JP2007035336A - Manufacturing method of metallic frame for vapor deposition mask - Google Patents

Manufacturing method of metallic frame for vapor deposition mask Download PDF

Info

Publication number
JP2007035336A
JP2007035336A JP2005213588A JP2005213588A JP2007035336A JP 2007035336 A JP2007035336 A JP 2007035336A JP 2005213588 A JP2005213588 A JP 2005213588A JP 2005213588 A JP2005213588 A JP 2005213588A JP 2007035336 A JP2007035336 A JP 2007035336A
Authority
JP
Japan
Prior art keywords
vapor deposition
metal frame
frame
deposition mask
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213588A
Other languages
Japanese (ja)
Inventor
Takashi Takehara
隆司 竹原
Yoichi Kawai
洋一 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005213588A priority Critical patent/JP2007035336A/en
Publication of JP2007035336A publication Critical patent/JP2007035336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a metallic frame for a vapor deposition mask, which manufactures a large metallic frame for a vapor deposition mask to cope with increase of the size of the vapor deposition mask with a high yield rate and high productivity. <P>SOLUTION: This manufacturing method is used for manufacturing a frame-like metallic frame for a vapor deposition mask for holding the edge side of a mask part formed of a metal thin plate with multiple through-holes formed for applying a phosphor to desired positions formed therein. The manufacturing method of a metallic frame for a vapor deposition mask includes processes of: (1) machining a metal material having a thermal expansion coefficient below 11×10<SP>-6</SP>/°C at a temperature of RT to 450°C to components for a metallic frame each used as one side of the frame; (2) jointing the components for a metallic frame to each other to form a frame-like component having a size ≥400 mm (w)×500 mm (l); and (3) flattening the frame-like component to form the metallic frame for a vapor deposition mask having a degree of flatness below 0.05 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、有機EL素子製造における蒸着工程で使われる蒸着マスクの、マスク部の縁側を保持する枠状の蒸着マスク用金属製フレームの製造方法に関するものである。   The present invention relates to, for example, a method for manufacturing a frame-shaped metal mask for a vapor deposition mask that holds the edge side of a mask portion of a vapor deposition mask used in a vapor deposition step in the manufacture of an organic EL element.

例えば、有機EL素子製造における蒸着工程では、例えば特開2004−323888号公報(特許文献1参照)に示されるような蒸着マスクが用いられる。
蒸着マスク(1)は例えば図1に示されるように、蛍光体を所望の位置に塗装するために形成された、多数の貫通孔(2)が形成された金属薄板製でなるマスク部(3)の縁側(図中の破線部から外側の領域)を保持する枠状の蒸着マスク用金属製フレーム(4)により構成される。
この蒸着マスク用金属製フレームの材質は特開2004−323888号公報に開示されるように、Fe−Ni系の低熱膨張合金やステンレス鋼等が代表的であり、これらのFe−Ni系の低熱膨張合金製蒸着マスク用金属製フレームやステンレス鋼製蒸着マスク用金属製フレームの製造方法としては、所望の化学組成を有する鋼板から削り出して製造されている。
特開2004−323888号公報
For example, in a vapor deposition process in manufacturing an organic EL element, a vapor deposition mask as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-323888 (see Patent Document 1) is used.
For example, as shown in FIG. 1, the vapor deposition mask (1) is formed of a metal thin plate having a large number of through holes (2) formed to coat a phosphor at a desired position (3 ) Of the frame-like metal frame (4) for the vapor deposition mask that holds the edge side (region outside the broken line portion in the figure).
As disclosed in Japanese Patent Application Laid-Open No. 2004-323888, the material of the metal frame for the vapor deposition mask is typically Fe-Ni low thermal expansion alloy, stainless steel or the like, and these Fe-Ni low heat As a method for manufacturing a metal frame for an expansion alloy vapor deposition mask or a metal frame for a stainless steel vapor deposition mask, the metal frame is manufactured by cutting out from a steel plate having a desired chemical composition.
JP 2004-323888 A

最近、薄型ディスプレイの大型化がめざましく、蒸着マスクを用いて製造される、有機ELディスプレイにおいても大型化の検討が進められている。しかしながら、有機ELディスプレイを大型化する際には有機EL素子製造における蒸着工程で使われる蒸着マスクの大型化も避けられない課題である。
蒸着マスクの大型化においては、蒸着マスク用金属製フレームの大型化は必須であるが、特に400mm(w)×500mm(l)以上の大型の蒸着マスク用金属製フレームを製造する際には、従来から行われている鋼板からの削り出しでは、歩留まり率が低すぎること、生産性が悪いこと等の解決すべき課題がある。
本発明の目的は、蒸着マスクの大型化に対応できる大型の蒸着マスク用金属製フレームを、高い歩留まり率、高い生産性にて製造できる、蒸着マスク用金属製フレームの製造方法を提供することである。
Recently, the increase in size of a thin display has been remarkable, and an increase in the size of an organic EL display manufactured using a vapor deposition mask is also being studied. However, when increasing the size of the organic EL display, it is an inevitable problem to increase the size of the vapor deposition mask used in the vapor deposition process in the production of the organic EL element.
In increasing the size of the vapor deposition mask, it is essential to increase the size of the metal frame for the vapor deposition mask, but particularly when manufacturing a large metal frame for the vapor deposition mask of 400 mm (w) × 500 mm (l) or more, In the conventional cutting from a steel plate, there are problems to be solved such as a yield rate being too low and productivity being poor.
An object of the present invention is to provide a method for producing a metal frame for a vapor deposition mask, which can produce a large metal frame for a vapor deposition mask that can accommodate an increase in the size of the vapor deposition mask with a high yield rate and high productivity. is there.

本発明は上述の問題に鑑みてなされたものである。
すなわち本発明は、蛍光体を所望の位置に塗装するために形成された、多数の貫通孔が形成された金属薄板製でなるマスク部の縁側を保持する枠状の蒸着マスク用金属製フレームの製造方法であって、
(1)RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料から、フレームの一辺となる金属製フレーム用部品に加工する工程と、
(2)金属製フレーム用部品同士を接合させて400mm(w)×500mm(l)以上の大きさの枠状部品にする工程と、
(3)枠状部品のマスク部搭載面を平坦化加工して、平坦度が0.05mm以下の蒸着マスク用金属製フレームとする工程、
を含む蒸着マスク用金属製フレームの製造方法である。
The present invention has been made in view of the above problems.
That is, the present invention relates to a metal frame for a vapor deposition mask having a frame shape that holds the edge side of a mask portion made of a thin metal plate formed with a large number of through holes and formed to coat a phosphor at a desired position. A manufacturing method comprising:
(1) a step of processing from a metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less into a metal frame part that is one side of the frame;
(2) joining metal frame parts to each other to form a frame-shaped part having a size of 400 mm (w) × 500 mm (l) or more;
(3) A step of flattening the mask portion mounting surface of the frame-shaped component to form a metal frame for a vapor deposition mask having a flatness of 0.05 mm or less,
It is a manufacturing method of the metal frame for vapor deposition masks containing.

好ましくは、上記の金属製フレーム用部品同士の接合は、四隅部にて溶接し、溶接後の枠状部品の上下方向から荷重を加えつつ熱処理する、蒸着マスク用金属製フレームの製造方法である。
更に好ましくは、上記のRT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料は質量%でNi:25〜50%含有して残部は実質的にFeでなる合金でなるか、或いは、質量%でNi:25〜50%含有し、更にCr:10%以下、Co:15〜42%の何れかを含有し、残部は実質的にFeでなる合金である蒸着マスク用金属製フレームの製造方法である。
更に好ましくは、上記の金属製フレーム用部品に加工する工程は、断面が矩形状に研削する工程、或いは、板状の金属材料を曲げ加工する工程、の何れかである蒸着マスク用金属製フレームの製造方法である。
更に好ましくは、本発明の蒸着マスク用金属製フレームはビッカース硬さが125以上である蒸着マスク用金属製フレームの製造方法である。
Preferably, the metal frame parts are joined together by welding at the four corners and heat-treating while applying a load from the vertical direction of the welded frame-like part. .
More preferably, the above-mentioned metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less is made of an alloy containing Ni: 25 to 50% by mass and the balance being substantially Fe. Alternatively, Ni: 25 to 50% by mass%, further containing Cr: 10% or less, Co: 15 to 42%, the balance being an alloy consisting essentially of Fe It is a manufacturing method of a metal frame.
More preferably, the step of processing into the metal frame component described above is either a step of grinding the cross section into a rectangular shape or a step of bending a plate-shaped metal material. It is a manufacturing method.
More preferably, the metal frame for a vapor deposition mask according to the present invention is a method for producing a metal frame for a vapor deposition mask having a Vickers hardness of 125 or more.

本発明の製造方法によって得られる蒸着マスク用金属製フレームは、従来から用いられている削り出しの蒸着マスク用金属製フレームと比較し、ほぼ同等の特性を有し、高い歩留まり率、高い生産性にて製造できることから、蒸着マスクの大型化に対応できる大型の蒸着マスク用金属製フレームとすることができるという効果を奏するものである。   The metal frame for the vapor deposition mask obtained by the production method of the present invention has almost the same characteristics, high yield rate, and high productivity as compared with the conventional metal frame for the vapor deposition mask used. Therefore, it is possible to obtain a large metal frame for a vapor deposition mask that can cope with an increase in the size of the vapor deposition mask.

本発明の蒸着マスク用金属製フレームは、例えば図1、図2に示すように、蒸着マスク用金属製フレーム(4)は、例えば蛍光体を所望の位置に塗装するために形成された、多数の貫通孔(2)が形成された金属薄板製でなるマスク部(3)の縁側(図中の破線部から外側の領域)を保持する枠状ものである。
蒸着マスク用金属製フレーム(4)と金属薄板製でなるマスク部(3)とが溶接などによって接合させれば蒸着マスク(1)となる。
以下に、本発明の蒸着マスク用金属製フレームの製造方法について詳しく説明する。
For example, as shown in FIGS. 1 and 2, the metal frame for a vapor deposition mask of the present invention has a large number of metal frames (4) for vapor deposition mask formed to coat a phosphor at a desired position, for example. It is a frame-like shape that holds the edge side (region outside the broken line portion in the figure) of the mask portion (3) made of a thin metal plate in which the through-hole (2) is formed.
When the metal frame for vapor deposition mask (4) and the mask portion (3) made of a thin metal plate are joined together by welding or the like, the vapor deposition mask (1) is obtained.
Below, the manufacturing method of the metal frame for vapor deposition masks of this invention is demonstrated in detail.

先ず、RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料を用意し、フレームの一辺となる金属製フレーム用部品に加工する。
RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料とした理由は、使用中の蒸着マスクは、その表面温度が450℃程度まで温度上昇する場合がある。
蒸着マスク用金属製フレームとなる金属材料に、過度に熱膨張係数が大きな金属材料を用いれば、蒸着する蛍光体の位置ずれ等の問題が生じる。特に大型のディスプレイを製造する場合には、ずれる位置も大きくなる。また、マスク部にはFe−Ni系の低熱膨張合金が用いられることが増えてきていることから、マスク部の合金と比較し、過度に熱膨張係数が大きな金属材料を用いれば、マスク部との熱膨張差によってマスク部に捩れや撓みが生じたりする。そのため、RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料を用いることにする。
First, a metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less is prepared and processed into a metal frame component that becomes one side of the frame.
The reason why the metal material has a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or lower is that the surface temperature of the evaporation mask in use may rise to about 450 ° C.
If a metal material having an excessively large thermal expansion coefficient is used as the metal material for the metal frame for the vapor deposition mask, problems such as displacement of the phosphor to be vapor-deposited occur. In particular, when a large display is manufactured, the shift position also increases. In addition, since the use of Fe-Ni low thermal expansion alloys for the mask portion is increasing, if a metal material having an excessively large thermal expansion coefficient is used compared to the mask portion alloy, the mask portion and The mask portion may be twisted or bent due to the difference in thermal expansion. Therefore, a metal material having a thermal expansion coefficient of RT × 450 ° C. of 11 × 10 −6 / ° C. or less is used.

上述のRT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料としては、質量%でNi:25〜50%含有して残部は実質的にFeでなる合金でなるか、或いは、質量%でNi:25〜50%含有し、更にCr:10%以下、Co:15〜42%の何れかを含有し、残部は実質的にFeでなる合金を用いるのが好ましい。
これらの金属材料は、入手し易いこと、NiやCoの含有量の調整、加工条件により、熱膨張係数を調整し易いため、本発明で用いる金属材料として好適である。
これらの代表的な組成としては、36%Ni−Fe合金、42%Ni−Fe合金、50%Ni−Fe合金、29%Ni−17%Co−Fe合金、42%Ni−6%Cr−Fe合金が挙げられる。また、本願出願人の提案による特開2004−115905号の合金(例えば25%Ni−40%Co−Fe合金)であれば、熱膨張係数が増大する屈曲点(キュリー点)を500℃以上の高温とすることもできる。
As the metal material having a thermal expansion coefficient of RT × 450 ° C. of 11 × 10 −6 / ° C. or less as described above, is Ni: 25 to 50% by mass and the balance is substantially made of Fe, or Alternatively, it is preferable to use an alloy containing Ni: 25 to 50% by mass%, further containing Cr: 10% or less, and Co: 15 to 42%, with the balance being substantially Fe.
These metal materials are suitable as the metal materials used in the present invention because they are easily available, the content of Ni and Co are easily adjusted, and the thermal expansion coefficient is easily adjusted by processing conditions.
These representative compositions include 36% Ni-Fe alloy, 42% Ni-Fe alloy, 50% Ni-Fe alloy, 29% Ni-17% Co-Fe alloy, 42% Ni-6% Cr-Fe. An alloy is mentioned. Further, in the case of an alloy of Japanese Patent Application Laid-Open No. 2004-115905 proposed by the applicant of the present application (for example, 25% Ni-40% Co—Fe alloy), the bending point (Curie point) at which the thermal expansion coefficient increases is 500 ° C. or higher. It can also be high temperature.

上述の金属材料は何れも低熱膨張という共通の効果が得られるが、熱膨張係数が増大する屈曲点の温度は200℃〜500℃以上の温度範囲であることから、蒸着マスク用金属製フレームに用いた材料と、マスク部に用いる材料とは実質的に同じ組成として、蒸着マスク用金属製フレームと、マスク部との熱膨張特性を整合させるのが好ましい。
特に好ましくは、蒸着マスク用金属製フレームとマスク部に用いる金属材料を共に36%Ni−Fe合金とするか、或いは、蒸着マスク用金属製フレームとマスク部に用いる金属材料を共に42%Ni−Fe合金とすることである。
All of the above-mentioned metal materials have a common effect of low thermal expansion, but the temperature at the bending point where the thermal expansion coefficient increases is in the temperature range of 200 ° C. to 500 ° C. or higher. It is preferable that the material used and the material used for the mask portion have substantially the same composition, and the thermal expansion characteristics of the metal frame for the vapor deposition mask and the mask portion are matched.
Particularly preferably, the metal material for the vapor deposition mask and the metal material used for the mask portion are both 36% Ni-Fe alloy, or the metal material for the vapor deposition mask and the mask portion are both 42% Ni--. It is to make an Fe alloy.

そして、本発明では上記の金属材料を用いて、フレームの一辺となる金属製フレーム用部品に加工する。
金属製フレーム用部品への加工は、例えば金属材料から研削により金属製フレーム用部品に加工する場合は、図5(a)に示すような形状のものや、例えば、図6に示す形状のように、断面を矩形状に加工する。この場合、蒸着マスク用金属製フレームとした時に、接合個所の強度を高く維持できるという利点がある。
また、金属材料が板状であれば例えば図5(b),図5(c)に示すように曲げ加工を施すのが良い。この場合、蒸着マスク用金属製フレームとした時に、軽量化がはかれるという利点がある。
なお、この金属製フレーム用部品への加工時には、マスク部と接する表面と、その反対面は平行研磨等の表面加工も行うのが良く、例えば、図6のような金属製フレーム用部品を用いて、ネジやボルトにて接合・固定するのであれば、予めネジ穴等を設けておくのが良い。また、溶接やロウ付けにて接合するのであれば、被溶接部のクリアランスを0.1mm以下に調整することで溶落等の溶接欠陥を防止することができる。
And in this invention, it processes into the metal frame components used as one side of a flame | frame using said metal material.
For example, when processing a metal frame part into a metal frame part by grinding from a metal material, the shape as shown in FIG. 5 (a), for example, the shape shown in FIG. Next, the cross section is processed into a rectangular shape. In this case, when the metal frame for the vapor deposition mask is used, there is an advantage that the strength of the joint portion can be maintained high.
Further, if the metal material is plate-like, it may be bent as shown in FIGS. 5B and 5C, for example. In this case, when it is set as the metal frame for a vapor deposition mask, there exists an advantage that weight reduction is achieved.
When processing this metal frame part, the surface in contact with the mask portion and the opposite surface may be subjected to surface processing such as parallel polishing. For example, a metal frame part as shown in FIG. 6 is used. In case of joining and fixing with screws or bolts, it is preferable to provide a screw hole or the like in advance. Moreover, if it joins by welding or brazing, welding defects, such as a fall, can be prevented by adjusting the clearance of a to-be-welded part to 0.1 mm or less.

次に、加工した金属製フレーム用部品同士を接合させて、400mm(w)×500mm(l)以上の大きさの枠状部品にする。
金属製フレーム用部品同士の接合は、嵌合、ネジやボルトによる金属製フレーム用部品同士の接合・固定、溶接やロウ付け等により枠状部品にする。
例えば図6(a)のような(上面方向から見て)台形状の金属製フレーム用部品(7)であれば、I型やL型の接合治具を用いて金属製フレーム用部品同士をネジやボルトで接合・固定できるし、図6(b)、図6(c)のような金属製フレーム用部品(7)であれば、金属製フレーム用部品同士をネジやボルトで接合・固定して枠状部品とすることができる。
また、例えば図5に示すような金属製フレーム用部品(7)であれば、溶接によって接合することができる。特に、蒸着マスク用金属製フレームの寸法が700mm(w)×900mm(l)以上であれば、接合部の強度が高いほど良く、これをより確実に達成するには例えば図4に示すように、四隅部(5)にて金属製フレーム用部品同士を溶接した溶接部(6)とするのが良い。
なお、本発明で言う枠状部品の大きさは、図4に示す全幅(w)、全長(l)を言う。
この本発明で採用した金属製フレーム用部品同士の接合によって、従来から行われている鋼板からの削り出しでは、歩留まり率が低すぎる、400mm(w)×500mm(l)以上の大きさの枠状部品を高い歩留まり率にて容易に製造することができる。
Next, the processed metal frame parts are joined to form a frame-shaped part having a size of 400 mm (w) × 500 mm (l) or more.
The metal frame parts are joined to each other by fitting, fixing and joining the metal frame parts with screws or bolts, welding, brazing, or the like.
For example, in the case of a trapezoidal metal frame part (7) (as viewed from above) as shown in FIG. 6 (a), the metal frame parts can be connected to each other using an I-type or L-type joining jig. Can be joined and fixed with screws and bolts, and metal frame parts (7) as shown in Fig. 6 (b) and Fig. 6 (c) can be joined and fixed with screws and bolts. Thus, a frame-like component can be obtained.
Further, for example, a metal frame part (7) as shown in FIG. 5 can be joined by welding. In particular, if the size of the metal frame for the vapor deposition mask is 700 mm (w) × 900 mm (l) or more, the higher the strength of the joint portion, the better. To achieve this more reliably, for example, as shown in FIG. The welded part (6) may be formed by welding metal frame parts at the four corners (5).
In addition, the size of the frame-like component referred to in the present invention means the full width (w) and the full length (l) shown in FIG.
By joining the metal frame parts employed in the present invention, the yield rate is too low in the conventional cutting out from the steel sheet, and the frame has a size of 400 mm (w) × 500 mm (l) or more. Can be easily manufactured at a high yield.

四隅部(5)にて金属製フレーム用部品同士を溶接した枠状部品(4)においては、上下方向(図3の(1),(2)の方向)から荷重を加えつつ熱処理するのが好ましい。荷重を加えつつ熱処理するのは、枠状部品を加熱によって平坦化させるためである。
そのため、加える荷重は、熱処理によって枠状部品を平坦化できるように、例えば、締め付けボルト付き治具で挟み、治具と枠状部品の間の隙間が無くなる程度にボルトで締め付けることにより、荷重を加える方法を適用しても良い。
熱処理の温度は500〜650℃程度で十分である。生産性を高めるには、枠状部品(4)を複数枚積み重ねて熱処理するのが良いが、この時、過度に熱処理温度が高ければ、枠状部品同士が接着しる危険性があるだけでなく、金属材料のビッカース硬さが125未満に低下して蒸着マスク用金属製フレームの剛性が得にくくなる。一方、熱処理温度が低すぎると平坦化させる効果が得にくくなる。そのため熱処理の温度は500〜650℃とすれば良い。
なお、熱処理の雰囲気は大気で十分であり、熱処理時間は1〜5時間であれば良い。
In the frame-shaped part (4) in which the metal frame parts are welded together at the four corners (5), heat treatment is performed while applying a load from the vertical direction (directions (1) and (2) in FIG. 3). preferable. The heat treatment is performed while applying a load in order to flatten the frame-shaped component by heating.
Therefore, the load to be applied is, for example, sandwiched by a jig with a tightening bolt and tightened with a bolt so that there is no gap between the jig and the frame-shaped part so that the frame-shaped part can be flattened by heat treatment. An adding method may be applied.
About 500-650 degreeC is enough for the temperature of heat processing. In order to increase productivity, it is better to heat multiple stacked frame parts (4), but if the heat treatment temperature is excessively high at this time, there is a risk that the frame parts will adhere to each other. However, the Vickers hardness of the metal material is lowered to less than 125, and the rigidity of the metal frame for the vapor deposition mask is difficult to obtain. On the other hand, if the heat treatment temperature is too low, it is difficult to obtain the effect of flattening. Therefore, the heat treatment temperature may be 500 to 650 ° C.
Note that the atmosphere for the heat treatment is sufficient in the air, and the heat treatment time may be 1 to 5 hours.

そして、枠状部品を枠状部品のマスク部搭載面を平坦化加工して、平坦度が0.05mm以下の蒸着マスク用金属製フレームとする。
平坦化加工は平行研磨で行い、研削量を調整しながら必要とされる平坦度0.05mm以下に仕上る。平坦度が0.05mm以下よりも粗いと、400mm(w)×500mm(l)以上の大型蒸着マスク用金属製フレームでは、蒸着にて形成される蛍光体の位置精度が得にくくなるためである。
なお、本発明で言う平坦度とは、仕上げの平坦化加工後の蒸着マスク用金属製フレームを定盤上に図3の(2)の側の面を下にして置き、ダイヤルゲージにて図3の(1)の側の表面をランダムに測定した時のダイヤルゲージの振れ幅のことをいう。
また、蒸着マスク用金属製フレームは、蒸着装置への取付けボルト穴や位置決め用穴および固定用クランプ座等を設ける場合があり、これらの加工は平坦化加工の直前か、平坦化加工の途中に行うのが良い。
以上、説明する本発明の蒸着マスク用金属製フレームの製造方法によれば、容易に蒸着マスク用金属製フレームの大型化が、高い歩留まり率、高い生産性にて達成できる。
Then, the frame part is flattened on the mask part mounting surface of the frame part to obtain a metal frame for a vapor deposition mask having a flatness of 0.05 mm or less.
The flattening process is performed by parallel polishing, and the required flatness is 0.05 mm or less while adjusting the grinding amount. If the flatness is rougher than 0.05 mm or less, it is difficult to obtain the positional accuracy of the phosphor formed by vapor deposition in a metal frame for a large vapor deposition mask of 400 mm (w) × 500 mm (l) or more. .
The flatness referred to in the present invention means that the metal frame for the vapor deposition mask after finishing flattening is placed on the surface plate with the surface (2) in FIG. This refers to the swing width of the dial gauge when the surface on (1) side of 3 is measured randomly.
In addition, the metal frame for the vapor deposition mask may be provided with bolt holes, positioning holes, fixing clamp seats, etc. for the vapor deposition apparatus. These processes may be performed immediately before or during the flattening process. Good to do.
As mentioned above, according to the manufacturing method of the metal frame for vapor deposition masks of this invention demonstrated, the enlargement of the metal frame for vapor deposition masks can be achieved easily with a high yield rate and high productivity.

以下の実施例で本発明を更に詳しく説明する。
RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料として、RT〜450℃の熱膨張係数が8×10−6/℃の42%Ni−Fe合金を得るため、真空溶解にて鋼塊を作製した。作製した鋼塊を用いて鍛造、熱間圧延を行い、厚さ28mmの金属製フレーム部品用の金属材料とした。表1に化学組成を示す。
なお、金属製フレーム用部品用の金属材料から長さ20mmの熱膨張測定試験片を採取し、昇温速度10℃/分で、SiOの標準試料との比較測定を行う示差膨張測定方式により、30℃から450℃までの熱膨張特性を測定し、RT〜450℃の熱膨張係数が8×10−6/℃であることを確認した。
The following examples further illustrate the present invention.
In order to obtain a 42% Ni—Fe alloy having a thermal expansion coefficient of RT to 450 ° C. of 8 × 10 −6 / ° C. as a metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less, vacuum is used. A steel ingot was prepared by melting. The steel ingot thus produced was forged and hot-rolled to obtain a metal material for a metal frame component having a thickness of 28 mm. Table 1 shows the chemical composition.
A differential expansion measurement method in which a thermal expansion measurement test piece having a length of 20 mm is taken from a metal material for a metal frame part and compared with a standard sample of SiO 2 at a temperature rising rate of 10 ° C./min. The thermal expansion characteristics from 30 ° C. to 450 ° C. were measured, and it was confirmed that the thermal expansion coefficient from RT to 450 ° C. was 8 × 10 −6 / ° C.

上記の厚さ28mmの金属製フレーム部品用の金属材料を用いて、三つの有機ELディスプレイ製造用の蒸着マスク用金属製フレームを製造した。
一つは、従来例として削り出しにより蒸着マスク用金属製フレームとした。
厚さ28mmの金属製フレーム部品用の金属材料から780mm(w)×980mm(l)×25mm(t)の蒸着マスク用金属製フレームを削り出して枠状部品とした。そして枠状部品のマスク部搭載面を平坦化加工して、平坦度が0.04mmの蒸着マスク用金属製フレームとした。
蒸着マスクフレームの硬度をビッカース硬度計にて測定したところ、Hv153であった。なお、従来例の蒸着マスク用金属製フレームの歩留まり率は26%であり、歩留まり率は製品体積[製品寸法:外周780mm(w)×980mm(l)×25mm(t)、枠幅70mm]を素材体積[素材方法790mm(w)×990mm(l)×28mm(t)]で割ることで算出した。
Using the metal material for the metal frame component having a thickness of 28 mm, three metal frames for a vapor deposition mask for manufacturing an organic EL display were manufactured.
One was a metal frame for a vapor deposition mask by cutting out as a conventional example.
A metal frame for a vapor deposition mask measuring 780 mm (w) × 980 mm (l) × 25 mm (t) was cut out from a metal material for a metal frame component having a thickness of 28 mm to obtain a frame-shaped component. And the mask part mounting surface of a frame-shaped component was planarized, and it was set as the metal frame for vapor deposition masks with a flatness of 0.04 mm.
It was Hv153 when the hardness of the vapor deposition mask frame was measured with a Vickers hardness tester. In addition, the yield rate of the metal frame for the vapor deposition mask of the conventional example is 26%, and the yield rate is the product volume [product size: outer circumference 780 mm (w) × 980 mm (l) × 25 mm (t), frame width 70 mm]. It was calculated by dividing by the material volume [material method 790 mm (w) × 990 mm (l) × 28 mm (t)].

本発明の780mm(w)×980mm(l)×25mm(t)の蒸着マスク用金属製フレームは以下の工程にて作製した。なお、作製する蒸着マスク用金属製フレームの大きさを考慮し、溶接法を用いて蒸着マスク用金属製フレームに仕上た。
以下に、本発明方法で製造した第一の蒸着マスク用金属製フレームの製造工程を記す。
先ず、厚さ28mmの金属製フレーム部品用の金属材料の圧延方向が長手方向になるように、断面が図5(a)に示した矩形の金属製フレーム用部品を研削にて作製した。作製したフレームの一辺となる金属製フレーム用部品は、長辺側の76mm(w)×834mm(l)×27mm(t)のものが2本、短辺側の76mm(w)×786mm(l)×27mm(t)のものが2本であり、最後に平行研磨により仕上加工を行い、被溶接部の溶接欠陥を防止するため、被溶接部(長辺側と短辺側の突合せ部)のクリアランスを長辺側及び短辺側部材共に被溶接面と被溶接面につながる他面との直角度が0.05mmになるようにして金属製フレーム用部品とした。
作製した金属製フレーム用部品を電子ビーム溶接にて接合し、図4(b)で示すような枠状部品とした。なお、溶接位置は図4(b)で示すような四隅部にて溶接した。この時、電子ビーム照射面とは反対側の面に、溶接時に形成された溶融金属の凝固部が突出した個所が見られたため、突出した個所を研削により除去した。なお、金属製フレーム部品のサイズは786mm(w)×986mm(l)であった。
A metal frame for a vapor deposition mask of 780 mm (w) × 980 mm (l) × 25 mm (t) of the present invention was produced by the following steps. In consideration of the size of the metal frame for the vapor deposition mask to be produced, the metal frame for the vapor deposition mask was finished using a welding method.
Below, the manufacturing process of the metal frame for 1st vapor deposition masks manufactured with the method of this invention is described.
First, a rectangular metal frame component having a cross section shown in FIG. 5A was prepared by grinding so that the rolling direction of the metal material for the metal frame component having a thickness of 28 mm was the longitudinal direction. The metal frame parts on one side of the produced frame are two long side 76mm (w) × 834mm (l) × 27mm (t), and the short side 76mm (w) × 786mm (l ) × 27mm (t) are two pieces, and finally, finishing is performed by parallel polishing to prevent weld defects in the welded part (the butt part on the long side and the short side) The metal frame part was made such that the perpendicularity between the welded surface and the other surface connected to the welded surface was 0.05 mm for both the long side and short side members.
The produced metal frame parts were joined by electron beam welding to form a frame-shaped part as shown in FIG. The welding positions were welded at the four corners as shown in FIG. At this time, since the portion where the solidified portion of the molten metal formed during welding protruded was found on the surface opposite to the electron beam irradiation surface, the protruding portion was removed by grinding. The size of the metal frame part was 786 mm (w) × 986 mm (l).

次に上記の枠状部品を上下方向(図3に示す(1),(2)の方向)にセラミック板を配して、セラミック板を治具で挟んで、溶接後の枠状部品の上下方向から荷重を加えつつ熱処理した。熱処理は大気中で600℃×4時間行い、空冷した。
常温まで冷却が完了した後、荷重を除去して、平行研磨機を用いてマスク部搭載面に平坦化加工を行ない、図4(b)に示すような本発明の蒸着マスク用金属製フレームとした。
この本発明の蒸着マスク用金属製フレームの平坦度を仕上げ加工後の蒸着マスク用金属製フレームを定盤上に図3の(2)の側の面を下にして置き、ダイヤルゲージにて図3の(1)の側の表面をランダムに測定した時のダイヤルゲージの振れ幅として測定し、平坦度が0.04mmであることを確認した。
作製した蒸着マスク用金属製フレームの四隅部(5)を含んだ一辺を切断し、切断して採取した蒸着マスク用金属製フレームの一辺を用いて、溶接の影響の無い個所と、溶接部とをビッカース硬度計にて硬度を測定した結果、溶接の影響の無い個所のビッカース硬さはHv152であり、溶接図はHv155であった。
また、溶接部を断面顕微鏡観察し、溶接欠陥の有無を調査したところ、ブローホールや割れ等の溶接欠陥は確認できなかった。
歩留まり率は78%であり、従来から行われている削り出しの蒸着マスク用金属製フレームとほぼ同等の硬度を有していることから、強度的には従来から行われている削り出しの蒸着マスク用金属製フレームとほぼ同等と言える。
Next, place the ceramic plate in the vertical direction (directions (1) and (2) shown in FIG. 3) and sandwich the ceramic plate with a jig. Heat treatment was applied while applying a load from the direction. The heat treatment was performed in the atmosphere at 600 ° C. for 4 hours and air cooled.
After the cooling to room temperature is completed, the load is removed and the mask portion mounting surface is flattened using a parallel polishing machine, and the metal frame for a vapor deposition mask of the present invention as shown in FIG. did.
Place the metal frame for the vapor deposition mask after finishing the flatness of the metal frame for the vapor deposition mask of the present invention on the surface plate with the surface (2) in FIG. 3 was measured as the run-out width of the dial gauge when the surface on the (1) side was measured at random, and it was confirmed that the flatness was 0.04 mm.
Cut one side including the four corners (5) of the metal mask for vapor deposition mask produced, use one side of the metal frame for vapor deposition mask collected by cutting, and a place where there is no influence of welding, As a result of measuring the hardness with a Vickers hardness tester, the Vickers hardness of the portion having no influence of welding was Hv152, and the welding diagram was Hv155.
Moreover, when the welded portion was observed with a cross-sectional microscope and examined for the presence of weld defects, no weld defects such as blow holes and cracks could be confirmed.
The yield rate is 78%, and it has almost the same hardness as the metal frame for the conventional vapor deposition mask, which has been conventionally performed. It can be said that it is almost equivalent to a metal frame for masks.

次に、上述の本発明の蒸着マスク用金属製フレームと同じサイズの蒸着マスク用金属製フレームの第二の製造方法を記す。
先ず、厚さ28mmの金属製フレーム部品用の金属材料を更に冷間圧延と焼鈍とを行って厚さが8mmの冷間圧延後の金属製フレーム部品用の金属材料を得た。この冷間圧延後の金属製フレーム部品用の金属材料を曲げ加工し図5(c)に示すフレームの一辺となる金属製フレーム用部品とした。作製した金属製フレーム用部品は、長辺側の最外部寸法が76mm(w)×834mm(l)×27mm(t)のものが2本、短辺側の最外部寸法が76mm(w)×786mm(l)×27mm(t)のものが2本であり、最後に平行研磨により仕上加工を行い、被溶接部の溶接欠陥を防止するため、被溶接部(長辺側と短辺側の突合せ部)のクリアランスを長辺側及び短辺側部材共に被溶接面と被溶接面につながる他面との直角度が0.05mm以下になるようにして金属製フレーム用部品とした。
作製した金属製フレーム用部品を電子ビーム溶接にて接合し、図4(b)で示すような枠状部品とした。なお、溶接位置は図4(b)で示すような四隅部にて溶接した。この時、電子ビーム照射面とは反対側の面に、溶接時に形成された溶融金属の凝固部が突出した個所が見られたため、突出した個所を研削により除去した。なお、金属製フレーム部品のサイズは最外部で786mm(w)×986mm(l)であった。
Next, a second manufacturing method of the metal frame for the vapor deposition mask having the same size as the metal frame for the vapor deposition mask of the present invention described above will be described.
First, a metal material for a metal frame part having a thickness of 28 mm was further subjected to cold rolling and annealing to obtain a metal material for a metal frame part having a thickness of 8 mm after cold rolling. The metal material for the metal frame component after the cold rolling was bent to obtain a metal frame component that forms one side of the frame shown in FIG. 5 (c). The produced metal frame parts have two outermost dimensions on the long side of 76 mm (w) x 834 mm (l) x 27 mm (t), and the outermost dimension on the short side of 76 mm (w) x There are two 786 mm (l) x 27 mm (t) parts, and finally, finishing is performed by parallel polishing to prevent weld defects in the welded parts (on the long side and the short side). The metal frame part was made such that the perpendicularity between the welded surface and the other surface connected to the welded surface was 0.05 mm or less for both the long side and short side members.
The produced metal frame parts were joined by electron beam welding to form a frame-shaped part as shown in FIG. The welding positions were welded at the four corners as shown in FIG. At this time, since the portion where the solidified portion of the molten metal formed during welding protruded was found on the surface opposite to the electron beam irradiation surface, the protruding portion was removed by grinding. The size of the metal frame part was 786 mm (w) × 986 mm (l) at the outermost part.

次に上記の枠状部品を上下方向(図3に示す(1),(2)の方向)にセラミック板を配して、セラミック板を治具で挟んで、溶接後の枠状部品の上下方向から荷重を加えつつ熱処理した。熱処理は大気中で600℃×4時間行い、空冷した。
常温まで冷却が完了した後、荷重を除去して、平行研磨機を用いてマスク部搭載面に平坦化加工を行ない、図4(b)に示すような本発明の蒸着マスク用金属製フレームとした。
この本発明の蒸着マスク用金属製フレームの平坦度を仕上げ加工後の蒸着マスク用金属製フレームを定盤上に図3の(2)の側の面を下にして置き、ダイヤルゲージにて図3の(1)の側の表面をランダムに測定した時のダイヤルゲージの振れ幅として測定し、平坦度が0.04mmであることを確認した。
作製した蒸着マスク用金属製フレームの四隅部(5)を含んだ一辺を切断し、切断して採取した蒸着マスク用金属製フレームの一辺を用いて、溶接の影響の無い個所と、溶接部とをビッカース硬度計にて硬度を測定した結果、溶接の影響の無い個所のビッカース硬さはHv160であり、溶接図はHv163であった。
また、溶接部を断面顕微鏡観察し、溶接欠陥の有無を調査したところ、ブローホールや割れ等の溶接欠陥は確認できなかった。
歩留まり率は57%であり、従来から行われている削り出しの蒸着マスク用金属製フレームとほぼ同等の硬度を有していることから、強度的には従来から行われている削り出しの蒸着マスク用金属製フレームとほぼ同等と言える。
しかも、重量は同じサイズの従来方法で製造した蒸着マスク用金属製フレームの
29%であり、軽量化も達成できた。
Next, place the ceramic plate in the vertical direction (directions (1) and (2) shown in FIG. 3) and sandwich the ceramic plate with a jig. Heat treatment was applied while applying a load from the direction. The heat treatment was performed in the atmosphere at 600 ° C. for 4 hours and air cooled.
After the cooling to room temperature is completed, the load is removed and the mask portion mounting surface is flattened using a parallel polishing machine, and the metal frame for a vapor deposition mask of the present invention as shown in FIG. did.
Place the metal frame for the vapor deposition mask after finishing the flatness of the metal frame for the vapor deposition mask of the present invention on the surface plate with the surface (2) in FIG. 3 was measured as the run-out width of the dial gauge when the surface on the (1) side was measured at random, and it was confirmed that the flatness was 0.04 mm.
Cut one side including the four corners (5) of the metal mask for vapor deposition mask produced, use one side of the metal frame for vapor deposition mask collected by cutting, and a place where there is no influence of welding, As a result of measuring the hardness with a Vickers hardness tester, the Vickers hardness of the portion having no influence of welding was Hv160, and the welding diagram was Hv163.
Moreover, when the welded portion was observed with a cross-sectional microscope and examined for the presence of weld defects, no weld defects such as blow holes and cracks could be confirmed.
The yield rate is 57%, and it has almost the same hardness as the metal frame for the conventional vapor deposition mask, which has been conventionally performed. It can be said that it is almost equivalent to a metal frame for masks.
In addition, the weight is 29% of the metal frame for the vapor deposition mask manufactured by the conventional method of the same size, and the weight can be reduced.

以上、説明するとおり、本発明の製造方法で作成した蒸着マスク用金属製フレームは、従来から行われている削り出しの蒸着マスク用金属製フレームとほぼ同等の機械的特性と、平坦度を得ることができる。
しかも、削り出しという生産性が高くない方法を採用することなく、蒸着マスク用金属製フレームとすることができるため、従来から行われている削り出の方法と比較し、高い生産性と、優れた歩留まり率を達成できる。
As described above, the metal frame for a vapor deposition mask produced by the manufacturing method of the present invention obtains mechanical properties and flatness that are substantially the same as those of a metal frame for a vapor deposition mask that has been conventionally used. be able to.
Moreover, it is possible to make a metal frame for a vapor deposition mask without adopting a method that is not highly productive, that is, high productivity and superior to conventional cutting methods. High yield rate can be achieved.

上記の説明は、主として有機ELディスプレイ用途の蒸着マスク用金属製フレームについて説明したが、削り出しによる金属製フレームを用いている用途については、本発明の製造方法を適用することが可能である。   In the above description, the metal frame for a vapor deposition mask mainly used for an organic EL display has been described. However, the manufacturing method of the present invention can be applied to a use using a metal frame by cutting.

蒸着マスクの一例を示す模式図である。It is a schematic diagram which shows an example of a vapor deposition mask. 蒸着マスクと蒸着マスク用金属製フレームの一例を示す模式図である。It is a schematic diagram which shows an example of a vapor deposition mask and the metal frame for vapor deposition masks. 蒸着マスク用金属製フレームの一例を示す模式図である。It is a schematic diagram which shows an example of the metal frame for vapor deposition masks. 蒸着マスク用金属製フレームの一例を示す模式図である。It is a schematic diagram which shows an example of the metal frame for vapor deposition masks. 金属製フレーム用部品の一例を示す模式図である。It is a schematic diagram which shows an example of components for metal frames. 金属製フレーム用部品の一例を示す模式図である。It is a schematic diagram which shows an example of components for metal frames.

符号の説明Explanation of symbols

1. 蒸着マスク
2. 貫通孔
3. マスク部
4. 蒸着マスク用金属製フレーム(枠状部品)
5. 四隅部
6. 接合部(溶接部)
7. 金属製フレーム用部品
1. 1. Deposition mask Through hole 3. Mask part 4. Metal frame for vapor deposition mask (frame-shaped parts)
5. Four corners 6. Joint (welded part)
7). Metal frame parts

Claims (5)

蛍光体を所望の位置に塗装するために形成された、多数の貫通孔が形成された金属薄板製でなるマスク部の縁側を保持する枠状の蒸着マスク用金属製フレームの製造方法であって、
(1)RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料から、フレームの一辺となる金属製フレーム用部品に加工する工程と、
(2)金属製フレーム用部品同士を接合させて400mm(w)×500mm(l)以上の大きさの枠状部品にする工程と、
(3)枠状部品のマスク部搭載面を平坦化加工して、平坦度が0.05mm以下の蒸着マスク用金属製フレームとする工程、
を含むことを特徴とする蒸着マスク用金属製フレームの製造方法。
A method of manufacturing a metal frame for a vapor deposition mask having a frame shape that holds an edge side of a mask portion made of a thin metal plate having a large number of through holes formed to coat a phosphor at a desired position. ,
(1) a step of processing from a metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less into a metal frame part that is one side of the frame;
(2) joining metal frame parts to each other to form a frame-shaped part having a size of 400 mm (w) × 500 mm (l) or more;
(3) A step of flattening the mask portion mounting surface of the frame-shaped component to form a metal frame for a vapor deposition mask having a flatness of 0.05 mm or less,
The manufacturing method of the metal frame for vapor deposition masks characterized by including.
金属製フレーム用部品同士の接合は、四隅部にて溶接し、溶接後の枠状部品の上下方向から荷重を加えつつ熱処理することを特徴とする請求項1に記載の蒸着マスク用金属製フレームの製造方法。 2. The metal frame for a vapor deposition mask according to claim 1, wherein the metal frame parts are welded at four corners and heat-treated while applying a load from above and below the welded frame-like part. Manufacturing method. RT〜450℃の熱膨張係数が11×10−6/℃以下の金属材料は質量%でNi:25〜50%含有して残部は実質的にFeでなる合金でなるか、或いは、質量%でNi:25〜50%含有し、更にCr:10%以下、Co:15〜42%の何れかを含有し、残部は実質的にFeでなる合金であることを特徴とする請求項1または2に記載の蒸着マスク用金属製フレームの製造方法。 The metal material having a thermal expansion coefficient of RT to 450 ° C. of 11 × 10 −6 / ° C. or less is contained by mass: Ni: 25-50%, and the balance is substantially made of Fe, or mass%. Or Ni: 25 to 50%, further containing Cr: 10% or less, Co: 15 to 42%, the balance being an alloy substantially consisting of Fe The manufacturing method of the metal frame for vapor deposition masks of 2. 金属製フレーム用部品に加工する工程は、断面を矩形状に研削する工程、或いは、板状の金属材料を曲げ加工する工程、の何れかであることを特徴とする請求項1乃至3の何れかに記載の蒸着マスク用金属製フレームの製造方法。 4. The process of processing into a metal frame part is any one of a process of grinding a cross section into a rectangular shape or a process of bending a plate-shaped metal material. A method for producing a metal frame for a vapor deposition mask according to claim 1. 蒸着マスク用金属製フレームはビッカース硬さが125以上であることを特徴とする請求項1乃至4の何れかに記載の蒸着マスク用金属製フレームの製造方法。 The metal frame for a vapor deposition mask according to any one of claims 1 to 4, wherein the metal frame for the vapor deposition mask has a Vickers hardness of 125 or more.
JP2005213588A 2005-07-25 2005-07-25 Manufacturing method of metallic frame for vapor deposition mask Pending JP2007035336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213588A JP2007035336A (en) 2005-07-25 2005-07-25 Manufacturing method of metallic frame for vapor deposition mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213588A JP2007035336A (en) 2005-07-25 2005-07-25 Manufacturing method of metallic frame for vapor deposition mask

Publications (1)

Publication Number Publication Date
JP2007035336A true JP2007035336A (en) 2007-02-08

Family

ID=37794355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213588A Pending JP2007035336A (en) 2005-07-25 2005-07-25 Manufacturing method of metallic frame for vapor deposition mask

Country Status (1)

Country Link
JP (1) JP2007035336A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291461A (en) * 2006-04-26 2007-11-08 Nippon Yakin Kogyo Co Ltd Holder for vapor deposition
JP2009007649A (en) * 2007-06-29 2009-01-15 Nippon Yakin Kogyo Co Ltd Mask frame
KR20110036663A (en) * 2009-10-02 2011-04-08 신에쓰 가가꾸 고교 가부시끼가이샤 Method of producing pellicle
KR101384278B1 (en) 2013-09-04 2014-04-09 최종성 Organic light emitting diodes mask frame and the manufacture method
JP2014088594A (en) * 2012-10-30 2014-05-15 V Technology Co Ltd Vapor deposition mask
JP2015004129A (en) * 2013-06-19 2015-01-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Vapor deposition mask assembly
CN110004405A (en) * 2017-12-08 2019-07-12 三星显示有限公司 Mask sheet and its manufacturing method
CN113394144A (en) * 2020-03-13 2021-09-14 佳能特机株式会社 Substrate carrier, film forming apparatus, method for transporting substrate carrier, and film forming method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230814A (en) * 1990-02-02 1991-10-14 Nkk Corp Hot correcting method for magnetic disk base plate of titanium
JP2000039850A (en) * 1998-07-21 2000-02-08 Kanazawa Chuo Hatsujo Kogyo Kk Liquid crystal panel holding frame and its manufacture
JP2001249619A (en) * 2000-03-04 2001-09-14 Hatsu Saito Strength reinforcement of liquid crystal display, such as television and reinforcement of resource saving type used for fitting to outer frame and mounting metallic frame
JP2002069619A (en) * 2000-08-25 2002-03-08 Nec Corp Metal-mask structural body and its production method
JP2004063028A (en) * 2002-07-30 2004-02-26 Kobe Steel Ltd Manufacturing method for aluminium alloy substrate for magnetic disk, and aluminium alloy substrate for magnetic disk
JP2004087466A (en) * 2002-06-18 2004-03-18 Toray Ind Inc Integrated mask, apparatus and method for assembling integrated mask, and apparatus and method for manufacturing organic el element
JP2004247058A (en) * 2003-02-10 2004-09-02 Hitachi Displays Ltd Organic el display device
JP2004323888A (en) * 2003-04-23 2004-11-18 Dainippon Printing Co Ltd Vapor deposition mask and vapor deposition method
JP2005107499A (en) * 2003-09-10 2005-04-21 Sharp Corp Display device and liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230814A (en) * 1990-02-02 1991-10-14 Nkk Corp Hot correcting method for magnetic disk base plate of titanium
JP2000039850A (en) * 1998-07-21 2000-02-08 Kanazawa Chuo Hatsujo Kogyo Kk Liquid crystal panel holding frame and its manufacture
JP2001249619A (en) * 2000-03-04 2001-09-14 Hatsu Saito Strength reinforcement of liquid crystal display, such as television and reinforcement of resource saving type used for fitting to outer frame and mounting metallic frame
JP2002069619A (en) * 2000-08-25 2002-03-08 Nec Corp Metal-mask structural body and its production method
JP2004087466A (en) * 2002-06-18 2004-03-18 Toray Ind Inc Integrated mask, apparatus and method for assembling integrated mask, and apparatus and method for manufacturing organic el element
JP2004063028A (en) * 2002-07-30 2004-02-26 Kobe Steel Ltd Manufacturing method for aluminium alloy substrate for magnetic disk, and aluminium alloy substrate for magnetic disk
JP2004247058A (en) * 2003-02-10 2004-09-02 Hitachi Displays Ltd Organic el display device
JP2004323888A (en) * 2003-04-23 2004-11-18 Dainippon Printing Co Ltd Vapor deposition mask and vapor deposition method
JP2005107499A (en) * 2003-09-10 2005-04-21 Sharp Corp Display device and liquid crystal display device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291461A (en) * 2006-04-26 2007-11-08 Nippon Yakin Kogyo Co Ltd Holder for vapor deposition
JP2009007649A (en) * 2007-06-29 2009-01-15 Nippon Yakin Kogyo Co Ltd Mask frame
KR20110036663A (en) * 2009-10-02 2011-04-08 신에쓰 가가꾸 고교 가부시끼가이샤 Method of producing pellicle
KR101990345B1 (en) * 2009-10-02 2019-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method of producing pellicle
JP2014088594A (en) * 2012-10-30 2014-05-15 V Technology Co Ltd Vapor deposition mask
KR20150079908A (en) * 2012-10-30 2015-07-08 브이 테크놀로지 씨오. 엘티디 Film forming mask
US10035162B2 (en) 2012-10-30 2018-07-31 V Technology Co., Ltd. Deposition mask for forming thin-film patterns
KR102155258B1 (en) * 2012-10-30 2020-09-11 브이 테크놀로지 씨오. 엘티디 Film forming mask
JP2015004129A (en) * 2013-06-19 2015-01-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Vapor deposition mask assembly
KR101384278B1 (en) 2013-09-04 2014-04-09 최종성 Organic light emitting diodes mask frame and the manufacture method
CN110004405A (en) * 2017-12-08 2019-07-12 三星显示有限公司 Mask sheet and its manufacturing method
CN113394144A (en) * 2020-03-13 2021-09-14 佳能特机株式会社 Substrate carrier, film forming apparatus, method for transporting substrate carrier, and film forming method
JP2021145096A (en) * 2020-03-13 2021-09-24 キヤノントッキ株式会社 Substrate carrier, film forming device, substrate carrier conveyance method, and film forming method
KR20210116252A (en) * 2020-03-13 2021-09-27 캐논 톡키 가부시키가이샤 Substrate carrier, film forming apparatus, conveying method of substrate carrier, and film forming method
JP7162631B2 (en) 2020-03-13 2022-10-28 キヤノントッキ株式会社 Substrate carrier, deposition apparatus, substrate carrier transport method, and deposition method
CN113394144B (en) * 2020-03-13 2023-06-30 佳能特机株式会社 Substrate carrier, film forming apparatus, substrate carrier conveying method, and film forming method
KR102613397B1 (en) * 2020-03-13 2023-12-12 캐논 톡키 가부시키가이샤 Substrate carrier, film forming apparatus, conveying method of substrate carrier, and film forming method

Similar Documents

Publication Publication Date Title
JP2007035336A (en) Manufacturing method of metallic frame for vapor deposition mask
JP5336812B2 (en) Brazing sheet for automotive heat exchanger for brazed pipe
WO2018181593A1 (en) Copper sheet material for copper sheet-provided insulating substrate and production method therefor
EP3363582A1 (en) Aluminum alloy brazing sheet, method for manufacturing same, aluminum alloy sheet, and heat exchanger
JP2013144299A (en) Brazing sheet for non-flux brazing, and method for manufacturing the same
EP1580286B1 (en) High strength long-life aluminium tube material with high sagging resistance
WO2021002364A1 (en) Beryllium copper alloy bonded body and production method therefor
WO2018066413A1 (en) Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP2003226966A (en) Large target material
US6761306B2 (en) Phosphorus-copper brazing material, brazing sheet, methods of manufacturing the material and the sheet, and flow path structure for heat exchangers
JP5950791B2 (en) Composite member made of corrosion-resistant Ni-based alloy and aluminum or aluminum alloy
JP2012050992A (en) Fluxless brazing method of aluminum material, aluminum brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing
CN114953631B (en) High-temperature curvature titanium/titanium niobium alloy double-layer composite metal sheet and preparation method thereof
CN114833410B (en) Method for reducing residual stress of heterogeneous brazed joint
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
WO2022091766A1 (en) Composite material
JP2003105500A (en) Stainless steel/copper clad, and manufacturing method therefor
JP4872577B2 (en) Copper alloy backing plate and copper alloy manufacturing method for backing plate
KR20190042659A (en) Method for manufacturing Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
TWI626093B (en) Titanium composite and titanium for hot rolling
US12057302B2 (en) Backing plate, sputtering target, and production methods therefor
EP2236240B1 (en) Method for manufacturing an aluminium device, comprising a brazing and a preheating step
JP6606661B1 (en) Alumina dispersion strengthened copper brazing method
JPH10110226A (en) Production of copper or copper alloy
JP4920168B2 (en) Titanium welded tube and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110107