JP2007035636A - Rotating anode and manufacturing method of cooling body for rotating anode - Google Patents

Rotating anode and manufacturing method of cooling body for rotating anode Download PDF

Info

Publication number
JP2007035636A
JP2007035636A JP2006201708A JP2006201708A JP2007035636A JP 2007035636 A JP2007035636 A JP 2007035636A JP 2006201708 A JP2006201708 A JP 2006201708A JP 2006201708 A JP2006201708 A JP 2006201708A JP 2007035636 A JP2007035636 A JP 2007035636A
Authority
JP
Japan
Prior art keywords
cooling body
preform
carbon
rotating anode
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006201708A
Other languages
Japanese (ja)
Other versions
JP5013767B2 (en
Inventor
Roland Weiss
ローランド・ヴアイス
Thorsten Scheibel
トールステン・シャイベル
Marco Ebert
マルコ・エーベルト
Martin Henrich
マルチン・ヘンリッヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schunk Kohlenstofftechnik GmbH
Original Assignee
Schunk Kohlenstofftechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schunk Kohlenstofftechnik GmbH filed Critical Schunk Kohlenstofftechnik GmbH
Publication of JP2007035636A publication Critical patent/JP2007035636A/en
Application granted granted Critical
Publication of JP5013767B2 publication Critical patent/JP5013767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray rotating anode made of a carbon fiber material for obtaining high thermal conductivity, and also to provide a manufacturing method of a rotating anode cooling body. <P>SOLUTION: The rotating anode of an X-ray tube is made of a carbon fiber material and includes a cooling body coaxially surrounding a rotation axis and formed in rotation symmetry. A base of the cooling body (14) is a preform manufactured by a tailored fiber placement method (TFP) to obtain high thermal conductivity, the cooling body has a hollow cylindrical shape and is formed integrally, the carbon fiber is extended in parallel or nearly parallel with an axis line (16) throughout the entire length, a thermal conductive rate λ with λ≥250W/mK is provided, the carbon fiber is joined by a base material consisting of carbon, and graphite microcrystals of the base material are aligned along the carbon fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回転軸があって、炭素繊維が回転軸に沿って通る炭素繊維材料からなり、回転軸を同軸に取り囲む、回転対称に形成された冷却体と、回転軸を横切って伸びる集束リングとを具備する、特にX線管の回転陽極に関する。また本発明は、回転軸の周りに回転可能な回転陽極の、軸に沿って伸びる高い熱伝導率の炭素繊維を有する回転対称な冷却体の製造方法に関する。   The present invention includes a rotationally symmetrical cooling body having a rotational axis and made of a carbon fiber material in which carbon fibers pass along the rotational axis, and coaxially surrounding the rotational axis, and a focusing ring extending across the rotational axis. In particular, the present invention relates to a rotating anode of an X-ray tube. The present invention also relates to a method of manufacturing a rotationally symmetric cooling body having a high-conductivity carbon fiber extending along an axis of a rotating anode rotatable around a rotating axis.

冒頭に挙げた種類の冷却体を有する回転陽極はドイツ特許DE−B−10304936により周知である。集束リング即ちターゲット表面に生じる高温を十分に排出するために、冷却体はカップ状の幾何学的形状を有し、冷却体の内部に通る高い熱伝導率の炭素繊維を、ターゲットの下側でも、回転軸と同軸に通り、冷却剤が貫流する冷却管のかたわらでも、鈍角で終わらせる。   A rotating anode with a cooling body of the type mentioned at the outset is known from German patent DE-B-10304936. The cooling body has a cup-like geometry to sufficiently discharge the high temperature generated on the focusing ring or target surface, and the high thermal conductivity carbon fibers that pass through the interior of the cooling body are connected to the lower side of the target. In addition to the cooling pipe through which the coolant flows through the same axis as the axis of rotation, it ends at an obtuse angle.

互いに平行に伸びる炭素繊維を炭素基質で結合した炭素複合体によって熱伝導結合が行われる回転陽極が米国特許US−A−5,943,389により周知である。炭素繊維の熱伝導率は400W/mKないし1000W/mKの範囲である。   A rotating anode is known from U.S. Pat. No. 5,943,389, in which heat conduction is achieved by a carbon composite in which carbon fibers extending parallel to each other are bonded by a carbon substrate. The thermal conductivity of the carbon fiber is in the range of 400 W / mK to 1000 W / mK.

炭素繊維を含む成形品、いわゆるプリプレグで構成された回転陽極が日本特許公開JP−A−61−022546で明らかである。その場合、繊維は1つの方向に通ることが可能である。   A molded article containing carbon fiber, a rotating anode composed of a so-called prepreg, is apparent from Japanese Patent Publication JP-A-61-022546. In that case, the fibers can pass in one direction.

X線管のための回転陽極がドイツ特許DE−B−4012019により周知である。回転陽極は中空の陽極ディスクを有し、中空に形成されたシャフトを経て陽極ディスクに冷却液が供給される。   A rotating anode for an X-ray tube is known from German patent DE-B-4012019. The rotating anode has a hollow anode disk, and the coolant is supplied to the anode disk through a hollow shaft.

回転陽極で熱の排出のために、繊維複合材が効果的であることは実証済みである。繊維複合材は通常使用される金属体に比して軽いため、回転陽極が高い周波数で回転し、及び/又は大きな直径を有することができるからである。ところが実際経験が明らかにしたところでは、こうした排熱は高度に発達したX線装置、特にCT装置の要求を十分に満足しない。依然として温度上昇が生じ、このため操作の頻繁な中断が必要になるからである。さらに炭素複合材を利用する周知の回転陽極は、冷媒が貫流する補助冷却管を組み込まなければならないことが多いので、当該の回転陽極の構造が高価なことが欠点である。   It has been proven that fiber composites are effective for heat removal at the rotating anode. This is because the fiber composite material is lighter than a normally used metal body, so that the rotating anode can rotate at a high frequency and / or have a large diameter. However, as actual experience has revealed, such exhaust heat does not sufficiently satisfy the requirements of highly developed X-ray devices, particularly CT devices. This is because the temperature still increases and this requires frequent interruptions in operation. Furthermore, known rotary anodes using carbon composites often have to incorporate an auxiliary cooling tube through which the refrigerant flows, so the disadvantage is that the rotary anode structure is expensive.

ブレーキライニング又は電子装置のための欧州特許公開EP−A−0629593による冷却体は、炭素材料からなる基質を有する炭素繊維製のプリフォームを有する。炭素繊維は互いに平行に伸びている。プリフォームの作製のために、まずピッチ繊維を巻枠の胴体の周りに巻き取って円筒体を形成し、次にこれを断片に切断し、続いて平らに折り曲げる。次に平坦なプリフォームプレートを炭化及び黒鉛化する。   The cooling body according to EP-A-0629593 for brake linings or electronic devices has a carbon fiber preform with a substrate made of carbon material. Carbon fibers extend parallel to each other. To make the preform, the pitch fibers are first wound around the body of the reel to form a cylinder, which is then cut into pieces and subsequently folded flat. The flat preform plate is then carbonized and graphitized.

本発明の課題は、高い熱伝導率が得られ、このため冷却体により冷却される回転陽極を周知の回転陽極に比してより長い時間にわたって中断なく利用できるように、冒頭に挙げた種類の回転陽極の冷却体及び冷却体の製造方法を改良することにある。また回転陽極を高い周波数で回転し及び/又は大きな直径で形成することができるように、冷却体は小さな重量を有するようにすることも本発明の課題である。   The object of the present invention is to obtain a high thermal conductivity, so that the rotating anode cooled by the cooling body can be used without interruption for a longer time than known rotating anodes. It is in improving the cooling body of a rotating anode, and the manufacturing method of a cooling body. It is also an object of the present invention to make the cooling body have a small weight so that the rotating anode can be rotated at a high frequency and / or formed with a large diameter.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題解決のために、冒頭に挙げた種類の回転陽極は、本発明において、次のように改良される。即ち冷却体のベースはテーラード・ファイバー・プレースメント法(TFP)で製造されたプリフォームであり、冷却体は中空円筒形を有し、一体に形成されており、炭素繊維が全長にわたって軸と平行又はおおむね平行であり、λ≧250W/m・Kの熱伝導率λを有し、炭素を含む基質によって炭素繊維が結合され、基質の黒鉛微結晶が炭素繊維に沿って整列されている。   In order to solve the above problems, the rotary anode of the type mentioned at the beginning is improved in the present invention as follows. That is, the base of the cooling body is a preform manufactured by the tailored fiber placement method (TFP), the cooling body has a hollow cylindrical shape, is integrally formed, and the carbon fiber is parallel to the axis over the entire length. Alternatively, they are generally parallel, have a thermal conductivity λ of λ ≧ 250 W / m · K, carbon fibers are bonded by a substrate containing carbon, and the graphite microcrystals of the substrate are aligned along the carbon fibers.

本発明に基づき、炭素繊維が全長にわたって陽極体の回転軸と平行又はおおむね平行に配列され、回転陽極の集束リングと−とりわけ原則として直接に−接触する冷却体が利用される。また炭素繊維を結合する炭素基質の黒鉛微結晶が繊維に沿って整列され、それによって250W/mK以上、特に600W/mK以上、とりわけ600W/mKないし650W/mKの範囲の高い熱伝導率が得られる。また黒鉛微結晶は炭素繊維に付加されているから、これによって熱伝導率が高められる。そこで冷却体自体から、即ち集束リングに関して反対側の端面から熱が放射される。冷却液が貫流する補助冷却路は不要である。   In accordance with the invention, a cooling body is used in which the carbon fibers are arranged over the entire length parallel or generally parallel to the axis of rotation of the anode body and in contact with the focusing ring of the rotating anode, in particular directly in principle. Also, the carbon substrate graphite microcrystals that bind the carbon fibers are aligned along the fibers, thereby obtaining a high thermal conductivity in the range of 250 W / mK or more, especially 600 W / mK or more, especially 600 W / mK to 650 W / mK. It is done. Moreover, since the graphite microcrystal is added to the carbon fiber, this increases the thermal conductivity. Heat is then radiated from the cooling body itself, ie from the opposite end face with respect to the focusing ring. There is no need for an auxiliary cooling path through which the coolant flows.

一体に形成された冷却体は中空円筒の形状を有し、安定化のために支持リングがその外周面及び/又は内面に沿って通ることができる。支持リングは例えば冷却体に圧着される。支持リングは炭素繊維材料(CFC)からなることが好ましい。   The integrally formed cooling body has the shape of a hollow cylinder, and a support ring can pass along its outer and / or inner surface for stabilization. The support ring is pressure-bonded to the cooling body, for example. The support ring is preferably made of a carbon fiber material (CFC).

このこととは別に、冷却体のベースはテーラード・ファイバー・プレースメント(TFP)法で製造されたプリフォームである。そのために特にエンドレス炭素長繊維又は炭素長繊維が織物下地に縫着され、その際繊維は雷文状に配置されるから、湾曲した端部を除き繊維は互いに平行に整列されている。こうして作られたプリフォームの熱処理の前に、湾曲した端部を切り取る。炭素長繊維は、湾曲した端部がテープ状の織物下地から横へ張り出すように、織物下地に逢着することが好ましい。炭素長繊維を逢着した後に織物下地をテープに細分して、複数のベースをTFP法で同時に製造し、次にこれを円筒体に巻いて、冷却体を作製することももちろん可能である。   Apart from this, the base of the cooling body is a preform manufactured by the tailored fiber placement (TFP) method. For this purpose, in particular endless carbon long fibers or carbon long fibers are sewn to the fabric substrate, in which case the fibers are arranged in a lightning pattern, so that the fibers are aligned parallel to each other except for the curved ends. Prior to heat treatment of the preform thus made, the curved end is cut off. The carbon long fiber is preferably attached to the fabric base so that the curved end portion projects laterally from the tape-shaped fabric base. It is of course possible to subdivide the fabric base into a tape after the carbon long fibers have been deposited, and simultaneously produce a plurality of bases by the TFP method and then wrap them around a cylindrical body to produce a cooling body.

そこで本発明は、回転軸に沿って伸びる高い熱伝導率の炭素長繊維を有する、回転軸の周りに回転可能な回転陽極の回転対称な冷却体の、下記の手順
即ち
−利用されるプリフォームで炭素繊維が互いに平行又はおおむね平行であるように炭素繊維を織物下地に縫着することによって、テーラード・ファイバー・プレイスメント法(TFP)によりテープ状のプリフォームを作製し、
−テープ状のプリフォームを円筒体に巻き取り、
−炭素で、又は炭化により炭素に変換する材料でプリフォームを含浸し、
−含浸したプリフォームを熱処理し、
−熱処理したプリフォームを1回又は数回再緻密化し、
−高温処理し、
−冷却体の最終的幾何学的形状を得るために、こうして作製された冷却体の機械的最終加工を行う
ことによる製造方法も特徴とする。
Accordingly, the present invention provides the following procedure for a rotationally symmetric cooling body of a rotating anode rotatable about a rotation axis, having a high thermal conductivity carbon fiber extending along the rotation axis: In order to fabricate a tape-like preform by the tailored fiber placement method (TFP), the carbon fibers are sewn to the fabric base so that the carbon fibers are parallel or generally parallel to each other.
-Winding the tape-shaped preform around a cylindrical body,
Impregnating the preform with carbon or with a material that converts to carbon by carbonization;
-Heat treating the impregnated preform;
-Re-densify the heat-treated preform once or several times,
-High temperature treatment,
-Also characterized by a manufacturing method by performing mechanical final machining of the cooling body thus produced in order to obtain the final geometric shape of the cooling body.

その場合、熱処理と再緻密化は、含浸と熱処理によって形成され、炭素繊維を結合する基質の黒鉛微結晶が炭素繊維に沿って整列されるように行われる。これによって熱伝導率がさらに高められるから、所望の冷却効果を得ることができる。   In that case, the heat treatment and re-densification are performed by impregnation and heat treatment so that the graphite microcrystals of the substrate binding the carbon fibers are aligned along the carbon fibers. This further increases the thermal conductivity, so that a desired cooling effect can be obtained.

黒鉛微結晶層が炭素繊維の中に整列され、繊維表面に沿って配向されることに基づき、適当な処理パラメータと適当な炭素基質系を選択することによって、基質の黒鉛結晶の繊維表面に沿った近距離秩序が可能である。適当な炭素基質系はよく黒鉛化される物質、例えばピッチ又はパイログラファイトである。熱架橋樹脂は黒鉛化性があまりよくないので、避けるべきである。   Based on the fact that the graphite microcrystalline layer is aligned in the carbon fiber and oriented along the fiber surface, select the appropriate processing parameters and the appropriate carbon substrate system along the fiber surface of the substrate graphite crystal. A short-range order is possible. Suitable carbon substrate systems are materials that are well graphitized, such as pitch or pyrographite. Thermally crosslinked resins are not very good in graphitization and should be avoided.

また炭素繊維に沿って微結晶を整列するために、黒鉛化を真空で行うことができる。但しその場合は炭素の昇華を十分に回避しなければならない。代案として又は補足的に、黒鉛化の際に炭素繊維に緊張又は張力を作用させるとよい。これはすべて炭素繊維に沿った微結晶の整列をもたらし、その結果熱伝導率の所望の増加が生じる。   Graphitization can also be performed in vacuum to align the microcrystals along the carbon fibers. In that case, however, carbon sublimation must be avoided sufficiently. As an alternative or in addition, tension or tension may be applied to the carbon fibers during graphitization. This all results in crystallite alignment along the carbon fibers, resulting in the desired increase in thermal conductivity.

また高い熱伝導率を得るために、炭素繊維の容積含有量が40%ないし80%、特に60%ないし70%であることが好ましい。これは、テーラード・ファイバー・プレースメント法で作製されたプリフォームを所定の張力で円筒体に巻きつけることによって得られる。好ましい張力として3kpないし15kp、特に5kpないし10kpの値が挙げられる。   In order to obtain high thermal conductivity, the volume content of carbon fiber is preferably 40% to 80%, particularly 60% to 70%. This is obtained by winding a preform produced by the tailored fiber placement method around a cylindrical body with a predetermined tension. Preferred tensions include values of 3 kp to 15 kp, especially 5 kp to 10 kp.

炭素繊維の容積含有量を所望の値、特に60容積%ないし70容積%に調整する別のやり方は、押圧ローラを使用し、心に巻き取るときにローラが繊維シートを緻密化することである。   Another way to adjust the volume content of the carbon fibers to the desired value, in particular 60% to 70% by volume, is to use a pressure roller and the roller densifies the fiber sheet when it is wound around the core. .

テーラード・ファイバー・プレースメント法自体は、例えば文献「Mattheij et al: Tailored fiber−placement−mechnical properties and applications(テーラード・ファイバー・プレースメント−機械的性質及び用途), Journal of Reinforced Plastics and Compsites」17巻9号(1998年)774−786頁に出ている。その限りで、これに関する開示を明確に引用する。   The tailored fiber placement method itself is described, for example, in the literature “Mattheij et al: Tailored fiber-placement-mechnical properties and applications”, Journal of Reinforced Plastics and Compsites, Vol. 9 (1998), pages 774-786. To that extent, the disclosure relating to this is clearly cited.

こうして作製されたプリフォームは初期状態で通常115W/mKないし200W/mKの熱伝導率を有するから、このプリフォームは冷却体の製造のために扱いやすく、十分な機械的性質を有するという利点が与えられる。繊維として、黒鉛化可能な繊維、さらには既に黒鉛化された繊維、特にピッチベースの炭素繊維を使用することができる。繊維の直径は4μmないし9μmの範囲内、とりわけ8μmであることが好ましい。   Since the preform thus prepared usually has a thermal conductivity of 115 W / mK to 200 W / mK in the initial state, this preform is easy to handle for manufacturing a cooling body and has the advantage of having sufficient mechanical properties. Given. As the fibers, graphitizable fibers, or already graphitized fibers, in particular pitch-based carbon fibers, can be used. The diameter of the fiber is preferably in the range 4 μm to 9 μm, in particular 8 μm.

プリフォームを心に巻き取った後、その場で熱伝導率が高められるように、熱処理を行う。特に600W/mKないし650W/mKの範囲の熱伝導率が好ましい。このことに係りなく、熱伝導率は必ず250W/mK以上であるべきである。   After winding the preform around the core, heat treatment is performed so that the thermal conductivity is increased in situ. In particular, a thermal conductivity in the range of 600 W / mK to 650 W / mK is preferable. Regardless of this, the thermal conductivity should always be 250 W / mK or higher.

プリフォームの繊維を熱分解炭素によるCVI[化学的気相浸透]含浸又はよく黒鉛化される基質前駆物質による含浸で安定化し、固定することによって、高い熱伝導率が得られる。こうして固定されたプリフォームに次にとりわけT>2800℃の温度Tで高温熱処理を施して繊維も基質も黒鉛化し、繊維を基質に固定することによって繊維の塑性変形による延伸黒鉛化効果を、黒鉛化の改善による熱伝導率の増加のために利用する。   High thermal conductivity is obtained by stabilizing and fixing the preform fibers by CVI [chemical vapor infiltration] impregnation with pyrolytic carbon or by impregnation with a well graphitized substrate precursor. The preform thus fixed is then subjected to high-temperature heat treatment at a temperature T of T> 2800 ° C. to graphitize both the fiber and the substrate. By fixing the fiber to the substrate, the effect of stretch graphitization due to plastic deformation of the fiber is increased. It is used to increase the thermal conductivity by improving the conversion.

乾式又は湿式含浸の前にプリフォームの繊維又はプリフォーム自体を樹脂又はピッチで処理し、続いて硬化することができる。次に樹脂又はピッチによる湿式含浸もしくは特にCVI法で熱分解炭素(PyC)による気相含浸が行われる。続いて熱処理が行われ、樹脂及びピッチを使用してまず炭化、続いて黒鉛化が行われ、乾式含浸ではもっぱら黒鉛化が行われる。含浸剤を炭素に変換するための炭化はとりわけ700℃ないし1200℃の温度範囲、とりわけ900℃ないし1050℃の範囲で行われる。好ましい黒鉛化温度は2400℃ないし3500℃、とりわけ2600℃ないし3300℃の範囲である。   Prior to dry or wet impregnation, the preform fibers or the preform itself can be treated with resin or pitch and subsequently cured. Next, wet impregnation with resin or pitch or vapor phase impregnation with pyrolytic carbon (PyC) is performed by CVI method. Subsequently, heat treatment is carried out, first carbonization and subsequent graphitization are carried out using resin and pitch, and graphitization is carried out exclusively by dry impregnation. Carbonization to convert the impregnating agent into carbon is carried out especially in the temperature range of 700 ° C. to 1200 ° C., in particular in the range of 900 ° C. to 1050 ° C. The preferred graphitization temperature is in the range of 2400 ° C to 3500 ° C, especially 2600 ° C to 3300 ° C.

湿式含浸には、炭素への変換を可能にするために高い炭素歩留の材料が使用される。湿式含浸では炭化に熱処理段階が前置され、それによって含浸剤の硬化又は架橋、もしくはピッチの場合は含浸剤の融解が行われる。   For wet impregnation, high carbon yield materials are used to allow conversion to carbon. In wet impregnation, a heat treatment step precedes carbonization, whereby the impregnating agent is cured or crosslinked, or in the case of pitch, the impregnating agent is melted.

熱処理時に望ましくない形状変化が回避されることを保証するために、熱処理の際に中空円筒形の単一体の、即ち一体式の冷却体を板の上に支え、特に支持リングで取り囲むとよい。   In order to ensure that undesired shape changes are avoided during the heat treatment, a hollow cylindrical unitary or integral cooling body may be supported on the plate during the heat treatment, in particular surrounded by a support ring.

とりわけプリフォームを円筒体に巻き取った後に含浸を行う場合は、あらかじめ少なくとも部分的含浸を行うことも直ちに可能である。   In particular, when impregnation is performed after winding the preform on a cylindrical body, it is possible to perform at least partial impregnation immediately.

熱処理、即ち炭化及び黒鉛化の後に、熱伝導率の改善のために再緻密化を行う。これは真空−圧力含浸及び硬化、炭化、黒鉛化を含む。その場合、再緻密化をとりわけ2回ないし4回行うことができる。但し本発明はこれによって限定されない。   After heat treatment, that is, carbonization and graphitization, re-densification is performed to improve thermal conductivity. This includes vacuum-pressure impregnation and curing, carbonization, graphitization. In that case, re-densification can be carried out in particular 2 to 4 times. However, the present invention is not limited thereby.

再緻密化によって熱伝導率が改善されるだけでなく、同時に密度が増加し、有孔率が最小化されるから、他方では冷却体の機械的強度が改善される。特に再緻密化は、完成冷却体の連続気孔率が14容積%未満、とりわけ10容積%未満、密度が1.5g/cm3ないし2.2g/cm3の範囲、特に1.75g/cm3ないし2.0g/cm3の範囲となるように行われる。 Re-densification not only improves the thermal conductivity, but at the same time increases the density and minimizes the porosity, so on the other hand the mechanical strength of the cooling body is improved. In particular, re-densification means that the finished cooling body has a continuous porosity of less than 14% by volume, in particular less than 10% by volume, and a density in the range of 1.5 g / cm 3 to 2.2 g / cm 3 , in particular 1.75 g / cm 3. To 2.0 g / cm 3 .

1回又は数回の再緻密化の後に、最終黒鉛化とも呼ぶことができる高温処理が行われる。高温処理は2400℃ないし3000℃の範囲で行われる。こうして作製された冷却体は、続いて切削加工により最終形状に加工される。場合によっては炭素繊維材料リングの形の高強度の支持構造が取り付けられる。支持リングは内周面及び/又は外周面に取り付けられる。   After one or several re-densifications, a high temperature treatment is performed, which can also be called final graphitization. The high temperature treatment is performed in the range of 2400 ° C to 3000 ° C. The cooling body thus manufactured is subsequently processed into a final shape by cutting. In some cases, a high strength support structure in the form of a carbon fiber material ring is attached. The support ring is attached to the inner peripheral surface and / or the outer peripheral surface.

「particle release(粒子放出)」を回避するために、選択によっては最終加工の後にCVD(化学蒸着)被覆を冷却体に被着することができる。被覆は単独で0.5≦ε<1.0、特に0.8≦ε≦0.9の高い放出係数を有することが好ましい。   In order to avoid “particle release”, a CVD (chemical vapor deposition) coating can be applied to the cooling body after final processing, depending on the choice. The coating alone preferably has a high release coefficient of 0.5 ≦ ε <1.0, in particular 0.8 ≦ ε ≦ 0.9.

これに関する被覆の前に、冷却体を高温過程で清浄化することも可能である。清浄化によって微結晶形成が好影響を受ける。なぜなら高温清浄化の前に異物原子があった部位に特に良好な微結晶形成が生じるからである。不純物が高温清浄化過程で再び除去されるならば、黒鉛化性の改善及び熱伝導率の向上のために、不純物を故意に使用することができる。   It is also possible to clean the cooling body in a high temperature process before coating in this regard. Microcrystal formation is favorably affected by cleaning. This is because particularly fine crystallites are formed at a site where foreign atoms existed before high temperature cleaning. If impurities are removed again during the high temperature cleaning process, they can be used deliberately to improve graphitization and improve thermal conductivity.

本発明のその他の細部、利点及び特徴は特許請求の範囲及び特許請求の範囲に見られる特徴−単独で及び/又は組合せとして−だけでなく、図面に見られる好ましい実施例の下記の説明からも明らかである。   Other details, advantages and features of the present invention are not only from the claims and the features found in the claims-alone and / or in combination-but also from the following description of the preferred embodiments found in the drawings. it is obvious.

本発明を回転陽極10のための冷却体に基づいて説明することにする。但し本発明はこれによって限定されない。   The invention will be described on the basis of a cooling body for the rotating anode 10. However, the present invention is not limited thereby.

図1に特にコンピュータトモグラフのための回転陽極10のごく概要が示されている。回転陽極10は特にタングステンからなる集束リング12及び冷却体14で構成される。回転陽極10は図示しないシャフトに支承され、軸線6の周りに回転可能である。短時間で高い測定点密度を得るために、回転陽極は150ヘルツの周波数で回転される。直径は150mmないし250mmの範囲である。但しこれを限定と解すべきでない。   FIG. 1 shows a very schematic view of a rotating anode 10 especially for a computer tomograph. The rotary anode 10 comprises a focusing ring 12 and a cooling body 14 made of tungsten in particular. The rotating anode 10 is supported on a shaft (not shown) and can rotate around the axis 6. In order to obtain a high measurement point density in a short time, the rotating anode is rotated at a frequency of 150 Hz. The diameter ranges from 150 mm to 250 mm. However, this should not be interpreted as a limitation.

集束リング12から熱をよく排出することができ、それによって回転陽極を長期間にわたって中断なく使用できることを保証するために、冷却体14は、軸16と平行かつ相互に平行であって炭素基質により結合された炭素繊維からなる炭素複合体である。また冷却体14の製造の際に、炭素繊維が250W/mK以上、特に600W/mKないし650W/mKの範囲の熱伝導率を有するように、その場で熱伝導率の増加が行われる。これによって、集束リング12から冷却体14を経て排出される熱が、集束リングの反対側の冷却体14の端面18から十分に放射されることが保証される。   In order to ensure that heat can be well discharged from the focusing ring 12 and thereby the rotating anode can be used without interruption for long periods of time, the cooling body 14 is parallel to the axis 16 and parallel to each other and is A carbon composite composed of bonded carbon fibers. Further, when the cooling body 14 is manufactured, the thermal conductivity is increased in-situ so that the carbon fiber has a thermal conductivity in the range of 250 W / mK or more, particularly 600 W / mK to 650 W / mK. This ensures that the heat discharged from the focusing ring 12 through the cooling body 14 is radiated sufficiently from the end face 18 of the cooling body 14 on the opposite side of the focusing ring.

冷却体14はうず巻状に巻いたプリフォームからなる。プリフォームはテーラード・ファイバー・プレースメント法で製造されている。そのために高い炭素歩留を有する織物下地20の上にエンドレス炭素繊維22が雷文状に配置され、縫着される。次に湾曲した部分24をとりわけ下地20の縁端に沿って切り取り、こうして炭素繊維22が互いに平行に、かつ下地12の縦軸に対して垂直に整列されたテープ状のプリフォームが生じる。次に当該のプリフォームを、心と呼ばれる円筒体の周りに巻きつけ、その際炭素繊維22は心の軸と平行である。なお心の周りへの巻きつけは、所望の繊維容積含有量が得られるように行う。繊維容積含有量は特に40容積%ないし80容積%、とりわけ60容積%ないし70容積%の範囲であることが好ましい。そのために5kpないし10kpの張力Fを加える。代案として又は補足的に、心への巻き取りの際にプリフォームに押圧ローラを使用することができる。それによって同じく繊維容積含有量の所望の値への調整が行われ、又は促進される。続いて湿式又は気相含浸が行われる。湿式含浸は、炭素への変換を可能にするために高い炭素歩留を有する材料で行われる。特に樹脂及びピッチが挙げられる。気相含浸として特に熱分解炭素によるCVI法が考えられる。   The cooling body 14 is made of a preform wound in a spiral shape. The preform is manufactured by the tailored fiber placement method. For this purpose, endless carbon fibers 22 are arranged in a lightning pattern on a fabric substrate 20 having a high carbon yield and sewn. The curved portion 24 is then cut, notably along the edge of the substrate 20, thus resulting in a tape-like preform in which the carbon fibers 22 are aligned parallel to each other and perpendicular to the longitudinal axis of the substrate 12. The preform is then wrapped around a cylinder called the heart, with the carbon fibers 22 being parallel to the axis of the heart. The winding around the core is performed so that a desired fiber volume content is obtained. The fiber volume content is preferably in the range from 40% to 80% by volume, in particular from 60% to 70% by volume. For this purpose, a tension F of 5 kp to 10 kp is applied. As an alternative or in addition, a pressure roller can be used for the preform during winding onto the core. Thereby also the adjustment of the fiber volume content to the desired value takes place or is facilitated. Subsequently, wet or vapor phase impregnation is performed. Wet impregnation is performed with materials having a high carbon yield to allow conversion to carbon. In particular, resin and pitch are mentioned. As the vapor phase impregnation, a CVI method using pyrolytic carbon can be considered.

本発明を逸脱しない限り、プリフォームを心に巻き取る前にすでに繊維を樹脂又はピッチで処理することができることに言及しなければならない。   It should be mentioned that the fibers can already be treated with resin or pitch before the preform is wound onto the core without departing from the invention.

このことに係りなく、含浸の後に熱処理が行われ、樹脂又はピッチを使用する場合はまず含浸剤の硬化又は架橋が行われ、一方、ピッチは含浸の前に融解するために熱しなければならない。熱処理は、樹脂及びピッチを使用する場合の炭化及び黒鉛化、気相含浸ではもっぱら黒鉛化を含む。炭化はとりわけ700℃ないし1200℃の温度範囲、特に900℃ないし1050℃の範囲で行われ、これに対して黒鉛化は2400℃ないし3500℃、特に2600℃ないし3300℃の範囲で行うことが好ましい。熱処理の後に冷却が行われ、次に1回又は数回の再緻密化が続く。その場合、密度を増加し、有孔率を最小化するために、再緻密化は真空−圧力含浸を含む。製造される冷却体の機械的強度がこれによって高められる。特に密度ρがρ>1.85g/cm3となるように、冷却体14を再緻密化することが好ましい。 Regardless of this, the impregnation is followed by a heat treatment and if a resin or pitch is used, the impregnating agent is first cured or crosslinked, while the pitch must be heated to melt before impregnation. The heat treatment includes carbonization and graphitization when using a resin and pitch, and graphitization exclusively in a gas phase impregnation. Carbonization is preferably carried out in the temperature range of 700 ° C. to 1200 ° C., in particular in the range of 900 ° C. to 1050 ° C., whereas graphitization is preferably carried out in the range of 2400 ° C. to 3500 ° C., in particular 2600 ° C. to 3300 ° C. . The heat treatment is followed by cooling, followed by one or several re-densifications. In that case, re-densification includes vacuum-pressure impregnation to increase density and minimize porosity. This increases the mechanical strength of the manufactured cooling body. In particular, it is preferable to re-densify the cooling body 14 so that the density ρ becomes ρ> 1.85 g / cm 3 .

また不純物を除去するために、ガス洗浄を行うことが好ましい。 In order to remove impurities, it is preferable to perform gas cleaning.

再緻密化の際に含浸剤に熱伝導性の高い充填材を加えることができる。 A filler having high thermal conductivity can be added to the impregnating agent during re-densification.

それとは別に、再緻密化即ち含浸、硬化又は黒鉛化は、製造される冷却体が14容積%以下、とりわけ10容積%以下の連続気孔率及び/又は1.5g/cm3ないし2.2g/cm3の範囲、特に1.75g/cm3ないし2.0g/cm3の範囲の密度を有するように行われる。 Alternatively, re-densification, ie impregnation, hardening or graphitization, can be achieved when the cooling body produced has a continuous porosity of 14% or less, in particular 10% or less and / or 1.5 g / cm 3 to 2.2 g / range cm 3, in particular to 1.75 g / cm 3 not done so as to have a density in the range of 2.0 g / cm 3.

次に2400℃ないし3500℃の範囲で高温処理が行われる。続いて切削加工により、冷却体を最終形状に加工する。場合によっては冷却体に高強度の炭素繊維材料リングの形の支持構造を設けることができる。当該のリングは中空円筒体の外側及び/又は内側に取り付けることができる。 Next, high temperature treatment is performed in the range of 2400 ° C. to 3500 ° C. Subsequently, the cooling body is processed into a final shape by cutting. In some cases, the cooling body can be provided with a support structure in the form of a high strength carbon fiber material ring. The ring can be attached to the outside and / or the inside of the hollow cylinder.

最後に、「粒子放出」を回避するために、場合によっては化学蒸着被覆、例えば熱分解炭素被覆を行うことができる。被覆は0.5≦ε<1、特に0.8≦ε≦0.9の高い放出係数εを有することが好ましい。   Finally, in order to avoid “particle emission”, chemical vapor deposition coatings, for example pyrolytic carbon coatings, can optionally be performed. The coating preferably has a high emission coefficient ε of 0.5 ≦ ε <1, in particular 0.8 ≦ ε ≦ 0.9.

清浄化が予定されているならば、これを最終加工と化学蒸着被覆の間に行うことが好ましい。純度及び黒鉛化度の改善のために、高温ガス洗浄を行う。粒子放出を減少するために、特に超音波による清浄化が選ばれる。   If cleaning is scheduled, this is preferably done between final processing and chemical vapor deposition coating. Perform hot gas cleaning to improve purity and graphitization. In order to reduce particle emission, ultrasonic cleaning is especially chosen.

最後に、冷却体14の内側と外側にそれぞれ1個の高強度炭素繊維材料製の支持リング26、28を圧着することができる。   Finally, one support ring 26, 28 made of high-strength carbon fiber material can be crimped to the inside and the outside of the cooling body 14, respectively.

プリフォームは各含浸段階又は熱処理段階の前に、心から取り外すことができる。熱処理の終了の後にプリフォームを心から引き抜くことももちろん可能である。但しプリフォームの引き抜きは、もはや心の上にないプリフォームの変形を阻止することが、実施される処理段階で保証される場合に初めて行われるべきである。従って、たとえ先行する処理段階で引き抜きを行うことができても、少なくとも各高温処理段階の前にはプリフォームは心を取り囲んでいるべきである。   The preform can be removed from the core prior to each impregnation or heat treatment step. It is of course possible to pull out the preform from the heart after the heat treatment has ended. However, the drawing of the preform should only take place if it is guaranteed at the processing stage to be carried out that the deformation of the preform which is no longer on the heart is prevented. Thus, the preform should surround the heart at least before each high temperature processing stage, even if drawing can be done in the preceding processing stage.

回転陽極の断面図を示す。A sectional view of a rotating anode is shown. 製造されるプリフォームの断片を示す。The preform fragment to be produced is shown.

符号の説明Explanation of symbols

10 回転陽極
12 集束リング
14 冷却体
16 回転軸
18 端面
20 織物下地
22 エンドレス炭素繊維
24 湾曲した部分
26 支持リング
28 支持リング
DESCRIPTION OF SYMBOLS 10 Rotating anode 12 Focusing ring 14 Cooling body 16 Rotating shaft 18 End surface 20 Fabric base 22 Endless carbon fiber 24 Curved portion 26 Support ring 28 Support ring

Claims (22)

回転軸(16)があって、炭素繊維が回転軸(16)に沿って通る炭素繊維材料からなり、回転軸を同軸に取り囲む、回転対称に形成された冷却体(14)と、回転軸を横切って伸びる集束リング(12)とを具備する、特にX線管の回転陽極(10)において、冷却体(14)のベースがテーラード・ファイバー・プレースメント(TFP)法で製造されたプリフォームであり、冷却体が中空円筒形を有し、一体に形成されており、炭素繊維(22)が全長にわたって回転軸(16)と平行又はおおむね平行であり、λ≧250W/mKの熱伝導率λを有し、炭素を含む基質によって炭素繊維が結合され、基質の黒鉛微結晶が炭素繊維に沿って整列されていることを特徴とする回転陽極。   A rotationally symmetric cooling body (14) having a rotational axis (16) and made of a carbon fiber material in which carbon fibers pass along the rotational axis (16), and coaxially surrounding the rotational axis; With a focusing ring (12) extending across, especially in the rotating anode (10) of an X-ray tube, the base of the cooling body (14) is a preform manufactured by the tailored fiber placement (TFP) method. The cooling body has a hollow cylindrical shape, is integrally formed, and the carbon fiber (22) is parallel or substantially parallel to the rotation axis (16) over the entire length, and the thermal conductivity λ ≧ 250 W / mK. A rotating anode, wherein carbon fibers are bonded by a substrate containing carbon, and graphite fine crystals of the substrate are aligned along the carbon fibers. 冷却体(14)がその外周面ないしは内面に沿って支持リング(26、28)を有することを特徴とする請求項1に記載の冷却体。   2. Cooling body according to claim 1, characterized in that the cooling body (14) has a support ring (26, 28) along its outer or inner surface. 支持リング(26、28)が冷却体の上に圧着されていることを特徴とする請求項2に記載の冷却体。   3. Cooling body according to claim 2, characterized in that the support ring (26, 28) is crimped onto the cooling body. 支持リング(26、28)が炭素繊維材料(CFC)からなることを特徴とする請求項2又は3に記載の冷却体。   The cooling body according to claim 2 or 3, wherein the support ring (26, 28) is made of a carbon fiber material (CFC). 冷却体(14)が1.5g/cm3≦ρ≦2.2g/cm3、特に1.75g/cm3≦ρ≦2.0g/cm3の密度ρを有することを特徴とする請求項1に記載の冷却体。 The cooling body (14) has a density ρ of 1.5 g / cm 3 ≦ ρ ≦ 2.2 g / cm 3 , in particular 1.75 g / cm 3 ≦ ρ ≦ 2.0 g / cm 3. The cooling body according to 1. 回転軸の周りに回転可能な回転陽極(10)の、該軸に沿って伸びる高い熱伝導率の炭素繊維(22)を有する回転対称な冷却体の製造方法において、下記の手順、即ち
−利用されるプリフォームで炭素繊維が互いに平行又はおおむね平行であるように炭素繊維(22)を織物下地(20)に縫着することによって、テーラード・ファイバー・プレイスメント法(TFP)によりテープ状のプリフォームを作製し、
−テープ状のプリフォームを円筒体に巻き取り、
−炭素で、又は炭化する炭素により変換する材料でプリフォームを含浸し、
−含浸したプリフォームを熱処理し、
−熱処理したプリフォームを1回又は数回再緻密化し、
−高温処理し、
−冷却体の最終的幾何学的形状を得るために、こうして作製された冷却体の機械的最終加工を行う
ことを特徴とする方法。
In a method of manufacturing a rotationally symmetric cooling body having a high thermal conductivity carbon fiber (22) extending along the axis of a rotating anode (10) rotatable about the axis of rotation, the following procedure is used: The carbon fiber (22) is sewn to the fabric substrate (20) so that the carbon fibers are parallel to each other or generally parallel to each other in the preform, and the tape-like preform is formed by the tailored fiber placement method (TFP). Make a renovation,
-Winding the tape-shaped preform around a cylindrical body,
Impregnating the preform with a material that is converted by carbon or by carbonizing carbon;
-Heat treating the impregnated preform;
-Re-densify the heat-treated preform once or several times,
-High temperature treatment,
A method characterized in that a mechanical final machining of the cooling body thus produced is carried out in order to obtain the final geometric shape of the cooling body.
炭素長繊維又はエンドレス炭素繊維の形の炭素繊維(22)を織物下地(20)の上に雷文状に縫着し、とりわけ織物下地の縁端から張り出す湾曲した部分(24)を、円筒体に巻き取る前又は円筒体からプリフォームを抜き取った後に切り取ることを特徴とする請求項6に記載の方法。   Carbon fibers (22) in the form of long carbon fibers or endless carbon fibers are sewn onto the fabric substrate (20) in a lightning pattern, and in particular, the curved portion (24) protruding from the edge of the fabric substrate is cylindrical. 7. A method according to claim 6, characterized in that it is cut off before being wound on the body or after the preform has been removed from the cylindrical body. プリフォームを巻き取りの前又は後に樹脂ないしはピッチで処理することを特徴とする請求項6に記載の方法。   7. The method according to claim 6, wherein the preform is treated with a resin or pitch before or after winding. 巻き取ったプリフォームの繊維容積含有量Vが、40容積%≦V≦80容積%、特に60容積%≦V≦70容積%となるように、プリフォームを張力Fで円筒体に巻き取ることを特徴とする請求項6に記載の方法。   The preform is wound around the cylindrical body with a tension F so that the fiber volume content V of the wound preform is 40% by volume ≦ V ≦ 80% by volume, in particular 60% by volume ≦ V ≦ 70% by volume. The method according to claim 6. 張力Fを3kp≦F≦15kp、特に5kp≦F≦10kpに調整することを特徴とする請求項9に記載の方法。   10. Method according to claim 9, characterized in that the tension F is adjusted to 3 kp ≦ F ≦ 15 kp, in particular 5 kp ≦ F ≦ 10 kp. 円筒体に巻き取るときに、プリフォームに押圧ローラが作用することを特徴とする請求項6に記載の方法。   The method according to claim 6, wherein a pressure roller acts on the preform when winding on the cylindrical body. 円筒体に巻き取られたプリフォームを気相含浸ないしは液体含浸により含浸することを特徴とする請求項6に記載の方法。   The method according to claim 6, wherein the preform wound around the cylindrical body is impregnated by vapor phase impregnation or liquid impregnation. 熱分解炭素(PyC)で気相含浸を行うことを特徴とする請求項12に記載の方法。   The method according to claim 12, wherein vapor phase impregnation is performed with pyrolytic carbon (PyC). プリフォームを樹脂ないしはピッチで処理するときに、プリフォームを700℃≦TC≦1200℃、特に900℃≦TC≦1050℃の温度TCで炭化することを特徴とする請求項8に記載の方法。 9. The preform is carbonized at a temperature T C of 700 ° C. ≦ T C ≦ 1200 ° C., particularly 900 ° C. ≦ T C ≦ 1050 ° C., when the preform is treated with a resin or pitch. the method of. 含浸したプリフォームを2400℃≦TG≦3500℃、特に2600℃≦TG≦3300℃の温度TGで黒鉛化することを特徴とする請求項6又は14に記載の方法。 15. The process according to claim 6 or 14, characterized in that the impregnated preform is graphitized at a temperature T G of 2400 ° C. ≦ T G ≦ 3500 ° C., in particular 2600 ° C. ≦ T G ≦ 3300 ° C. 含浸に使用される材料が熱伝導性の高い充填材を含むことを特徴とする請求項6に記載の方法。   The method according to claim 6, wherein the material used for impregnation comprises a highly thermally conductive filler. 冷却体の最終加工の後に、0.5≦ε<1、とりわけ0.8≦ε≦0.9の放出係数εを有する材料で冷却体を被覆することを特徴とする請求項6に記載の方法。   7. The cooling body according to claim 6, characterized in that after the final machining of the cooling body, the cooling body is coated with a material having an emission coefficient ε of 0.5 ≦ ε <1, in particular 0.8 ≦ ε ≦ 0.9. Method. 冷却体をCVD(化学蒸着)法により熱分解炭素(PyC)で被覆することを特徴とする請求項17に記載の方法。 The method of claim 17, wherein coating the cooling body by CVD pyrolytic carbon by (chemical vapor deposition) method (P y C). 最終加工の後及び被覆の前に、冷却体に特にガス洗浄を施し、ないしは超音波により清浄化することを特徴とする請求項6に記載の方法。   7. A method according to claim 6, characterized in that after the final processing and before the coating, the cooling body is subjected in particular to gas cleaning or ultrasonically cleaned. プリフォームを高温処理の後に円筒体から引き抜くことを特徴とする請求項6に記載の方法。   The method of claim 6, wherein the preform is withdrawn from the cylinder after the high temperature treatment. 炭素繊維に沿って黒鉛微結晶を整列するために、よく黒鉛化される物質例えばピッチ又は熱分解炭素でプリフォームを含浸することを特徴とする請求項6に記載の方法。   7. The method of claim 6, wherein the preform is impregnated with a well graphitized material, such as pitch or pyrolytic carbon, to align the graphite crystallites along the carbon fibers. プリフォームの製造のために、4μm≦D≦9μmの直径Dを有する炭素繊維を使用することを特徴とする請求項6に記載の方法。
7. Process according to claim 6, characterized in that carbon fibers having a diameter D of 4 [mu] m≤D≤9 [mu] m are used for the production of preforms.
JP2006201708A 2005-07-25 2006-07-25 Rotating anode and method of manufacturing rotating anode cooling body Expired - Fee Related JP5013767B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005034585 2005-07-25
DE102005034585.9 2005-07-25
DE102005062074.4 2005-12-22
DE102005062074A DE102005062074A1 (en) 2005-07-25 2005-12-22 Heat sink and method for producing a heat sink

Publications (2)

Publication Number Publication Date
JP2007035636A true JP2007035636A (en) 2007-02-08
JP5013767B2 JP5013767B2 (en) 2012-08-29

Family

ID=37103043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201708A Expired - Fee Related JP5013767B2 (en) 2005-07-25 2006-07-25 Rotating anode and method of manufacturing rotating anode cooling body

Country Status (5)

Country Link
US (1) US7460647B2 (en)
EP (1) EP1748464B1 (en)
JP (1) JP5013767B2 (en)
AT (1) ATE528782T1 (en)
DE (1) DE102005062074A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081965A (en) * 2009-10-05 2011-04-21 Toshiba Corp Target for x-ray tube, manufacturing method of the target, x-ray tube using the target, and x-ray inspection device
JP2012532409A (en) * 2009-06-29 2012-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Anode disk element with heat dissipation element
JP2020063342A (en) * 2018-10-16 2020-04-23 国立大学法人岐阜大学 Material and molded article production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038417B4 (en) * 2006-08-17 2012-05-24 Siemens Ag X-ray anode
EP2449574B1 (en) * 2009-06-29 2017-02-01 Koninklijke Philips N.V. Anode disk element comprising a conductive coating
JP5771213B2 (en) * 2009-10-27 2015-08-26 コーニンクレッカ フィリップス エヌ ヴェ Electron collecting element, X-ray generator and X-ray system
US9449782B2 (en) * 2012-08-22 2016-09-20 General Electric Company X-ray tube target having enhanced thermal performance and method of making same
US10543646B2 (en) 2018-01-12 2020-01-28 Arevo, Inc. Structural sewing and overmolding
RU2747635C1 (en) * 2019-12-11 2021-05-11 Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" Method for producing products from carbon-carbon composite material in shell form
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122546A (en) * 1984-07-09 1986-01-31 Showa Denko Kk X-ray target base made of carbon
JPS61171044A (en) * 1985-01-25 1986-08-01 Showa Denko Kk Target for x-ray
JPS643947A (en) * 1987-06-25 1989-01-09 Hitachi Ltd Rotary anode target for x-ray tube
JPH0340348A (en) * 1989-04-24 1991-02-21 General Electric Co <Ge> X-ray target colling method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910138A1 (en) * 1979-03-15 1980-09-25 Philips Patentverwaltung ANODE DISC FOR A ROTATING ANODE ROENTINE TUBE
CA2124158C (en) 1993-06-14 2005-09-13 Daniel H. Hecht High modulus carbon and graphite articles and method for their preparation
US5943389A (en) * 1998-03-06 1999-08-24 Varian Medical Systems, Inc. X-ray tube rotating anode
US6907106B1 (en) * 1998-08-24 2005-06-14 Varian Medical Systems, Inc. Method and apparatus for producing radioactive materials for medical treatment using x-rays produced by an electron accelerator
DE19957906A1 (en) 1999-12-01 2001-06-28 Schunk Kohlenstofftechnik Gmbh Method for producing a fiber composite component and device for producing one
US6430264B1 (en) * 2000-04-29 2002-08-06 Varian Medical Systems, Inc. Rotary anode for an x-ray tube and method of manufacture thereof
DE10301069B4 (en) 2003-01-14 2007-08-02 Siemens Ag Thermally resilient material composite of a fiber-reinforced and another material
DE10304936B3 (en) 2003-02-06 2004-10-28 Siemens Ag Rotary anode for X-ray tube in medical imaging system has anode body of fibre material incorporating thermally-conductive fibres extending between focal ring and cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122546A (en) * 1984-07-09 1986-01-31 Showa Denko Kk X-ray target base made of carbon
JPS61171044A (en) * 1985-01-25 1986-08-01 Showa Denko Kk Target for x-ray
JPS643947A (en) * 1987-06-25 1989-01-09 Hitachi Ltd Rotary anode target for x-ray tube
JPH0340348A (en) * 1989-04-24 1991-02-21 General Electric Co <Ge> X-ray target colling method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532409A (en) * 2009-06-29 2012-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Anode disk element with heat dissipation element
JP2011081965A (en) * 2009-10-05 2011-04-21 Toshiba Corp Target for x-ray tube, manufacturing method of the target, x-ray tube using the target, and x-ray inspection device
JP2020063342A (en) * 2018-10-16 2020-04-23 国立大学法人岐阜大学 Material and molded article production method
JP7228178B2 (en) 2018-10-16 2023-02-24 国立大学法人東海国立大学機構 Materials and manufacturing methods of moldings

Also Published As

Publication number Publication date
JP5013767B2 (en) 2012-08-29
EP1748464A2 (en) 2007-01-31
EP1748464A3 (en) 2010-06-16
ATE528782T1 (en) 2011-10-15
US20070195934A1 (en) 2007-08-23
US7460647B2 (en) 2008-12-02
EP1748464B1 (en) 2011-10-12
DE102005062074A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5013767B2 (en) Rotating anode and method of manufacturing rotating anode cooling body
KR101624212B1 (en) Method for manufacturing carbonaceous film and graphite film obtained thereby
US5552008A (en) Method for the preparation of high modulus carbon and graphite articles
JPS6158860A (en) Fiber composite material and forming process
JP6334293B2 (en) Tubular body
US20080019485A1 (en) Method for manufacturing a heat sink as well as heat sinks
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
JP5231316B2 (en) Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material
KR100571609B1 (en) Crucible made of carbon fiber-reinforced carbon composite material for single crystal pulling apparatus
JP2009203092A (en) Vessel holding member
JP6334292B2 (en) Method for manufacturing tubular body
JP2862580B2 (en) Molded heat insulating material and its manufacturing method
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JPH10167879A (en) Crucible for pulling up single crystal
US4152381A (en) Method for preparing metallated filament-wound structures
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JPS6252422A (en) Sleeve for measuring temperature of high temperature treatment furnace and it use
JP4823406B2 (en) Carbon fiber reinforced carbon composite material for single crystal pulling equipment
JPS6356471B2 (en)
JPH04280809A (en) Production of highly conductive hollow carbon
JPH11278817A (en) Production of plural thin-walled cylindrical bodies of carbon fiber-reinforced carbon material
JPS63120112A (en) Pitch type carbon yarn having high modulus of elasticity and production thereof
JPH03146720A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH0948683A (en) Boron carbide-coated carbon material, its production and plasma opposing material
JPH0426547A (en) Production of carbon reinforced carbon composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees