain size of the abrasive grains in the abrasive is large. If the particle size is reduced, polishing scratches are reduced, but the polishing rate is slowed down.

本発明者らは、粒子の大きさのほかに、結晶子の大きさ及び結晶の歪も研磨速度に関係していると考えた。具体的には、結晶子サイズが大きく、結晶歪が小さい方が研磨速度は速いと推定し、そして、結晶子が大きく結晶歪が小さな微粒子であれば傷発生が少なく短時間で研磨できると考えた。そこで、結晶子サイズ及び結晶歪と研磨特性の関係を種々検討した。その結果、上記問題を解消することができ、本発明を解消するに至った。   The inventors considered that in addition to the size of the particles, the size of the crystallites and the distortion of the crystals are also related to the polishing rate. Specifically, it is estimated that the polishing rate is faster when the crystallite size is larger and the crystal strain is smaller, and if the crystallite is large and the crystal strain is small, it can be polished in a short time with few scratches. It was. Accordingly, various relationships between the crystallite size and crystal strain and the polishing characteristics were examined. As a result, the above problems can be solved and the present invention has been solved.

本発明は、金属化合物を1000℃以上で加熱処理することによって作製され、かつ結晶子サイズが30nm以上及び結晶歪が1%以下である金属酸化物微粒子に関する。
また、本発明は、金属酸化物が、硝酸塩、硝酸アンモニウム塩、硫酸塩、硫酸アンモニウム塩、炭酸塩、酢酸塩、シュウ酸塩、塩化物、アセチルアセトナート塩、アルコキシド、水酸化物、酸化物から選ばれる1種類以上である前記の金属酸化物微粒子に関する。
また、本発明は、酸化物が、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化珪素、酸化アルミニウムから選ばれる1種類以上である前記の金属酸化物微粒子に関する。
The present invention relates to a metal oxide fine particle produced by heat-treating a metal compound at 1000 ° C. or more, having a crystallite size of 30 nm or more and a crystal strain of 1% or less.
In the present invention, the metal oxide is selected from nitrate, ammonium nitrate, sulfate, ammonium sulfate, carbonate, acetate, oxalate, chloride, acetylacetonate, alkoxide, hydroxide, and oxide. It is related with the said metal oxide microparticles | fine-particles which are 1 or more types.
The present invention also relates to the metal oxide fine particles, wherein the oxide is at least one selected from cerium oxide, zirconium oxide, titanium oxide, silicon oxide, and aluminum oxide.

また、本発明は、金属酸化物が、セリウム、ジルコニウム、チタン、珪素、アルミニウムから選ばれる2種類以上の複合酸化物である前記の金属酸化物微粒子に関する。
また、本発明は、加熱処理が、火炎炉、プラズマ炉から選ばれる1種類以上の反応炉内で行われる前記の金属酸化物微粒子に関する。
また、本発明は、加熱時間が、0.1〜30秒である前記の金属酸化物微粒子に関する。
また、本発明は、金属化合物が、顆粒状又は粉体状である前記の金属酸化物微粒子に関 する。
The present invention also relates to the above metal oxide fine particles, wherein the metal oxide is a composite oxide of two or more selected from cerium, zirconium, titanium, silicon, and aluminum.
Moreover, this invention relates to the said metal oxide microparticles | fine-particles with which heat processing are performed in one or more types of reaction furnace chosen from a flame furnace and a plasma furnace.
Moreover, this invention relates to the said metal oxide microparticles | fine-particles whose heating time is 0.1 to 30 second.
The present invention also relates to the metal oxide fine particles, wherein the metal compound is in the form of granules or powder.

また、本発明は、前記のいずれかに記載の金属酸化物微粒子を含む研磨材に関する。
また、本発明は、前記の研磨材を用いて、所定の基板を研磨することを特徴とする基板の研磨方法に関する。
また、本発明は、所定の基板が、酸化珪素膜が形成された半導体チップを有するものであることを特徴とする前記の基板の研磨方法に関する。
また、本発明は、酸化珪素膜が形成された半導体チップを、前記の研磨材で研磨することを特徴とする半導体装置の製造方法に関する。
The present invention also relates to an abrasive comprising any one of the above metal oxide fine particles.
The present invention also relates to a method for polishing a substrate, characterized in that a predetermined substrate is polished using the abrasive.
The present invention also relates to the method for polishing a substrate, wherein the predetermined substrate has a semiconductor chip on which a silicon oxide film is formed.
The present invention also relates to a method for manufacturing a semiconductor device, characterized in that a semiconductor chip on which a silicon oxide film is formed is polished with the abrasive.

また、本発明は、所定の基板が、金属膜が形成された半導体チップを有するものであることを特徴とする前記の基板の研磨方法に関する。
また、本発明は、前記金属膜が、銅、アルミニウム、タングステン、タンタル、チタン、TiN、TaNのいずれか1種であることを特徴とする前記の基板の研磨方法に関する。
さらに、本発明は、金属膜が形成された半導体チップを、前記の研磨材で研磨することを特徴とする導体装置の製造方法に関する。
The present invention also relates to the method for polishing a substrate, wherein the predetermined substrate has a semiconductor chip on which a metal film is formed.
The present invention also relates to the method for polishing a substrate, wherein the metal film is any one of copper, aluminum, tungsten, tantalum, titanium, TiN, and TaN.
Furthermore, the present invention relates to a method for manufacturing a conductor device, characterized in that a semiconductor chip on which a metal film is formed is polished with the abrasive.

本発明の金属酸化物微粒子及びこれを含む研磨材を基板の研磨に用いることにより、高速研磨でありながら研磨傷の低減が達成でき、基板の研磨方法及び半導体装置の製造方法に好適である。   By using the metal oxide fine particles of the present invention and the abrasive containing the metal oxide for polishing a substrate, it is possible to reduce polishing scratches while performing high-speed polishing, which is suitable for a substrate polishing method and a semiconductor device manufacturing method.

本発明の金属酸化物微粒子は、金属化合物を1000℃以上で加熱処理することによって作製された金属酸化物微粒子であって、その結晶子サイズが30nm以上及び結晶歪が1%以下であることを特徴とする。   The metal oxide fine particles of the present invention are metal oxide fine particles prepared by heat-treating a metal compound at 1000 ° C. or higher, and the crystallite size is 30 nm or more and the crystal strain is 1% or less. Features.

なお、結晶子サイズは、30nm以上、好ましくは40nm以上、より好ましくは50nm以上とされ、30nm未満であると研磨速度が遅くなるという問題点がある。
また、結晶歪は、1%以下、好ましくは0.7%以下、より好ましくは0.5%以下とされ、1%を超えると研磨速度が遅くなるという問題点がある。
The crystallite size is 30 nm or more, preferably 40 nm or more, more preferably 50 nm or more, and if it is less than 30 nm, there is a problem that the polishing rate is slow.
Further, the crystal strain is 1% or less, preferably 0.7% or less, more preferably 0.5% or less, and if it exceeds 1%, the polishing rate becomes slow.

なお、上記の結晶子サイズ及び結晶歪は、粉末X線回折を測定し、プロファイル関数としてThompson、Cox、Hastingsの擬フォークト関数を用いてリートベルト解析によって対称性プロファイルパラメーターX及びYを求め、次式より計算した。   The crystallite size and the crystal strain are determined by measuring powder X-ray diffraction, obtaining symmetry profile parameters X and Y by Rietveld analysis using Thompson, Cox, and Hastings pseudo-Forked functions as profile functions. Calculated from the formula.

Figure 2009113993
p:結晶子サイズ、K:シェラー定数(0.9とした)、λ:X線の波長、π:円周率、X:ローレンツパラメーター
Figure 2009113993
p: crystallite size, K: Scherrer constant (0.9), λ: X-ray wavelength, π: pi, X: Lorentz parameter

Figure 2009113993
S:結晶歪、π:円周率、Y:ローレンツパラメーター
Figure 2009113993
S: Crystal strain, π: Pi ratio, Y: Lorentz parameter

酸化物としては、酸化珪素、酸化アルミニウム、酸化セリウム、酸化チタン、酸化ジルコニウム等が挙げられる。
酸化物は1種類に限定されるものではなく2種類以上でも良い。また、これらの複合酸化物でも良い。
Examples of the oxide include silicon oxide, aluminum oxide, cerium oxide, titanium oxide, and zirconium oxide.
The oxide is not limited to one type and may be two or more types. These composite oxides may also be used.

金属化合物としては、硝酸塩、硝酸アンモニウム塩、硫酸塩、硫酸アンモニウム塩、炭酸塩、酢酸塩、シュウ酸塩、塩化物、アセチルアセトナート塩、アルコキシド、水酸化物、酸化物等が挙げられる。
金属化合物は1種類に制限するものではなく2種類以上でも良い。
Examples of the metal compound include nitrate, ammonium nitrate, sulfate, ammonium sulfate, carbonate, acetate, oxalate, chloride, acetylacetonate salt, alkoxide, hydroxide, oxide and the like.
The metal compound is not limited to one type and may be two or more types.

加熱方法の方法に制限はなく、一般に知られている方法で行うことができる。例えば、火炎加熱、プラズマ加熱等が挙げられる。加熱帯の温度は1000℃以上、好ましくは1200℃以上、より好ましくは1500℃以上とされ、上限は12000℃程度が好ましい。加熱帯の温度が1000℃未満であると結晶サイズが小さく歪みが大きくなるという問題点が生じる。
また、加熱処理時の雰囲気としては、酸素が存在することが好ましい。
There is no restriction | limiting in the method of a heating method, It can carry out by the method generally known. Examples thereof include flame heating and plasma heating. The temperature of the heating zone is 1000 ° C. or higher, preferably 1200 ° C. or higher, more preferably 1500 ° C. or higher, and the upper limit is preferably about 12000 ° C. When the temperature of the heating zone is less than 1000 ° C., there arises a problem that the crystal size is small and the distortion becomes large.
Moreover, it is preferable that oxygen exists as an atmosphere at the time of heat processing.

微粒子を研磨材(スラリー)とするために水に分散させる場合は、分散剤を用いても良い。分散剤の種類については特に制限はないが、例えば、アンモニア、酢酸、硝酸、アクリル酸系ポリマー、ポリビニルアルコール、ポリビニルピロリドン等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤及びモノエタノールアミン類等が挙げられる。   A dispersant may be used when the fine particles are dispersed in water to form an abrasive (slurry). The type of the dispersant is not particularly limited, but examples thereof include water-soluble organic polymers such as ammonia, acetic acid, nitric acid, acrylic acid polymers, polyvinyl alcohol, and polyvinylpyrrolidone, ammonium lauryl sulfate, and polyoxyethylene lauryl ether ammonium sulfate. Water-soluble anionic surfactants, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and monoethanolamines can be mentioned.

微粒子を水中に分散させる方法としては、通常の攪拌機による分散処理の他に、超音波分散機、ビーズミル、ボールミル、湿式高圧分散機等を用いることができる。
また、粒子を粉砕する必要がある場合には一般に知られている乾式粉砕、湿式粉砕を用いることができる。さらに、分級が必要の場合には通常の自然沈降法、液体サイクロン法、遠心沈降法等を用いることができる。
As a method for dispersing the fine particles in water, an ultrasonic disperser, a bead mill, a ball mill, a wet high-pressure disperser, or the like can be used in addition to the dispersion treatment with a normal stirrer.
When the particles need to be pulverized, generally known dry pulverization and wet pulverization can be used. Furthermore, when classification is required, a normal natural sedimentation method, a hydrocyclone method, a centrifugal sedimentation method, or the like can be used.

以下、実施例により本発明を説明する。
実施例1
顆粒状の酢酸セリウムを10000℃のアルゴンプラズマ炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは110nm及び結晶歪は0.014%であった。
Hereinafter, the present invention will be described by way of examples.
Example 1
Granular cerium acetate was put into an argon plasma furnace at 10000 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement, and the result was subjected to Rietveld analysis. As a result, the crystallite size was 110 nm and the crystal strain was 0.014%.

酸化セリウム微粒子100g、ポリアクリル酸アンモニウム1g及び純水1kgを混合し湿式高圧分散機で分散した。さらに沈降分級、濃度調整を行い酸化セリウム微粒子濃度1%の研磨材とした。研磨装置(荏原製作所製EPO−111)を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は320nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   100 g of cerium oxide fine particles, 1 g of ammonium polyacrylate and 1 kg of pure water were mixed and dispersed by a wet high pressure disperser. Further, sedimentation classification and concentration adjustment were performed to obtain an abrasive having a cerium oxide fine particle concentration of 1%. When a silicon wafer with a φ200 mm silicon oxide film was polished using a polishing apparatus (EPO-111 manufactured by Ebara Seisakusho), the silicon oxide film was polished by 320 nm in 1 minute. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例2
炭酸セリウム粉体を10000℃のアルゴンプラズマ炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは100nm及び結晶歪は0.018%であった。
Example 2
The cerium carbonate powder was put into an argon plasma furnace at 10,000 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement, and the result was subjected to Rietveld analysis. As a result, the crystallite size was 100 nm and the crystal strain was 0.018%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は300nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished to 300 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例3
酸化セリウム粉体を10000℃のアルゴンプラズマ炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは72nm及び結晶歪は0.045%であった。
Example 3
The cerium oxide powder was put into an argon plasma furnace at 10,000 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement, and the results were subjected to Rietveld analysis. As a result, the crystallite size was 72 nm and the crystal strain was 0.045%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は350nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished at 350 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例4
水酸化セリウム粉体を10000℃のアルゴンプラズマ炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは81nm及び結晶歪は0.041%であった。
Example 4
The cerium hydroxide powder was put into an argon plasma furnace at 10,000 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement and subjected to Rietveld analysis. As a result, the crystallite size was 81 nm and the crystal strain was 0.041%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は330nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished at 330 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例5
酸化セリウム粉体を10000℃の空気プラズマ炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは115nm及び結晶歪は0.11%であった。
Example 5
The cerium oxide powder was put into an air plasma furnace at 10000 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement and subjected to Rietveld analysis. As a result, the crystallite size was 115 nm and the crystal strain was 0.11%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は380nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished at 380 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例6
炭酸セリウム粉体を2500℃火炎炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは62nm及び結晶歪は0.12%であった。
Example 6
The cerium carbonate powder was put into a 2500 ° C. flame furnace and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
The obtained cerium oxide fine particles were subjected to powder X-ray precision measurement and subjected to Rietveld analysis. As a result, the crystallite size was 62 nm and the crystal strain was 0.12%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は270nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished at 270 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

実施例7
顆粒状の酢酸セリウムを1800℃の火炎炉中に投入し、1秒間加熱処理し微粒子を得た。この微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは54nm及び結晶歪は0.22%であった。
Example 7
Granular cerium acetate was put into a flame furnace at 1800 ° C. and heat-treated for 1 second to obtain fine particles. Phase identification of the fine particles by X-ray diffraction method confirmed that it was cerium oxide.
Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement and subjected to Rietveld analysis. As a result, the crystallite size was 54 nm and the crystal strain was 0.22%.

以下、実施例1と同様の工程を経て研磨材を作製し、その後、実施例1と同様の研磨装置を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は280nm研磨された。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。   Thereafter, a polishing material is manufactured through the same steps as in Example 1, and then a silicon wafer with a silicon oxide film having a diameter of 200 mm is polished using the same polishing apparatus as in Example 1, and the silicon oxide film is formed in one minute. Polished at 280 nm. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

比較例1
炭酸セリウム粉体を電気炉で600℃、1時間焼成した。この焼成粉をジェットミルで粉砕し微粒子を得た。
次に、微粒子100g、ポリアクリル酸アンモニウム1g及び純水1kgを混合し湿式高圧分散機で分散した。さらに沈降分級、濃度調整を行い濃度1%の研磨材とした。
Comparative Example 1
The cerium carbonate powder was fired in an electric furnace at 600 ° C. for 1 hour. The fired powder was pulverized with a jet mill to obtain fine particles.
Next, 100 g of fine particles, 1 g of ammonium polyacrylate and 1 kg of pure water were mixed and dispersed by a wet high pressure disperser. Furthermore, sedimentation classification and concentration adjustment were performed to obtain an abrasive having a concentration of 1%.

研磨材中の微粒子をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。また、得られた酸化セリウム微粒子について粉末X線精密測定を行い、その結果についてリートベルト解析を行った結果、結晶子サイズは28nm及び結晶歪は1.2%であった。   Phase identification of the fine particles in the abrasive by X-ray diffraction confirmed that it was cerium oxide. Further, the obtained cerium oxide fine particles were subjected to powder X-ray precision measurement and subjected to Rietveld analysis. As a result, the crystallite size was 28 nm and the crystal strain was 1.2%.

研磨装置(荏原製作所製EPO−111)を用いてφ200mmの酸化珪素膜付きシリコンウェハを研磨したところ、1分間で酸化珪素膜は120nmしか研磨されなかった。研磨後のウェハ表面を光学顕微鏡で観察したが、研磨傷は認められなかった。
When a silicon wafer with a silicon oxide film having a diameter of 200 mm was polished using a polishing apparatus (EPO-111 manufactured by Ebara Seisakusho), only 120 nm of the silicon oxide film was polished in one minute. The polished wafer surface was observed with an optical microscope, but no polishing scratches were observed.

Claims (14)

金属化合物を1000℃以上で加熱処理することによって作製され、かつ結晶子サイズが30nm以上及び結晶歪が1%以下である金属酸化物微粒子。   Metal oxide fine particles produced by heat-treating a metal compound at 1000 ° C. or more, having a crystallite size of 30 nm or more and a crystal strain of 1% or less. 金属酸化物が、硝酸塩、硝酸アンモニウム塩、硫酸塩、硫酸アンモニウム塩、炭酸塩、酢酸塩、シュウ酸塩、塩化物、アセチルアセトナート塩、アルコキシド、水酸化物、酸化物から選ばれる1種類以上である請求項1記載の金属酸化物微粒子。   The metal oxide is at least one selected from nitrate, ammonium nitrate, sulfate, ammonium sulfate, carbonate, acetate, oxalate, chloride, acetylacetonate, alkoxide, hydroxide, and oxide. The metal oxide fine particles according to claim 1. 酸化物が、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化珪素、酸化アルミニウムから選ばれる1種類以上である請求項2記載の金属酸化物微粒子。   The metal oxide fine particles according to claim 2, wherein the oxide is at least one selected from cerium oxide, zirconium oxide, titanium oxide, silicon oxide, and aluminum oxide. 金属酸化物が、セリウム、ジルコニウム、チタン、珪素、アルミニウムから選ばれる2種類以上の複合酸化物である請求項1記載の金属酸化物微粒子。   The metal oxide fine particles according to claim 1, wherein the metal oxide is two or more kinds of composite oxides selected from cerium, zirconium, titanium, silicon, and aluminum. 加熱処理が、火炎炉、プラズマ炉から選ばれる1種類以上の反応炉内で行われる請求項1記載の金属酸化物微粒子。   The metal oxide fine particles according to claim 1, wherein the heat treatment is performed in one or more kinds of reaction furnaces selected from a flame furnace and a plasma furnace. 加熱時間が、0.1〜30秒である請求項1又は5記載の金属酸化物微粒子。   The metal oxide fine particles according to claim 1 or 5, wherein the heating time is 0.1 to 30 seconds. 金属化合物が、顆粒状又は粉体状である請求項1記載の金属酸化物微粒子。   The metal oxide fine particles according to claim 1, wherein the metal compound is in the form of granules or powder. 請求項1〜7のいずれかに記載の金属酸化物微粒子を含む研磨材。   An abrasive comprising the metal oxide fine particles according to claim 1. 請求項8記載の研磨材を用いて、所定の基板を研磨することを特徴とする基板の研磨方法。   A method for polishing a substrate, comprising polishing a predetermined substrate using the abrasive according to claim 8. 所定の基板が、酸化珪素膜が形成された半導体チップを有するものであることを特徴とする請求項9記載の基板の研磨方法。   The method for polishing a substrate according to claim 9, wherein the predetermined substrate has a semiconductor chip on which a silicon oxide film is formed. 酸化珪素膜が形成された半導体チップを、請求項8記載の研磨材で研磨することを特徴とする半導体装置の製造方法。   9. A method of manufacturing a semiconductor device, comprising polishing a semiconductor chip on which a silicon oxide film is formed with the abrasive according to claim 8. 所定の基板が、金属膜が形成された半導体チップを有するものであることを特徴とする請求項9記載の基板の研磨方法。   The substrate polishing method according to claim 9, wherein the predetermined substrate has a semiconductor chip on which a metal film is formed. 前記金属膜が、銅、アルミニウム、タングステン、タンタル、チタン、TiN、TaNのいずれか1種であることを特徴とする請求項12記載の基板の研磨方法。   The substrate polishing method according to claim 12, wherein the metal film is any one of copper, aluminum, tungsten, tantalum, titanium, TiN, and TaN. 金属膜が形成された半導体チップを、請求項8記載の研磨材で研磨することを特徴とする導体装置の製造方法。


A method for manufacturing a conductor device, comprising: polishing a semiconductor chip on which a metal film is formed with the abrasive according to claim 8.


JP2006057718A 2006-03-03 2006-03-03 Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing Pending JP2009113993A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006057718A JP2009113993A (en) 2006-03-03 2006-03-03 Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing
PCT/JP2007/054038 WO2007100093A1 (en) 2006-03-03 2007-03-02 Metal oxide particle, polishing material containing same, substrate polishing method using such polishing material, and method for manufacturing semiconductor device
TW096107127A TW200738858A (en) 2006-03-03 2007-03-02 Metal oxide particles, polishing powder, polishing method of substrate and fabrication method of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057718A JP2009113993A (en) 2006-03-03 2006-03-03 Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing

Publications (1)

Publication Number Publication Date
JP2009113993A true JP2009113993A (en) 2009-05-28

Family

ID=38459188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057718A Pending JP2009113993A (en) 2006-03-03 2006-03-03 Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing

Country Status (3)

Country Link
JP (1) JP2009113993A (en)
TW (1) TW200738858A (en)
WO (1) WO2007100093A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102007448B1 (en) * 2018-12-24 2019-08-05 주식회사 엔팩 Method for preparing cerium oxide nano particle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY154861A (en) 2008-12-22 2015-08-14 Kao Corp Polishing liquid composition for magnetic-disk substrate
JP5883609B2 (en) * 2011-10-12 2016-03-15 一般財団法人ファインセラミックスセンター Polishing material, polishing composition and polishing method
WO2024089923A1 (en) * 2022-10-27 2024-05-02 株式会社レゾナック Raw material for obtaining abrasive grains and selection method therefor, production method for abrasive grains, production method for polishing liquid, polishing method, production method for component, and production method for semiconductor component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059006A (en) * 1991-06-28 1993-01-19 Toyo Ink Mfg Co Ltd Manufacture of ceramic powders
US5851507A (en) * 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
JP3462052B2 (en) * 1996-09-30 2003-11-05 日立化成工業株式会社 Cerium oxide abrasive and substrate polishing method
JPH11279537A (en) * 1998-03-25 1999-10-12 C I Kasei Co Ltd Aqueous dispersion of cerium oxide ultramicroparticle and its production
KR100515782B1 (en) * 1999-05-28 2005-09-23 히다치 가세고교 가부시끼가이샤 Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same, and method for manufacturing semiconductor device
JP2003514745A (en) * 1999-11-17 2003-04-22 キャボット コーポレイション Ceria composition and method for producing the same
EP1378489A1 (en) * 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Metal oxides prepared by flame spray pyrolysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102007448B1 (en) * 2018-12-24 2019-08-05 주식회사 엔팩 Method for preparing cerium oxide nano particle

Also Published As

Publication number Publication date
WO2007100093A1 (en) 2007-09-07
TW200738858A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
TWI301120B (en) Method for producing improved cerium oxide abrasive particles and compositions including such particles
KR102487303B1 (en) Cerium oxide particle, chemical-mechanical polishing slurry composition comprising the same and method for manufacturing semiconductor by using the same
EP2011765A1 (en) Oxide crystal fine particle and polishing slurry including the fine particle
WO2016199340A1 (en) Polishing composition, method for producing same and polishing method
JP2009113993A (en) Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing
TW201943828A (en) Chemical mechanical polishing composition and polishing method capable of polishing a semiconductor substrate at high speed and reducing polishing scratches on a surface to be polished
TWI488952B (en) Cmp polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
JP5403910B2 (en) Polishing liquid composition
JP2008078233A (en) Composition for polishing
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP2007154156A (en) Metallic oxide microparticle, abrasive, and method for grinding substrate and method for producing semiconductor device using the abrasive,
JP2002043258A (en) Polishing composition for metal films
JP2007153731A (en) Method for manufacturing spheric oxide fine particle, abrasive material, polishing method, and method for manufacturing semiconductor device using the same
JP2007154155A (en) Method for producing metallic oxide microparticle for abrasive, abrasive, and method for grinding substrate and method for producing semiconductor device by using the abrasive
JPH10125638A (en) Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition
JP2007153728A (en) Metal oxide fine particle, abrasive material, method for polishing substrate using the same, and method for manufacturing semiconductor device
JPH10135163A (en) Compd. for polishing metal film on semiconductor substrate and method of palnarizing the metal film on semiconductor substrate
JP7315394B2 (en) Ceria-based fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based fine particle dispersion
KR100637400B1 (en) Ceria slurry for chemical mechanical polishing and its fabrication method
KR20240062236A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor by using the same
JP2002280334A (en) Cerium oxide polishing agent and polishing of substrate using the same
KR20240062238A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor by using the same
JP2002003825A (en) Optically active composition for polishing semiconductor substrate metal film
JP2002009023A (en) Composition for polishing metal film of semiconductor substrate
JP2002280333A (en) Cerium oxide polishing agent and method of polishing substrate using the same