JP2006191134A - Abrasive powder and polishing method of substrate - Google Patents
Abrasive powder and polishing method of substrate Download PDFInfo
- Publication number
- JP2006191134A JP2006191134A JP2006035816A JP2006035816A JP2006191134A JP 2006191134 A JP2006191134 A JP 2006191134A JP 2006035816 A JP2006035816 A JP 2006035816A JP 2006035816 A JP2006035816 A JP 2006035816A JP 2006191134 A JP2006191134 A JP 2006191134A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- substrate
- abrasive
- cerium oxide
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 190
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 title claims description 50
- 239000000843 powder Substances 0.000 title abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 60
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 59
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 14
- 229920002125 Sokalan® Polymers 0.000 claims abstract description 11
- 239000004584 polyacrylic acid Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 51
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 38
- 239000002002 slurry Substances 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000004744 fabric Substances 0.000 claims description 18
- 239000011164 primary particle Substances 0.000 claims description 10
- 239000002270 dispersing agent Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 19
- 238000002955 isolation Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 12
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 96
- 239000004094 surface-active agent Substances 0.000 description 29
- 239000003945 anionic surfactant Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- -1 polyoxyethylene Polymers 0.000 description 3
- 239000011802 pulverized particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 2
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KHSBAWXKALEJFR-UHFFFAOYSA-H cerium(3+);tricarbonate;hydrate Chemical compound O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O KHSBAWXKALEJFR-UHFFFAOYSA-H 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- OPVLOHUACNWTQT-UHFFFAOYSA-N azane;2-dodecoxyethyl hydrogen sulfate Chemical compound N.CCCCCCCCCCCCOCCOS(O)(=O)=O OPVLOHUACNWTQT-UHFFFAOYSA-N 0.000 description 1
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical group Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、半導体素子製造技術に使用される研磨剤及び研磨法に関し、基板表面の平坦化工程、特に層間絶縁膜の平坦化工程、シャロー・トレンチ素子分離の形成工程等において使用される研磨剤及びこれらの研磨剤を使用した基板の研磨法に関する。 The present invention relates to a polishing agent and a polishing method used in a semiconductor element manufacturing technique, and a polishing agent used in a substrate surface flattening step, in particular, an interlayer insulating film flattening step, a shallow trench element isolation forming step, and the like. And a method of polishing a substrate using these abrasives.
現在のULSI半導体素子製造工程では、高密度・微細化のための加工技術が研究開発されている。その一つであるCMP(ケミカルメカニカルポリッシング)技術は、半導体素子の製造工程において、層間絶縁膜の平坦化、シャロー・トレンチ素子分離形成、プラグ及び埋め込み金属配線形成等を行う際に必須の技術となってきている。 In the current ULSI semiconductor device manufacturing process, processing technology for high density and miniaturization has been researched and developed. CMP (Chemical Mechanical Polishing) technology, which is one of them, is an indispensable technology for planarizing interlayer insulating films, forming shallow trench elements, forming plugs and buried metal wiring, etc. in the manufacturing process of semiconductor devices. It has become to.
従来、半導体素子の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成される酸化珪素絶縁膜等無機絶縁膜層を平坦化するための化学機械研磨剤としてフュームドシリカ系の研磨剤が一般的に検討されている。フュームドシリカ系の研磨剤は、シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長させ、pH調整を行って製造している。しかしながら、この様な研磨剤は、研磨速度が低く、パターンの平坦性が悪いという技術課題がある。 Conventionally, a fumed silica-based polishing agent as a chemical mechanical polishing agent for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD or low-pressure CVD in a manufacturing process of a semiconductor element Is generally considered. The fumed silica-based abrasive is produced by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting pH. However, such an abrasive has a technical problem that the polishing rate is low and the flatness of the pattern is poor.
従来の層間絶縁膜を平坦化するCMP技術では、研磨速度の基板上被研磨膜のパターン依存性が大きく、パターン密度差或いはサイズ差の大小により凸部の研磨速度が大きく異なり、また凹部の研磨も進行してしまうため、ウエハ面内全体での高いレベルの平坦化を実現することができないという技術課題があった。 In the conventional CMP technique for flattening the interlayer insulating film, the polishing rate depends greatly on the pattern of the film to be polished on the substrate, and the polishing rate of the convex portion differs greatly depending on the difference in pattern density or size difference. Therefore, there has been a technical problem that a high level of planarization cannot be realized over the entire wafer surface.
また、層間膜を平坦化するCMP技術では、層間膜の途中で研磨を終了する必要があり、研磨量の制御を研磨時間で行うプロセス管理方法が一般的に行われている。しかし、パターン段差形状の変化だけでなく、研磨布の状態等でも、研磨速度が顕著に変化してしまうため、プロセス管理が難しいという問題があった。 Further, in the CMP technique for flattening the interlayer film, it is necessary to finish the polishing in the middle of the interlayer film, and a process management method is generally performed in which the polishing amount is controlled by the polishing time. However, there is a problem that the process management is difficult because the polishing rate changes not only in the pattern step shape change but also in the state of the polishing cloth.
一方、デザインルール0.5μm以上の世代では、集積回路内の素子分離にLOCOS(シリコン局所酸化)が用いられてきたが、加工寸法の更なる微細化に伴い、素子分離幅のより小さいシャロー・トレンチ分離技術が採用されつつある。シャロー・トレンチ分離では、基板上に埋め込んだ余分な酸化珪素膜を除くためにCMPが必須な技術となる。素子分離の酸化珪素膜埋め込み部分以外には、マスク及びストッパーとして主に窒化珪素膜が形成されるため、CMP研磨剤の特性として酸化珪素膜と窒化珪素膜との研磨速度比(酸化珪素膜の研磨速度/窒化珪素膜の研磨速度)が大きいことが望ましい。しかし、従来のシリカ系の研磨剤は、研磨速度比が2〜3程度しかなく、プロセスマージンが充分に得られないという問題があった。 On the other hand, LOCOS (Silicon Local Oxidation) has been used for element isolation in integrated circuits in generations with design rules of 0.5 μm or more. Trench isolation technology is being adopted. In shallow trench isolation, CMP is an indispensable technique for removing an excess silicon oxide film embedded on a substrate. Since the silicon nitride film is mainly formed as a mask and a stopper other than the portion where the silicon oxide film is embedded in the element isolation, the polishing rate ratio between the silicon oxide film and the silicon nitride film (the silicon oxide film It is desirable that the polishing rate / the polishing rate of the silicon nitride film be high. However, the conventional silica-based polishing agent has a polishing rate ratio of only about 2 to 3, and has a problem that a process margin cannot be obtained sufficiently.
シリカ系研磨剤に比べ、酸化珪素膜の高い研磨速度が得られる酸化セリウム等を含む研磨剤も使用されている。しかし、研磨速度が高すぎるためにプロセス管理が難しい、研磨速度の基板上被研磨膜のパターン依存性が大きい等の問題があった。その他に、一般に比較的低い粒子濃度で使用されるために基板上の被研磨膜パターンが微細化するほど凸部が削れにくいという問題もあった。また、酸化セリウムを含む研磨剤は、シリカ系研磨剤の約2倍の酸化珪素膜と窒化珪素膜の研磨速度比が得られるが、それでも実用上充分とはいえない。 A polishing agent containing cerium oxide or the like that can obtain a high polishing rate of a silicon oxide film as compared with a silica-based polishing agent is also used. However, since the polishing rate is too high, the process management is difficult, and the dependency of the polishing rate on the pattern of the film to be polished on the substrate is large. In addition, since it is generally used at a relatively low particle concentration, there is a problem that the convex portion is less likely to be scraped as the pattern of the film to be polished on the substrate becomes finer. Further, a polishing agent containing cerium oxide can obtain a polishing rate ratio of a silicon oxide film to a silicon nitride film that is about twice that of a silica-based polishing agent, but it is still not practically sufficient.
本発明は、層間絶縁膜を平坦化するCMP技術において、酸化珪素膜の平坦化を効率的、高レベルにかつプロセス管理も容易に行うことができる研磨剤及び研磨法を提供するものである。また、一般的にシリカ系スラリーよりも低い粒子濃度で使用される酸化セリウム粒子を含むスラリーでの、シャロー・トレンチ分離等の微細パターンの凸部が削れにくいというの問題点を解決し、酸化珪素膜と窒化珪素膜との研磨速度比が大きいことが必要とされるシャロー・トレンチ分離の研磨にも適用可能である。 The present invention provides a polishing agent and a polishing method that can efficiently planarize a silicon oxide film at a high level and easily perform process management in a CMP technique for planarizing an interlayer insulating film. In addition, in the slurry containing cerium oxide particles generally used at a lower particle concentration than the silica-based slurry, the problem that the convex portion of the fine pattern such as shallow trench isolation is difficult to be removed is solved. The present invention is also applicable to shallow trench isolation polishing that requires a high polishing rate ratio between the film and the silicon nitride film.
本発明のCMP研磨剤は、酸化セリウム粒子、水、添加剤として陰イオン性界面活性剤を含む研磨剤である。そのpH及び粘度(mPa・s)が、pHをx座標、粘度をy座標とした(x,y)座標系において、A点(5.5,1.0)、B点(5.5,2.5)、C点(9.0,2.5)、D点(8.5,1.0)の4点で囲まれた領域範囲内にあるものであり、AA点(6.0,1.0)、BB点(6.0,1.4)、CC点(8.4,1.4)、DD点(7.5,1.0)の4点で囲まれた領域範囲内にあることがより好ましい。その結果、酸化珪素膜の平坦化を効率的、高レベルに、かつプロセス管理も容易に行うことができる。また、酸化珪素膜研磨速度と窒化珪素膜研磨速度の比が大きくなることにより、シャロー・トレンチ分離へ適用することも可能である。 The CMP polishing slurry of the present invention is a polishing slurry containing cerium oxide particles, water, and an anionic surfactant as an additive. The pH and viscosity (mPa · s) are represented by points A (5.5, 1.0), B (5.5, 5.5) in the (x, y) coordinate system in which the pH is the x coordinate and the viscosity is the y coordinate. 2.5), C point (9.0, 2.5), and D point (8.5, 1.0) are within the range of the area surrounded by 4 points, and AA point (6.0) , 1.0), BB point (6.0, 1.4), CC point (8.4, 1.4), DD point (7.5, 1.0). More preferably, it is within. As a result, planarization of the silicon oxide film can be performed efficiently, at a high level, and process management can be easily performed. Further, since the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate is increased, the present invention can be applied to shallow trench isolation.
研磨剤中の酸化セリウム粒子の一次粒子径(酸化セリウム粒子を構成する結晶子の径、電子顕微鏡による観察で測定することができる。)は5〜600nmであり、粒子径の中央値が100〜2000nmであることが好ましく、一次粒子径は30〜500nmであり、粒子径の中央値が150〜1500nmであることがより好ましい。陰イオン性界面活性剤は、有機高分子の陰イオン性界面活性剤、特に共重合成分としてアクリル酸アンモニウム塩が好ましく使用される。 The primary particle diameter of the cerium oxide particles in the abrasive (the diameter of the crystallites constituting the cerium oxide particles, which can be measured by observation with an electron microscope) is 5 to 600 nm, and the median particle diameter is 100 to 100 nm. It is preferably 2000 nm, the primary particle diameter is 30 to 500 nm, and the median particle diameter is more preferably 150 to 1500 nm. As the anionic surfactant, an organic polymer anionic surfactant, particularly, an ammonium acrylate salt is preferably used as a copolymerization component.
また、本発明により一定の幅で形成された凸部を有し表面に被研磨膜を形成した基板において、凸部の幅が5mm部分の研磨速度R5と凸部の幅が1mm部分の研磨速度R1の比R5/R1が、1≧R5/R1>0.65の範囲であり、かつ凸部の幅が3mm部分の研磨速度R3と凸部の幅が1mm部分の研磨速度R1の比R3/R1が、1≧R3/R1>0.8の範囲である研磨剤が提供される。 Further, according to the present invention, in a substrate having a convex portion formed with a constant width and having a film to be polished on the surface, a polishing rate R5 when the width of the convex portion is 5 mm and a polishing rate when the width of the convex portion is 1 mm. The ratio R3 / R1 of R1 is in the range of 1 ≧ R5 / R1> 0.65, and the ratio R3 / the polishing rate R3 when the width of the convex portion is 3 mm and the polishing rate R1 when the width of the convex portion is 1 mm. An abrasive in which R1 is in the range of 1 ≧ R3 / R1> 0.8 is provided.
本発明の基板の研磨法は、上記の研磨剤で所定の基板を研磨するものであり、所定の基板が、少なくとも酸化珪素膜が形成された半導体チップが使用される。本発明の基板の研磨法においては、研磨定盤の研磨布上に研磨剤を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨する工程において、被研磨膜を有する基板の研磨布への押しつけ圧力が100〜1000gf/cm2であることが好ましく、200〜500gf/cm2であることがより好ましい。 The substrate polishing method of the present invention is to polish a predetermined substrate with the above-described abrasive, and a semiconductor chip on which at least a silicon oxide film is formed is used as the predetermined substrate. In the substrate polishing method of the present invention, the polishing surface plate and the substrate are relatively moved while the substrate having the film to be polished is pressed against the polishing cloth while supplying the abrasive onto the polishing cloth of the polishing surface plate. by in the step of polishing the film is preferably pressed against the pressure of the polishing cloth substrate having a film to be polished is 100~1000gf / cm 2, more preferably 200~500gf / cm 2.
本発明の研磨剤及び研磨法により、、酸化珪素膜の平坦化を効率的、高レベルに、かつプロセス管理も容易に行うことができる。また、シャロー・トレンチ分離等の酸化珪素膜と窒化珪素膜との研磨速度比が要求されるにも研磨にも適用することができる。 With the abrasive and the polishing method of the present invention, the planarization of the silicon oxide film can be performed efficiently, at a high level, and process management can be easily performed. In addition, a polishing rate ratio between a silicon oxide film and a silicon nitride film, such as shallow trench isolation, is required, and it can be applied to polishing.
酸化セリウム粒子、水、添加剤として陰イオン性界面活性剤を含む研磨剤を用いて研磨を行うことにより、界面活性剤が基板上の被研磨膜表面を覆い、研磨粒子の被研磨膜表面への作用が阻害され、研磨が進行しなくなる。しかし、研磨荷重を大きくすることで機械的応力により、被研磨膜表面を覆った界面活性剤が排除されるために、研磨が進行するようになる。このような作用に起因した研磨速度の研磨荷重依存性に基づき、界面活性剤濃度と研磨荷重を調整することによって、被研磨膜のパターン形状に応じて実効研磨荷重の大きい凸部を選択的に研磨する特性を実現することができる。その結果、高効率、高レベルに層間絶縁膜の平坦化を実現することができる。また、平坦化された後の研磨速度はパターンのないブランケット膜の研磨速度に等しくなるため、その研磨速度が充分小さくなるように界面活性剤添加量及び研磨荷重を調整することによって、時間によるプロセス管理も容易に行うことができる。 By polishing with cerium oxide particles, water, and an abrasive containing an anionic surfactant as an additive, the surfactant covers the surface of the film to be polished on the substrate, and the surface of the film to be polished becomes the surface of the film to be polished. Is hindered and polishing does not proceed. However, by increasing the polishing load, the surfactant that covers the surface of the film to be polished is eliminated due to mechanical stress, so that polishing proceeds. By adjusting the surfactant concentration and the polishing load based on the polishing load dependency of the polishing rate due to such an action, a convex portion having a large effective polishing load is selectively selected according to the pattern shape of the film to be polished. The characteristic to polish can be realized. As a result, the planarization of the interlayer insulating film can be realized with high efficiency and high level. In addition, since the polishing rate after flattening becomes equal to the polishing rate of a blanket film without a pattern, by adjusting the amount of addition of the surfactant and the polishing load so that the polishing rate becomes sufficiently small, the process according to time Management is also easy.
パターン依存性の少ないグローバルな平坦化を実現するためには、パターン凹部の研磨速度が凸部の研磨速度に比べて充分小さい研磨特性が得られる範囲で、界面活性剤の添加量及びpHを調整する必要がある。研磨剤の粘度は、1.0〜2.5mPa・sの範囲であることが好ましく、1.0〜1.4mPa・sの方がより好ましい。研磨剤の粘度が高くなると、幅1mm以上の広い凸部の研磨速度が、幅1mm以下の凸部の研磨速度よりも小さくなる等、被研磨膜のパターン依存性が大きくなる傾向がある。本発明で、研磨剤の粘度は、ウベローデ粘度計により測定した動粘度と浮子式比重計により測定した比重から算出する。 In order to achieve global flatness with little pattern dependency, the amount of surfactant added and the pH are adjusted so that the polishing rate of the pattern recesses is sufficiently smaller than the polishing rate of the projections. There is a need to. The viscosity of the abrasive is preferably in the range of 1.0 to 2.5 mPa · s, more preferably 1.0 to 1.4 mPa · s. As the viscosity of the polishing agent increases, the pattern dependency of the film to be polished tends to increase, for example, the polishing rate of wide convex portions having a width of 1 mm or more is smaller than the polishing rate of convex portions having a width of 1 mm or less. In the present invention, the viscosity of the abrasive is calculated from the kinematic viscosity measured with an Ubbelohde viscometer and the specific gravity measured with a float type hydrometer.
pH5.5以上では酸化珪素膜の表面電位がマイナスに増加する。また、pH5.5以上の領域では、ポリアクリル酸アンモニウム塩等の界面活性剤は解離している。界面活性剤として、陰イオン性界面活性剤を添加剤とすることにより、被研磨膜の表面電位と界面活性剤の電気的反発により、研磨速度に適度な荷重依存性が得られる。研磨剤のpHが低いほど、酸化珪素膜表面と陰イオン性界面活性剤との電気的反発が弱く、より少ない界面活性剤添加量において研磨速度の荷重依存性が見られる。界面活性剤の添加量とともに粘度が増加するために、粘度を1.0〜1.4mPa・sの範囲内にしてパターン依存性の少ない平坦化特性を実現するためには、界面活性剤を添加した後の研磨剤のpHが5.5〜9の範囲であることが好ましく、6〜8.5の方がより好ましい。pH10以上では、酸化珪素膜表面と界面活性剤の反発が大きくなり、多量に添加しても研磨速度の荷重依存性が見られない。その結果、パターン凸部を選択的に研磨できないために、凸部を選択的に研磨する平坦化特性を実現できない。また、pH9以上では、凸部を選択的に研磨することが可能な研磨速度の荷重依存性を実現するために必要な界面活性剤添加量が多いために、結果的に粘度が高くなってしまい、パターン依存性の少ないグローバル平坦性を実現できない。一方、pH5.5以下では、酸化セリウム粒子が凝集しやすいために安定性がなく、充分な研磨速度も得られなくなる。本発明で、研磨剤のpHはpHメータ(例えば東亜電波(株)製 HM−11)により測定する。 Above pH 5.5, the surface potential of the silicon oxide film increases negatively. In addition, in the region of pH 5.5 or higher, surfactants such as ammonium polyacrylate are dissociated. By using an anionic surfactant as an additive as the surfactant, an appropriate load dependency can be obtained on the polishing rate due to the surface potential of the film to be polished and the electrical repulsion of the surfactant. The lower the pH of the polishing agent, the weaker the electric repulsion between the silicon oxide film surface and the anionic surfactant, and the load dependency of the polishing rate is seen with a smaller amount of added surfactant. Since the viscosity increases with the addition amount of the surfactant, the surfactant is added in order to realize the flattening characteristics with less pattern dependency by setting the viscosity within the range of 1.0 to 1.4 mPa · s. It is preferable that pH of the abrasive | polishing agent after having been in the range of 5.5-9, and 6-8.5 are more preferable. When the pH is 10 or more, the repulsion between the surface of the silicon oxide film and the surfactant increases, and no load dependency of the polishing rate is observed even when a large amount is added. As a result, since the pattern convex portions cannot be selectively polished, it is impossible to realize the flattening characteristic of selectively polishing the convex portions. In addition, when the pH is 9 or more, the amount of the surfactant added to realize the load dependency of the polishing rate capable of selectively polishing the convex portion is large, resulting in an increase in viscosity. Global flatness with little pattern dependency cannot be realized. On the other hand, at a pH of 5.5 or less, the cerium oxide particles are likely to aggregate, so that there is no stability and a sufficient polishing rate cannot be obtained. In the present invention, the pH of the abrasive is measured with a pH meter (for example, HM-11 manufactured by Toa Radio Co., Ltd.).
本発明の研磨剤では、酸化珪素膜と窒化珪素膜の研磨速度比も大きいために、シャロー・トレンチ分離の研磨に適用することもできる。その原因として、以下のような作用がある。pH5.5〜8.5の範囲では、窒化珪素膜の表面電位がプラス〜ゼロであり、酸化珪素膜との表面電位との違いが大きい。陰イオン性界面活性剤との電気的反発の差によって、窒化珪素膜表面の方が界面活性剤に覆われ易くなり、少ない界面活性剤添加量で研磨速度が低下する。その結果、酸化珪素膜と窒化珪素膜の研磨速度比が大きくなり、シャロー・トレンチ分離への適用が可能になる。pHが8.5以上では、窒化珪素膜の表面電位がマイナス側になり、酸化珪素膜との表面電位差が小さくなるために、研磨速度比が低減してしまう。特にpHが10以上では、研磨速度比が界面活性剤を添加しない酸化セリウムスラリーよりも小さくなってしまい、界面活性剤を添加する効果がなくなる。また、一般的にシリカ系スラリーに比べ、低い粒子濃度で使用される酸化セリウム粒子を含むスラリーでは、シャロー・トレンチ分離等の微細パターンの凸部が削れにくいという問題があるが、界面活性剤が被研磨膜表面を覆うことによって、酸化セリウム粒子が微細な凸部に効果的に作用するようになることによって解決される。 Since the polishing agent of the present invention has a large polishing rate ratio between the silicon oxide film and the silicon nitride film, it can also be applied to polishing for shallow trench isolation. The cause is as follows. In the range of pH 5.5 to 8.5, the surface potential of the silicon nitride film is plus to zero, and the difference from the surface potential with the silicon oxide film is large. Due to the difference in electrical repulsion from the anionic surfactant, the surface of the silicon nitride film is more easily covered with the surfactant, and the polishing rate is reduced with a small amount of added surfactant. As a result, the polishing rate ratio between the silicon oxide film and the silicon nitride film is increased, and application to shallow trench isolation becomes possible. When the pH is 8.5 or more, the surface potential of the silicon nitride film becomes negative, and the difference in surface potential from the silicon oxide film becomes small, so that the polishing rate ratio is reduced. In particular, when the pH is 10 or more, the polishing rate ratio becomes smaller than that of the cerium oxide slurry to which no surfactant is added, and the effect of adding the surfactant is lost. In addition, a slurry containing cerium oxide particles generally used at a lower particle concentration than a silica-based slurry has a problem that a convex portion of a fine pattern such as shallow / trench separation is difficult to be removed. The problem is solved by covering the surface of the film to be polished so that the cerium oxide particles effectively act on the fine convex portions.
研磨定盤の研磨布上に研磨剤を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨する研磨方法において、被研磨膜を有する基板の研磨布への押しつけ圧力は、主に界面活性剤添加量及びpHによって決定される研磨速度の荷重依存特性に応じて、パターン凹部に対し凸部が選択的に研磨される範囲に設定される必要がある。研磨布への押しつけ圧力は、100〜1000gf/cm2であることが好ましく、200〜500gf/cm2であることがより好ましい。研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、200〜500gf/cm2であることがより好ましい。研磨布への押しつけ圧力は、1000gf/cm2より大きいと研磨キズが発生しやすくなり、100gf/cm2未満では充分な研磨速度が得られない。 In a polishing method for polishing a film to be polished by relatively moving the polishing platen and the substrate while pressing the substrate having the film to be polished against the polishing cloth while supplying an abrasive onto the polishing cloth of the polishing table The pressing force of the substrate having the film to be polished on the polishing cloth is selectively polished by the convex portion with respect to the pattern concave portion according to the load-dependent characteristics of the polishing rate determined mainly by the addition amount and pH of the surfactant. Need to be set to a range. Pushing pressure on the polishing cloth is preferably 100~1000gf / cm 2, more preferably 200~500gf / cm 2. In order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern, it is more preferably 200 to 500 gf / cm 2 . If the pressure applied to the polishing cloth is greater than 1000 gf / cm 2 , polishing scratches are likely to occur, and if it is less than 100 gf / cm 2 , a sufficient polishing rate cannot be obtained.
一般に酸化セリウムは、炭酸塩、硫酸塩、蓚酸塩等のセリウム化合物を焼成することによって得られる。TEOS−CVD法等で形成される酸化珪素絶縁膜は酸化セリウムの1次粒子径が大きく、かつ結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子は、その製造方法を限定するものではないが、酸化セリウム一次粒子径中央値は5〜600nmであることが好ましく、30〜500nmであることがより好ましい。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。本発明で、一次粒子径は走査型電子顕微鏡(例えば(株)日立製作所製 S−900型)による観察で測定する。本発明の研磨剤は高純度のもので、Na、K、Si、Mg、Ca、Zr、Ti、Ni、Cr、Feはそれぞれ1ppm以下、Alは10ppm以下である。本発明において、酸化セリウム粒子を作製する方法として、その製造方法を限定するものではないが焼成法が使用できる。ただし、研磨傷が入らない粒子を作製するためにできるだけ結晶性を上げない低温焼成が好ましい。焼成された酸化セリウムは、乾式粉砕、湿式粉砕等で粉砕され、所定の粒度分布を得ることができる。 In general, cerium oxide is obtained by firing a cerium compound such as carbonate, sulfate, or oxalate. A silicon oxide insulating film formed by a TEOS-CVD method or the like can be polished at a higher speed as the primary particle diameter of cerium oxide is larger and the crystal distortion is smaller, that is, the better the crystallinity is, but polishing scratches are more likely to occur. Tend. Therefore, the production method of the cerium oxide particles used in the present invention is not limited, but the median cerium oxide primary particle diameter is preferably 5 to 600 nm, and more preferably 30 to 500 nm. Moreover, since it uses for semiconductor chip grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 1 ppm or less. In the present invention, the primary particle diameter is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). The abrasive | polishing agent of this invention is a highly purified thing, Na, K, Si, Mg, Ca, Zr, Ti, Ni, Cr, and Fe are 1 ppm or less respectively, and Al is 10 ppm or less. In the present invention, the method for producing cerium oxide particles is not limited, but a firing method can be used. However, low temperature firing that does not increase the crystallinity as much as possible is preferable in order to produce particles free from abrasive scratches. The calcined cerium oxide can be pulverized by dry pulverization, wet pulverization or the like to obtain a predetermined particle size distribution.
本発明における酸化セリウムスラリーは、上記の方法により製造された酸化セリウム粒子を含有する水溶液又はこの水溶液から回収した酸化セリウム粒子、水及び必要に応じて分散剤からなる組成物を分散させることによって得られる。ここで、酸化セリウム粒子の濃度には制限は無いが、懸濁液の取り扱い易さから0.5〜10重量%の範囲が好ましい。また分散剤としては、金属イオン類を含まないものとして、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類などが挙げられる。ポリアクリル酸アンモニウム塩、特に重量平均分子量2000〜20000のポリアクリル酸アンモニウム塩が好ましい。これらの分散剤の添加量は、スラリー中の粒子の分散性及び沈降防止性などから酸化セリウム粒子100重量部に対して0.01重量部から5重量部の範囲が好ましく、その分散効果を高めるためには分散処理時に分散機の中に粒子と同時に入れることが好ましい。 The cerium oxide slurry in the present invention is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method, or a composition comprising cerium oxide particles recovered from this aqueous solution, water and, if necessary, a dispersant. It is done. Here, although there is no restriction | limiting in the density | concentration of a cerium oxide particle, The range of 0.5 to 10 weight% is preferable from the ease of handling of suspension. The dispersant does not contain metal ions, and includes acrylic acid polymer and its ammonium salt, methacrylic acid polymer and its ammonium salt, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Water-soluble anionic surfactants such as ammonium lauryl ether sulfate, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and water-soluble amines such as monoethanolamine and diethanolamine It is done. Polyacrylic acid ammonium salts, particularly polyacrylic acid ammonium salts having a weight average molecular weight of 2000 to 20000 are preferred. The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the anti-settling property. In order to achieve this, it is preferable to place the particles in the disperser simultaneously with the particles during the dispersion treatment.
これらの酸化セリウム粒子を水中に分散させる方法としては、通常の攪拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミルなどを用いることができる。特に酸化セリウム粒子を1μm以下の微粒子として分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体攪拌式ミルなどの湿式分散機を用いることが好ましい。また、スラリーのアルカリ性を高めたい場合には、分散処理時又は処理後にアンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。 As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer. In particular, in order to disperse the cerium oxide particles as fine particles having a size of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibration ball mill, a planetary ball mill, or a medium stirring mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance that does not contain metal ions such as aqueous ammonia can be added during or after the dispersion treatment.
本発明の酸化セリウム研磨剤は、上記スラリ−をそのまま使用してもよいが、N,N−ジエチルエタノ−ルアミン、N,N−ジメチルエタノ−ルアミン、アミノエチルエタノ−ルアミン等の添加剤を添加して研磨剤とすることができる。 The cerium oxide abrasive of the present invention may use the above slurry as it is, but additives such as N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine are added. Thus, an abrasive can be obtained.
界面活性剤は、共重合成分としてアンモニウム塩を含む高分子分散剤等の水溶性陰イオン性界面活性剤から選ばれた少なくとも1種類以上の界面活性剤を使用する。水溶性陰イオン性界面活性剤としては、金属イオンを含まないものとして、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性の有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等を使用することができる。また、その他に水溶性非イオン性界面活性剤、水溶性陰イオン性界面活性剤、水溶性陽イオン性界面活性剤等を併用してもよい。これらの界面活性剤添加量は、酸化セリウムスラリー100重量部に対して、0.1重量部〜10重量部の範囲が好ましい。また、界面活性剤の分子量は、100〜50000が好ましく、2000〜20000がより好ましい。界面活性剤の添加方法としては、研磨直前に酸化セリウムスラリーに混合するのが好ましい。研磨装置のスラリー供給配管内で充分混合するような構造を施した場合には、酸化セリウムスラリー及び界面活性剤水溶液の供給速度を個別に調整し、配管内で所定濃度になるように混合することも可能である。界面活性剤添加後に長時間保存した場合、酸化セリウムスラリーの粒度分布が変化する場合があるが、研磨速度及び研磨傷等の研磨特性には顕著な影響が見られないため、界面活性剤の添加方法には制限はない。 As the surfactant, at least one surfactant selected from water-soluble anionic surfactants such as a polymer dispersant containing an ammonium salt as a copolymerization component is used. Water-soluble anionic surfactants include those that do not contain metal ions, methacrylic acid polymers and their ammonium salts, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, ammonium polyoxyethylene lauryl ether sulfate, etc. Can be used. In addition, a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant and the like may be used in combination. The amount of these surfactants added is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the cerium oxide slurry. The molecular weight of the surfactant is preferably 100 to 50000, more preferably 2000 to 20000. As a method for adding the surfactant, it is preferable to mix the cerium oxide slurry immediately before polishing. When a structure that mixes well in the slurry supply pipe of the polishing apparatus is applied, the supply speed of the cerium oxide slurry and the surfactant aqueous solution should be individually adjusted and mixed so as to have a predetermined concentration in the pipe. Is also possible. When stored for a long time after the addition of a surfactant, the particle size distribution of the cerium oxide slurry may change, but there is no significant effect on the polishing characteristics such as polishing rate and polishing scratches. There is no limit to the method.
こうして作製された研磨剤中の粒子の平均粒径は、100〜2000nmであることが好ましいく、150〜1500nmであることがより好ましい。酸化セリウム粒子の平均粒径が100nm未満であると研磨速度が低くなりすぎ、2000nmを越えると被研磨膜に傷が発生しやすくなるからである。本発明で、研磨剤中粒子の粒径の測定は、レーザ回折式粒度分布計(例えば(株)MALVERN製 MASTER SIZER)で測定する。 The average particle size of the particles in the abrasive thus prepared is preferably 100 to 2000 nm, and more preferably 150 to 1500 nm. This is because if the average particle size of the cerium oxide particles is less than 100 nm, the polishing rate becomes too low, and if it exceeds 2000 nm, the film to be polished is likely to be damaged. In the present invention, the particle size of the particles in the abrasive is measured with a laser diffraction particle size distribution analyzer (for example, MASTER SIZER manufactured by MALVERN).
本発明の酸化セリウム研磨剤が使用される無機絶縁膜の作製方法として、定圧CVD法、プラズマCVD法等が挙げられる。定圧CVD法による酸化珪素絶縁膜形成は、Si源としてモノシラン:SiH4、酸素源として酸素:O2を用いる。このSiH4−O2系酸化反応を400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH4−O2−PH3系反応ガスを用いることが好ましい。プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH4、酸素源としてN2Oを用いたSiH4−N2O系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O2系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明の酸化珪素絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。同様に、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiH2Cl2、窒素源としてアンモニア:NH3を用いる。このSiH2Cl2−NH3系酸化反応を900℃の高温で行わせることにより得られる。プラズマCVD法は、Si源としてSiH4、窒素源としてNH3を用いたSiH4−NH3系ガスが挙げられる。基板温度は300〜400℃が好ましい。 Examples of a method for manufacturing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used include a constant pressure CVD method and a plasma CVD method. Formation of the silicon oxide insulating film by the constant pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. It can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, elements such as phosphorus and boron may be doped in the silicon oxide insulating film of the present invention. Similarly, silicon nitride film formation by low pressure CVD uses dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source. It can be obtained by performing this SiH 2 Cl 2 —NH 3 oxidation reaction at a high temperature of 900 ° C. Examples of the plasma CVD method include SiH 4 —NH 3 gas using SiH 4 as a Si source and NH 3 as a nitrogen source. The substrate temperature is preferably 300 to 400 ° C.
所定の基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に酸化珪素膜或いは酸化珪素膜及び窒化珪素膜が形成された基板が使用できる。このような半導体基板上に形成された酸化珪素膜層を上記酸化セリウム研磨剤で研磨することによって、酸化珪素膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。シャロー・トレンチ分離の場合には、酸化珪素膜層の凹凸を解消しながら下層の窒化珪素層まで研磨することによって、素子分離部に埋め込んだ酸化珪素膜のみを残す。この際、ストッパーとなる窒化珪素との研磨速度比が大きければ、研磨のプロセスマージンが大きくなる。また、シャロー・トレンチ分離に使用するためには、研磨時に傷発生が少ないことも必要である。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布には研磨剤が溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は半導体が飛び出さない様に100rpm以下の低回転が好ましい。被研磨膜を有する半導体基板の研磨布への押しつけ圧力が100〜1000gf/cm2であることが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、200〜500gf/cm2であることがより好ましい。研磨している間、研磨布には研磨剤をポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。 As the predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a semiconductor substrate such as a semiconductor substrate at a stage where a circuit element is formed, a silicon oxide film or a silicon oxide film and a silicon nitride film. The formed substrate can be used. By polishing the silicon oxide film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the silicon oxide film layer is eliminated, so that the entire surface of the semiconductor substrate is smooth. In the case of shallow trench isolation, only the silicon oxide film embedded in the element isolation portion is left by polishing the underlying silicon nitride layer while eliminating the unevenness of the silicon oxide film layer. At this time, if the polishing rate ratio with the silicon nitride serving as a stopper is large, the polishing process margin becomes large. In addition, in order to use for shallow trench isolation, it is also necessary to reduce the generation of scratches during polishing. Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is subjected to groove processing so that an abrasive is collected. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 100 rpm or less so that the semiconductor does not jump out. The pressure applied to the polishing cloth of the semiconductor substrate having the film to be polished is preferably 100 to 1000 gf / cm 2. In order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern, the pressure is 200 to 500 gf. / Cm 2 is more preferable. During polishing, an abrasive is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, It is preferable that the surface of polishing cloth is always covered with the abrasive | polishing agent.
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして、Si基板上にシャロー・トレンチ分離を形成したあと、酸化珪素絶縁膜層及びその上にアルミニウム配線を形成し、その上に形成した酸化珪素膜を平坦化する。平坦化された酸化珪素膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法により酸化珪素膜を形成後、上記酸化セリウム研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. In this manner, after forming shallow trench isolation on the Si substrate, a silicon oxide insulating film layer and an aluminum wiring are formed thereon, and the silicon oxide film formed thereon is planarized. A second-layer aluminum wiring is formed on the planarized silicon oxide film layer, and a silicon oxide film is formed again between the wirings and on the wiring by the above method, followed by polishing with the cerium oxide abrasive. By doing so, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.
本発明の酸化セリウム研磨剤は、半導体基板に形成された酸化珪素膜や窒化珪素膜だけでなく、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。 The cerium oxide abrasive of the present invention is not limited to a silicon oxide film or a silicon nitride film formed on a semiconductor substrate, but an inorganic insulating film such as a silicon oxide film, glass, or silicon nitride formed on a wiring board having a predetermined wiring. Optical glass such as photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits composed of glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It is used for polishing optical single crystals, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, magnetic heads, and the like.
実施例1
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径(結晶子径)を測定したところ、体積分布の中央値が190nm、最大値が500nmであった。酸化セリウム粉末1kgを粉砕した。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1〜3μmの大きな粉砕残り粒子と0.5〜1μmの粉砕残り粒子が混在していた。
Example 1
(Production of cerium oxide particles)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate into a platinum container and firing in air at 800 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter (crystallite diameter) of cerium oxide surrounded by the grain boundaries was measured, the median value of the volume distribution was 190 nm and the maximum value was 500 nm. 1 kg of cerium oxide powder was pulverized. Observation of the pulverized particles with a scanning electron microscope revealed that in addition to small particles having a size equivalent to the primary particle size, large pulverized residual particles of 1 to 3 μm and residual pulverized particles of 0.5 to 1 μm were mixed.
(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施した。得られたスラリーをろ過し、さらに脱イオン水を加えることにより5wt.%スラリーを得た。スラリーpHは8.3であった。上記の酸化セリウムスラリー(固形分:5重量%)600gと界面活性剤としてpH6.5で分子量5000のポリアクリル酸(100%)アンモニウム塩水溶液(40重量%)135gと脱イオン水2265gを混合して、界面活性剤を添加した酸化セリウム研磨剤(固形分:1重量%)を作製した。その研磨剤pHは7.0であり、ウベローデ粘度計及び比重計の測定値から算出した粘度は1.19mPa・sであった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が260nmであった。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered and further deionized water was added to add 5 wt. % Slurry was obtained. The slurry pH was 8.3. A mixture of 600 g of the above cerium oxide slurry (solid content: 5 wt%), 135 g of a polyacrylic acid (100%) ammonium salt aqueous solution (40 wt%) having a pH of 6.5 and a molecular weight of 5000 as a surfactant and 2265 g of deionized water. Thus, a cerium oxide abrasive (solid content: 1% by weight) to which a surfactant was added was prepared. The abrasive pH was 7.0, and the viscosity calculated from the measured values of the Ubbelohde viscometer and the specific gravity meter was 1.19 mPa · s. Further, in order to measure the particles in the abrasive with a laser diffraction particle size distribution meter, the particles were measured by diluting to an appropriate concentration. As a result, the median particle diameter was 260 nm.
(絶縁膜層の研磨)
直径200mmSi基板上にLine/Space幅が0.05〜5mmで高さが1000nmのAl配線Line部を形成した後、その上にTEOS−プラズマCVD法で酸化珪素膜を2000nm形成したパターンウエハを作製する。保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記パターンウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工荷重を300gf/cm2に設定した。定盤上に上記の酸化セリウム研磨剤(固形分:1重量%)を200cc/minの速度で滴下しながら、定盤及びウエハを50rpmで2分間回転させ、絶縁膜を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。同様に、研磨時間を3分、4分、5分、6分にして上記パターンウエハの研磨を行った。光干渉式膜厚測定装置を用いて、研磨前後の膜厚差を測定し、研磨速度を計算した。Line/Space幅1mmのLine部分の研磨速度R1とLine/Space幅3mmのLine部分の研磨速度R3、及びLine/Space幅5mmのLine部分の研磨速度R5との研磨速度比R5/R1及びR3/R1は、研磨時間2〜4分の間は、研磨時間とともに値が大きくなり、研磨時間4〜6分ではほぼ一定であった。研磨速度のパターン幅依存性が一定になった研磨時間4分の場合、Line/Space幅1mmのLine部分の研磨速度R1は344nm/分(研磨量1377nm)、Line/Space幅3mmのLine部分の研磨速度R3は335nm/分(研磨量1338nm)、Line/Space幅5mmのLine部分の研磨速度R5は315nm/分(研磨量1259nm)であり、研磨速度比R5/R1及びR3/R1は、それぞれ0.91及び0.97であった。また、研磨時間が5分、6分の場合の各Line/Space幅のLine部分の研磨量は4分の場合とほぼ同じであり、4分以降研磨がほとんど進行していないことがわかった。
(Polishing the insulating film layer)
An Al wiring Line portion having a Line / Space width of 0.05 to 5 mm and a height of 1000 nm is formed on a Si substrate having a diameter of 200 mm, and then a patterned wafer having a silicon oxide film of 2000 nm formed thereon by TEOS-plasma CVD is manufactured. To do. Set the pattern wafer on the holder to which the suction pad for mounting the substrate to be held is pasted, place the holder with the insulating film side down on the surface plate to which the polishing pad made of porous urethane resin is pasted, and further process The load was set to 300 gf / cm 2 . While the above cerium oxide abrasive (solid content: 1% by weight) was dropped on the surface plate at a speed of 200 cc / min, the surface plate and the wafer were rotated at 50 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. Similarly, the pattern wafer was polished at a polishing time of 3, 4, 5, and 6 minutes. Using an optical interference type film thickness measuring device, the film thickness difference before and after polishing was measured, and the polishing rate was calculated. Polishing speed ratios R5 / R1 and R3 / of the polishing rate R1 of the Line portion with a Line / Space width of 1 mm, the polishing rate R3 of the Line portion with a Line / Space width of 3 mm, and the polishing rate R5 of the Line portion with a Line / Space width of 5 mm. The value of R1 increased with the polishing time during the polishing time of 2 to 4 minutes, and was almost constant at the polishing time of 4 to 6 minutes. When the polishing time is 4 minutes when the pattern width dependency of the polishing rate is constant, the polishing rate R1 of the Line portion with a Line / Space width of 1 mm is 344 nm / min (polishing amount 1377 nm), and the Line portion with a Line / Space width of 3 mm is used. The polishing rate R3 is 335 nm / min (polishing amount 1338 nm), the polishing rate R5 of the Line portion having a Line / Space width of 5 mm is 315 nm / min (polishing amount 1259 nm), and the polishing rate ratios R5 / R1 and R3 / R1 are respectively 0.91 and 0.97. In addition, the polishing amount of the Line portion of each Line / Space width when the polishing time was 5 minutes and 6 minutes was almost the same as that in the case of 4 minutes, and it was found that polishing was hardly progressing after 4 minutes.
実施例2
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、700℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、体積分布の中央値が30nm、最大値が80nmであった。酸化セリウム粉末1kgを粉砕した。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、2〜4ミクロンの大きな粉砕残り粒子と0.5〜1.2μmの粉砕残り粒子が混在していた。
Example 2
(Production of cerium oxide particles)
About 1 kg of yellowish white powder was obtained by putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 700 ° C. for 2 hours. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the volume distribution was 30 nm, and the maximum value was 80 nm. 1 kg of cerium oxide powder was pulverized. When the pulverized particles were observed with a scanning electron microscope, a large pulverized residual particle of 2 to 4 microns and a pulverized residual particle of 0.5 to 1.2 μm were mixed in addition to a small particle having the same size as the primary particle size. It was.
(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施した。得られたスラリーをろ過をし、さらに脱イオン水を加えることにより5wt.%研磨剤を得た。スラリーpHは8.3であった。上記の酸化セリウムスラリー(固形分:5重量%)600gと界面活性剤としてpH6.5で分子量15,000のポリアクリル酸(100%)アンモニウム塩水溶液(40重量%)210gと脱イオン水2190gを混合して、界面活性剤を添加した酸化セリウム研磨剤(固形分:1重量%)を作製した。その研磨剤pHは6.8であり、ウベローデ粘度計及び比重計の測定値から算出した粘度は1.50mPa・sであった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が350nmであった。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered, and further deionized water was added thereto to add 5 wt. % Abrasive was obtained. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5 wt%), 210 g of a polyacrylic acid (100%) ammonium salt aqueous solution (40 wt%) having a pH of 6.5 and a molecular weight of 15,000 as a surfactant and 2190 g of deionized water The mixture was mixed to prepare a cerium oxide abrasive (solid content: 1% by weight) to which a surfactant was added. The abrasive pH was 6.8, and the viscosity calculated from the measured values of the Ubbelohde viscometer and the specific gravity meter was 1.50 mPa · s. Further, in order to measure the particles in the abrasive with a laser diffraction particle size distribution meter, the particles were measured at a suitable concentration, and as a result, the median particle diameter was 350 nm.
(絶縁膜層の研磨)
直径200mmSi基板上にLine/Space幅が0.05〜5mmで高さが1000nmのAl配線Line部を形成した後、その上にTEOS−プラズマCVD法で酸化珪素膜を2000nm形成したパターンウエハを作製する。保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記パターンウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工荷重を300g/cm2に設定した。定盤上に上記の酸化セリウムスラリー(固形分:1重量%)を200cc/minの速度で滴下しながら、定盤及びウエハを50rpmで2分間回転させ、絶縁膜を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。同様に、研磨時間を3分、4分、5分、6分にして上記パターンウエハの研磨を行った。光干渉式膜厚測定装置を用いて、研磨前後の膜厚差を測定し、研磨速度を計算した。Line/Space幅1mmのLine部分の研磨速度R1とLine/Space幅3mmのLine部分の研磨速度R3、及びLine/Space幅5mmのLine部分の研磨速度R5との研磨速度比R5/R1及びR3/R1は、研磨時間2〜4分の間は、研磨時間とともに値が大きくなり、研磨時間4〜6分ではほぼ一定であった。研磨速度のパターン幅依存性が一定になった研磨時間4分の場合、Line/Space幅1mmのLine部分の研磨速度R1は307nm/分(研磨量1229nm)、Line/Space幅3mmのLine部分の研磨速度R3は257nm/分(研磨量1027nm)、Line/Space幅5mmのLine部分の研磨速度R5は200nm/分(研磨量801nm)であり、研磨速度比R5/R1及びR3/R1は、それぞれ0.65及び0.84であった。また、研磨時間が5分、6分の場合の各Line/Space幅のLine部分の研磨量は4分の場合とほぼ同じであり、4分以降研磨がほとんど進行していないことがわかった。
(Polishing the insulating film layer)
An Al wiring Line portion having a Line / Space width of 0.05 to 5 mm and a height of 1000 nm is formed on a Si substrate having a diameter of 200 mm, and then a patterned wafer having a silicon oxide film of 2000 nm formed thereon by TEOS-plasma CVD is manufactured. To do. Set the pattern wafer on the holder to which the suction pad for mounting the substrate to be held is pasted, place the holder with the insulating film side down on the surface plate to which the polishing pad made of porous urethane resin is pasted, and further process the load was set to 300g / cm 2. While the cerium oxide slurry (solid content: 1% by weight) was dropped onto the surface plate at a speed of 200 cc / min, the surface plate and the wafer were rotated at 50 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. Similarly, the pattern wafer was polished at a polishing time of 3, 4, 5, and 6 minutes. Using an optical interference type film thickness measuring device, the film thickness difference before and after polishing was measured, and the polishing rate was calculated. Polishing speed ratios R5 / R1 and R3 / of the polishing rate R1 of the Line portion with a Line / Space width of 1 mm, the polishing rate R3 of the Line portion with a Line / Space width of 3 mm, and the polishing rate R5 of the Line portion with a Line / Space width of 5 mm. The value of R1 increased with the polishing time during the polishing time of 2 to 4 minutes, and was almost constant at the polishing time of 4 to 6 minutes. When the polishing time is 4 minutes when the pattern width dependency of the polishing rate is constant, the polishing rate R1 of the Line portion with the Line / Space width of 1 mm is 307 nm / min (polishing amount 1229 nm), and the Line portion with the Line / Space width of 3 mm is The polishing rate R3 is 257 nm / min (polishing amount 1027 nm), the polishing rate R5 of the Line portion having a Line / Space width of 5 mm is 200 nm / min (polishing amount 801 nm), and the polishing rate ratios R5 / R1 and R3 / R1 are respectively 0.65 and 0.84. In addition, the polishing amount of the Line portion of each Line / Space width when the polishing time was 5 minutes and 6 minutes was almost the same as that in the case of 4 minutes, and it was found that polishing was hardly progressing after 4 minutes.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006035816A JP2006191134A (en) | 2006-02-13 | 2006-02-13 | Abrasive powder and polishing method of substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006035816A JP2006191134A (en) | 2006-02-13 | 2006-02-13 | Abrasive powder and polishing method of substrate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004039033A Division JP2004158885A (en) | 2004-02-16 | 2004-02-16 | Polishing agent and method for polishing substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006191134A true JP2006191134A (en) | 2006-07-20 |
Family
ID=36797882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006035816A Withdrawn JP2006191134A (en) | 2006-02-13 | 2006-02-13 | Abrasive powder and polishing method of substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006191134A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008041781A (en) * | 2006-08-02 | 2008-02-21 | Fujimi Inc | Composition for polishing, and polishing method |
JP2008294398A (en) * | 2007-04-23 | 2008-12-04 | Kao Corp | Polishing liquid composition |
JP2010016064A (en) * | 2008-07-01 | 2010-01-21 | Kao Corp | Polishing liquid composition |
JP2010016063A (en) * | 2008-07-01 | 2010-01-21 | Kao Corp | Polishing liquid composition |
-
2006
- 2006-02-13 JP JP2006035816A patent/JP2006191134A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008041781A (en) * | 2006-08-02 | 2008-02-21 | Fujimi Inc | Composition for polishing, and polishing method |
JP2008294398A (en) * | 2007-04-23 | 2008-12-04 | Kao Corp | Polishing liquid composition |
JP2010016064A (en) * | 2008-07-01 | 2010-01-21 | Kao Corp | Polishing liquid composition |
JP2010016063A (en) * | 2008-07-01 | 2010-01-21 | Kao Corp | Polishing liquid composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5023626B2 (en) | Polishing method of cerium oxide slurry and substrate | |
JPH10106994A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
JP2009182344A (en) | Cerium oxide abrasive and method of polishing substrate | |
JP4972829B2 (en) | CMP polishing agent and substrate polishing method | |
JP3725357B2 (en) | Element isolation formation method | |
JP2006191134A (en) | Abrasive powder and polishing method of substrate | |
JPH10106988A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
JPH10102040A (en) | Cerium oxide abrasive and grinding of substrate | |
JP2000160137A (en) | Polishing agent and polishing process using the same | |
JP2000160136A (en) | Polishing agent and polishing process using the same | |
JPH10106990A (en) | Cerium oxide abrasive material and polishing method of substrate | |
JPH10106987A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
JP4407592B2 (en) | Abrasive | |
JP2009266882A (en) | Abrasive powder, polishing method of base using same, and manufacturing method of electronic component | |
JP2009010406A (en) | Abrasive powder and polishing method for substrate | |
JPH10102038A (en) | Cerium oxide abrasive and grinding of substrate | |
JP2003158101A (en) | Cmp abrasive and manufacturing method therefor | |
JPH10106991A (en) | Cerium oxide abrasive powder, and polishing method of substrate | |
JP4776387B2 (en) | Cerium oxide abrasive and substrate polishing method | |
JP4123730B2 (en) | Cerium oxide abrasive and substrate polishing method using the same | |
JP2004158885A (en) | Polishing agent and method for polishing substrate | |
JP4776388B2 (en) | Cerium oxide abrasive and substrate polishing method | |
JP2003017447A (en) | Cmp abrasives and method for polishing substrate | |
JPH10106986A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
JP2001308043A (en) | Cmp-polishing agent and polishing method for substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20080523 |