JP2006148158A - Cerium oxide polishing material and substrate-polishing method - Google Patents

Cerium oxide polishing material and substrate-polishing method Download PDF

Info

Publication number
JP2006148158A
JP2006148158A JP2006029038A JP2006029038A JP2006148158A JP 2006148158 A JP2006148158 A JP 2006148158A JP 2006029038 A JP2006029038 A JP 2006029038A JP 2006029038 A JP2006029038 A JP 2006029038A JP 2006148158 A JP2006148158 A JP 2006148158A
Authority
JP
Japan
Prior art keywords
cerium oxide
polishing
slurry
insulating film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006029038A
Other languages
Japanese (ja)
Inventor
Takashi Sakurada
剛史 櫻田
Jun Matsuzawa
純 松沢
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006029038A priority Critical patent/JP2006148158A/en
Publication of JP2006148158A publication Critical patent/JP2006148158A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cerium oxide polishing material whose properties are stable and which can always polish the surface to be evenly polished of a silicon oxide insulating film at a high speed; and a semiconductor device polishing method using the cerium oxide polishing material. <P>SOLUTION: The cerium oxide polishing material for polishing a semiconductor device or for polishing a silicon oxide insulating film contains a copolymer, copolymerized with ammonium acrylate acid and methyl acrylate, and cerium oxide, and is composed of a slurry whose concentration of sulfate ion to cerium oxide particle part is less than 5,000 mg/kg. The polishing method is employed for polishing the semiconductor device or the silicon oxide insulating film with the cerium oxide polishing material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化セリウム研磨剤及び基板の研磨法を提供するものである。   The present invention provides a cerium oxide abrasive and a method for polishing a substrate.

従来、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成される酸化珪素絶縁膜等、無機絶縁膜層を平坦化するための化学機械研磨剤として、コロイダルシリカ系の研磨剤が一般的に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪酸の熱分解等の方法で粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持たず、実用化には低研磨速度という技術課題がある。   Conventionally, in a semiconductor device manufacturing process, colloidal silica-based polishing as a chemical mechanical polishing agent for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD or low-pressure CVD. Agents are generally being investigated. Colloidal silica type abrasives are produced by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.

一方、フォトマスク用ガラス表面研磨として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。また、酸化セリウムは強い酸化剤として知られるように、化学的活性な性質を有している。この利点を活かし、絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、フォトマスク用ガラス表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に適用すると、一次粒子(結晶子)径が大きく、そのため絶縁膜表面に目視で観察できる研磨傷が入ってしまう。また、酸化セリウム粒子は理論比重が7.2と大きいことから沈降しやすい。そのことから研磨時の研磨剤供給濃度むら、供給管での詰まり等の問題が生じる。   On the other hand, a cerium oxide abrasive is used for photomask glass surface polishing. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finishing mirror polishing because they do not easily scratch the polished surface. Moreover, cerium oxide has a chemically active property as known as a strong oxidizing agent. Taking advantage of this advantage, application to a chemical mechanical polishing agent for insulating films is useful. However, when the cerium oxide abrasive for polishing a glass surface for a photomask is applied as it is to the polishing of an inorganic insulating film, the primary particle (crystallite) diameter is large, so that a polishing flaw that can be visually observed enters the insulating film surface. Further, cerium oxide particles have a theoretical specific gravity as large as 7.2, so that they tend to settle. Therefore, problems such as uneven supply concentration of the abrasive during polishing and clogging in the supply pipe occur.

本発明は、性質が安定していて、つねに酸化珪素絶縁膜等の被研磨面を、高速に、平坦に研磨することが可能な酸化セリウム研磨剤及びこの酸化セリウム研磨剤を使用した半導体素子基板の研磨法を提供する。   The present invention provides a cerium oxide abrasive that has stable properties and can always polish a surface to be polished such as a silicon oxide insulating film at high speed and flatness, and a semiconductor element substrate using the cerium oxide abrasive A polishing method is provided.

本発明は、硫酸イオンの存在が、研磨特性に悪影響を及ぼすことを発見してなされたものである。酸化セリウムへの硫酸イオンの混入は、例えば、酸化セリウムの原料である炭酸セリウムの製造・精製時に硫酸を使用することに起因する。   The present invention has been made by discovering that the presence of sulfate ions adversely affects polishing characteristics. The mixing of sulfate ions into cerium oxide is caused, for example, by using sulfuric acid during the production and purification of cerium carbonate, which is a raw material for cerium oxide.

本発明は、次のものに関する。   The present invention relates to the following.

(1)酸化セリウムを含み、酸化セリウム粒子分に対する硫酸イオン濃度が5,000mg/kg以下であるスラリーからなる酸化セリウム研磨剤。 (1) A cerium oxide abrasive comprising a slurry containing cerium oxide and having a sulfate ion concentration of 5,000 mg / kg or less with respect to cerium oxide particles.

(2)酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が1,500mg/kg以下である項(1)記載の酸化セリウム研磨剤。 (2) The cerium oxide abrasive according to item (1), wherein the sulfate ion concentration in the slurry with respect to the cerium oxide particle content is 1,500 mg / kg or less.

(3)スラリーが分散剤を含む項(1)又は(2)記載の酸化セリウム研磨剤。 (3) The cerium oxide abrasive according to item (1) or (2), wherein the slurry contains a dispersant.

(4)スラリーが媒体として水を含む項(1)〜(3)のいずれかに記載の酸化セリウム研磨剤。 (4) The cerium oxide abrasive according to any one of items (1) to (3), wherein the slurry contains water as a medium.

(5)分散剤が水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンから選ばれる少なくとも1種の化合物である項3記載の酸化セリウム研磨剤。 (5) The cerium oxide polishing according to item 3, wherein the dispersant is at least one compound selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant, and a water-soluble amine. Agent.

(6)pHが7以上10以下である項(1)〜(5)のいずれかに記載の酸化セリウム研磨剤。 (6) The cerium oxide abrasive according to any one of items (1) to (5), wherein the pH is 7 or more and 10 or less.

(7)項(1)〜(6)のいずれかに記載の酸化セリウム研磨剤で、所定の基板を研磨することを特徴とする基板の研磨法。 (7) A method for polishing a substrate, comprising polishing a predetermined substrate with the cerium oxide abrasive according to any one of (1) to (6).

(8)所定の基板が酸化珪素絶縁膜の形成された半導体素子である項(7)記載の基板の研磨法。 (8) The method for polishing a substrate according to item (7), wherein the predetermined substrate is a semiconductor element having a silicon oxide insulating film formed thereon.

請求項1の研磨剤は保存安定性が高く、常に安定して酸化珪素絶縁膜等の被研磨面を、高速かつ平坦に、傷なく研磨することが可能という効果を有す。また、請求項2の研磨剤はさらに保存安定性が高い。請求項3の研磨剤は請求項1または2と同様の効果を有し、さらに酸化セリウム粒子の分散性が優れている。請求項4の研磨剤は請求項1〜3と同様の効果を有し、さらに安全で、取り扱いが容易である。請求項5の研磨剤は請求項3と同様の効果を有し、さらに水中での酸化セリウムの分散性が高い。請求項6の研磨剤は請求項1〜5と同様の効果を有し、さらに高い分散性と保存安定性を持つ。   The polishing agent of claim 1 has high storage stability, and has an effect that the surface to be polished such as a silicon oxide insulating film can be polished at high speed and flatness without damage. In addition, the abrasive of claim 2 is further high in storage stability. The abrasive of claim 3 has the same effect as that of claim 1 or 2, and further has excellent dispersibility of the cerium oxide particles. The abrasive of claim 4 has the same effects as those of claims 1 to 3, and is safe and easy to handle. The abrasive of claim 5 has the same effect as that of claim 3, and further has high dispersibility of cerium oxide in water. The abrasive of claim 6 has the same effects as those of claims 1 to 5, and further has high dispersibility and storage stability.

請求項7の研磨法により、所定の基板の研磨が可能になる。請求項8の研磨法は請求項7と同様の効果を有し、酸化珪素絶縁膜の形成された半導体素子の酸化珪素絶縁膜を高速かつ平坦に、傷なく研磨することが可能という効果を有す。   The polishing method according to the seventh aspect makes it possible to polish a predetermined substrate. The polishing method of claim 8 has the same effect as that of claim 7, and has the effect that the silicon oxide insulating film of the semiconductor element on which the silicon oxide insulating film is formed can be polished at high speed and flat without any scratches. The

一般に酸化セリウムは、炭酸塩、硫酸塩、蓚酸塩等のセリウム化合物を焼成することによって得られる。TEOS−CVD法等で形成される酸化珪素絶縁膜は一次粒子(結晶子)径が大きく、かつ結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子は、あまり結晶性を上げないで作製される。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。本発明の研磨剤は高純度のもので、Na、K、Si、Mg、Ca、Zr、Ti、Ni、Cr、Feはそれぞれ1ppm以下、Alは10ppm以下であることが好ましい。   In general, cerium oxide is obtained by firing a cerium compound such as carbonate, sulfate, or oxalate. A silicon oxide insulating film formed by a TEOS-CVD method or the like has a larger primary particle (crystallite) diameter and a smaller crystal distortion, that is, a higher crystallinity allows higher-speed polishing. Tend. Therefore, the cerium oxide particles used in the present invention are produced without increasing crystallinity. Moreover, since it uses for semiconductor chip grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 1 ppm or less. The abrasive of the present invention is of high purity, and Na, K, Si, Mg, Ca, Zr, Ti, Ni, Cr, and Fe are each preferably 1 ppm or less and Al is preferably 10 ppm or less.

本発明において、酸化セリウム粒子を作製する方法として焼成法が使用できる。ただし、研磨傷が入らない粒子を作製するために、できるだけ結晶性を上げない低温焼成が好ましい。セリウム化合物の酸化温度が300℃であることから、焼成温度は600℃以上900℃以下が好ましい。炭酸セリウムを600℃以上900℃以下で5〜300分、酸素ガス等の酸化雰囲気で焼成すること好ましい。   In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, low-temperature firing that does not increase the crystallinity as much as possible is preferable in order to produce particles that are free from abrasive scratches. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is preferably 600 ° C or higher and 900 ° C or lower. It is preferable to calcine cerium carbonate at 600 ° C. or higher and 900 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas.

焼成された酸化セリウムは、ジェットミル等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕することができる。ジェットミルは例えば化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。焼成酸化セリウムをジェットミル等の乾式粉砕等で粉砕した酸化セリウム粒子には、一次粒子(結晶子)サイズの小さい粒子と一次粒子(結晶子)サイズまで粉砕されていない多結晶体が含まれ、この多結晶体は一次粒子(結晶子)が再凝集した凝集体とは異なっており、2つ以上の一次粒子(結晶子)から構成され結晶粒界を有している。この結晶粒界を有す多結晶体を含む研磨剤で研磨を行うと、研磨時の応力により破壊され活性面を発生すると推定され、酸化珪素絶縁膜等の被研磨面を傷なく高速に研磨することに寄与していると考えられる。   The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. The jet mill is described, for example, in Chemical Industrial Papers Vol. 6 No. 5 (1980) pp. 527-532. The cerium oxide particles obtained by pulverizing calcined cerium oxide by dry pulverization such as a jet mill include particles having a small primary particle (crystallite) size and a polycrystal not pulverized to the primary particle (crystallite) size, This polycrystal is different from an aggregate in which primary particles (crystallites) are re-aggregated, and is composed of two or more primary particles (crystallites) and has a crystal grain boundary. When polishing with a polishing agent containing a polycrystal having a grain boundary, it is estimated that the active surface is generated due to the stress during polishing, and the surface to be polished such as a silicon oxide insulating film is polished at high speed without scratches. It is thought that it contributes to doing.

本発明における酸化セリウムスラリーは、上記の方法により製造された酸化セリウム粒子を含有する水溶液又はこの水溶液から回収した酸化セリウム粒子、水及び必要に応じて分散剤からなる組成物を分散させることによって得られる。ここで、酸化セリウム粒子の濃度に制限は無いが、懸濁液(研磨剤)の取り扱い易さから0.5〜10重量%の範囲が好ましい。また分散剤としては、水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンがある。例えば、アクリル酸アンモニウム塩とアクリル酸メチルの共重合体、特に重量平均分子量(標準ポリスチレンの検量線を用いたゲルパーミエーションクロマトグラフィーにより測定、以下同じ)1000〜20000のアクリル酸アンモニウム塩とアクリル酸メチルの共重合体がある。これらの分散剤の添加量は、スラリー中の粒子の分散性及び沈降防止性等から、酸化セリウム粒子100重量部に対して0.01重量部から5重量部の範囲が好ましく、その分散効果を高めるためには、分散処理時に分散機の中に粒子と同時に入れることが好ましい。   The cerium oxide slurry in the present invention is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method, or a composition comprising cerium oxide particles recovered from this aqueous solution, water and, if necessary, a dispersant. It is done. Here, although there is no restriction | limiting in the density | concentration of a cerium oxide particle, The range of 0.5 to 10 weight% is preferable from the ease of handling of suspension (abrasive). Examples of the dispersant include a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant, and a water-soluble amine. For example, a copolymer of ammonium acrylate and methyl acrylate, especially weight average molecular weight (measured by gel permeation chromatography using a standard polystyrene calibration curve, the same shall apply hereinafter) 1000 to 20000 ammonium acrylate and acrylic acid There is a copolymer of methyl. The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the anti-settling property. In order to increase the density, it is preferable to place the particles in the disperser at the same time as the particles during the dispersion treatment.

本発明のスラリーに含まれる分散剤にアクリル酸アンモニウム塩とアクリル酸メチルの共重合体を用いる場合、分散剤を酸化セリウム粒子100重量部に対して0.01以上5.00重量部以下添加することが好ましく、その重量平均分子量は1000〜20000が好ましい。アクリル酸アンモニウム塩とアクリル酸メチルとのモル比は0.1以上0.9以下が好ましい。アクリル酸アンモニウム塩とアクリル酸メチルの共重合体が酸化セリウム粒子100重量部に対して0.01重量部未満では沈降し易く、5重量部より多いと再凝集による粒度分布の経時変化が生じやすい。また、重量平均分子量が20000を超えると再凝集による粒度分布の経時変化が生じやすい。   When a copolymer of ammonium acrylate and methyl acrylate is used as the dispersant contained in the slurry of the present invention, the dispersant is added in an amount of 0.01 to 5.00 parts by weight with respect to 100 parts by weight of the cerium oxide particles. The weight average molecular weight is preferably 1000-20000. The molar ratio of the ammonium acrylate salt to methyl acrylate is preferably from 0.1 to 0.9. When the copolymer of ammonium acrylate and methyl acrylate is less than 0.01 part by weight relative to 100 parts by weight of the cerium oxide particles, it tends to settle, and if it exceeds 5 parts by weight, the particle size distribution tends to change over time due to reaggregation. . On the other hand, when the weight average molecular weight exceeds 20000, the particle size distribution is likely to change with time due to reaggregation.

これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他に、超音波分散機、ホモジナイザー、ボールミル等を用いることができる。サブミクロンオーダの酸化セリウム粒子を分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体撹拌式ミル等の湿式分散機を用いることが好ましい。また、スラリーのアルカリ性を高めたい場合には、分散処理時又は処理後に、アンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。   As a method of dispersing these cerium oxide particles in water, an ultrasonic disperser, a homogenizer, a ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer. In order to disperse sub-micron order cerium oxide particles, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, or a medium stirring mill. Moreover, when it is desired to increase the alkalinity of the slurry, an alkaline substance containing no metal ions such as aqueous ammonia can be added during or after the dispersion treatment.

本発明のスラリーに含まれる硫酸イオンの濃度は酸化セリウム粒子分に対して5,000mg/kg以下であり、好ましくは1,500mg/kg以下、さらに好ましくは1,000mg/kg以下であり、特に好ましくは300mg/kg以下である。硫酸イオンの濃度が5,000mg/kgを越えると、セリウム粒子の分散性が悪くなり、再凝集による粒度分布の経時変化が生じ、結果として研磨傷を付けやすくなる。本発明のスラリーに含まれる硫酸イオンの濃度は、イオンクロマトグラフ法(たとえば横河電機製IC−7000を用いる)により測定することができる。なお、測定試料はスラリーに脱イオン水を加え、硫酸イオンを抽出し、濾過をした濾過液とする。   The concentration of sulfate ions contained in the slurry of the present invention is 5,000 mg / kg or less, preferably 1,500 mg / kg or less, more preferably 1,000 mg / kg or less, particularly with respect to the cerium oxide particles. Preferably it is 300 mg / kg or less. When the concentration of sulfate ions exceeds 5,000 mg / kg, the dispersibility of the cerium particles is deteriorated, and the particle size distribution changes with time due to reaggregation, and as a result, polishing scratches are easily formed. The concentration of sulfate ions contained in the slurry of the present invention can be measured by an ion chromatography method (for example, using IC-7000 manufactured by Yokogawa Electric Corporation). The measurement sample is a filtrate obtained by adding deionized water to the slurry, extracting sulfate ions, and filtering.

本発明のスラリ−のpHは、7以上10以下が好ましく、8以上9以下がより好ましい。   The pH of the slurry of the present invention is preferably from 7 to 10, more preferably from 8 to 9.

本発明の酸化セリウム研磨剤が使用される無機絶縁膜の作製方法として、定圧CVD法、プラズマCVD法等が挙げられる。定圧CVD法による酸化珪素絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を、400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るために、リン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。プラズマCD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)を、Si源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明の酸化珪素絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。 Examples of a method for manufacturing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used include a constant pressure CVD method and a plasma CVD method. Formation of the silicon oxide insulating film by the constant pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. This SiH 4 —O 2 -based oxidation reaction can be obtained by performing the reaction at a low temperature of about 400 ° C. or less. In order to achieve surface flattening by high-temperature reflow, when doping with phosphorus: P, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas. The plasma CD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. As a reactive gas, SiH 4 -N 2 O gas using SiH 4 as a Si source, N 2 O as an oxygen source and tetraethoxysilane (TEOS) and TEOS-O 2 gas (TEOS) using Si source are used. -Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, elements such as phosphorus and boron may be doped in the silicon oxide insulating film of the present invention.

所定の基板として、半導体基板すなわち回路素子とアルミニウム配線が形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に酸化珪素絶縁膜層が形成された基板等が使用できる。このような半導体基板上に形成された酸化珪素絶縁膜層を、上記酸化セリウム研磨剤で研磨することによって、酸化珪素絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはスラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、ホルダーと定盤の回転速度は、半導体基板が飛び出さない様にそれぞれ100rpm以下の低回転が好ましく、半導体基板にかける圧力は、研磨後に傷が発生しない様に1kg/cm以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。 Examples of the predetermined substrate include a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and an aluminum wiring are formed, a substrate in which a silicon oxide insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element is formed, and the like. Can be used. By polishing the silicon oxide insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the silicon oxide insulating film layer is eliminated, and a smooth surface over the entire surface of the semiconductor substrate is obtained. To do. Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is subjected to groove processing so that slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the holder and the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor substrate does not jump out, and the pressure applied to the semiconductor substrate is such that scratches do not occur after polishing. 1 kg / cm 2 or less is preferable. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the slurry.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化された酸化珪素絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法により、酸化珪素絶縁膜を形成後、上記酸化セリウム研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。   The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer aluminum wiring is formed on the silicon oxide insulating film layer planarized in this manner, and after the silicon oxide insulating film is formed again between the wirings and on the wiring by the above method, By polishing with a cerium abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.

本発明の酸化セリウム研磨剤は、半導体基板に形成された酸化珪素絶縁膜だけでなく、所定の配線を有する配線板に形成された酸化珪素絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。   The cerium oxide abrasive of the present invention is not only a silicon oxide insulating film formed on a semiconductor substrate, but also a silicon oxide insulating film formed on a wiring board having a predetermined wiring, an inorganic insulating film such as glass and silicon nitride, a photo Optical glass for masks, lenses, prisms, etc., optical conductive circuits such as ITO, inorganic conductive films such as ITO, glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It is used to polish single crystals, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, magnetic heads, and the like.

このように本発明において所定の基板とは、酸化珪素絶縁膜が形成された半導体基板、酸化珪素絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。   Thus, in the present invention, the predetermined substrate refers to a semiconductor substrate on which a silicon oxide insulating film is formed, a wiring board on which a silicon oxide insulating film is formed, an inorganic insulating film such as glass or silicon nitride, a photomask, a lens, and a prism. Optical glass such as ITO, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / optical waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, solid state lasers, etc. -The single crystal, LED sapphire substrate for blue laser, semiconductor single crystal such as SiC, GaP, GaAS, etc., glass substrate for magnetic disk, magnetic head, etc.

次に、実施例により本発明を説明する。   Next, an example explains the present invention.

作製例1(酸化セリウム粒子の作製:その1)
炭酸セリウム水和物2kgを白金製容器に入れ、830℃で1時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。多結晶体の比表面積をBET法により測定した結果、9m/gであることがわかった。
Production Example 1 (Production of cerium oxide particles: Part 1)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 830 ° C. for 1 hour. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry pulverized using a jet mill. As a result of measuring the specific surface area of the polycrystal by the BET method, it was found to be 9 m 2 / g.

作製例2(酸化セリウム粒子の作製:その2)
炭酸セリウム水和物2kgを白金製容器に入れ、830℃で1時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。多結晶体の比表面積をBET法により測定した結果、10m/gであることがわかった。
Production Example 2 (Production of cerium oxide particles: Part 2)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 830 ° C. for 1 hour. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry pulverized using a jet mill. As a result of measuring the specific surface area of the polycrystal by the BET method, it was found to be 10 m 2 / g.

(酸化セリウム粒子の作製:その3)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100ミクロンであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。多結晶体の比表面積をBET法により測定した結果、21m/gであることがわかった。
(Preparation of cerium oxide particles: Part 3)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate into a platinum container and firing in air at 800 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry pulverized using a jet mill. As a result of measuring the specific surface area of the polycrystal by the BET method, it was found to be 21 m 2 / g.

(酸化セリウムスラリーの作製)
上記、酸化セリウム粒子の作製例1〜3で作製した3種類の酸化セリウム粒子1000gとアクリル酸とアクリル酸メチルを3:1(モル比)で共重合した分子量10,000のポリアクリル酸共重合体のアンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌をしながら超音波分散を行った。超音波周波数は40kHzで、分散時間10分で分散を行った。得られたスラリーを1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより5.0重量%の酸化セリウムスラリーを得た。
(Preparation of cerium oxide slurry)
Polyacrylic acid copolymer having a molecular weight of 10,000 obtained by copolymerizing 1000 g of the three types of cerium oxide particles prepared in Preparation Examples 1 to 3 of the cerium oxide particles, acrylic acid and methyl acrylate at a molar ratio of 3: 1. 23 g of an aqueous ammonium salt solution (40% by weight) and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion while stirring. The ultrasonic frequency was 40 kHz, and dispersion was performed with a dispersion time of 10 minutes. The resulting slurry was filtered through a 1 micron filter and deionized water was added to obtain a 5.0 wt% cerium oxide slurry.

酸化セリウムスラリーのpHは、作製例1〜3について、順にそれぞれ8.0、8.4及び8.2であった。BET法によるスラリー粒子の比表面積測定の結果、作製例1〜3について、順にそれぞれ9m/g、10m/g及び23m/gであった。また研磨時に攪拌することにより、この酸化セリウムスラリーには濃度むらが生じなかった。酸化セリウムスラリーの濃度はスラリーの重量中、酸化セリウム粒子の重量が占める割合から求めた。酸化セリウム粒子の重量は、スラリーを150℃で加熱して水を蒸発させて残った固形分重量とした。 The pH of the cerium oxide slurry was 8.0, 8.4, and 8.2 for Production Examples 1 to 3, respectively. As a result of measuring the specific surface area of the slurry particles by the BET method, it was 9 m 2 / g, 10 m 2 / g, and 23 m 2 / g in order for Production Examples 1 to 3, respectively. Further, by stirring at the time of polishing, the cerium oxide slurry did not have uneven concentration. The concentration of the cerium oxide slurry was determined from the ratio of the weight of the cerium oxide particles to the weight of the slurry. The weight of the cerium oxide particles was the weight of the solid content remaining after the slurry was heated at 150 ° C. to evaporate water.

(硫酸イオン濃度の測定)
上記、酸化セリウムスラリーの作製1〜3で作製した3種類の酸化セリウムスラリー0.3gそれぞれに脱イオン水10gを加え、硫酸イオンを抽出し、濾過をした。この濾過液をイオンクロマトグラフ法(たとえば横河電機製IC−7000を用いる)で測定したところ、硫酸イオンの濃度は酸化セリウム粒子分に対して、作製例1〜3について、順にそれぞれ3,200mg/kg、980mg/kg及び280mg/kgであった。
(Measurement of sulfate ion concentration)
10 g of deionized water was added to 0.3 g of each of the three types of cerium oxide slurries prepared in preparations 1 to 3 of the cerium oxide slurry, and sulfate ions were extracted and filtered. When this filtrate was measured by an ion chromatograph method (for example, using IC-7000 manufactured by Yokogawa Electric Corporation), the concentration of sulfate ions was 3,200 mg in order for Production Examples 1 to 3 with respect to the cerium oxide particles. / Kg, 980 mg / kg and 280 mg / kg.

(絶縁膜層の研磨)
TEOS−プラズマCVD法で作製した酸化珪素絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が300g/cmになるように重しを載せた。上記の3種類の酸化セリウムスラリーを脱イオン水で5倍に希釈したスラリー(固形分:1重量%)を容器に入れ、攪拌しながらポンプで配管を通じて定盤上に供給できるようにした。このとき、容器、配管内ともに沈降は見られなかった。定盤上にスラリーを50cc/minの速度で滴下しながら、定盤を30rpmで1分間回転させ、絶縁膜を研磨した。
(Polishing the insulating film layer)
Set a Si wafer on which a silicon oxide insulating film produced by TEOS-plasma CVD method is formed, and place a holder with the insulating film surface facing down on a surface plate on which a polishing pad made of porous urethane resin is attached, Further, a weight was placed so that the processing load was 300 g / cm 2 . A slurry (solid content: 1% by weight) obtained by diluting the above three kinds of cerium oxide slurries with deionized water five times was placed in a container, and the mixture was supplied to a platen through a pipe with a pump while stirring. At this time, no sedimentation was observed in the container and the piping. While the slurry was dropped on the surface plate at a speed of 50 cc / min, the surface plate was rotated at 30 rpm for 1 minute to polish the insulating film.

研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨により、作製例1〜3について、順にそれぞれ192nm、214nm及び143nm(作製例1〜3について、順に研磨速度が192nm/min、214nm/min及び143nm/min)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。   After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring apparatus, 192 nm, 214 nm, and 143 nm were sequentially obtained for Production Examples 1 to 3 (for Production Examples 1 to 3, respectively). It was found that the insulating films with the speeds of 192 nm / min, 214 nm / min, and 143 nm / min were cut and the thickness was uniform over the entire wafer surface. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

(粒度分布の測定)
レーザー回折粒度分布測定を行ったところ酸化セリウム粒子の平均粒径は、作製例1〜3について、順にそれぞれ0.20μm、0.19μm及び0.20μmであった。研磨剤を3ヶ月間、室温で保管した。その後、攪拌により均一な濃度分布に戻し、レーザー回折粒度分布測定を行ったところ、酸化セリウム粒子の平均粒径は、作製例1〜3について、順にそれぞれ0.27μm、0.19μm及び0.20μmであった。また、研磨剤を6ヶ月間、室温で保管した。その後、攪拌により均一な濃度分布に戻し、レーザー回折粒度分布測定を行ったところ、酸化セリウム粒子の平均粒径は、作製例1〜3について、順にそれぞれ0.26μm、0.26μm及び0.20μmで、作製例1〜3について、順に粒径が変化しづらくなることがわかった。
(Measurement of particle size distribution)
When laser diffraction particle size distribution measurement was performed, the average particle diameters of the cerium oxide particles were 0.20 μm, 0.19 μm, and 0.20 μm in order for Production Examples 1 to 3, respectively. The abrasive was stored at room temperature for 3 months. Thereafter, the mixture was returned to a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was performed. The average particle diameters of the cerium oxide particles were 0.27 μm, 0.19 μm, and 0.20 μm in order of Production Examples 1 to 3, respectively. Met. The abrasive was stored at room temperature for 6 months. Thereafter, the mixture was returned to a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was performed. The average particle diameters of the cerium oxide particles were 0.26 μm, 0.26 μm, and 0.20 μm, respectively, for Production Examples 1 to 3. Thus, it was found that in Preparation Examples 1 to 3, the particle size was difficult to change in order.

(酸化セリウムスラリーの作製)
上記、酸化セリウム粒子の作製で作製した酸化セリウム粒子1000gとアクリル酸とアクリル酸メチルを3:1で共重合した分子量10,000のポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌をしながら超音波分散を行った。超音波周波数は40kHzで、分散時間10分で分散を行った。得られたスラリーを1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより5.0重量%の酸化セリウムスラリーを得た。
(Preparation of cerium oxide slurry)
1000 g of cerium oxide particles prepared in the preparation of cerium oxide particles, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) having a molecular weight of 10,000 copolymerized with acrylic acid and methyl acrylate at a ratio of 3: 1 and deionized water 8877 g was mixed and subjected to ultrasonic dispersion while stirring. The ultrasonic frequency was 40 kHz, and dispersion was performed with a dispersion time of 10 minutes. The resulting slurry was filtered through a 1 micron filter and deionized water was added to obtain a 5.0 wt% cerium oxide slurry.

酸化セリウムスラリーのpHは7.9であった。BET法によるスラリー粒子の比表面積測定の結果、8m/gであった。また研磨時に攪拌することにより、この酸化セリウムスラリーには濃度むらが生じなかった。酸化セリウムスラリーの濃度はスラリーの重量中、酸化セリウム粒子の重量が占める割合から求めた。酸化セリウム粒子の重量は、スラリーを150℃で加熱して水を蒸発させて残った固形分重量とした。 The pH of the cerium oxide slurry was 7.9. As a result of measuring the specific surface area of the slurry particles by the BET method, it was 8 m 2 / g. Further, by stirring at the time of polishing, the cerium oxide slurry did not have uneven concentration. The concentration of the cerium oxide slurry was determined from the ratio of the weight of the cerium oxide particles to the weight of the slurry. The weight of the cerium oxide particles was the weight of the solid content remaining after the slurry was heated at 150 ° C. to evaporate water.

(硫酸イオン濃度の測定)
上記、酸化セリウムスラリーの作製で作製した2種類の酸化セリウムスラリー0.3gに脱イオン水10gを加え、硫酸イオンを抽出し、濾過をした。この濾過液をイオンクロマトグラフ法(たとえば横河電機製IC−7000を用いる)で測定したところ、硫酸イオンの濃度は酸化セリウム粒子分に対して、5000mg/kgだった。
(Measurement of sulfate ion concentration)
10 g of deionized water was added to 0.3 g of the two types of cerium oxide slurries prepared in the preparation of the cerium oxide slurry, and sulfate ions were extracted and filtered. When this filtrate was measured by an ion chromatography method (for example, using IC-7000 manufactured by Yokogawa Electric Corporation), the concentration of sulfate ions was 5000 mg / kg with respect to the cerium oxide particles.

(絶縁膜層の研磨)
TEOS−プラズマCVD法で作製した酸化珪素絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が300g/cmになるように重しを載せた。上記の2種類の酸化セリウムスラリーを脱イオン水で5倍に希釈したスラリー(固形分:1重量%)を容器に入れ、攪拌しながらポンプで配管を通じて定盤上に供給できるようにした。このとき、容器、配管内ともに沈降は見られなかった。定盤上にスラリーを50cc/minの速度で滴下しながら、定盤を30rpmで1分間回転させ、絶縁膜を研磨した。
(Polishing the insulating film layer)
Set a Si wafer on which a silicon oxide insulating film produced by TEOS-plasma CVD method is formed, and place a holder with the insulating film surface facing down on a surface plate on which a polishing pad made of porous urethane resin is attached, Further, a weight was placed so that the processing load was 300 g / cm 2 . A slurry (solid content: 1% by weight) obtained by diluting the above-mentioned two kinds of cerium oxide slurries with deionized water five times was put in a container, and the mixture could be supplied onto a platen through a pipe with a pump while stirring. At this time, no sedimentation was observed in the container and the piping. While the slurry was dropped on the surface plate at a speed of 50 cc / min, the surface plate was rotated at 30 rpm for 1 minute to polish the insulating film.

研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨によりそれぞれ213nm(研磨速度:213nm/min)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は観測されなかった。   After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring device, each of the insulating films of 213 nm (polishing rate: 213 nm / min) was shaved by this polishing, and the thickness was uniform over the entire surface of the wafer. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was observed.

(粒度分布の測定)
レーザー回折粒度分布測定を行ったところ酸化セリウム粒子の平均粒径は0.19μmだった。研磨剤を3ヶ月間、室温で保管した。その後、攪拌により均一な濃度分布に戻し、レーザー回折粒度分布測定を行ったところ、酸化セリウム粒子の平均粒径は0.27μmだった。また、研磨剤を6ヶ月間、室温で保管した。その後、攪拌により均一な濃度分布に戻し、レーザー回折粒度分布測定を行ったところ、酸化セリウム粒子の平均粒径は0.33μmだった。以上から研磨剤の保存安定性は、実施例に比べて時間とともに粒径が大きくなるということで、悪くなることがわかった。
(Measurement of particle size distribution)
When laser diffraction particle size distribution measurement was performed, the average particle size of the cerium oxide particles was 0.19 μm. The abrasive was stored at room temperature for 3 months. Thereafter, the mixture was returned to a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was performed. As a result, the average particle diameter of the cerium oxide particles was 0.27 μm. The abrasive was stored at room temperature for 6 months. Thereafter, the mixture was returned to a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was performed. As a result, the average particle diameter of the cerium oxide particles was 0.33 μm. From the above, it was found that the storage stability of the abrasive was deteriorated by the fact that the particle size increased with time as compared to the Examples.

Claims (12)

アクリル酸アンモニウム塩とアクリル酸メチルの共重合体と、酸化セリウムとを含み、酸化セリウム粒子分に対する硫酸イオン濃度が5,000mg/kg以下であるスラリーからなる半導体基板研磨用酸化セリウム研磨剤。   A cerium oxide abrasive for polishing a semiconductor substrate, comprising a slurry of an ammonium acrylate salt and a methyl acrylate copolymer and cerium oxide, and having a sulfate ion concentration of 5,000 mg / kg or less with respect to the cerium oxide particles. アクリル酸アンモニウム塩とアクリル酸メチルの共重合体と、酸化セリウムとを含み、酸化セリウム粒子分に対する硫酸イオン濃度が5,000mg/kg以下であるスラリーからなる酸化珪素絶縁膜研磨用酸化セリウム研磨剤。   A cerium oxide polishing agent for polishing a silicon oxide insulating film comprising a slurry of ammonium acrylate salt and methyl acrylate copolymer and cerium oxide, and comprising a slurry having a sulfate ion concentration of 5,000 mg / kg or less with respect to the cerium oxide particles. . 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が1,500mg/kg以下である請求項1または請求項2に記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 1 or 2, wherein the concentration of sulfate ions in the slurry with respect to the cerium oxide particle content is 1,500 mg / kg or less. 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が1,000mg/kg以下である請求項3に記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 3, wherein the concentration of sulfate ion in the slurry with respect to the cerium oxide particle content is 1,000 mg / kg or less. 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が300mg/kg以下である請求項4に記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 4, wherein the concentration of sulfate ions in the slurry with respect to the cerium oxide particles is 300 mg / kg or less. 請求項1、3〜5のいずれかに記載の酸化セリウム研磨剤で、半導体基板を研磨することを特徴とする基板の研磨法。   A method for polishing a substrate, comprising polishing a semiconductor substrate with the cerium oxide abrasive according to claim 1. 請求項2〜5のいずれかに記載の酸化セリウム研磨剤で、半導体基板を研磨することを特徴とする基板の研磨法。   A method for polishing a substrate, comprising polishing a semiconductor substrate with the cerium oxide abrasive according to claim 2. アクリル酸アンモニウム塩とアクリル酸メチルの共重合体と、酸化セリウムと、媒体とを含み、酸化セリウム粒子分に対する硫酸イオン濃度が5,000mg/kg以下である半導体基板研磨用スラリー。   A slurry for polishing a semiconductor substrate, comprising a copolymer of ammonium acrylate and methyl acrylate, cerium oxide, and a medium, and having a sulfate ion concentration of 5,000 mg / kg or less with respect to the cerium oxide particles. アクリル酸アンモニウム塩とアクリル酸メチルの共重合体と、酸化セリウムと、媒体とを含み、酸化セリウム粒子分に対する硫酸イオン濃度が5,000mg/kg以下である酸化珪素絶縁膜研磨用スラリー。   A slurry for polishing a silicon oxide insulating film, comprising a copolymer of an ammonium acrylate salt and methyl acrylate, cerium oxide, and a medium, and having a sulfate ion concentration of 5,000 mg / kg or less with respect to cerium oxide particles. 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が1,500mg/kg以下である請求項8または請求項9に記載の研磨用スラリー。   The polishing slurry according to claim 8 or 9, wherein the concentration of sulfate ions in the slurry with respect to the cerium oxide particles is 1,500 mg / kg or less. 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が1,000mg/kg以下である請求項10に記載の研磨用スラリー。   The polishing slurry according to claim 10, wherein the concentration of sulfate ions in the slurry with respect to the cerium oxide particles is 1,000 mg / kg or less. 酸化セリウム粒子分に対するスラリー中の硫酸イオン濃度が300mg/kg以下である請求項11に記載の研磨用スラリー。   The polishing slurry according to claim 11, wherein the concentration of sulfate ions in the slurry with respect to the cerium oxide particle content is 300 mg / kg or less.
JP2006029038A 2006-02-06 2006-02-06 Cerium oxide polishing material and substrate-polishing method Withdrawn JP2006148158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029038A JP2006148158A (en) 2006-02-06 2006-02-06 Cerium oxide polishing material and substrate-polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029038A JP2006148158A (en) 2006-02-06 2006-02-06 Cerium oxide polishing material and substrate-polishing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10364982A Division JP2000186277A (en) 1998-12-22 1998-12-22 Cerium oxide abrasive and method for polishing substrate

Publications (1)

Publication Number Publication Date
JP2006148158A true JP2006148158A (en) 2006-06-08

Family

ID=36627382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029038A Withdrawn JP2006148158A (en) 2006-02-06 2006-02-06 Cerium oxide polishing material and substrate-polishing method

Country Status (1)

Country Link
JP (1) JP2006148158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245148B2 (en) 2009-05-29 2016-01-26 Bitspray Corporation Secure storage and accelerated transmission of information over communication networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245148B2 (en) 2009-05-29 2016-01-26 Bitspray Corporation Secure storage and accelerated transmission of information over communication networks

Similar Documents

Publication Publication Date Title
JP5023626B2 (en) Polishing method of cerium oxide slurry and substrate
JP4788586B2 (en) Abrasive and slurry
JP4729834B2 (en) CMP abrasive, substrate polishing method and semiconductor device manufacturing method using the same, and additive for CMP abrasive
JP4221903B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP4356636B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JP2006148158A (en) Cerium oxide polishing material and substrate-polishing method
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JP2000186277A (en) Cerium oxide abrasive and method for polishing substrate
JP2008132593A (en) Cerium oxide slurry, cerium oxide abrasive and base board polishing method
JP2004282092A (en) Cerium oxide abrasive and substrate polishing method
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP4776519B2 (en) Abrasive and slurry
JP2001308044A (en) Oxide cerium polishing agent and polishing method for substrate
JP4788588B2 (en) Polishing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100402