JP5231316B2 - Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material - Google Patents
Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material Download PDFInfo
- Publication number
- JP5231316B2 JP5231316B2 JP2009097305A JP2009097305A JP5231316B2 JP 5231316 B2 JP5231316 B2 JP 5231316B2 JP 2009097305 A JP2009097305 A JP 2009097305A JP 2009097305 A JP2009097305 A JP 2009097305A JP 5231316 B2 JP5231316 B2 JP 5231316B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- carbon
- carbon fiber
- coating layer
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Ceramic Products (AREA)
Description
本発明は、熱分解炭素が含浸、被覆された炭素繊維強化炭素複合材、当該炭素繊維強化炭素複合材により形成された単結晶引き上げ装置用部材、及び、当該炭素繊維強化炭素複合材の製造方法に関する。 The present invention, pyrolytic carbon is impregnated, coated carbon fiber reinforced carbon composite material, the carbon fiber reinforced carbon single crystal pulling apparatus for a member formed of a composite material, and method of manufacturing the carbon fiber reinforced carbon composite material About.
チョクラルスキー法(以下、CZ法という)に用いられる単結晶引き上げ装置は、単結晶の大口径化に伴い、前記装置自身も大型化の傾向にある。前記装置内の高温雰囲気下で使用される部材としては、従来から機械的強度及び耐熱性に優れた等方性で高密度かつ高純度の黒鉛が用いられてきた。そして、装置の大型化に伴い、黒鉛部材も大型化し、そのために、黒鉛部材も厚肉化せざるを得ず、黒鉛部材の重量増加ひいては炉内有効寸法の減少によるハンドリング性能の低下につながるという問題がある。 A single crystal pulling apparatus used for the Czochralski method (hereinafter referred to as CZ method) tends to increase in size as the diameter of the single crystal increases. As a member used in a high-temperature atmosphere in the apparatus, an isotropic, high-density and high-purity graphite having excellent mechanical strength and heat resistance has been conventionally used. And with the enlargement of the equipment, the graphite member also becomes larger, so the graphite member also has to be thickened, which leads to a decrease in handling performance due to an increase in the weight of the graphite member and consequently a decrease in the effective dimension in the furnace. There's a problem.
そこで、黒鉛部材よりも軽量でありながら同等以上の機械的強度を有する炭素繊維強化炭素複合材(以下、C/C材という)が注目され、単結晶引き上げ装置の黒鉛製高温部材の代替として要請されている。 Accordingly, carbon fiber reinforced carbon composite materials (hereinafter referred to as C / C materials) that are lighter than graphite members and have mechanical strength equal to or higher than that of the graphite members have been attracting attention, and requested as an alternative to graphite high temperature members for single crystal pulling equipment. Has been.
しかしながら、C/C材は表面の比表面積が大きく、気孔も大きいため、装置内に充満する溶融シリコンから発生するSiOガスと反応し易く、黒鉛に比較するとSiC化する進展速度が早いという問題がある。 However, since the C / C material has a large specific surface area and large pores, it easily reacts with SiO gas generated from molten silicon filled in the apparatus, and has a problem that the rate of progress of SiC conversion is higher than that of graphite. is there.
そのため、このSiOガスとの反応を抑える方法として、本出願人によりCZ装置用ルツボとしてC/C材にCVI法による熱分解炭素の含浸と被覆を行う方法(下記特許文献1参照)が提案されている。しかしながら、CVI法のみにより熱分解炭素を含浸、被覆した場合、含浸層は深くまで形成できるが、表面に形成されている被覆層は薄く、表面の比表面積が大きく、気孔が皆無でないため、耐SiC化が不十分であった。また、CVD法のみにより熱分解炭素を被覆、含浸した場合は、前記CVI法の場合とは逆に、表面の被覆層は厚く形成でき、耐SiC化も向上する。しかしながら、表面の熱分解炭素被覆層が損耗した場合、内部の含浸層が薄いため、C/C材のSiC化が一気に進行するおそれがあり、安全性の面から単結晶引き上げ装置用部材への適用には不安が残る。 Therefore, as a method for suppressing the reaction with the SiO gas, the present applicant has proposed a method of impregnating and coating pyrolytic carbon on the C / C material by the CVI method as a crucible for a CZ apparatus (see Patent Document 1 below). ing. However, when impregnated and coated with pyrolytic carbon only by the CVI method, the impregnated layer can be formed deep, but the coating layer formed on the surface is thin, the surface has a large specific surface area, and there are no pores. SiC conversion was insufficient. Further, when the pyrolytic carbon is coated and impregnated only by the CVD method, contrary to the CVI method, the surface coating layer can be formed thick and the SiC resistance is improved. However, when the pyrolytic carbon coating layer on the surface is worn out, the impregnated layer inside is thin, so there is a risk that the C / C material will be converted to SiC at a stretch. Uncertainties remain in application.
そこで、本発明の目的は、熱分解炭素をCVI、CVDを連続的に行い、C/C材に含浸、被覆し、優れた耐SiC化を発揮できるC/C材、それにより形成された単結晶引き上げ装置用部材、及び、当該C/C材の製造方法を提供することにある。 An object of the present invention performs a pyrolytic carbon CVI, the CVD continuously, impregnate the C / C material, coated, C / C material can exhibit excellent SiC reduction, formed by Re their The object is to provide a member for a single crystal pulling apparatus and a method for producing the C / C material .
前記問題を解決するために、本発明者らはCVI法、CVD法の両者の利点を利用することにより、すなわち、CVI処理し、その後連続的にCVD処理を施し、熱分解炭素を含浸、被覆することにより、被覆層の耐剥離性が向上することを見出し、本発明の完成に至った。 In order to solve the above problems, the present inventors have made use of the advantages of both the CVI method and the CVD method, that is, CVI treatment, followed by continuous CVD treatment, impregnated and coated with pyrolytic carbon. As a result, it was found that the peel resistance of the coating layer was improved, and the present invention was completed.
すなわち、本発明の第1観点に係る炭素繊維強化炭素複合材は、炭素繊維に樹脂を含浸させたプリプレグを加熱・硬化することで形成された成形体を、還元雰囲気で炭化し、ピッチ及び/又は樹脂の含浸と焼成とを複数回繰り返し行うことにより緻密化処理を行った後、高純度化処理を行い、その後CVIにより熱分解炭素の含浸層を形成し、更に前記含浸層の上にCVDにより熱分解炭素の被覆層を形成してなり、前記被覆層の平均面粗さが5 μm 以下である。
本発明の第2観点に係る炭素繊維強化炭素複合材は、炭素繊維に樹脂を含浸させたプリプレグを加熱・硬化することで形成された成形体を、還元雰囲気で炭化し、ピッチ及び/又は樹脂の含浸と焼成とを複数回繰り返し行うことにより緻密化処理を行った後、黒鉛化処理を行い、その後CVIにより熱分解炭素の含浸層を形成し、更に前記含浸層の上にCVDにより熱分解炭素の被覆層を形成してなり、前記被覆層の平均面粗さが5 μm 以下である。
熱分解炭素をCVI法により含浸すると、表層部付近の気孔及び各繊維による段差が埋まり、表面に熱分解炭素をCVD法で被覆した場合に滑らかな面を形成することが可能となる。
That is, the carbon fiber reinforced carbon composite material according to the first aspect of the present invention carbonizes a molded body formed by heating and curing a prepreg in which carbon fiber is impregnated with a resin in a reducing atmosphere, and pitch and / or Alternatively, after performing densification treatment by repeatedly impregnating and baking the resin a plurality of times, high-purification treatment is performed, and then a pyrolytic carbon impregnation layer is formed by CVI, and CVD is performed on the impregnation layer. By forming a coating layer of pyrolytic carbon, the average surface roughness of the coating layer is 5 μm or less.
The carbon fiber reinforced carbon composite material according to the second aspect of the present invention is obtained by carbonizing a molded body formed by heating and curing a prepreg obtained by impregnating a carbon fiber with a resin in a reducing atmosphere, thereby producing a pitch and / or resin. After performing the densification treatment by repeating the impregnation and firing several times, a graphitization treatment is performed, and then a pyrolytic carbon impregnation layer is formed by CVI, and further pyrolysis by CVD is performed on the impregnation layer. A carbon coating layer is formed, and the coating layer has an average surface roughness of 5 μm or less.
When the pyrolytic carbon is impregnated by the CVI method, pores in the vicinity of the surface layer portion and steps due to the fibers are filled, and a smooth surface can be formed when the pyrolytic carbon is coated on the surface by the CVD method.
また、平均面粗さを5μm以下とすることで、SiOガスとの接触面積を小さくすることができ、SiC化を抑制することができる。 Moreover, by making average surface roughness 5 micrometers or less, a contact area with SiO gas can be made small and SiC-ized can be suppressed.
本発明において、含浸層及び被覆層の密度差を0.2g/cm3以内、好ましくは0.1g/cm3以内とすることで、含浸層と被覆層との明確な境界がなくなり、被覆層の耐剥離性が向上する。 In the present invention, when the density difference between the impregnated layer and the coating layer is within 0.2 g / cm 3 , preferably within 0.1 g / cm 3 , there is no clear boundary between the impregnated layer and the coating layer, and the coating layer The peel resistance of the is improved.
前記含浸層及び前記被覆層は、同一炉で連続的に形成されることが好ましい。この場合、含浸層表面が外気に晒されることがないため、含浸層と被覆層の間に不純物等の介在物が介在することなく、含浸層と被覆層間の明確な境界の形成を抑制することができる。 Before SL impregnated layer and the coating layer is continuously formed in the same furnace preferably Rukoto. In this case , since the surface of the impregnation layer is not exposed to the outside air, the formation of a clear boundary between the impregnation layer and the coating layer is suppressed without interposition of impurities or the like between the impregnation layer and the coating layer. Can do.
本発明に係る単結晶引き上げ装置は、上記の本発明に係る炭素繊維強化炭素複合材により形成されたものである。また、本発明の第1観点に係る炭素繊維強化炭素複合材の製造方法は、炭素繊維に樹脂を含浸させたプリプレグを加熱・硬化することで形成された成形体を、還元雰囲気で炭化する炭化し、ピッチ及び/又は樹脂の含浸と焼成とを複数回繰り返し行うことにより緻密化処理を行った後、高純度化処理を行い、その後CVIにより熱分解炭素の含浸層を形成する含浸層形成工程と、前記含浸層の上にCVDにより熱分解炭素の被覆層を形成する被覆層形成工程と、を備えている。本発明の第2観点に係る炭素繊維強化炭素複合材の製造方法は、炭素繊維に樹脂を含浸させたプリプレグを加熱・硬化することで形成された成形体を、還元雰囲気で炭化する炭化し、ピッチ及び/又は樹脂の含浸と焼成とを複数回繰り返し行うことにより緻密化処理を行った後、黒鉛化処理を行い、その後CVIにより熱分解炭素の含浸層を形成する含浸層形成工程と、前記含浸層の上にCVDにより熱分解炭素の被覆層を形成する被覆層形成工程と、を備えている。 The single crystal pulling apparatus according to the present invention is formed by the carbon fiber reinforced carbon composite material according to the present invention. Further, the method for producing a carbon fiber reinforced carbon composite material according to the first aspect of the present invention is a method of carbonizing a molded body formed by heating and curing a prepreg obtained by impregnating carbon fiber with a resin in a reducing atmosphere. And impregnating layer formation step of forming a pyrolytic carbon impregnation layer by CVI after performing densification treatment by repeating impregnation and firing of pitch and / or resin a plurality of times , and then performing purification treatment And a coating layer forming step of forming a coating layer of pyrolytic carbon on the impregnated layer by CVD. The method for producing a carbon fiber reinforced carbon composite material according to the second aspect of the present invention comprises carbonizing a molded body formed by heating and curing a prepreg impregnated with a resin in carbon fiber in a reducing atmosphere, An impregnation layer forming step of performing a densification treatment by repeatedly performing impregnation and firing of pitch and / or resin a plurality of times, followed by graphitization treatment, and then forming an impregnation layer of pyrolytic carbon by CVI; And a coating layer forming step of forming a pyrolytic carbon coating layer on the impregnated layer by CVD.
本発明はCVD層による被覆層が従来よりも厚く、耐SiC化に優れた特性を有し、更に、CVI法による含浸層の表面に被覆された被覆層であるために耐剥離性を併せて有するという効果を奏する。また、被覆層がSiOガスにより浸食損耗した場合でも、含浸層によりSiC化の進行を阻止する効果も奏することができる。これに加えて、表面の面粗さを滑らかにすることができるため、SiC化の進行を確実に抑制することができる。また、CVI、CVDを連続的に行うことにより、含浸層と被覆層の境界が明確にならず、表面の被覆層の耐剥離特性が向上するという効果が得られる。また、工程の簡略化、品質の安定化を計ることができる。 In the present invention, the coating layer formed by the CVD layer is thicker than the conventional one, and has excellent characteristics in terms of SiC resistance. Further, since the coating layer is coated on the surface of the impregnated layer by the CVI method, the peeling resistance is also combined. It has the effect of having. In addition, even when the coating layer is eroded by the SiO gas, the impregnation layer can also have an effect of preventing the progress of SiC formation. In addition, since the surface roughness of the surface can be smoothed, the progress of SiC formation can be reliably suppressed. Further, by continuously performing CVI and CVD, the boundary between the impregnated layer and the coating layer is not clarified, and the effect of improving the peel resistance of the coating layer on the surface is obtained. In addition, the process can be simplified and the quality can be stabilized.
本発明におけるC/C材は、例えば、ピッチ系又はPAN系の炭素繊維を出発原料とするUD又は2−Dに、樹脂を含浸させプリプレグにして積層、硬化させるか、前記炭素繊維をフィラメントワインディングで巻き付けて加熱、硬化させるか、3−D又はn−D織物に樹脂を含浸させて加熱、硬化させる等の方法によって成形体を形成する。ここで、最内層の炭素繊維は、3Kクロスの1枚貼りより、繊維密度が細かくて、SiOガスの浸透による酸化を少なくするために、1Kクロスの多層貼りが有利である。この成形体を還元雰囲気で炭化を行う。次にピッチ又は熱硬化性樹脂を含浸、焼成する処理を数回繰り返し、緻密化を行う。そして、緻密化処理後、引き続き高温で熱処理を行い黒鉛化処理を行う。ついで、高温(約2000℃)でハロゲンガスと反応させて高純度化処理を行う。なお、黒鉛化処理と高純度化処理は同一炉で同時に行っても構わない。また、ピッチと熱硬化性樹脂を併用して緻密化を行っても構わない。 The C / C material in the present invention is, for example, UD or 2-D starting from pitch-based or PAN-based carbon fibers, impregnated with resin, laminated and cured, or filament-winding the carbon fibers. The molded body is formed by a method of winding and heating and curing, or impregnating a 3-D or n-D fabric with a resin and heating and curing. Here, the carbon fiber of the innermost layer has a finer fiber density than that of a single piece of 3K cloth, and multi-layer attachment of 1K cloth is advantageous in order to reduce oxidation due to permeation of SiO gas. This molded body is carbonized in a reducing atmosphere. Next, the process of impregnating and baking the pitch or thermosetting resin is repeated several times to perform densification. Then, after the densification treatment, heat treatment is continued at a high temperature to perform graphitization treatment. Next, a high purity treatment is performed by reacting with a halogen gas at a high temperature (about 2000 ° C.). Note that the graphitization treatment and the high-purification treatment may be performed simultaneously in the same furnace. Further, densification may be performed by using a pitch and a thermosetting resin in combination.
ついで、SiOガスとの反応を抑制することを目的に、CVI法によって、熱分解炭素を含浸させる。これによって、表層部内部に残存する気孔を埋めることができる。CVI法による熱分解炭素の含浸は、通常800〜1300℃、10〜100Torr(13.3×102〜13.3×103Pa)の範囲下で、炭素数1〜8の炭化水素ガスを流量10〜100l/minで供給し、所望の厚みに形成させるよう保持時間を調節する。この含浸層は、被覆層の剥離を防ぐ緩衝層としての役割を有しつつ、表面の被覆層が浸食、損耗した場合のC/C材のSiC化を防ぐ為にも少なくとも5〜20μm 、更には5〜10μmであることが好ましい。これにより形成される含浸層の炭素組織は、主に柱状の細かい炭素組織(RC組織)となっている。 Next, pyrolytic carbon is impregnated by the CVI method for the purpose of suppressing reaction with SiO gas. As a result, pores remaining in the surface layer portion can be filled. The impregnation of pyrolytic carbon by the CVI method is usually performed at a temperature of 800 to 1300 ° C. and 10 to 100 Torr (13.3 × 10 2 to 13.3 × 10 3 Pa) in a hydrocarbon gas having 1 to 8 carbon atoms. Supply is performed at a flow rate of 10 to 100 l / min, and the holding time is adjusted to form a desired thickness. This impregnated layer has a role as a buffer layer for preventing peeling of the coating layer, and at least 5 to 20 μm in order to prevent the C / C material from becoming SiC when the coating layer on the surface is eroded or worn. Is preferably 5 to 10 μm. The carbon structure of the impregnated layer thus formed is mainly a columnar fine carbon structure (RC structure).
表面の熱分解炭素の被覆層はSiOガスとの反応を抑制するとともに、SiOガスの内部への浸透を防ぐために、CVD法により形成する。CVD処理は析出速度を大きく取るために、CVI処理時の処理温度よりも高温、低圧で行う。ここで、高温にするほど炭素の理想密度に近づくことが知られているが、このような反応炉の場合、高温で使用するほど、製造コストが高くなる。これは本発明の目的の一つに反するため、本発明での処理温度は工業的に実施可能な温度である1500〜2200℃とし、処理圧力は1〜10Torr(13.3×101〜13.3×102Pa)の範囲下で、炭素数1〜8の炭化水素ガスを流量5〜50l/minで供給し、所望の厚みに形成させるよう保持時間を調節する。この被覆層は厚すぎると剥離する恐れがあり、また、SiOガスの内部への浸透を防ぐためにも薄すぎては良くなく、SiC化する反応を遅らせるためにも少なくとも厚さが10〜100μm、更には、20〜80μmであることが好ましい。 The surface pyrolytic carbon coating layer is formed by a CVD method in order to suppress reaction with SiO gas and prevent penetration of SiO gas into the interior. The CVD process is performed at a higher temperature and lower pressure than the processing temperature during the CVI process in order to increase the deposition rate. Here, it is known that the higher the temperature, the closer to the ideal density of carbon, but in the case of such a reactor, the higher the temperature, the higher the manufacturing cost. Since this is contrary to one of the objects of the present invention, the processing temperature in the present invention is 1500 to 2200 ° C., which is an industrially feasible temperature, and the processing pressure is 1 to 10 Torr (13.3 × 10 1 to 13 In the range of 3 × 10 2 Pa), a hydrocarbon gas having 1 to 8 carbon atoms is supplied at a flow rate of 5 to 50 l / min, and the holding time is adjusted to form a desired thickness. If this coating layer is too thick, it may peel off, and it may not be too thin in order to prevent the penetration of SiO gas into the interior, and at least a thickness of 10 to 100 μm in order to delay the reaction to turn into SiC, Furthermore, it is preferable that it is 20-80 micrometers.
また、表面の被覆層は、CVI法によって、熱分解炭素で内部の気孔が埋められ、更には、炭素繊維によって形成されている表面の段差が埋められている。そのため、CVD処理されることによって、表面に被覆される熱分解炭素の表面粗さを5μm以下、更には4μm以下とすることが可能となる。このため、表面の比表面積が小さくなり、SiC化を抑制することが可能となる。 Further, the surface coating layer is filled with pyrolytic carbon by the CVI method, and further, the surface step formed by the carbon fiber is filled. Therefore, by performing the CVD process, the surface roughness of the pyrolytic carbon coated on the surface can be set to 5 μm or less, and further to 4 μm or less. For this reason, the specific surface area of a surface becomes small and it becomes possible to suppress SiC-ization.
これら含浸層、被覆層を形成する熱分解炭素は加熱方法、基材温度、ガス濃度、ガス種類、流速などの製造条件によって密度や形状が異なる。図1(Chemistryand Physics of Carbon, Vol.5, P.47) に例として、密度と熱分解炭素生成温度の関係を示す。図に示されているように、熱分解炭素の密度は低温域(800〜1300℃)では約2.2g/cm3であるが、1300〜1700℃の温度域では密度が減少し、1700℃を越える温度域で密度は再び増加しはじめ、炭素の理想密度に近い約2.2g/cm3となる。これは、核析出速度と成長速度との相乗効果に因る。核析出速度、成長速度ともに、温度が高くなるにしたがい速くなる。従って、高温域では核の析出、基材への堆積とともに、核の成長、配向が行われ、結晶子が大きく、規則正しく配向し、高密度となる。一方、低温域では基材温度が核成長に充分な温度でないため、核が殆ど成長せず、気相中で析出した核が基材上に堆積し高密度となる。また、中温域では、基材上の核が充分に成長、配向する前に新しい核が析出し、そのうえに堆積していくため、密度の低下、再増加という現象が生じる。すなわち、熱分解炭素の生成機構において、低温域では、気相で生成した核の基材上への積層が支配的であるが、高温域では基材上に沈積している核の成長、配向が支配的となる。 The pyrolytic carbon that forms the impregnation layer and the coating layer varies in density and shape depending on manufacturing conditions such as heating method, substrate temperature, gas concentration, gas type, and flow rate. As an example, FIG. 1 (Chemistry and Physics of Carbon, Vol. 5, P. 47) shows the relationship between density and pyrolytic carbon production temperature. As shown in the figure, the density of pyrolytic carbon is about 2.2 g / cm 3 in the low temperature range (800-1300 ° C.), but the density decreases in the temperature range of 1300-1700 ° C. The density begins to increase again in the temperature range exceeding 1, and becomes about 2.2 g / cm 3 which is close to the ideal density of carbon. This is due to the synergistic effect of the nucleation rate and the growth rate. Both the nucleation rate and the growth rate increase as the temperature increases. Therefore, in the high temperature region, the nucleus is grown and oriented along with the precipitation of the nucleus and the deposition on the base material, and the crystallites are large, regularly oriented, and high density. On the other hand, since the substrate temperature is not sufficient for the nucleus growth in the low temperature region, the nuclei hardly grow, and the nuclei precipitated in the gas phase are deposited on the substrate and become high density. Further, in the middle temperature range, new nuclei are deposited before the nuclei on the base material are sufficiently grown and oriented, and are deposited on the nuclei, thereby causing a phenomenon of density reduction and re-increase. That is, in the generation mechanism of pyrolytic carbon, the deposition of nuclei generated in the gas phase on the base material is dominant in the low temperature range, but the growth and orientation of nuclei deposited on the base material in the high temperature range. Becomes dominant.
本発明では、低温で生成する結晶子の細かい高密度熱分解炭素を含浸し、その上に連続的に高温で生成する結晶子の大きな高密度熱分解炭素を被覆する。この際に両者の密度をほぼ同じにすることにより、被覆層の耐剥離性を向上させる。ここで、密度をそろえるのは被覆処理時の炉内のガス濃度を調節することにより行う。すなわち、炉内温度、ガス流量、処理圧力等を調節する。 In the present invention, fine high-density pyrolytic carbon of crystallites generated at a low temperature is impregnated, and large high-density pyrolytic carbon of crystallites generated continuously at a high temperature is coated thereon. At this time, the peel resistance of the coating layer is improved by making the densities of the both substantially the same. Here, the density is adjusted by adjusting the gas concentration in the furnace during the coating process. That is, the furnace temperature, gas flow rate, processing pressure, etc. are adjusted.
またCVI、CVD処理を分けて行うと両者により生成された熱分解炭素層間の境界が明確に現れる場合などがある。例えば、各処理時の条件を前記の熱分解炭素の生成機構を考慮せずに行った場合や、炉から一旦出し、外気に晒したあと、再度CVD炉内に設置しCVD処理を行った場合等である。CVI処理終了後、一旦炉外に出してしまうと、外気中の不純物がその表面に吸着し、CVD処理時の加熱中に表面に残った不純物により、CVD処理時に核が異常成長を起こし、規則正しく配向しない等、核の成長が阻害される結果等が起こりうる。これらが、形成される含浸層、被覆層の境界が明確に現れる原因の一つと考えられる。このような境界が形成された場合、表面にCVD法により形成された被覆層は熱衝撃等により、容易に層の剥離や割れが起こる。そのため、含浸層、被覆層の両者を形成してもその効果が半減される。 In addition, when the CVI and CVD processes are performed separately, the boundary between pyrolytic carbon layers generated by both may appear clearly. For example, when the conditions at the time of each treatment are performed without considering the above-mentioned pyrolytic carbon generation mechanism, or when the CVD treatment is performed again after being taken out of the furnace and exposed to the outside air in the CVD furnace Etc. Once exited from the furnace after the CVI process is completed, impurities in the outside air are adsorbed on the surface, and impurities remaining on the surface during heating during the CVD process cause abnormal growth of nuclei during the CVD process. For example, the orientation of the nucleus may be hindered, such as not being oriented. These are considered to be one of the causes that the boundary between the impregnated layer and the coating layer to be formed clearly appears. When such a boundary is formed, the coating layer formed on the surface by the CVD method easily peels off or cracks due to thermal shock or the like. Therefore, even if both the impregnation layer and the coating layer are formed, the effect is halved.
従って、含浸層、被覆層の両層の組織を揃え、密度差を0.2g/cm3以内とし、境界を明確にしないで連続的な層を形成し、CVI、CVD法の両者の特徴を兼備した特性を有するには、同一炉内で連続的に且つ処理条件を調節し、含浸、被覆処理を行うことが好ましい。これにより、CVI法によって形成された含浸層の最外核の熱分解炭素が、不純物に阻害されることなく、CVD処理時の核となり、あらたに被覆層を形成していくことが可能であると考えられる。 Therefore, the structures of both the impregnation layer and the coating layer are aligned, the density difference is within 0.2 g / cm 3, and a continuous layer is formed without clarifying the boundary. In order to have the combined characteristics, it is preferable to perform the impregnation and coating treatment continuously in the same furnace while adjusting the treatment conditions. Thereby, the pyrolytic carbon of the outermost core of the impregnated layer formed by the CVI method becomes a nucleus during the CVD process without being inhibited by impurities, and it is possible to form a new coating layer. it is conceivable that.
また、連続的にCVI、CVD処理を行うため、従来よりも、含浸層、被覆層の厚みを厚く取ることが可能となる。剥離が発生しにくくなるからである。また、C/C材の表面粗さは、C/C材を形成する繊維の種類や、形成方法に依存するが、CVI、CVD処理によって、その表面粗さを制御することができる。そして、表面粗さを5μm以下とすることにより、表面の比表面積を小さくすることとなり、即ち、表面の外気との接触面積が小さくなり、耐SiC化特性も改善できる。更に、連続的にCVI、CVD処理を行うことにより、工程の簡略化、品質の安定化を計ることができ、優れた耐SiC化を有するC/C材で形成された単結晶引き上げ装置用高温部材を提供することができる。 In addition, since the CVI and CVD processes are continuously performed, it is possible to make the impregnation layer and the coating layer thicker than before. This is because peeling is less likely to occur. The surface roughness of the C / C material depends on the type of fiber forming the C / C material and the forming method, but the surface roughness can be controlled by CVI or CVD treatment. When the surface roughness is 5 μm or less, the specific surface area of the surface is reduced, that is, the surface contact area with the outside air is reduced, and the SiC resistance characteristics can be improved. Furthermore, by performing CVI and CVD processes continuously, the process can be simplified and the quality can be stabilized, and the high temperature for a single crystal pulling apparatus formed of a C / C material having excellent SiC resistance. A member can be provided.
以下に、実施例を挙げ、本発明を具体的に説明する。
(実施例1)
炭素繊維シート(東レ製、6K平織り)にフェノール樹脂を含浸させ、前記炭素繊維シートを積層し、つぎに、200度のオーブン中で10時間熱処理し、樹脂の硬化を行った。次に電気炉にて、窒素雰囲気中で1000℃で焼成を行った。更に緻密化のためにピッチ含浸−焼成を3回繰り返した。その後2000℃の熱処理を行った後、60×10×3(mm)の形状に加工し、2000℃でハロゲンガスと反応させることにより、高純度化処理を行った。ついで、1100℃、10Torr(13.3×102Pa)下でCH4ガスを流量10l/minで供給し、100時間保持するCVI 処理を施すことにより、熱分解炭素の含浸を行った。CVI 処理後、更に引き続き、同一炉内で連続的に2000℃まで加熱し、5Torr(6.67×102Pa)に減圧するとともに、CH4ガスを流量5l/minで供給し、3時間保持するCVD処理により平均面粗さ1.9μm、厚さ50μmの熱分解炭素層を形成させ、試験用試料を得た。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
A carbon fiber sheet (Toray, 6K plain weave) was impregnated with a phenol resin, the carbon fiber sheet was laminated, and then heat-treated in a 200 ° C. oven for 10 hours to cure the resin. Next, baking was performed at 1000 ° C. in a nitrogen atmosphere in an electric furnace. Further, pitch impregnation-firing was repeated three times for densification. Thereafter, heat treatment at 2000 ° C. was performed, and then processing into a shape of 60 × 10 × 3 (mm) was performed, and a high purity treatment was performed by reacting with halogen gas at 2000 ° C. Next, impregnation with pyrolytic carbon was carried out by supplying a CH 4 gas at a flow rate of 10 l / min at 1100 ° C. and 10 Torr (13.3 × 10 2 Pa) and holding it for 100 hours. After the CVI treatment, it is continuously heated to 2000 ° C. in the same furnace, depressurized to 5 Torr (6.67 × 10 2 Pa), and CH 4 gas is supplied at a flow rate of 5 l / min, and maintained for 3 hours. A thermal decomposition carbon layer having an average surface roughness of 1.9 μm and a thickness of 50 μm was formed by the CVD process to obtain a test sample.
(実施例2)
前記実施例1と同様にして作製した同形状のC/C材を、実施例1と同一条件で高純度処理、含浸処理を行った。その後、実施例1と同様にCVI処理後、連続的に同一炉で1800℃、5Torr(6.67×102Pa)、CH4ガス流量5l/minの条件で3時間保持するCVD処理により平均面粗さ2.0μm、厚さ約50μmの熱分解炭素層を形成させ、試験用試料を得た。
(Example 2)
A C / C material having the same shape produced in the same manner as in Example 1 was subjected to high-purity treatment and impregnation treatment under the same conditions as in Example 1. Then, after the CVI treatment in the same manner as in Example 1, the average was continuously obtained by the CVD treatment that was held in the same furnace for 3 hours at 1800 ° C., 5 Torr (6.67 × 10 2 Pa), and CH 4 gas flow rate of 5 l / min. A pyrolytic carbon layer having a surface roughness of 2.0 μm and a thickness of about 50 μm was formed to obtain a test sample.
(実施例3)
マンドレル表面にPAN系炭素繊維の平織りクロス(トレカT−300 6K 東レ(株)製)にフェノール樹脂を含浸したものを1 層張りつけ、その上にフィラメントワインディングを施した。フィラメントワインディングは、トレカT−300 12K (東レ(株)製)フィラメント6本にフェノール樹脂を含浸させながら、レベル巻き、中心軸に対する巻き付け角が85°〜90°のパラレル巻きを交互に5層ずつ巻き付けた。胴部はパラレル巻きとレベル巻きの10層になるが、底部はレベル巻きだけになる。これにより層厚み10mmの成形体が得られた。つぎに、オーブン中にて100℃で揮発分調整を行ったのち、真空バッグを被せて真空引きをしながら、オーブンの温度を200℃まで上げて成形体を熱硬化させた。熱硬化後、マンドレルから取り外し、成形体を得た。つぎに、胴部の真円度を保つために、黒鉛製の変形防止用治具を取付け、電気炉で窒素注入しながら10℃/hrの昇温速度で1000℃まで昇温し、C/C材を得た。これを、ハロゲンガス雰囲気下で2000℃に加熱し、10時間保持し、高純度化処理を行った。さらに、ピッチ含浸を行い、電気炉で窒素注入しながら10℃/hrの昇温速度で1000℃まで昇温し、焼成を行う。これを2回繰り返し、再度ハロゲンガス雰囲気の常圧下で2000℃に加熱し、黒鉛化と共に高純度化処理を行った。その後、実施例1と同一条件でCVI処理を行い、CVI処理後、連続的に同一炉で1800℃、5Torr(6.67×102Pa) 、CH4ガス流量5l/minの条件で3時間保持するCVD処理により平均面粗さ5.0μm、厚さ約50μmの熱分解炭素層を形成させ、試験用試料を得た。
(Example 3)
One layer of a PAN-based carbon fiber plain weave cloth (Torayca T-300 6K manufactured by Toray Industries, Inc.) impregnated with a phenol resin was applied to the mandrel surface, and filament winding was performed thereon. Filament winding consists of 5 layers of TORAYCA T-300 12K (manufactured by Toray Industries, Inc.) with 6 filaments impregnated with phenolic resin, level winding and parallel winding with a winding angle of 85 ° to 90 ° with respect to the central axis. I wrapped it. The body has 10 layers of parallel winding and level winding, but only the level winding at the bottom. As a result, a molded body having a layer thickness of 10 mm was obtained. Next, after adjusting the volatile content at 100 ° C. in an oven, the temperature of the oven was raised to 200 ° C. while evacuating the vacuum bag, and the molded body was thermally cured. After thermosetting, the molded body was removed from the mandrel. Next, in order to maintain the roundness of the body, a graphite deformation preventing jig is attached, and the temperature is raised to 1000 ° C. at a temperature rising rate of 10 ° C./hr while nitrogen is injected in an electric furnace. C material was obtained. This was heated to 2000 ° C. in a halogen gas atmosphere and held for 10 hours to perform a purification treatment. Further, pitch impregnation is performed, and the temperature is increased to 1000 ° C. at a temperature increase rate of 10 ° C./hr while nitrogen is injected in an electric furnace to perform firing. This was repeated twice and again heated to 2000 ° C. under normal pressure in a halogen gas atmosphere, and subjected to graphitization and high purification treatment. Thereafter, CVI treatment was performed under the same conditions as in Example 1. After CVI treatment, continuously for 3 hours in the same furnace at 1800 ° C., 5 Torr (6.67 × 10 2 Pa), and CH 4 gas flow rate of 5 l / min. A pyrolytic carbon layer having an average surface roughness of 5.0 μm and a thickness of about 50 μm was formed by the retained CVD process, and a test sample was obtained.
(比較例1)
前記実施例1と同様にして作製した同形状のC/C材に、実施例1と同一条件で高純度処理、含浸処理を行った。その後、CVI処理を行わない以外、実施例1と同様に2000℃で、5Torr(6.67×102Pa)下で、CH4ガスを流量5l/minで供給し、3時間保持するCVD処理のみを行うことにより平均面粗さ5.0μm、厚さ10μmの熱分解炭素層を形成させ、試験用試料を得た。
(Comparative Example 1)
A high purity treatment and an impregnation treatment were performed on the C / C material having the same shape as in Example 1 under the same conditions as in Example 1. Thereafter, a CVD process in which CH 4 gas is supplied at a flow rate of 5 l / min at 2000 ° C. and 5 Torr (6.67 × 10 2 Pa) as in Example 1 except that the CVI process is not performed. Was carried out to form a pyrolytic carbon layer having an average surface roughness of 5.0 μm and a thickness of 10 μm to obtain a test sample.
(比較例2)
前記実施例1と同様にして作製した同形状のC/C材に、実施例1と同一条件で高純度処理、含浸処理を行った。その後、実施例1と同様に1100℃、10Torr(13.3×102Pa)下で、CH4ガスを流量10l/minで供給し、100時間保持し、熱分解炭素のCVI処理のみを行い、試験用試料を得た。表面の平均面粗さは7.0μmであった。
(Comparative Example 2)
A high purity treatment and an impregnation treatment were performed on the C / C material having the same shape as in Example 1 under the same conditions as in Example 1. Thereafter, as in Example 1, CH 4 gas was supplied at a flow rate of 10 l / min at 1100 ° C. and 10 Torr (13.3 × 10 2 Pa), held for 100 hours, and only CVI treatment of pyrolytic carbon was performed. A test sample was obtained. The average surface roughness of the surface was 7.0 μm.
(比較例3)
前記実施例1と同様にして作製した同形状のC/C材を、実施例1と同一条件で高純度処理、含浸処理を行い、CVI、CVD処理を施さず、試験用試料とした。
(Comparative Example 3)
A C / C material of the same shape produced in the same manner as in Example 1 was subjected to high-purity treatment and impregnation treatment under the same conditions as in Example 1, and was not subjected to CVI and CVD treatment, and was used as a test sample.
前記実施例1〜3と、比較例1〜3で得られた試料を、金属シリコンと一緒に真空炉内に設置し、1800℃、100Torr(13.3×103Pa)、5時間の条件で反応性試験を行った。試験後、各試料の重量変化を測定しSiC化率すなわち、SiOガスとの反応率を調べた。 Samples obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were placed in a vacuum furnace together with metallic silicon, and conditions of 1800 ° C. and 100 Torr (13.3 × 10 3 Pa) for 5 hours. A reactivity test was performed. After the test, the weight change of each sample was measured to examine the SiC conversion rate, that is, the reaction rate with SiO gas.
更に、前記実施例1〜3及び比較例1と2で得られた試料について急熱急冷試験を行った。すなわち5分間で1000℃に昇温急熱した試料を水中に投じて急冷し熱分解炭素の剥離状況を調べた。試料数はそれぞれ5個である。 Further, the samples obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to a rapid heating and quenching test. That is, a sample heated and rapidly heated to 1000 ° C. in 5 minutes was poured into water and rapidly cooled to examine the state of peeling of pyrolytic carbon. The number of samples is 5 each.
前記SiC化率、急熱急冷試験結果、CVI、CVD処理後の熱分解炭素の密度を表1にまとめる。ここで、熱分解炭素の密度はX線回折分析による炭素の[002]面の回折強度比より配向度を求め算出した。 Table 1 summarizes the SiC conversion rate, rapid thermal quench test results, CVI, and the density of pyrolytic carbon after CVD treatment. Here, the density of pyrolytic carbon was calculated by obtaining the degree of orientation from the diffraction intensity ratio of the [002] plane of carbon by X-ray diffraction analysis.
表1からも分かるように、含浸層、被覆層の密度差が0.2g/cm3以内である実施例1〜3の試料は、耐剥離性、耐SiC性ともに優れていることがわかる。また、実施例3のようにフィラメントワインディング法により形成した試料は、表面の平均面粗さが実施例1及び2に比較すると少し悪くなり、それに伴い耐SiC化率も少し悪くなっている。また、比較例1は、CVDでのみ表面に熱分解炭素を被覆しただけであるため、急熱急冷試験の結果、表面の被覆層が剥離した。比較例2の試料は、CVI処理により熱分解炭素を含浸しただけであるため、耐SiC化率が悪くなっている。 As can be seen from Table 1, impregnation layer, the samples of Examples 1 to 3 density difference is within 0.2 g / cm 3 of the coating layer are excellent peeling resistance, resistance to Si C resistance both . Further, the average surface roughness of the sample formed by the filament winding method as in Example 3 is a little worse than that in Examples 1 and 2, and accordingly, the SiC resistance is slightly worse. Moreover, since the comparative example 1 only coat | covered the pyrolytic carbon on the surface only by CVD, the surface coating layer peeled as a result of the rapid thermal quenching test. Since the sample of Comparative Example 2 is only impregnated with pyrolytic carbon by CVI treatment, the SiC resistance rate is poor.
以上、本発明の好適な実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能なものである。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims.
Claims (7)
前記被覆層の平均面粗さが5μm以下である、炭素繊維強化炭素複合材。 A compact formed by heating and curing a prepreg impregnated with a resin in carbon fiber is carbonized in a reducing atmosphere, and pitch and / or resin impregnation and firing are repeated multiple times for densification treatment. Then , a high-purification treatment is performed, and then an impregnated layer of pyrolytic carbon is formed by CVI , and a coating layer of pyrolytic carbon is further formed on the impregnated layer by CVD,
The carbon fiber reinforced carbon composite material whose average surface roughness of the said coating layer is 5 micrometers or less.
前記被覆層の平均面粗さが5μm以下である、炭素繊維強化炭素複合材。 A compact formed by heating and curing a prepreg impregnated with a resin in carbon fiber is carbonized in a reducing atmosphere, and pitch and / or resin impregnation and firing are repeated multiple times for densification treatment. After performing the graphitization treatment, a pyrolytic carbon impregnation layer is formed by CVI , and a pyrolytic carbon coating layer is further formed by CVD on the impregnation layer.
The carbon fiber reinforced carbon composite material whose average surface roughness of the said coating layer is 5 micrometers or less.
前記含浸層の上にCVDにより熱分解炭素の被覆層を形成する被覆層形成工程と、
を備えている、炭素繊維強化炭素複合材の製造方法。 A compact formed by heating and curing a prepreg with carbon fiber impregnated with resin is carbonized in a reducing atmosphere, and is densified by repeatedly impregnating and firing pitch and / or resin multiple times. After the treatment, an impregnation layer forming step of performing a purification treatment and then forming an impregnation layer of pyrolytic carbon by CVI;
A coating layer forming step of forming a pyrolytic carbon coating layer by CVD on the impregnated layer;
A method for producing a carbon fiber reinforced carbon composite material.
前記含浸層の上にCVDにより熱分解炭素の被覆層を形成する被覆層形成工程と、
を備えている、炭素繊維強化炭素複合材の製造方法。 A compact formed by heating and curing a prepreg with carbon fiber impregnated with resin is carbonized in a reducing atmosphere, and is densified by repeatedly impregnating and firing pitch and / or resin multiple times. An impregnation layer forming step of performing a graphitization treatment after the treatment, and then forming an impregnation layer of pyrolytic carbon by CVI;
A coating layer forming step of forming a pyrolytic carbon coating layer by CVD on the impregnated layer;
A method for producing a carbon fiber reinforced carbon composite material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009097305A JP5231316B2 (en) | 1998-06-04 | 2009-04-13 | Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1998155642 | 1998-06-04 | ||
JP15564298 | 1998-06-04 | ||
JP2009097305A JP5231316B2 (en) | 1998-06-04 | 2009-04-13 | Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11154711A Division JP2000095567A (en) | 1998-06-04 | 1999-06-02 | Carbon fiber reinforced carbon composite material and member for single crystal pulling up device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009155203A JP2009155203A (en) | 2009-07-16 |
JP5231316B2 true JP5231316B2 (en) | 2013-07-10 |
Family
ID=40959601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009097305A Expired - Fee Related JP5231316B2 (en) | 1998-06-04 | 2009-04-13 | Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5231316B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156485A (en) * | 2019-05-28 | 2019-08-23 | 中国科学院金属研究所 | A kind of method of short cycle, low cost preparation high-performance carbon/carbon compound material |
CN110240489A (en) * | 2019-06-20 | 2019-09-17 | 西北工业大学 | Refractory ceramics based composites torque tube preparation method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102731134A (en) * | 2012-07-12 | 2012-10-17 | 北京京仪世纪电子股份有限公司 | Straight pulling single crystal furnace and processing method of carbon-carbon composite material for straight pulling single crystal furnace |
CN107880921B (en) * | 2017-11-13 | 2020-04-24 | 辽宁奥亿达新材料有限公司 | Petroleum-series multifunctional asphalt resin and preparation method thereof |
CN110171976A (en) * | 2019-05-27 | 2019-08-27 | 华中科技大学 | The preparation method and product of SiC base ceramic part based on increasing material manufacturing |
JP7364375B2 (en) * | 2019-07-12 | 2023-10-18 | イビデン株式会社 | carbon composite parts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0822783B2 (en) * | 1988-02-17 | 1996-03-06 | 日本石油株式会社 | Method for manufacturing carbon / carbon composite material |
JPH1059795A (en) * | 1996-08-20 | 1998-03-03 | Toyo Tanso Kk | Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal |
-
2009
- 2009-04-13 JP JP2009097305A patent/JP5231316B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156485A (en) * | 2019-05-28 | 2019-08-23 | 中国科学院金属研究所 | A kind of method of short cycle, low cost preparation high-performance carbon/carbon compound material |
CN110240489A (en) * | 2019-06-20 | 2019-09-17 | 西北工业大学 | Refractory ceramics based composites torque tube preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP2009155203A (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231316B2 (en) | Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material | |
JP4700218B2 (en) | A crucible made of carbon fiber reinforced carbon composite material for single crystal pulling | |
JP4514846B2 (en) | High purity carbon fiber reinforced carbon composite material and method for producing the same | |
JP4077601B2 (en) | Method for producing C / C crucible for pulling single crystal | |
JPH1059795A (en) | Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal | |
EP1120484B1 (en) | Carbon fiber reinforced carbon composite and useful as components for pulling single crystal apparatus | |
JP3218092B2 (en) | Method for producing oxidation resistant C / C composite | |
JP2000095567A (en) | Carbon fiber reinforced carbon composite material and member for single crystal pulling up device | |
US6399203B1 (en) | Pyrolytic carbon coated carbon fiber reinforced carbon composite and useful as components for pulling single crystal apparatus | |
JP2006131451A (en) | Crucible for drawing-up single crystal and its manufacturing method | |
JP2000086382A (en) | C/c crucible for pulling single crystal | |
JPH10139581A (en) | High-temperature member for device for pulling up single crystal | |
JP4358313B2 (en) | Seed chuck for semiconductor single crystal pulling equipment | |
JP2023006364A (en) | C/C COMPOSITE AND Si SINGLE CRYSTAL PULLING-UP FURNACE COMPONENT | |
JPH10158090A (en) | Manufacture of c/c material (carbon fiber-carbon composite material) crucible for pulling up semiconductor single crystal | |
JP4170426B2 (en) | High temperature member for single crystal pulling apparatus and manufacturing method thereof | |
JP4218853B2 (en) | Carbonaceous crucible for pulling single crystal and method for producing the same | |
JPH0292886A (en) | Production of carbon fiber-reinforced composite material having oxidation resistance | |
JP4823406B2 (en) | Carbon fiber reinforced carbon composite material for single crystal pulling equipment | |
JP3853035B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JP4152580B2 (en) | Method for manufacturing and repairing C / C crucible for pulling Si single crystal | |
JP2579563B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites. | |
JPH10209061A (en) | Constitution member for semiconductor diffusion furnace | |
JPH06345571A (en) | Production of high-temperature oxidation resistant c/c composite material | |
JP2002173392A (en) | C/c member for single crystal pulling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130131 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130321 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5231316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |