JP2005012231A - Ceric dioxide abrasive and substrate-polishing method - Google Patents

Ceric dioxide abrasive and substrate-polishing method Download PDF

Info

Publication number
JP2005012231A
JP2005012231A JP2004211976A JP2004211976A JP2005012231A JP 2005012231 A JP2005012231 A JP 2005012231A JP 2004211976 A JP2004211976 A JP 2004211976A JP 2004211976 A JP2004211976 A JP 2004211976A JP 2005012231 A JP2005012231 A JP 2005012231A
Authority
JP
Japan
Prior art keywords
cerium oxide
polishing
substrate
insulating film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004211976A
Other languages
Japanese (ja)
Other versions
JP2005012231A5 (en
Inventor
Masato Yoshida
誠人 吉田
Jun Matsuzawa
純 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004211976A priority Critical patent/JP2005012231A/en
Publication of JP2005012231A publication Critical patent/JP2005012231A/en
Publication of JP2005012231A5 publication Critical patent/JP2005012231A5/ja
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide ceric dioxide abrasive that polishes the surface of an object to be polished, such as an SiO<SB>2</SB>insulating film, without faults. <P>SOLUTION: An Si wafer, to which an SiO<SB>2</SB>insulating film produced by the TEOS-CVD method is formed, is polished using slurry abrasive, onto which cerium dioxide particles whose diameter aspect ratio is equal to or larger than 1 and equal to or smaller than 2, and whose primary particles showing contours not including corners smaller than 120<SP>o</SP>C are equal to or higher than 90% of the total, are distributed over a medium by means of the observation of a transmission electron microscope. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化セリウム研磨剤及び基板の研磨法を提供するものである。   The present invention provides a cerium oxide abrasive and a method for polishing a substrate.

従来、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成されるSiO絶縁膜等無機絶縁膜層を平坦化するための化学機械研磨剤としてコロイダルシリカ系の研磨剤が一般的に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持たず、実用化には低研磨速度という技術課題がある。 Conventionally, colloidal silica-based abrasives have been used as chemical mechanical abrasives for planarizing inorganic insulating film layers such as SiO 2 insulating films formed by methods such as plasma-CVD and low-pressure CVD in the manufacturing process of semiconductor devices. Generally considered. Colloidal silica-based abrasives are produced by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.

一方、フォトマスク用ガラス表面研磨として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。また、酸化セリウムは強い酸化剤として知られるように化学的活性な性質を有している。この利点を活かし、絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、フォトマスク用ガラス表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に適用すると、絶縁膜表面に目視で観察できる研磨傷が入ってしまう。   On the other hand, a cerium oxide abrasive is used for photomask glass surface polishing. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finishing mirror polishing because they do not easily scratch the polished surface. Moreover, cerium oxide has a chemically active property as known as a strong oxidizing agent. Taking advantage of this advantage, application to a chemical mechanical polishing agent for insulating films is useful. However, if the cerium oxide abrasive for polishing a glass surface for a photomask is applied to an inorganic insulating film as it is, polishing scratches that can be visually observed will enter the insulating film surface.

本発明は、SiO絶縁膜等の被研磨面を傷なく研磨することが可能な酸化セリウム研磨剤及び基板の研磨法を提供するものである。 The present invention provides a cerium oxide abrasive capable of polishing a surface to be polished such as a SiO 2 insulating film without scratches and a method for polishing a substrate.

本発明の酸化セリウム研磨剤は、透過型電子顕微鏡による観察で粒子径のアスペクト比が1以上2以下で、かつ120℃より小さい角部を含まない輪郭を示す1次粒子が全数の90%以上である酸化セリウム粒子を媒体に分散させたスラリーを含むものである。   The cerium oxide abrasive of the present invention has a particle diameter aspect ratio of 1 or more and 2 or less as observed with a transmission electron microscope, and 90% or more of primary particles exhibiting a contour that does not include corners smaller than 120 ° C. And a slurry in which cerium oxide particles are dispersed in a medium.

本発明の基板の研磨法は、上記の酸化セリウム研磨剤で所定の基板を研磨することを特徴とするものである。   The substrate polishing method of the present invention is characterized in that a predetermined substrate is polished with the cerium oxide abrasive.

本発明は、透過型電子顕微鏡による観察で粒子径のアスペクト比が1以上2以下で、かつ120℃より小さい角部を含まない輪郭を示す1次粒子が全数の90%以上である酸化セリウム粒子を使用することにより、SiO絶縁膜等の被研磨面に傷をつけることなく研磨できることを見い出したことによりなされたものである。 The present invention relates to a cerium oxide particle in which the aspect ratio of the particle diameter is 1 or more and 2 or less and the primary particle showing the outline not including the corner portion smaller than 120 ° C. is 90% or more of the total number as observed with a transmission electron microscope. By using this, it has been found that the surface to be polished such as the SiO 2 insulating film can be polished without scratching.

本発明の研磨剤により、SiO絶縁膜等の被研磨面を傷なく研磨することが可能となる。 The polishing agent of the present invention makes it possible to polish a surface to be polished such as a SiO 2 insulating film without scratching.

一般に酸化セリウムは、炭酸塩、硫酸塩、蓚酸塩等のセリウム化合物を焼成することによって得られる。TEOS−CVD法等で形成されるSiO絶縁膜は1次粒子径が大きく、かつ結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子は、あまり結晶性を上げないで作製される。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。 In general, cerium oxide is obtained by firing a cerium compound such as carbonate, sulfate, or oxalate. The SiO 2 insulating film formed by TEOS-CVD or the like has a larger primary particle diameter and a smaller crystal distortion, that is, a higher crystallinity allows higher-speed polishing, but there is a tendency for polishing flaws to occur. . Therefore, the cerium oxide particles used in the present invention are produced without increasing crystallinity. Moreover, since it uses for semiconductor chip grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 1 ppm or less.

本発明において、酸化セリウム粒子を作製する方法として焼成法が使用できる。セリウム化合物の酸化温度が300℃であることから、焼成温度は350℃以上700℃以下が好ましい。   In the present invention, a firing method can be used as a method for producing cerium oxide particles. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is preferably 350 ° C or higher and 700 ° C or lower.

本発明における酸化セリウムスラリーは、上記の方法により製造された酸化セリウム粒子を含有する水溶液又はこの水溶液から回収した酸化セリウム粒子、水及び必要に応じて分散剤らなる組成物を分散させることによって得られる。ここで、酸化セリウム粒子の濃度には制限は無いが、懸濁液の取り扱い易さから0.5〜10重量%の範囲が好ましい。また分散剤としては、金属イオン類を含まないものとして、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類などが挙げられる。これらの分散剤の添加量は、スラリー中の粒子の分散性及び沈降防止性などから酸化セリウム粒子100重量部に対して0.01重量部から5重量部の範囲が好ましく、その分散効果を高めるためには分散処理時に分散機の中に粒子と同時に入れることが好ましい。   The cerium oxide slurry in the present invention is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method, or cerium oxide particles recovered from this aqueous solution, water and, if necessary, a composition comprising a dispersant. It is done. Here, although there is no restriction | limiting in the density | concentration of a cerium oxide particle, The range of 0.5 to 10 weight% is preferable from the ease of handling of suspension. The dispersant does not contain metal ions, and includes acrylic acid polymer and its ammonium salt, methacrylic acid polymer and its ammonium salt, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Water-soluble anionic surfactants such as ammonium lauryl ether sulfate, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and water-soluble amines such as monoethanolamine and diethanolamine It is done. The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the anti-settling property. In order to achieve this, it is preferable to place the particles in the disperser simultaneously with the particles during the dispersion treatment.

これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミルなどを用いることができる。特に酸化セリウム粒子を1μm以下の微粒子として分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの湿式分散機を用いることが好ましい。また、スラリーのアルカリ性を高めたい場合には、分散処理時又は処理後にアンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。   As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer. In particular, in order to disperse the cerium oxide particles as fine particles having a size of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibration ball mill, a planetary ball mill, or a medium stirring mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance that does not contain metal ions such as aqueous ammonia can be added during or after the dispersion treatment.

本発明の酸化セリウム研磨剤は、上記スラリ−をそのまま使用してもよいが、N,N−ジエチルエタノ−ルアミン、N,N−ジメチルエタノ−ルアミン、アミノエチルエタノ−ルアミン等の添加剤を添加して研磨剤とすることができる。   The cerium oxide abrasive of the present invention may use the above slurry as it is, but an additive such as N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine is added. Thus, an abrasive can be obtained.

本発明の酸化セリウム研磨剤が使用される無機絶縁膜の作製方法として、定圧CVD法、プラズマCVD法等が挙げられる。定圧CVD法によるSiO絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明のSiO絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。 Examples of a method for manufacturing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used include a constant pressure CVD method and a plasma CVD method. In the formation of the SiO 2 insulating film by the constant pressure CVD method, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, elements such as phosphorus and boron may be doped in the SiO 2 insulating film of the present invention.

所定の基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上にSiO絶縁膜層が形成された基板が使用できる。このような半導体基板上に形成されたSiO絶縁膜層を上記酸化セリウム研磨剤で研磨することによって、SiO絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはスラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は半導体が飛び出さない様に100rpm以下の低回転が好ましく、半導体基板にかける圧力は研磨後に傷が発生しない様に1kg/cm以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。 As the predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and a wiring pattern are formed, or a substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element is formed is used. it can. By polishing the SiO 2 insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the SiO 2 insulating film layer is eliminated and a smooth surface is formed over the entire surface of the semiconductor substrate. . Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is subjected to groove processing so that slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 or less so that no scratches are generated after polishing. preferable. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, It is preferable that the surface of polishing cloth is always covered with the slurry.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化されたSiO絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法によりSiO絶縁膜を形成後、上記酸化セリウム研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer aluminum wiring is formed on the thus planarized SiO 2 insulating film layer, and the SiO 2 insulating film is formed again between the wirings and on the wiring by the above method, and then the cerium oxide. By polishing with an abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.

本発明の酸化セリウム研磨剤は、半導体基板に形成されたSiO絶縁膜だけでなく、所定の配線を有する配線板に形成されたSiO絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。このように本発明において所定の基板とは、SiO絶縁膜が形成された半導体基板、SiO絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。 Cerium oxide abrasive of the present invention is not only SiO 2 insulating film formed on a semiconductor substrate, SiO 2 insulating film formed on the wiring board having a predetermined wiring, glass, inorganic insulating films such as silicon nitride, Photo Optical glass for masks, lenses, prisms, etc., optical conductive circuits such as ITO, inorganic conductive films such as ITO, glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It is used to polish single crystals, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, magnetic heads, and the like. The predetermined substrate in the present invention as described above, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, glass, inorganic insulating films such as silicon nitride, photomask lenses and prisms Optical glass such as ITO, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, solid layers, etc. -The single crystal, LED sapphire substrate for blue laser, semiconductor single crystal such as SiC, GaP, GaAS, etc., glass substrate for magnetic disk, magnetic head, etc.

実施例
(酸化セリウム粒子の作製:その1)
炭酸セリウム水和物(99.9%)600gを白金製の容器に入れ、400℃で2時間空気中で焼成することにより黄白色の粉末を得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。さらに透過型電子顕微鏡による観察で1次粒子径のアスペクト比が1以上2以下で、かつ1次粒子が120℃より小さい角部を含まない輪郭を示す球形の1次粒子であることを確認した。また、透過電子顕微鏡による観察で1次粒子径が5nm以上10nm以下であることを確認した。
Example (Preparation of cerium oxide particles: Part 1)
600 g of cerium carbonate hydrate (99.9%) was placed in a platinum container and baked in air at 400 ° C. for 2 hours to obtain a yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. Furthermore, it was confirmed by observation with a transmission electron microscope that the primary particle diameter is a spherical primary particle having an aspect ratio of 1 or more and 2 or less and showing a contour that does not include a corner portion smaller than 120 ° C. . Further, it was confirmed by observation with a transmission electron microscope that the primary particle diameter was 5 nm or more and 10 nm or less.

(酸化セリウム粒子の作製:その2)
炭酸セリウム水和物(99.9%)600gを白金製の容器に入れ、600℃で2時間空気中で焼成することにより黄白色の粉末を得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。さらに透過型電子顕微鏡による観察で1次粒子径のアスペクト比が1以上2以下で、かつ1次粒子が120℃より小さい角部を含まない輪郭を示す球形の1次粒子であることを確認した。また、透過電子顕微鏡による観察で1次粒子径は10nmを越え100nm未満であることを確認した。
(Preparation of cerium oxide particles: Part 2)
600 g of cerium carbonate hydrate (99.9%) was placed in a platinum container and calcined in air at 600 ° C. for 2 hours to obtain a yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. Furthermore, it was confirmed by observation with a transmission electron microscope that the primary particle diameter is a spherical primary particle having an aspect ratio of 1 or more and 2 or less and showing a contour that does not include a corner portion smaller than 120 ° C. . Further, it was confirmed by observation with a transmission electron microscope that the primary particle diameter was more than 10 nm and less than 100 nm.

(酸化セリウムスラリーの作製)
上記2種類の酸化セリウム粉末80gを脱イオン水800g中に分散して、これにポリアクリル酸アンモニウム塩8gを添加後、遊星ボールミル(P−5型、フリッチェ製)を用いて2300rpmで30分間分散処理を施すことにより、乳白色の酸化セリウムスラリーを得た。このスラリーpHはそれぞれ9.7と9.1であった。スラリーの粒度分布を調べたところ(Master Sizer製)、平均粒子径がそれぞれ300nmと260nmと小さく、その半値幅もともに300nmと比較的分布も狭いことがわかった。
(Preparation of cerium oxide slurry)
Disperse 80g of the above two kinds of cerium oxide powder in 800g of deionized water, add 8g of polyacrylic acid ammonium salt to this, and then disperse for 30 minutes at 2300rpm using planetary ball mill (P-5 type, manufactured by Fritche). By performing the treatment, a milky white cerium oxide slurry was obtained. The slurry pH was 9.7 and 9.1, respectively. When the particle size distribution of the slurry was examined (manufactured by Master Sizer), it was found that the average particle diameter was as small as 300 nm and 260 nm, respectively, and the half-value width was 300 nm and the distribution was relatively narrow.

(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーにTEOS−プラズマCVD法で作製したSiO絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工加重が160g/cmになるように重しを載せた。定盤上に上記2種類の酸化セリウムスラリー(固形分:2.5wt.%)を35cc/minの速度で滴下しながら、定盤を30rpmで3分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨によりスラリー作製その1のスラリは200nmの絶縁膜が削られ、またその2のスラリーでは240nmの絶縁膜が削られた。それぞれのスラリーの研磨後、ウエハ全面に渡って均一の厚みになっていることがわかった。また、目視では絶縁膜表面には傷が見られなかった。
(Polishing the insulating film layer)
A surface plate on which a Si wafer on which a SiO 2 insulating film produced by TEOS-plasma CVD method is formed is set in a holder on which a holding pad for attaching a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed thereon with the insulating film face down, and a weight was placed so that the processing load was 160 g / cm 2 . While the two kinds of cerium oxide slurries (solid content: 2.5 wt.%) Were dropped on the surface plate at a rate of 35 cc / min, the surface plate was rotated at 30 rpm for 3 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring device, the slurry of Part 1 of the slurry preparation was scraped by 200 nm by this polishing, and the part of the slurry of 240 nm was the insulating film of 240 nm. Was shaved. After polishing each slurry, it was found that the thickness was uniform over the entire wafer surface. In addition, no scratch was found on the surface of the insulating film by visual observation.

比較例
実施例と同様にTEOS−CVD法で作製したSiO絶縁膜を形成させたSiウエハについて、市販シリカスラリー(キャボット社製、商品名SS225)を用いて研磨を行った。この市販スラリーのpHは10.3で、SiO粒子を12.5wt%含んでいるものである。研磨条件は実施例と同一である。その結果、研磨による傷は見られず、また均一に研磨がなされたが、3分間の研磨により75nmの絶縁膜層しか削れなかった。
For Si wafer having formed an SiO 2 insulating film was prepared in the same manner as in Comparative Example Example in TEOS-CVD method, it was polished using a commercially available silica slurry (manufactured by Cabot Corporation, trade name SS225). This commercially available slurry has a pH of 10.3 and contains 12.5 wt% of SiO 2 particles. The polishing conditions are the same as in the example. As a result, scratches due to polishing were not observed, and polishing was performed uniformly, but only 75 nm of the insulating film layer was removed by polishing for 3 minutes.

Claims (7)

透過型電子顕微鏡による観察で粒子径のアスペクト比が1以上2以下で、かつ120℃より小さい角部を含まない輪郭を示す1次粒子が全数の90%以上である酸化セリウム粒子を媒体に分散させたスラリーを含む酸化セリウム研磨剤。   Dispersed in the medium cerium oxide particles having a particle diameter aspect ratio of 1 or more and 2 or less and 90% or more of primary particles showing an outline not including corners smaller than 120 ° C. as observed by a transmission electron microscope The cerium oxide abrasive | polishing agent containing the made slurry. スラリーが分散剤を含む請求項1記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 1, wherein the slurry contains a dispersant. 媒体が水である請求項1又は2記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 1 or 2, wherein the medium is water. 分散剤が水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンから選ばれる少なくとも1種である請求項2記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to claim 2, wherein the dispersant is at least one selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant and a water-soluble amine. スラリーのpHが7以上10以下のスラリーである請求項1〜4各項記載の酸化セリウム研磨剤。   The cerium oxide abrasive according to any one of claims 1 to 4, wherein the slurry has a pH of 7 or more and 10 or less. 請求項1〜5各項記載の酸化セリウム研磨剤で所定の基板を研磨することを特徴とする基板の研磨法。   A method for polishing a substrate, comprising polishing a predetermined substrate with the cerium oxide abrasive according to any one of claims 1 to 5. 所定の基板がSiO絶縁膜が形成された基板である請求項6記載の基板の研磨法。 The method for polishing a substrate according to claim 6, wherein the predetermined substrate is a substrate on which an SiO 2 insulating film is formed.
JP2004211976A 2004-07-20 2004-07-20 Ceric dioxide abrasive and substrate-polishing method Withdrawn JP2005012231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211976A JP2005012231A (en) 2004-07-20 2004-07-20 Ceric dioxide abrasive and substrate-polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211976A JP2005012231A (en) 2004-07-20 2004-07-20 Ceric dioxide abrasive and substrate-polishing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8258768A Division JPH10102039A (en) 1996-09-30 1996-09-30 Cerium oxide abrasive and grinding of substrate

Publications (2)

Publication Number Publication Date
JP2005012231A true JP2005012231A (en) 2005-01-13
JP2005012231A5 JP2005012231A5 (en) 2006-04-06

Family

ID=34101377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211976A Withdrawn JP2005012231A (en) 2004-07-20 2004-07-20 Ceric dioxide abrasive and substrate-polishing method

Country Status (1)

Country Link
JP (1) JP2005012231A (en)

Similar Documents

Publication Publication Date Title
JP4971731B2 (en) Polishing method of cerium oxide slurry and substrate
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JPH11181403A (en) Cerium oxide abrasive and grinding of substrate
JP2009051726A (en) Manufacturing method of cerium oxide, cerium oxide abrasive, grinding method of substrate therewith, and manufacturing method of semiconductor device
JPH10154672A (en) Cerium oxide abrasive material and polishing method of substrate
JP4972829B2 (en) CMP polishing agent and substrate polishing method
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10102040A (en) Cerium oxide abrasive and grinding of substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP2006191134A (en) Abrasive powder and polishing method of substrate
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JPH10298538A (en) Cerium oxide abrasive material and polishing of substrate
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JPH10106992A (en) Cerium oxide abrasive agent and polishing method of substrate
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP4356636B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JPH10106986A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106989A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2008132593A (en) Cerium oxide slurry, cerium oxide abrasive and base board polishing method
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP2005012231A (en) Ceric dioxide abrasive and substrate-polishing method
JP2003017447A (en) Cmp abrasives and method for polishing substrate
JP2004291232A (en) Cerium oxide abrasive and polishing method for substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080724