JP2008078233A - Composition for polishing - Google Patents

Composition for polishing Download PDF

Info

Publication number
JP2008078233A
JP2008078233A JP2006253291A JP2006253291A JP2008078233A JP 2008078233 A JP2008078233 A JP 2008078233A JP 2006253291 A JP2006253291 A JP 2006253291A JP 2006253291 A JP2006253291 A JP 2006253291A JP 2008078233 A JP2008078233 A JP 2008078233A
Authority
JP
Japan
Prior art keywords
acid
polishing
polishing composition
salt
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253291A
Other languages
Japanese (ja)
Inventor
Isao Ota
勇夫 太田
Kenji Tanimoto
健二 谷本
Noriyuki Takakuma
紀之 高熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2006253291A priority Critical patent/JP2008078233A/en
Publication of JP2008078233A publication Critical patent/JP2008078233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive for flattening polishing of a copper-wiring film in a semiconductor device manufacturing process. <P>SOLUTION: A composition for a chemical mechanical polishing in a manufacture for the semiconductor device contains abrasive grains (A), cyanuric acid (B1) or its salt (B2), boric acid (C1) or its salt (C2), an oxidant (D) and water (E). Metallic oxide grains (A1), organic high-molecular grains (A2) or their combination are used as the abrasive grains (A). Metaboric acid, tetraboric acid, pentaboric acid, octaboric acid or their combination is used as boric acid (C1). At least one kind of a substance selected from a group composed of copper, aluminum, tungsten, tantalum and these alloy, silicon oxide and a low dielectric-constant insulating film is used as a polished material. A manufacturing method for the semiconductor device contains a process for polishing a substrate forming a metallic wiring, a barrier metal or the insulating film in a pattern shape. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、砥粒、シアヌル酸、ホウ酸塩、酸化剤及び水等を含有する半導体デバイス製造における金属用化学的機械研磨組成物に関するものである。   The present invention relates to a chemical mechanical polishing composition for metals in the production of semiconductor devices containing abrasive grains, cyanuric acid, borates, oxidizing agents, water and the like.

半導体集積回路(LSI)技術の急速な進展により集積回路の益々超微細化及び多層配線化が行われている。このために多層配線基板の金属配線や層間絶縁膜を平坦化する加工技術が開発されている。その1つの技術として、CMP(ケミカルメカニカルポリシング:Chemical Mechanical Polishing)と通常称されている化学機械的研磨による半導体デバイス製造工程における平坦化研磨工程がある。
最近ではLSIを高性能化するために、配線材料に銅及び銅合金を利用する傾向が強まってきている。銅及び銅合金配線の下層には、層間絶縁膜中への銅の拡散防止のため、タンタル、タンタル合金及び窒化タンタル等のバリア層が形成されている。そのため、CMPによる銅配線の平坦化工程は、銅又は銅合金膜を研磨して段差解消する一次研磨工程とバリア層を研磨して除去する二次研磨工程が検討されている。そのうち一次研磨工程で使用する研磨用組成物(一次研磨用組成物とも呼ぶ。)は銅及び銅合金の研磨速度が速く、一方タンタル、タンタル合金及び窒化タンタルのバリア層の研磨速度が遅い方が好ましい。逆に二次研磨工程で使用する研磨用組成物(ニ次研磨用組成物とも呼ぶ。)は、タンタル、タンタル合金及び窒化タンタルのバリア層の研磨速度が速く、一方銅及び銅合金がほとんど研磨されない方が好ましい。
銅用の研磨用組成物としては、シアヌル酸を含有した銅、タンタルの研磨剤が開示されている(特許文献1)。
しかしながら、特許文献1に記載されているpHが7.7の研磨用組成物は、銅膜の研磨速度が遅く、一方バリア層であるタンタル膜がかなり研磨され、銅/タンタルの研磨速度の比が6.4以下であり一次研磨用組成物としては好ましくない。
またpHが5.0の研磨用組成物は、銅膜の研磨速度が速く、しかも銅/タンタルの研磨速度の比が11.2であるが、pH5.0の弱酸性であるため銅膜の腐食が危惧される。
With the rapid development of semiconductor integrated circuit (LSI) technology, integrated circuits are becoming increasingly miniaturized and multilayered. For this reason, a processing technique for flattening the metal wiring and interlayer insulating film of the multilayer wiring board has been developed. As one of the techniques, there is a planarization polishing process in a semiconductor device manufacturing process by chemical mechanical polishing, which is generally called CMP (Chemical Mechanical Polishing).
Recently, in order to improve the performance of LSIs, there is an increasing tendency to use copper and copper alloys as wiring materials. Under the copper and copper alloy wiring, a barrier layer such as tantalum, tantalum alloy, and tantalum nitride is formed to prevent copper from diffusing into the interlayer insulating film. For this reason, the planarization process of copper wiring by CMP has been studied as a primary polishing process for polishing a copper or copper alloy film to eliminate a step and a secondary polishing process for polishing and removing a barrier layer. Of these, the polishing composition used in the primary polishing step (also called the primary polishing composition) has a higher polishing rate for copper and copper alloys, while the polishing rate for barrier layers of tantalum, tantalum alloy and tantalum nitride is lower. preferable. Conversely, the polishing composition used in the secondary polishing step (also referred to as the secondary polishing composition) has a high polishing rate for the barrier layer of tantalum, tantalum alloy and tantalum nitride, while copper and copper alloy are mostly polished. It is preferable not to be done.
As a polishing composition for copper, an abrasive of copper and tantalum containing cyanuric acid is disclosed (Patent Document 1).
However, the polishing composition having a pH of 7.7 described in Patent Document 1 has a slow polishing rate of the copper film, while the tantalum film as the barrier layer is considerably polished, and the ratio of the polishing rate of copper / tantalum Is 6.4 or less, which is not preferable as the primary polishing composition.
The polishing composition having a pH of 5.0 has a high copper film polishing rate and a copper / tantalum polishing rate ratio of 11.2. Corrosion is a concern.

砥粒、酸化剤、ベンゾトリアゾール、ホウ酸アンモニウムからなる銅、タングステン用研磨剤が開示されている(特許文献2)。しかしながら、ここではホウ酸アンモニウムは防食剤として作用している。
酸化鉄(111)及び酸化鉄(111)、アルミナ、セリア、シリカ、チタニア、及びゲルマニアから選ばれた少なくとも1種との複合材料よりなる群から選ばれた少なくとも1種からなる研磨材、アンモニア又はアンモニウム塩から選ばれた少なくとも1種からなる研磨助剤、及び水を含有する金属用研磨剤が開示されている(特許文献3)。しかしながら、酸化鉄(111)粒子を使用するため鉄イオンの汚染が懸念される。
国際公表WO 01/30928号公報(特許請求の範囲、実施例) US6551935号公報(特許請求の範囲、実施例) 特開2002−43259号公報(特許請求の範囲、実施例)
A polishing agent for copper and tungsten composed of abrasive grains, an oxidizing agent, benzotriazole, and ammonium borate is disclosed (Patent Document 2). However, here ammonium borate acts as an anticorrosive.
Abrasive material comprising at least one selected from the group consisting of a composite material with at least one selected from iron oxide (111) and iron oxide (111), alumina, ceria, silica, titania, and germania, ammonia or A metal polishing agent containing at least one polishing aid selected from ammonium salts and water is disclosed (Patent Document 3). However, since iron oxide (111) particles are used, there is a concern about contamination of iron ions.
International Publication WO 01/30928 (Claims, Examples) US6551935 (Claims, Examples) JP 2002-43259 A (Claims, Examples)

本願発明の研磨用組成物は、半導体基板上の銅及び銅合金、アルミニウム、タングステン等の金属膜を高速に研磨し、かつ段差部の平坦性やウェハーの面内均一性を向上し、また研磨用組成物の分散性を向上し、被研磨材料面のスクラッチなどの欠陥を抑制しようとするものである。
更に、銅及び銅合金の研磨速度が速く、一方タンタル、タンタル合金及び窒化タンタルのバリア層がほとんど研磨されないという特性を持った一次研磨工程で使用する研磨用組成物(一次研磨用組成物)を提供することを目的とする。
The polishing composition of the present invention polishes copper and copper alloys, aluminum, tungsten, and other metal films on a semiconductor substrate at high speed, improves the flatness of the stepped portion and the in-plane uniformity of the wafer, and polishes the polishing film. It is intended to improve the dispersibility of the composition and suppress defects such as scratches on the surface of the material to be polished.
Further, a polishing composition (primary polishing composition) used in a primary polishing step having a characteristic that the polishing rate of copper and copper alloy is high while the barrier layer of tantalum, tantalum alloy and tantalum nitride is hardly polished. The purpose is to provide.

本発明は第1観点として、(A)成分:砥粒、(B)成分:シアヌル酸(B1)、その塩(B2)、又はそれらの混合物、(C)成分:ホウ酸(C1)、その塩(C2)、又はそれらの混合物、(D)成分:酸化剤、及び(E)成分:水を含有する半導体デバイス製造における化学機械的研磨用組成物、
第2観点として、(A)成分の砥粒が、金属酸化物粒子(A1)、有機高分子粒子(A2)、又はその組み合わせである第1観点に記載の研磨用組成物、
第3観点として、金属酸化物粒子(A1)が、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタンからなる群より選ばれた少なくとも1種である第2観点に記載の研磨用組成物、
第4観点として、有機高分子粒子(A2)が、ポリ塩化ビニル、ポリアクリル酸、ポリアクリル酸誘導体、ポリスチレン、ポリスチレン誘導体からなる群より選ばれた少なくとも1種である第2観点に記載の研磨用組成物、
第5観点として、(A)成分の砥粒が酸化ジルコニウムである第1観点乃至第4観点のいずれか一つに記載の研磨用組成物、
第6観点として、シアヌル酸(B1)が、シアヌル酸、イソシアヌル酸、又はその組み合わせである第1観点乃至第5観点のいずれか一つに記載の研磨用組成物、
第7観点として、シアヌル酸塩(B2)が、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩又はそれらの組み合わせである第1観点乃至第6観点のいずれか一つに記載の研磨用組成物、
第8観点として、ホウ酸(C1)が、メタホウ酸、四ホウ酸、五ホウ酸、八ホウ酸、又はその組み合わせである第1観点乃至第7観点のいずれか一つに記載の研磨用組成物、
第9観点として、ホウ酸塩(C2)が、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩又はそれらの組み合わせである第1観点乃至第8観点のいずれか一つに記載の研磨用組成物、
第10観点として、(D)成分の酸化剤が、過酸化水素、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸、ヨウ素酸塩、過硫酸塩、又はその組み合わせである第1観点乃至第9観点のいずれか一つに記載の研磨用組成物、
第11観点として、更にベンゾトリアゾール又はその誘導体を含有するものである第1観点乃至第10観点のいずれか一つに記載の研磨用組成物、
第12観点として、被研磨材料が、銅、アルミニウム、タングステン、及びそれらの合金、タンタル、タンタル合金、タンタル化合物、酸化ケイ素、並びに低誘電率絶縁膜からなる群より選ばれた少なくとも1種の物質である第1観点乃至第11観点のいずれか一つに記載の研磨用組成物、及び
第13観点として、第1観点乃至第12観点のいずれか一つに記載の研磨用組成物で金属配線、バリアメタル、又は絶縁膜がパターン状に形成された基板を研磨する工程を含む半導体装置の製造方法である。
As the first aspect of the present invention, (A) component: abrasive, (B) component: cyanuric acid (B1), a salt thereof (B2), or a mixture thereof, (C) component: boric acid (C1), A composition for chemical mechanical polishing in the production of a semiconductor device containing a salt (C2), or a mixture thereof; (D) component: an oxidizing agent; and (E) component: water.
As a second aspect, the polishing composition according to the first aspect, wherein the abrasive grains of the component (A) are metal oxide particles (A1), organic polymer particles (A2), or a combination thereof,
As a third aspect, the polishing composition according to the second aspect, in which the metal oxide particles (A1) are at least one selected from the group consisting of silica, alumina, cerium oxide, zirconium oxide, and titanium oxide,
As a fourth aspect, the polishing according to the second aspect, in which the organic polymer particle (A2) is at least one selected from the group consisting of polyvinyl chloride, polyacrylic acid, polyacrylic acid derivatives, polystyrene, and polystyrene derivatives. Composition,
As 5th viewpoint, the polishing composition as described in any one of the 1st viewpoint thru | or 4th viewpoint whose abrasive grain of (A) component is a zirconium oxide,
As a sixth aspect, the polishing composition according to any one of the first to fifth aspects, wherein the cyanuric acid (B1) is cyanuric acid, isocyanuric acid, or a combination thereof,
As a seventh aspect, for the polishing according to any one of the first to sixth aspects, wherein the cyanuric acid salt (B2) is a sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or a combination thereof. Composition,
As an eighth aspect, the polishing composition according to any one of the first to seventh aspects, wherein boric acid (C1) is metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, or a combination thereof. object,
As a ninth aspect, for polishing according to any one of the first to eighth aspects, wherein the borate (C2) is a sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or a combination thereof. Composition,
As a tenth aspect, the oxidizing agent of component (D) is hydrogen peroxide, periodic acid, periodate, iodic acid, iodate, persulfate, or a combination thereof. Polishing composition as described in any one of these,
As an eleventh aspect, the polishing composition according to any one of the first aspect to the tenth aspect, which further contains benzotriazole or a derivative thereof,
As a twelfth aspect, the material to be polished is at least one substance selected from the group consisting of copper, aluminum, tungsten, and alloys thereof, tantalum, tantalum alloys, tantalum compounds, silicon oxide, and low dielectric constant insulating films. The polishing composition according to any one of the first aspect to the eleventh aspect, and as the thirteenth aspect, the polishing composition according to any one of the first aspect to the twelfth aspect, and a metal wiring , A method of manufacturing a semiconductor device including a step of polishing a substrate on which a barrier metal or an insulating film is formed in a pattern.

本願発明の研磨用組成物は、研磨助剤としてシアヌル酸及びホウ酸塩等の両方を含有し、更に過酸化水素、過沃素酸カリウム、沃素酸カリウム、過硫酸アンモニウム、過硫酸カリウム等の酸化剤、ベンゾトリアゾール等の保護膜形成剤及び水を含有する研磨用組成物が半導体デバイス製造における金属配線用化学機械的研磨用組成物として優れていることを見出した。
更に、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタン等の無機物砥粒、ポリ塩化ビニル、ポリアクリル、ポリスチレン等の高分子砥粒を含み金属配線用化学的機械研磨用組成物として優れている。
The polishing composition of the present invention contains both cyanuric acid and borate as polishing aids, and further contains oxidizing agents such as hydrogen peroxide, potassium periodate, potassium iodate, ammonium persulfate, and potassium persulfate. It has been found that a polishing composition containing a protective film forming agent such as benzotriazole and water is excellent as a chemical mechanical polishing composition for metal wiring in the production of semiconductor devices.
In addition, it contains inorganic abrasive grains such as silica, alumina, cerium oxide, zirconium oxide, and titanium oxide, and polymer abrasive grains such as polyvinyl chloride, polyacryl, and polystyrene, and is excellent as a chemical mechanical polishing composition for metal wiring. .

本願発明の研磨用組成物は、半導体基板上の銅及び銅合金、アルミニウム、タングステン等の金属膜を高速に研磨し、かつ段差部の平坦性やウェハーの面内均一性を向上し、また研磨用組成物の分散性を向上し、被研磨材料面のスクラッチなどの欠陥を抑制することができる。
更に本願発明の研磨用組成物は、銅及び銅合金の研磨速度が速く、一方タンタル、タンタル合金及び窒化タンタルからなるバリア層が研磨されないという特性を持ち、一次研磨工程で使用する研磨用組成物(一次研磨用組成物)である。
The polishing composition of the present invention polishes copper and copper alloys, aluminum, tungsten, and other metal films on a semiconductor substrate at high speed, improves the flatness of the stepped portion and the in-plane uniformity of the wafer, and polishes the polishing film. The dispersibility of the composition can be improved, and defects such as scratches on the surface of the material to be polished can be suppressed.
Furthermore, the polishing composition of the present invention has a characteristic that the polishing rate of copper and copper alloy is high, while the barrier layer made of tantalum, tantalum alloy and tantalum nitride is not polished, and is used in the primary polishing step. (Primary polishing composition).

本発明は、(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分を含有する半導体デバイス製造における化学機械的研磨用組成物である。即ち、(A)成分:砥粒、(B)成分:シアヌル酸(B1)、その塩(B2)、又はそれらの混合物、(C)成分:ホウ酸(C1)、その塩(C2)、又はそれらの混合物、(D)成分:酸化剤、及び(E)成分:水を含有する半導体デバイス製造における化学機械的研磨用組成物。   The present invention is a composition for chemical mechanical polishing in the production of a semiconductor device, comprising (A) component, (B) component, (C) component, (D) component, and (E) component. That is, (A) component: abrasive grains, (B) component: cyanuric acid (B1), its salt (B2), or a mixture thereof, (C) component: boric acid (C1), its salt (C2), or A composition for chemical mechanical polishing in the production of a semiconductor device containing a mixture thereof, (D) component: oxidizing agent, and (E) component: water.

本願発明の研磨用組成物は、固形分が0.5〜20質量%、好ましくは1〜5質量%である。ここで固形分とは、研磨用組成物の全成分から水を除いたものである。   The polishing composition of the present invention has a solid content of 0.5 to 20% by mass, preferably 1 to 5% by mass. Here, the solid content is obtained by removing water from all components of the polishing composition.

本願発明の研磨用組成物のpHは5.5〜11、好ましくは6.5〜10である。   The polishing composition of the present invention has a pH of 5.5 to 11, preferably 6.5 to 10.

本願発明に用いられる(A)成分の砥粒は、金属酸化物粒子(A1)、及び有機高分子粒子(A2)が挙げられ、それらを単独で用いることも、それらを組み合わせて用いることもできる。(A)成分の砥粒は、この砥粒を含有する水性ゾルの形態で使用することが好ましい。
金属酸化物粒子(A1)は、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタン等の金属酸化物が挙げられ、それらを単独で用いることも、2種以上組み合わせて用いることもできる。
有機高分子粒子(A2)は、ポリ塩化ビニル、ポリアクリル酸、ポリアクリル酸誘導体、ポリスチレン、ポリスチレン誘導体等が挙げられ、それらを単独で用いることも、2種類以上組み合わせて用いることもできる。ポリアクリル酸誘導体としては、ポリアクリル酸アルキル(炭素数1〜6)エステル、ポリメタクリル酸、ポリメタクリル酸アルキル(炭素数1〜6)エステルが挙げられる。
本願発明で使用する砥粒(A)は、ガス吸着法(BET法)による比表面積から換算した粒子径は、個々の粒子の一次粒子径の平均値が観測されるものである。また、電子顕微鏡観察による粒子径は、個々の粒子の一次粒子径が観測される。
Examples of the abrasive grains of component (A) used in the present invention include metal oxide particles (A1) and organic polymer particles (A2), which can be used alone or in combination. . The (A) component abrasive is preferably used in the form of an aqueous sol containing the abrasive.
Examples of the metal oxide particles (A1) include metal oxides such as silica, alumina, cerium oxide, zirconium oxide, and titanium oxide, and these can be used alone or in combination of two or more.
Examples of the organic polymer particles (A2) include polyvinyl chloride, polyacrylic acid, polyacrylic acid derivatives, polystyrene, polystyrene derivatives, and the like. These can be used alone or in combination of two or more. Examples of the polyacrylic acid derivative include polyalkyl acrylate (C1-6) ester, polymethacrylic acid, polyalkylmethacrylate (C1-6) ester.
In the abrasive grains (A) used in the present invention, the average primary particle diameter of individual particles is observed as the particle diameter converted from the specific surface area by the gas adsorption method (BET method). Moreover, the primary particle diameter of each particle | grain is observed for the particle diameter by electron microscope observation.

そして、レーザー回折法はMASTERSIZER(MALVERN社製)等の装置によって測定され、レーザー回折法ではゾル中の粒子の粒子径が観測され、凝集や癒着があるときはそれらの粒子径(二次粒子径)の平均値が観測される。また、動的光散乱法粒子径は、濃厚系試料で動的光散乱法粒子径を測定できる装置、例えばFPAR1000(大塚電子(株)製)等によって測定され、動的光散乱法もゾル中の粒子の粒子径が観測され、凝集や癒着があるときはそれらの粒子径(二次粒子径)の平均値が観測される。
上記の(A)成分の砥粒は、その砥粒を含む水性ゾルとして用いた場合に砥粒の粒子径としては、一次粒子径の平均値が100nm以下、通常は5〜100nmであり、且つ二次粒子径の平均値が200nm以下、通常は40〜200nmである。
これらの粒子径範囲を有することでCMPによる研磨時に発生するスクラッチ等の欠陥を抑制できるため好ましい。
本願発明では酸化ジルコニウム粒子を例とすれば、透過型電子顕微鏡(TEM)観察での一次粒子径の平均値で5〜50nm、ガス吸着法(BET法)により比表面積値を測定し、球体粒子として換算した粒子径はBET法換算粒子径と呼ばれ、5〜50nmであり、レーザー回折法の平均粒子径で90〜110nm、d99(ただし、d99はこの粒子径以下の粒子数が全粒子数の99%であることを意味する粒子径を表す。)が170〜250nmであり、250nm以上の二次粒子径を有する粒子は存在しない。この酸化ジルコニウム粒子の動的光散乱法での平均粒子径は、30〜120nmを有している。
この酸化ジルコニウム粒子を本願発明における研磨用組成物とした場合でも、その研磨組成物をレーザー回折法で測定すると平均粒子径が90〜120nmであり、500nm以上の二次粒子径がなく、また動的光散乱法で測定すると平均粒子径は50〜200nmである。そのため(A)成分の砥粒のみを水性媒体に分散して測定した粒子径の値と、(A)成分の砥粒を用い研磨組成物にして測定した場合の粒子径の値に大きな差はなく、研磨用組成物中での(A)成分の砥粒の分散性は非常に良好である。従って、長時間放置しても粒子の沈降固結性がなく軽い攪拌や振とう等で容易に製造時の分散状態に戻り、常温に保存しても半年以上安定である。
The laser diffraction method is measured by a device such as MASTERSIZER (manufactured by MALVERN). In the laser diffraction method, the particle size of particles in the sol is observed, and when there is aggregation or adhesion, the particle size (secondary particle size). ) Is observed. The dynamic light scattering method particle size is measured by a device that can measure the dynamic light scattering method particle size with a concentrated sample, for example, FPAR1000 (manufactured by Otsuka Electronics Co., Ltd.). When there is aggregation or adhesion, the average value of the particle diameters (secondary particle diameters) is observed.
When the abrasive grains of the component (A) are used as an aqueous sol containing the abrasive grains, the average particle diameter of the abrasive grains is 100 nm or less, usually 5 to 100 nm, and The average secondary particle size is 200 nm or less, usually 40 to 200 nm.
It is preferable to have these particle diameter ranges because defects such as scratches generated during polishing by CMP can be suppressed.
In the present invention, taking zirconium oxide particles as an example, the average value of primary particle diameters observed with a transmission electron microscope (TEM) is 5 to 50 nm, the specific surface area value is measured by gas adsorption method (BET method), and spherical particles The particle diameter converted as is referred to as the BET method converted particle diameter is 5 to 50 nm, the average particle diameter of the laser diffraction method is 90 to 110 nm, and d99 (where d99 is the number of particles equal to or smaller than this particle diameter) Represents a particle size that means 99% of the total particle size) of 170 to 250 nm, and there is no particle having a secondary particle size of 250 nm or more. The average particle diameter of the zirconium oxide particles in the dynamic light scattering method is 30 to 120 nm.
Even when the zirconium oxide particles are used as the polishing composition in the present invention, when the polishing composition is measured by a laser diffraction method, the average particle size is 90 to 120 nm, there is no secondary particle size of 500 nm or more, and The average particle size is 50 to 200 nm as measured by a typical light scattering method. Therefore, there is a large difference between the value of the particle diameter measured by dispersing only the abrasive grains of component (A) in an aqueous medium and the value of the particle diameter when measured as a polishing composition using the abrasive grains of component (A) In addition, the dispersibility of the abrasive grains of the component (A) in the polishing composition is very good. Therefore, even if left for a long time, the particles do not settle and solidify easily by light stirring or shaking, and can be easily returned to the dispersed state at the time of manufacture, and are stable for more than half a year even when stored at room temperature.

また、本願発明に用いられる酸化ジルコニウム粒子は、例えば110℃で乾燥して、X線回折パターンを測定したところ、回折角度2θ=28.6°、47.5°及び56.4°に主ピークを有し、ASTMカードNo.34−394に記載の単斜系の結晶性の高い酸化ジルコニウム粒子が挙げられる。   Further, the zirconium oxide particles used in the present invention were dried at 110 ° C., for example, and the X-ray diffraction pattern was measured. As a result, the main peaks were observed at diffraction angles 2θ = 28.6 °, 47.5 ° and 56.4 °. And an ASTM card no. And monoclinic zirconium oxide particles having high crystallinity described in 34-394.

上記の酸化ジルコニウムを(A)成分とする砥粒は、市販の酸化ジルコニウム砥粒を好ましく用いることができる。また、オキシ炭酸ジルコニウムを600〜850℃程度の温度で5〜40時間の焼成を行い、得られた酸化ジルコニウム粉末を水性媒体中でボールミル、サンドミル等の粉砕器により湿式粉砕により得られる酸化ジルコニウム水性ゾルを用いることができる。焼成された酸化ジルコニウムを湿式粉砕する時に、ポリアクリル酸、ポリメタクリル酸、及びその塩(例えば、アンモニウム塩)を粉砕助剤として、酸化ジルコニウムに対して1.0〜10質量%の範囲で添加することにより、分散性の高い水性酸化ジルコニウムゾルが得られる。
研磨用組成物中の(A)成分の砥粒は、金属酸化物粒子(A1)の濃度、有機高分子粒子(A2)の濃度、又は金属酸化物粒子(A1)と有機高分子粒子(A2)を合計した濃度は、それぞれ0.01〜20質量%、又は0.1〜10質量%である。(A)成分の砥粒の濃度が0.01質量%未満では、研磨速度が遅くなり過ぎ、20質量%以上になると、CMP時に発生するスクラッチ等の欠陥が多くなり好ましくない。
シアヌル酸(B1)は、シアヌル酸とその異性体であるイソシアヌル酸を用いることができる。本願発明ではシアヌル酸(B1)で用いることも、シアヌル酸塩(B2)として用いることもできる。シアヌル酸塩(B2)として用いる場合は、それらのナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、及びアンモニウム塩が挙げられ、それらを単独で用いることもそれらの組み合わせを用いることもできる。
これらシアヌル酸(B1)又はその塩(B2)は、例えばシアヌル酸、イソシアヌル酸、イソシアヌル酸ナトリウム、イソシアヌル酸カリウム、イソシアヌル酸カルシウム、イソシアヌル酸マグネシウム、イソシアヌル酸アンモニウムが例示される。
研磨組成物中でシアヌル酸(B1)の濃度、シアヌル酸塩(B2)の濃度、又はシアヌル酸(B1)とシアヌル酸塩(B2)を合計した濃度は、それぞれ0.1〜1.5質量%、好ましくは0.2 〜1.0質量%である。
ホウ酸(C1)は、メタホウ酸、四ホウ酸、五ホウ酸、及び八ホウ酸が挙げられる。また、ホウ酸(C1)はその塩であるホウ酸塩(C2)として用いることができる。ホウ酸塩(C2)は、上記ホウ酸(C1)のナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩又はそれらの組み合わせである。
本願発明で用いられるホウ酸(C1)及びホウ酸塩(C2)は、例えばメタホウ酸、四ホウ酸、五ホウ酸、八ホウ酸、メタホウ酸アニモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウム、メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム、メタホウ酸ナトリウム、ニホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等が挙げられる。その中でも、四ホウ酸アンモニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウムが好ましい。
研磨組成物中でホウ酸(C1)の濃度、ホウ酸塩(C2)の濃度、又はホウ酸(C1)とホウ酸塩(C2)を合計した濃度は、それぞれ1.0〜5.0質量%である。これが1.0質量%未満では研磨助剤としての添加効果が小さく、また水に対する溶解性の関係で5.0質量%以上にすることは困難である。
本願発明の研磨用組成物に含有する(D)成分の酸化剤は、過酸化水素、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸、ヨウ素酸塩、過硫酸塩、又はその組み合わせである。これらの中で、塩類はカリウム塩又はアンモニウム塩が用いられる。上記(D)成分の酸化剤は、例えば過酸化水素、過ヨウ素酸カリウム、ヨウ素酸カリウム、過硫酸アンモニウム、過硫酸カリウムがあり、その中で過酸化水素が特に好ましい。研磨用組成物中に含有する酸化剤濃度は、0.01〜20.0質量%が好ましい。酸化剤濃度が0.01質量%未満では、研磨速度が遅くなり過ぎ、また20.0質量%以上にしても研磨速度の促進効果は小さくなる。
本願発明に用いられるベンゾトリアゾール及びその誘導体は、ベンゾトリアゾール及びその誘導体であるトリルトリアゾール、ベンゾトリアゾール−4−カルボン酸、ナフトトリアゾールが挙げられる。ベンゾトリアゾール及びその誘導体は保護膜形成剤として作用し、研磨用組成物中の含有量は50ppm以下、例えば1〜50ppmで用いられる。これら保護膜形成剤の含有量1ppm未満では銅又は銅合金のエッチングが激しくなり好ましくない。またこれらの保護膜形成剤の含有量が50ppmより多くなると銅又は銅合金の研磨速度が低下して好ましくない。
本願発明の研磨用組成物には、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩等の水溶性高分子類、オレイン酸アンモニウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の陰イオン性界面活性剤、陽イオン性界面活性剤、ノニオン性界面活性を含有することができる。
本願発明の研磨用組成物には、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース類を含有することができる。
更に、本願発明の研磨用組成物には、市販の抗菌剤、防腐剤を含有することもできる。
本願発明の研磨用組成物は半導体装置製造過程で金属配線、バリアメタル、又は絶縁膜をパターン状に形成させるための、金属配線、バリアメタル、又は絶縁膜を研磨する工程に使用される。金属配線材料としては銅、アルミニウム、タングステン、又はこれらの合金である。バリアメタルとしてはタンタル、若しくはその合金、又はこれらの窒化物等の化合物である。絶縁膜は酸化ケイ素、又は低誘電率絶縁膜である。
Commercially available zirconium oxide abrasive grains can be preferably used for the abrasive grains containing zirconium oxide as the component (A). Further, zirconium oxycarbonate is calcined at a temperature of about 600 to 850 ° C. for 5 to 40 hours, and the obtained zirconium oxide powder is obtained by wet pulverization in an aqueous medium by a pulverizer such as a ball mill or a sand mill. A sol can be used. When wet pulverized zirconium oxide is wet pulverized, polyacrylic acid, polymethacrylic acid, and salts thereof (for example, ammonium salts) are added as pulverization aids in the range of 1.0 to 10% by mass with respect to zirconium oxide. By doing so, a highly dispersible aqueous zirconium oxide sol can be obtained.
The abrasive grains of the component (A) in the polishing composition are the concentration of the metal oxide particles (A1), the concentration of the organic polymer particles (A2), or the metal oxide particles (A1) and the organic polymer particles (A2). ) Is a total concentration of 0.01 to 20% by mass or 0.1 to 10% by mass. When the concentration of the component (A) abrasive grains is less than 0.01% by mass, the polishing rate becomes too slow, and when the concentration is 20% by mass or more, defects such as scratches generated during CMP are undesirably increased.
As cyanuric acid (B1), cyanuric acid and isocyanuric acid which is an isomer thereof can be used. In the present invention, it can be used as cyanuric acid (B1) or as cyanuric acid salt (B2). When using as a cyanuric acid salt (B2), those sodium salt, potassium salt, calcium salt, magnesium salt, and ammonium salt are mentioned, They can be used individually or those combinations can be used.
Examples of these cyanuric acid (B1) or a salt thereof (B2) include cyanuric acid, isocyanuric acid, sodium isocyanurate, potassium isocyanurate, calcium isocyanurate, magnesium isocyanurate, and ammonium isocyanurate.
In the polishing composition, the concentration of cyanuric acid (B1), the concentration of cyanuric acid salt (B2), or the total concentration of cyanuric acid (B1) and cyanuric acid salt (B2) is 0.1 to 1.5 mass, respectively. %, Preferably 0.2 to 1.0% by mass.
Examples of boric acid (C1) include metaboric acid, tetraboric acid, pentaboric acid, and octaboric acid. Moreover, boric acid (C1) can be used as borate (C2) which is the salt. The borate (C2) is the sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt of the boric acid (C1) or a combination thereof.
Examples of boric acid (C1) and borate (C2) used in the present invention include metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, animmonium metaborate, ammonium tetraborate, ammonium pentaborate, eight Ammonium borate, potassium metaborate, potassium tetraborate, potassium pentaborate, potassium hexaborate, potassium octaborate, sodium metaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate And sodium octaborate. Among these, ammonium tetraborate, ammonium pentaborate, and ammonium octaborate are preferable.
The concentration of boric acid (C1), the concentration of borate (C2), or the total concentration of boric acid (C1) and borate (C2) in the polishing composition is 1.0 to 5.0 mass, respectively. %. If this is less than 1.0% by mass, the effect of addition as a polishing aid is small, and it is difficult to make it 5.0% by mass or more because of solubility in water.
The oxidizing agent of component (D) contained in the polishing composition of the present invention is hydrogen peroxide, periodic acid, periodate, iodic acid, iodate, persulfate, or a combination thereof. Among these, potassium salts or ammonium salts are used as the salts. Examples of the oxidizing agent of the component (D) include hydrogen peroxide, potassium periodate, potassium iodate, ammonium persulfate, and potassium persulfate, and among them, hydrogen peroxide is particularly preferable. The concentration of the oxidizing agent contained in the polishing composition is preferably 0.01 to 20.0% by mass. If the oxidant concentration is less than 0.01% by mass, the polishing rate becomes too slow, and even if it is 20.0% by mass or more, the effect of promoting the polishing rate becomes small.
Examples of benzotriazole and derivatives thereof used in the present invention include benzotriazole and its derivatives, tolyltriazole, benzotriazole-4-carboxylic acid, and naphthotriazole. Benzotriazole and its derivatives act as a protective film forming agent, and the content in the polishing composition is 50 ppm or less, for example, 1 to 50 ppm. If the content of these protective film forming agents is less than 1 ppm, etching of copper or copper alloy becomes undesirably intense. On the other hand, if the content of these protective film forming agents exceeds 50 ppm, the polishing rate of copper or copper alloy decreases, which is not preferable.
The polishing composition of the present invention includes water-soluble polymers such as acrylic acid polymer and its ammonium salt, methacrylic acid polymer and its ammonium salt, ammonium oleate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, polyoxy An anionic surfactant such as ethylene lauryl ether ammonium sulfate, a cationic surfactant, and a nonionic surfactant can be contained.
The polishing composition of the present invention can contain celluloses such as methylcellulose, hydroxyethylcellulose, carboxymethylcellulose and the like.
Further, the polishing composition of the present invention may contain a commercially available antibacterial agent and preservative.
The polishing composition of the present invention is used in a step of polishing a metal wiring, a barrier metal, or an insulating film for forming a metal wiring, a barrier metal, or an insulating film in a pattern in the process of manufacturing a semiconductor device. The metal wiring material is copper, aluminum, tungsten, or an alloy thereof. The barrier metal is a compound such as tantalum, an alloy thereof, or a nitride thereof. The insulating film is silicon oxide or a low dielectric constant insulating film.

合成例1
アドバンスド・マテリアル・リソーシズ(ADVANCED MATERIAL RESOURCES LTD)製のオキシ炭酸ジルコニウム粉末68kgを電気炉に仕込み740℃で20時間焼成した。得られた焼成粉を粉末X線回折法で測定したところ、回折角度2θ=28.6°、47.5°及び56.4°に主ピークを有し、ASTMカード34−394に記載の斜方晶系の結晶性酸化ジルコニウムの特性ピークと一致した。また、酸化ジルコニウム粒子のガス吸着法(BET法)による比表面積値は13m/gで、ガス吸着法による比表面積から換算した粒子径として82nmであった。
得られた酸化ジルコニウム焼成粉369gと40%のポリアクリル酸アンモニウム溶液(花王(株)製)18.5gと純水730.7gを1mmφジルコニアビーズ3800gを仕込んである3Lボールミル容器に入れ、回転数60rpmで48時間湿式粉砕した。水押ししてビーズ分離することにより固形分21.8質量%、pH9.1、電気伝導度2.54mS/cm、粘度1.3mPa・sの水性ゾルが得られた。この水性ゾルを450℃で乾燥して得られた酸化ジルコニウム粒子のガス吸着法(BET法)による比表面積値は26m/gで、ガス吸着法による比表面積から換算した粒子径として41nmであった。更にMASTERSIZER2000(MARVERN社製)で測定したレーザー回折法のd50粒子径(平均粒子径)は93nmで、d90粒子径は135nmであった。またFPAR1000(大塚電子(株)製)で測定した動的光散乱法の平均粒子径は91nmであった。また透過型電子顕微鏡で観察した粒子の一次粒子径の平均値は60nmであった。この水性ゾルは長時間静置しても沈降物がほとんど無かった。
Synthesis example 1
68 kg of zirconium oxycarbonate powder manufactured by ADVANCED MATERIAL RESOURCES LTD was charged into an electric furnace and baked at 740 ° C. for 20 hours. The obtained calcined powder was measured by powder X-ray diffractometry. As a result, it had main peaks at diffraction angles 2θ = 28.6 °, 47.5 °, and 56.4 °, and the oblique angle described in ASTM card 34-394. It coincides with the characteristic peak of tetragonal crystalline zirconium oxide. Moreover, the specific surface area value by the gas adsorption method (BET method) of the zirconium oxide particles was 13 m 2 / g, and the particle diameter converted from the specific surface area by the gas adsorption method was 82 nm.
369 g of the obtained zirconium oxide calcined powder, 18.5 g of a 40% ammonium polyacrylate solution (manufactured by Kao Corporation) and 730.7 g of pure water were placed in a 3 L ball mill container charged with 3800 g of 1 mmφ zirconia beads, and the number of rotations Wet grinding was performed at 60 rpm for 48 hours. An aqueous sol having a solid content of 21.8% by mass, a pH of 9.1, an electric conductivity of 2.54 mS / cm, and a viscosity of 1.3 mPa · s was obtained by water separation. The specific surface area of the zirconium oxide particles obtained by drying this aqueous sol at 450 ° C. by gas adsorption method (BET method) was 26 m 2 / g, and the particle diameter converted from the specific surface area by gas adsorption method was 41 nm. It was. Furthermore, the d50 particle diameter (average particle diameter) of the laser diffraction method measured by MASTERSIZER 2000 (manufactured by MARVERN) was 93 nm, and the d90 particle diameter was 135 nm. Moreover, the average particle diameter of the dynamic light scattering method measured by FPAR1000 (manufactured by Otsuka Electronics Co., Ltd.) was 91 nm. The average primary particle diameter of the particles observed with a transmission electron microscope was 60 nm. The aqueous sol had almost no sediment even after standing for a long time.

合成例2
アドバンスド・マテリアル・リソーシズ(ADVANCED MATERIAL RESOURCES LTD)社製のオキシ炭酸ジルコニウム粉末179kgを電気炉に仕込み530℃で10時間焼成した。得られた焼成粉を粉末X線回折法で測定したところ、回折角度2θ=28.6°、47.5°及び56.4°に主ピークを有し、ASTMカード34−394に記載の斜方晶系の結晶性酸化ジルコニウムの特性ピークと一致した。また、酸化ジルコニウム粒子のガス吸着法(BET法)による比表面積値は30m/gで、ガス吸着法による比表面積から換算した粒子径として36nmであった。
得られた酸化ジルコニウム焼成粉369g、40%のポリアクリル酸水溶液(商品名:ジュリマーAC−10SL、日本純薬(株)製)35.1g、25%アンモニア水12.7gと純水701.0gを0.5mmφジルコニアビーズ3800gを仕込んである3Lボールミル容器に入れ、回転数60rpmで60時間湿式粉砕した。水押ししてビーズ分離することにより固形分21.8質量%、pH9.3、電気伝導度4.68mS/cm、粘度1.5mPa・sの水性ゾルが得られた。この水性ゾルを450℃で乾燥して得られた酸化ジルコニウム粒子のガス吸着法(BET法)による比表面積値は45m/gで、ガス吸着法による比表面積から換算した粒子径として24nmであった。更にMASTERSIZER2000(MARVERN社製)で測定したレーザー回折法のd50粒子径(平均粒子径)は92nmで、d90粒子径は133nmであった。またFPAR1000(大塚電子(株)製)で測定した動的光散乱法の平均粒子径は58nmであった。また透過型電子顕微鏡で観察した粒子の一次粒子径の平均値は25nmであった。この水性ゾルは長時間静置しても沈降物は全く無かった。
(研磨用組成物の製造方法)
酸化ジルコニウム水性ゾルに、シアヌル酸及び五ホウ酸アンモニウム、過酸化水素水、必要によりヒドロキシエチルセルロース(商品名:サンヘック−L(SANHEC−L) 三晶(株)製)、及びベンゾトリアゾールを添加して研磨用組成物(A)を製造した。
(研磨物性の評価)
調整した研磨用組成物の銅膜とタンタル膜の研磨速度及び研磨面の欠陥観察は、下記のように研磨した研磨面からを求めた。
Synthesis example 2
179 kg of zirconium oxycarbonate powder manufactured by ADVANCED MATERIAL RESOURCES LTD was charged into an electric furnace and baked at 530 ° C. for 10 hours. The obtained calcined powder was measured by powder X-ray diffractometry. As a result, it had main peaks at diffraction angles 2θ = 28.6 °, 47.5 °, and 56.4 °, and the oblique angle described in ASTM card 34-394. It coincides with the characteristic peak of tetragonal crystalline zirconium oxide. Moreover, the specific surface area value by the gas adsorption method (BET method) of the zirconium oxide particles was 30 m 2 / g, and the particle diameter converted from the specific surface area by the gas adsorption method was 36 nm.
369 g of the calcined zirconium oxide powder obtained, 35.1 g of 40% polyacrylic acid aqueous solution (trade name: Jurimer AC-10SL, manufactured by Nippon Pure Chemical Co., Ltd.), 12.7 g of 25% ammonia water and 701.0 g of pure water Was placed in a 3 L ball mill container charged with 3800 g of 0.5 mmφ zirconia beads, and wet pulverized for 60 hours at a rotational speed of 60 rpm. An aqueous sol having a solid content of 21.8% by mass, a pH of 9.3, an electric conductivity of 4.68 mS / cm, and a viscosity of 1.5 mPa · s was obtained by water separation. The specific surface area of the zirconium oxide particles obtained by drying this aqueous sol at 450 ° C. by the gas adsorption method (BET method) was 45 m 2 / g, and the particle diameter converted from the specific surface area by the gas adsorption method was 24 nm. It was. Furthermore, the d50 particle diameter (average particle diameter) of the laser diffraction method measured by MASTERSIZER 2000 (manufactured by MARVERN) was 92 nm, and the d90 particle diameter was 133 nm. Moreover, the average particle diameter of the dynamic light scattering method measured with FPAR1000 (manufactured by Otsuka Electronics Co., Ltd.) was 58 nm. The average primary particle diameter of the particles observed with a transmission electron microscope was 25 nm. This aqueous sol had no sediment even after standing for a long time.
(Method for producing polishing composition)
Add cyanuric acid and ammonium pentaborate, hydrogen peroxide solution, and hydroxyethyl cellulose (trade name: Sanheck-L (SANHEC-L), manufactured by Sanki Co., Ltd.) and benzotriazole to the zirconium oxide aqueous sol. Polishing composition (A) was manufactured.
(Evaluation of polishing properties)
The polishing rate of the copper film and the tantalum film of the adjusted polishing composition and the observation of defects on the polished surface were determined from the polished surface as described below.

研磨機はテクノライズ(株)製、研磨布は独立発泡ポリウレタン樹脂製研磨布IC−1000/不織布suba400の2層タイプ(ニッタ・ハース(株)製)、被研磨物は8インチシリコンウェハー上に形成した銅の無電解メッキ膜を20×20mmにダイシングしたチップと、8インチシリコンウェハー上に形成したスパッター法で作成したタンタル膜を20×20mmにダイシングしたチップを用いた。
そして研磨条件は、回転数:150rpm、研磨圧力:167g/cm、研磨用組成物の供給量は100ml/分、研磨時間は1分間で行った。
The polishing machine is made by Technorise Co., Ltd., the polishing cloth is an independent foam polyurethane resin polishing cloth IC-1000 / nonwoven fabric suba400 two-layer type (made by Nitta Haas Co., Ltd.), and the object to be polished is on an 8-inch silicon wafer. A chip obtained by dicing the formed electroless plating film of copper to 20 × 20 mm and a chip obtained by dicing a tantalum film formed on a 8-inch silicon wafer by a sputtering method to 20 × 20 mm were used.
The polishing conditions were as follows: rotational speed: 150 rpm, polishing pressure: 167 g / cm 2 , supply amount of the polishing composition was 100 ml / min, and polishing time was 1 minute.

銅膜の研磨速度は、研磨前後の銅膜厚をシート抵抗測定装置(VR−120S、日立国際アルファ(株)製)で測定して求めた。
タンタル膜の研磨速度は、研磨前後のタンタル膜厚をシート抵抗測定装置(VR−120S、日立国際アルファ(株)製)で測定して研磨速度(nm/分)を求めた。更に銅膜の研磨速度とタンタル膜の研磨速度の比を計算した。銅膜の研磨面の欠陥評価は光学顕微鏡観察によって行った。
実施例1
研磨用組成物(A)を作成した。その配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.2質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%を含有し、pH7.8であった。レーザー回折法で測定された平均粒子径は94nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は300nm/分、タンタル膜の研磨速度は36nm/分、銅/タンタルの研磨速度比は8.3、銅膜の研磨面の欠陥は観察されなかった。
The polishing rate of the copper film was determined by measuring the copper film thickness before and after polishing with a sheet resistance measuring device (VR-120S, manufactured by Hitachi Kokusai Alpha Co., Ltd.).
The polishing rate of the tantalum film was determined by measuring the tantalum film thickness before and after polishing with a sheet resistance measuring device (VR-120S, manufactured by Hitachi Kokusai Alpha Co., Ltd.) to determine the polishing rate (nm / min). Furthermore, the ratio between the polishing rate of the copper film and the polishing rate of the tantalum film was calculated. The defect evaluation of the polished surface of the copper film was performed by optical microscope observation.
Example 1
Polishing composition (A) was created. The blend composition contains 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.2% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, and 0.9% by mass of hydrogen peroxide. The pH was 7.8. The average particle diameter measured by the laser diffraction method was 94 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 300 nm / min, the polishing rate of the tantalum film was 36 nm / min, the polishing rate ratio of copper / tantalum was 8.3, and no defects on the polished surface of the copper film were observed.

実施例2
研磨用組成物(B)を作成した。その配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.4質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%を含有し、pH7.6であった。レーザー回折法で測定された平均粒子径は95nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は560nm/分、タンタル膜の研磨速度は40nm/分、銅/タンタルの研磨速度比は14.0、銅膜の研磨面の欠陥は観察されなかった。
Example 2
Polishing composition (B) was created. The compounding composition contains 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.4% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, and 0.9% by mass of hydrogen peroxide. The pH was 7.6. The average particle diameter measured by the laser diffraction method was 95 nm, and no particle of 500 nm or more was present by the laser diffraction method.
The polishing rate of the copper film was 560 nm / min, the polishing rate of the tantalum film was 40 nm / min, the polishing rate ratio of copper / tantalum was 14.0, and no defects on the polished surface of the copper film were observed.

実施例3
研磨用組成物(C)を作成した。その配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.6質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%を含有し、pH7.5であった。レーザー回折法で測定された平均粒子径は94nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は580nm/分、タンタル膜の研磨速度は45nm/分、銅/タンタルの研磨速度比は12.9、銅膜の研磨面の欠陥は観察されなかった。
Example 3
Polishing composition (C) was created. The compounding composition contains 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.6% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, and 0.9% by mass of hydrogen peroxide. The pH was 7.5. The average particle diameter measured by the laser diffraction method was 94 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 580 nm / min, the polishing rate of the tantalum film was 45 nm / min, the polishing rate ratio of copper / tantalum was 12.9, and defects on the polished surface of the copper film were not observed.

実施例4
研磨用組成物(D)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.8質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%を含有し、pH7.4であった。レーザー回折法で測定された平均粒子径は95nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は590nm/分、タンタル膜の研磨速度は48nm/分、銅/タンタルの研磨速度比は12.6、銅膜の研磨面の欠陥は観察されなかった。
Example 4
Polishing composition (D) was created. The blending composition contained 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.8% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, pH 7 .4. The average particle diameter measured by the laser diffraction method was 95 nm, and no particle of 500 nm or more was present by the laser diffraction method.
The polishing rate of the copper film was 590 nm / min, the polishing rate of the tantalum film was 48 nm / min, the polishing rate ratio of copper / tantalum was 12.6, and no defects on the polished surface of the copper film were observed.

実施例5
研磨用組成物(E)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.4質量%、五ホウ酸アンモニウム1.0質量%、過酸化水素0.9質量%、ヒドロキシエチルセルロース0.5質量%を含有し、pH7.6であった。レーザー回折法で測定された平均粒子径は94nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は340nm/分、タンタル膜の研磨速度は36nm/分、銅/タンタルの研磨速度比は9.4、銅膜の研磨面の欠陥は観察されなかった。
Example 5
Polishing composition (E) was created. The blending composition was 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.4% by mass of cyanuric acid, 1.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, 0. It contained 5% by mass and had a pH of 7.6. The average particle diameter measured by the laser diffraction method was 94 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 340 nm / min, the polishing rate of the tantalum film was 36 nm / min, the polishing rate ratio of copper / tantalum was 9.4, and no defects on the polished surface of the copper film were observed.

実施例6
研磨用組成物(F)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.4質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%、ヒドロキシエチルセルロース0.5質量%を含有し、pH7.6であった。レーザー回折法で測定された平均粒子径は99nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は435nm/分、タンタル膜の研磨速度は40nm/分、銅/タンタルの研磨速度比は10.9、銅膜の研磨面の欠陥は観察されなかった。
Example 6
Polishing composition (F) was created. The blending composition was 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.4% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, 0. It contained 5% by mass and had a pH of 7.6. The average particle diameter measured by the laser diffraction method was 99 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 435 nm / min, the polishing rate of the tantalum film was 40 nm / min, the polishing rate ratio of copper / tantalum was 10.9, and no defects on the polished surface of the copper film were observed.

実施例7
研磨用組成物(G)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.6質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%、ヒドロキシエチルセルロース0.5質量%を含有し、pH7.5であった。レーザー回折法で測定された平均粒子径は94nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は650nm/分、タンタル膜の研磨速度は46nm/分、銅/タンタルの研磨速度比は14.1、銅膜の研磨面の欠陥は観察されなかった。
Example 7
Polishing composition (G) was created. The blending composition was as follows: 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.6% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, 0. It contained 5% by mass and had a pH of 7.5. The average particle diameter measured by the laser diffraction method was 94 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 650 nm / min, the polishing rate of the tantalum film was 46 nm / min, the polishing rate ratio of copper / tantalum was 14.1, and no defects on the polished surface of the copper film were observed.

実施例8
研磨用組成物(H)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.6質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%、ヒドロキシエチルセルロース0.5質量%、ベンゾトリアゾール0.002質量%を含有し、pH7.5であった。レーザー回折法で測定された平均粒子径は96nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は540nm/分、タンタル膜の研磨速度は40nm/分、銅/タンタルの研磨速度比は13.5、銅膜の研磨面の欠陥は観察されなかった。
実施例9
研磨用組成物(I)を作成した。配合組成は、合成例2で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.6質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%、ヒドロキシエチルセルロース0.5質量%を含有し、pH7.5であった。レーザー回折法で測定された平均粒子径は93nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は600nm/分、タンタル膜の研磨速度は40nm/分、銅/タンタルの研磨速度比は15.0、銅膜の研磨面の欠陥は観察されなかった。
Example 8
Polishing composition (H) was created. The blending composition was as follows: 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.6% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, 0. 5 mass% and benzotriazole 0.002 mass% were contained, and pH was 7.5. The average particle diameter measured by the laser diffraction method was 96 nm, and no particle of 500 nm or more was present by the laser diffraction method.
The polishing rate of the copper film was 540 nm / min, the polishing rate of the tantalum film was 40 nm / min, the polishing rate ratio of copper / tantalum was 13.5, and no defects on the polished surface of the copper film were observed.
Example 9
Polishing composition (I) was created. The blending composition was 1.0% by mass of zirconium oxide obtained in Synthesis Example 2, 0.6% by mass of cyanuric acid, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, 0. It contained 5% by mass and had a pH of 7.5. The average particle diameter measured by the laser diffraction method was 93 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 600 nm / min, the polishing rate of the tantalum film was 40 nm / min, the polishing rate ratio of copper / tantalum was 15.0, and no defects on the polished surface of the copper film were observed.

比較例1
研磨用組成物(J)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、五ホウ酸アンモニウム2.0質量%、過酸化水素0.9質量%を含有し、pH8.6であった。レーザー回折法で測定された平均粒子径は220nm、また、レーザー回折法の測定では500nm以上の粒子は全粒子中に26質量%存在していた。銅膜の研磨速度は210nm/分、銅の研磨面にはスクラッチが多数観察された。
Comparative Example 1
Polishing composition (J) was created. The blending composition contained 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 2.0% by mass of ammonium pentaborate, 0.9% by mass of hydrogen peroxide, and had a pH of 8.6. The average particle diameter measured by the laser diffraction method was 220 nm, and in the measurement by the laser diffraction method, particles of 500 nm or more were present in 26% by mass in all particles. The polishing rate of the copper film was 210 nm / min, and many scratches were observed on the polished surface of copper.

比較例2
研磨用組成物(K)を作成した。配合組成は、合成例1で得られた酸化ジルコニウム1.0質量%、シアヌル酸0.4質量%、過酸化水素2.9質量%、ヒドロキシエチルセルロース0.5質量%を含有し、pH7.9であった。レーザー回折法で測定された平均粒子径は94nm、また、レーザー回折法の測定では500nm以上の粒子は存在しなかった。
銅膜の研磨速度は20nm/分、タンタル膜は研磨できなかった。銅膜の研磨面の欠陥は観察されなかった。
Comparative Example 2
Polishing composition (K) was created. The blending composition contains 1.0% by mass of zirconium oxide obtained in Synthesis Example 1, 0.4% by mass of cyanuric acid, 2.9% by mass of hydrogen peroxide, 0.5% by mass of hydroxyethyl cellulose, and has a pH of 7.9. Met. The average particle diameter measured by the laser diffraction method was 94 nm, and no particles of 500 nm or more were present by the laser diffraction method.
The polishing rate of the copper film was 20 nm / min, and the tantalum film could not be polished. No defects on the polished surface of the copper film were observed.

(段差を有するパターンウェハーの銅膜の平坦化)
表面に60nmの熱酸化珪素膜がついた8インチのシリコンウェハー基板上にレジストを形成し、マスクを介して露光後、現像してレジストパターンを形成した。次にエッチングによりレジストのない部分の酸化珪素膜をエッチング後、レジストを除去した。形成されたパターンウェハーのトレンチ深さは560nmであった。このパターンウェハーにスパッター法でタンタル膜を10nm形成する。更に無電解メッキにより銅膜を1050nm形成し、銅膜の段差(段差560nm)があるパターン付きウェハーを作成した。
そして、研磨用組成物(H)及び(I)で以下の研磨条件で研磨を行った。
(Flattening of copper film on patterned wafer with steps)
A resist was formed on an 8-inch silicon wafer substrate having a 60 nm thermal silicon oxide film on the surface, exposed through a mask, and developed to form a resist pattern. Next, the portion of the silicon oxide film without the resist was etched by etching, and then the resist was removed. The trench depth of the formed pattern wafer was 560 nm. A tantalum film having a thickness of 10 nm is formed on the pattern wafer by sputtering. Further, a copper film having a thickness of 1050 nm was formed by electroless plating, and a wafer with a pattern having a copper film step (step 560 nm) was produced.
Then, the polishing compositions (H) and (I) were polished under the following polishing conditions.

研磨機はストラスバー(株)製6EG、研磨布は独立発泡ポリウレタン樹脂製研磨布IC−1000/不織布suba400の2層タイプ(ニッタ・ハース(株)製)、定盤回転数は53rpm、ヘッド回転数は47rpm、研磨圧力は2.5psi、研磨用組成物の供給量は100ml/分、研磨時間は240秒で行った。
研磨用組成物(H)及び(I)を用い240秒研磨した後、表面形状測定装置デクタック6M(商品名DECTAK6M、(株)アルバック製)でウェハー中の100μm/100μmのラインアンドスペース部の段差量を測定したところ段差は10nm以下で、段差が解消されており、段差除去性が良好なことが分った。
比較例1の研磨用組成物(J)のようにシアヌル酸を含有していない場合、レーザー法の平均粒子径が大きく、500nm以上の大きさの粒子が26%もあり、大きく凝集した砥粒を含む研磨用組成物であることが分かる。このため銅研磨面にスクラッチ等の欠陥が発生したと考えられる。
比較例2の研磨用組成物(K)のようにホウ酸アンモニムを含有していない場合、研磨用組成物の分散性は良いが、銅膜及タンタル膜の研磨速度が非常に小さいことが分る。
The polishing machine is 6EG manufactured by Strathbar Co., and the polishing cloth is a two-layer type of polishing cloth made of independent foam polyurethane resin IC-1000 / nonwoven fabric suba400 (manufactured by Nitta Haas Co., Ltd.). The number was 47 rpm, the polishing pressure was 2.5 psi, the supply amount of the polishing composition was 100 ml / min, and the polishing time was 240 seconds.
After polishing for 240 seconds using the polishing compositions (H) and (I), a step of 100 μm / 100 μm line and space portion in the wafer with a surface shape measuring device DECTAK 6M (trade name DECTAK6M, ULVAC, Inc.) When the amount was measured, the level difference was 10 nm or less, the level difference was eliminated, and it was found that the level difference removal property was good.
When no cyanuric acid is contained as in the polishing composition (J) of Comparative Example 1, the average particle size of the laser method is large, and there are 26% of particles having a size of 500 nm or more. It turns out that it is a constituent for polish containing. For this reason, it is considered that defects such as scratches occurred on the polished copper surface.
When the ammonium borate is not contained as in the polishing composition (K) of Comparative Example 2, the dispersibility of the polishing composition is good, but the polishing rate of the copper film and the tantalum film is very low. The

このため本願発明の研磨用組成物(A)〜(I)ように、シアヌル酸、ホウ酸アンモニウムの両者を含有している研磨用組成物は、銅膜の研磨速度が速く、銅膜/タンタル膜の研磨速度比も大きいことが分る。   Therefore, as the polishing compositions (A) to (I) of the present invention, the polishing composition containing both cyanuric acid and ammonium borate has a high copper film polishing rate, and the copper film / tantalum. It can be seen that the polishing rate ratio of the film is also large.

研磨用組成物(F)〜(G)及び(I)にあるように、ヒドロキシエチルセルロースを含有していても研磨用組成物の分散性及び研磨特性は、良好であることが分る。
研磨用組成物(H)にあるように、ヒドロキシエチルセルロース及びベンゾトリアゾールを含有していても研磨用組成物の分散性及び研磨特性は、良好であることが分る。
As shown in the polishing compositions (F) to (G) and (I), it can be seen that the dispersibility and polishing characteristics of the polishing composition are good even if it contains hydroxyethyl cellulose.
As shown in the polishing composition (H), it can be seen that the dispersibility and polishing characteristics of the polishing composition are good even if it contains hydroxyethyl cellulose and benzotriazole.

本願発明の研磨用組成物は、CMP(ケミカルメカニカルポリッシング)と通常称される半導体デバイス製造工程における平坦化研磨に用いる研磨剤として好適である。特に、銅配線膜にダメージを与えることなく精密に研磨することができるため、銅配線を含有した基板の平坦化工程に用いる研磨剤として有用である。   The polishing composition of the present invention is suitable as a polishing agent used for planarization polishing in a semiconductor device manufacturing process usually called CMP (Chemical Mechanical Polishing). In particular, since it can be polished precisely without damaging the copper wiring film, it is useful as an abrasive used in the planarization step of a substrate containing copper wiring.

Claims (13)

(A)成分:砥粒、(B)成分:シアヌル酸(B1)、その塩(B2)、又はそれらの混合物、(C)成分:ホウ酸(C1)、その塩(C2)、又はそれらの混合物、(D)成分:酸化剤、及び(E)成分:水を含有する半導体デバイス製造における化学機械的研磨用組成物。 (A) component: abrasive, (B) component: cyanuric acid (B1), its salt (B2), or a mixture thereof, (C) component: boric acid (C1), its salt (C2), or those A composition for chemical mechanical polishing in semiconductor device production, comprising a mixture, (D) component: oxidizing agent, and (E) component: water. (A)成分の砥粒が、金属酸化物粒子(A1)、有機高分子粒子(A2)、又はその組み合わせである請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the abrasive grains of component (A) are metal oxide particles (A1), organic polymer particles (A2), or a combination thereof. 金属酸化物粒子(A1)が、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタンからなる群より選ばれた少なくとも1種である請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the metal oxide particles (A1) are at least one selected from the group consisting of silica, alumina, cerium oxide, zirconium oxide, and titanium oxide. 有機高分子粒子(A2)が、ポリ塩化ビニル、ポリアクリル酸、ポリアクリル酸誘導体、ポリスチレン、ポリスチレン誘導体からなる群より選ばれた少なくとも1種である請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the organic polymer particles (A2) are at least one selected from the group consisting of polyvinyl chloride, polyacrylic acid, polyacrylic acid derivatives, polystyrene, and polystyrene derivatives. (A)成分の砥粒が酸化ジルコニウムである請求項1乃至請求項4のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein the abrasive grains of component (A) are zirconium oxide. シアヌル酸(B1)が、シアヌル酸、イソシアヌル酸、又はその組み合わせである請求項1乃至請求項5のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, wherein the cyanuric acid (B1) is cyanuric acid, isocyanuric acid, or a combination thereof. シアヌル酸塩(B2)が、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩又はそれらの組み合わせである請求項1乃至請求項6のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, wherein the cyanuric acid salt (B2) is a sodium salt, a potassium salt, a calcium salt, a magnesium salt, an ammonium salt, or a combination thereof. ホウ酸(C1)が、メタホウ酸、四ホウ酸、五ホウ酸、八ホウ酸、又はその組み合わせである請求項1乃至請求項7のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 7, wherein the boric acid (C1) is metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, or a combination thereof. ホウ酸塩(C2)が、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩又はそれらの組み合わせである請求項1乃至請求項8のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 8, wherein the borate (C2) is a sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or a combination thereof. (D)成分の酸化剤が、過酸化水素、過ヨウ素酸、過ヨウ素酸塩、ヨウ素酸、ヨウ素酸塩、過硫酸塩、又はその組み合わせである請求項1乃至請求項9のいずれか1項に記載の研磨用組成物。 The oxidizing agent of component (D) is hydrogen peroxide, periodic acid, periodate, iodic acid, iodate, persulfate, or a combination thereof. The polishing composition according to 1. 更にベンゾトリアゾール又はその誘導体を含有するものである請求項1乃至請求項10のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 10, further comprising benzotriazole or a derivative thereof. 被研磨材料が、銅、アルミニウム、タングステン、及びそれらの合金、タンタル、タンタル合金、タンタル化合物、酸化ケイ素、並びに低誘電率絶縁膜からなる群より選ばれた少なくとも1種の物質である請求項1乃至請求項11のいずれか1項に記載の研磨用組成物。 2. The material to be polished is at least one substance selected from the group consisting of copper, aluminum, tungsten, and alloys thereof, tantalum, tantalum alloys, tantalum compounds, silicon oxide, and low dielectric constant insulating films. The polishing composition according to any one of claims 11 to 11. 請求項1乃至請求項12のいずれか1項に記載の研磨用組成物で金属配線、バリアメタル、又は絶縁膜がパターン状に形成された基板を研磨する工程を含む半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising: polishing a substrate on which a metal wiring, a barrier metal, or an insulating film is formed in a pattern with the polishing composition according to claim 1.
JP2006253291A 2006-09-19 2006-09-19 Composition for polishing Pending JP2008078233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253291A JP2008078233A (en) 2006-09-19 2006-09-19 Composition for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253291A JP2008078233A (en) 2006-09-19 2006-09-19 Composition for polishing

Publications (1)

Publication Number Publication Date
JP2008078233A true JP2008078233A (en) 2008-04-03

Family

ID=39350026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253291A Pending JP2008078233A (en) 2006-09-19 2006-09-19 Composition for polishing

Country Status (1)

Country Link
JP (1) JP2008078233A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015805B1 (en) * 2008-07-17 2011-02-22 주식회사 월드브라스트 Manufacturing method for the abrasive material
US8338303B2 (en) 2008-12-25 2012-12-25 Fujifilm Corporation Polishing liquid
JPWO2012102180A1 (en) * 2011-01-27 2014-06-30 株式会社フジミインコーポレーテッド Abrasive material and polishing composition
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition
JP2016052988A (en) * 2010-12-28 2016-04-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Particulate material comprising zirconia particle
JP2016127139A (en) * 2014-12-26 2016-07-11 花王株式会社 Polishing particles for polishing silicon oxide film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015805B1 (en) * 2008-07-17 2011-02-22 주식회사 월드브라스트 Manufacturing method for the abrasive material
US8338303B2 (en) 2008-12-25 2012-12-25 Fujifilm Corporation Polishing liquid
JP2016052988A (en) * 2010-12-28 2016-04-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Particulate material comprising zirconia particle
JPWO2012102180A1 (en) * 2011-01-27 2014-06-30 株式会社フジミインコーポレーテッド Abrasive material and polishing composition
JP6017315B2 (en) * 2011-01-27 2016-10-26 株式会社フジミインコーポレーテッド Abrasive material and polishing composition
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition
JP2015124231A (en) * 2013-12-25 2015-07-06 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate and composition for polishing
CN105849219A (en) * 2013-12-25 2016-08-10 霓达哈斯股份有限公司 Multi-layered sheet, solar cell back sheet, and solar cell module
KR20160102198A (en) * 2013-12-25 2016-08-29 니타 하스 인코포레이티드 Wetting agent for semiconductor substrate, and polishing composition
CN105849219B (en) * 2013-12-25 2018-11-23 霓达哈斯股份有限公司 Semiconductor substrate wetting agent and composition for polishing
KR102267568B1 (en) * 2013-12-25 2021-06-18 니타 듀폰 가부시키가이샤 Wetting agent for semiconductor substrate, and polishing composition
JP2016127139A (en) * 2014-12-26 2016-07-11 花王株式会社 Polishing particles for polishing silicon oxide film

Similar Documents

Publication Publication Date Title
KR102422713B1 (en) Barrier chemical mechanical planarization slurries using ceria-coated silica abrasives
KR101546695B1 (en) Polishing slurry including zirconia particles and a method of using the polishing slurry
US8557006B2 (en) Chemical mechanical polishing slurry, its preparation method and use for the same
JP5567293B2 (en) Polishing composition for planarizing metal layers in both stages of chemical mechanical polishing process to remove copper in two stages
JP2008186898A (en) Composition for polishing
JP2009164186A (en) Polishing composition
JP2007266500A (en) Touch-up cmp slurry and manufacturing method of semiconductor device fabrication
JP2009164188A (en) Polishing composition
JP2010004023A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method and chemical mechanical polishing aqueous dispersion preparation kit
TWI745421B (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
JP5036955B2 (en) Metal film polishing composition and metal film polishing method
WO2007000852A1 (en) Abrasive and process for producing semiconductor integrated-circuit unit
TWI636129B (en) Low defect chemical mechanical polishing composition
TWI664280B (en) Elevated temperature cmp compositions and methods for use thereof
JP2008078233A (en) Composition for polishing
TWI788517B (en) Composition for chemical mechanical polishing and polishing method
JP2006148136A (en) Polishing solution for barrier
JP2015019058A (en) Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
TW200409808A (en) Polishing compound composition, method for producing same and polishing method
JP7508275B2 (en) Polishing composition, polishing method, and method for producing semiconductor substrate
JP5308984B2 (en) Metal film polishing composition and metal film polishing method
KR101854510B1 (en) Cmp slurry composition for metal wiring and polishing method using the same
JPH10172934A (en) Composition for polishing
JP2010118378A (en) Aqueous dispersing element for chemical mechanical polishing, method of preparing dispersing element, and method of performing chemical mechanical polishing of semiconductor device
JP2007013070A (en) Polishing composition for polishing device wafer edge, its manufacturing method and polishing work method