JPH03230814A - Hot correcting method for magnetic disk base plate of titanium - Google Patents
Hot correcting method for magnetic disk base plate of titaniumInfo
- Publication number
- JPH03230814A JPH03230814A JP2205690A JP2205690A JPH03230814A JP H03230814 A JPH03230814 A JP H03230814A JP 2205690 A JP2205690 A JP 2205690A JP 2205690 A JP2205690 A JP 2205690A JP H03230814 A JPH03230814 A JP H03230814A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic disk
- titanium
- flatness
- linear expansion
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 239000010936 titanium Substances 0.000 title claims abstract description 36
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Straightening Metal Sheet-Like Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はチタン及びチタン合金(以下単にチタンとい
う)製磁気ディスク基板の熱間矯正方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for hot straightening magnetic disk substrates made of titanium and titanium alloys (hereinafter simply referred to as titanium).
チタン製磁気ディスク基板には、1.nm前後の板厚の
チタン板が使用されるが、冷延板を打ち抜いて作製され
るためその打ち抜きに伴なって通常歪が生じる。又素材
が冷延板であるため冷延の際の歪も残留している。とこ
ろが磁気ディスク基板として要求される平坦度(ここで
平坦度とは100mm当りの最大変位量をいう)は20
μm以下という高度なレベルの平坦度であるため、基板
素材で十分な平坦度が確保されていない場合、研磨によ
る歩留の低下をもたらすことから、素材の平坦度の程度
がチタン製磁気ディスク基板の使用上の制約の一つとな
っていた。The titanium magnetic disk substrate has 1. A titanium plate with a thickness of about 100 nm is used, but since it is produced by punching a cold-rolled plate, distortion usually occurs as a result of punching. Also, since the material is a cold-rolled plate, distortions from cold-rolling remain. However, the flatness required for a magnetic disk substrate (here, flatness refers to the maximum displacement per 100 mm) is 20
Because the flatness is at a high level of less than μm, if the substrate material does not have sufficient flatness, the yield will decrease due to polishing, so the degree of flatness of the material is This was one of the constraints on its use.
一方、チタン製磁気ディスク基板の研磨は、上下2つの
高度のレベルの平坦度をもつ砥石間に挾み、研磨する方
法でなされるが、この研磨方法の場合、チタン製磁気デ
ィスク基板は研磨中は不可避的に負荷される圧力のため
に、ある程度の平坦化が実現される。しかし、研磨終了
後圧力が除荷されるとチタンはスプリングバックが大き
いため、素材の平坦度が低い場合これを反映した形に変
形するといったことが起こっていた。On the other hand, titanium magnetic disk substrates are polished by sandwiching them between upper and lower grinding wheels that have a high level of flatness. Due to the unavoidably applied pressure, a certain level of flattening is achieved. However, when the pressure is removed after polishing, titanium has a large springback, so if the material has low flatness, it will deform into a shape that reflects this.
そこでチタン板のクリープ現象を利用した平坦度向上方
法が実施されるようになった。即ち、50〜200kg
の鉄製等の重しを、定盤に挾んだチタン製磁気ディスク
の上に載せ加圧しながら加熱炉等に装入し、加圧焼鈍矯
正を行なうというものである。Therefore, a method of improving flatness using the creep phenomenon of titanium plates has been implemented. i.e. 50-200 kg
A weight made of iron or the like is placed on a titanium magnetic disk held between a surface plate, and the material is charged into a heating furnace or the like while being pressurized to perform pressure annealing and straightening.
この様な加圧焼鈍矯正により十分な矯正効果を得ようと
すれば、加圧力を高めておく必要がある。In order to obtain a sufficient straightening effect by such pressure annealing straightening, it is necessary to increase the pressing force.
しかし、重しの数を増やして加圧力を高めようとしても
、加熱炉の耐荷重と処理能力の点で制約があり、十分な
矯正効果が得られていないのが現状である。However, even if an attempt is made to increase the pressing force by increasing the number of weights, there are limitations in the load capacity and processing capacity of the heating furnace, and a sufficient straightening effect cannot currently be obtained.
本発明は従来技術の以上の様な問題に鑑み創案されたも
ので、チタン製磁気ディスク基板につきチタン板のクリ
ープ現象を利用してその平坦度を高めることができる熱
間矯正の最適な処理条件を明らかにせんとするものであ
る。The present invention has been devised in view of the above-mentioned problems of the prior art, and provides optimal processing conditions for hot straightening of a titanium magnetic disk substrate, which can improve the flatness of the titanium plate by utilizing the creep phenomenon of the titanium plate. The purpose is to clarify the following.
3−
そのため本発明は、添付図面に示される様にチタン製磁
気ディスク基板(1)を定盤(21)(22)間に挾ん
で締め付け具(31) (32)で締め付け、次いで加
熱処理を施すチタン製磁気ディスク基板の熱間矯正方法
において、定盤(21) (22)の線膨張係数aと締
め付け具(31)(32)の線膨張係数すの関数をa≧
bとし、且つ該定盤(21) (22)の平坦度を10
0μm以下にすると共に、締め付け圧力を0.03kg
f/llN112以上1kgf/以上1濶500℃以
上、加熱時間を1時間以上として前記加熱処理を行なう
ことを基本的特徴としている。3- Therefore, the present invention, as shown in the attached drawings, involves sandwiching a titanium magnetic disk substrate (1) between surface plates (21) and (22), tightening them with fasteners (31 and 32), and then subjecting them to heat treatment. In the hot straightening method for titanium magnetic disk substrates, the function of the linear expansion coefficient a of the surface plate (21) (22) and the linear expansion coefficient s of the fasteners (31) (32) is defined as a≧
b, and the flatness of the surface plates (21) and (22) is 10
0μm or less and tightening pressure of 0.03kg
The basic feature is that the heat treatment is performed at f/llN112 or more, 1 kgf/or more, 500° C. or more, and heating time of 1 hour or more.
以上の様な構成によって、最適な圧縮応力下で高温加熱
処理することが可能となり、これによりチタン製磁気デ
ィスク基板(1)のみのクリープ現象を利用することが
できることから、平坦度の優れたチタン製磁気ディスク
基板(1)を得ることが可能となる。With the above configuration, it is possible to perform high-temperature heat treatment under optimal compressive stress, and this makes it possible to utilize the creep phenomenon of only the titanium magnetic disk substrate (1). It becomes possible to obtain a manufactured magnetic disk substrate (1).
以下、本発明の構成中にある各条件の限定理由につき説
明する。The reason for limiting each condition in the structure of the present invention will be explained below.
まず定盤(21) (22)と締め付け具(31) (
32)の夫々4−
の線膨張係数a.bの関数をa≧bと規定したのは、こ
の線膨張係数の関数がa < bの場合、加熱に伴い圧
縮応力が除荷されることになり、十分なりリープフラッ
トニングの効果が得られないためである。尚、この線膨
張係数の比a / bが十分大きな場合、熱間矯正時に
圧縮応力の増大をもたらし、強度のクリープ変形で板厚
の不均一が起こることも予想されるが、実用材料の60
0℃での線膨張係数の差は高々チタン製磁気ディスク基
板(1)の板厚1mm当り10μmであり、この程度の
板厚の不均一は実用上問題とならないことから、a /
bの上限は規定しない。First, the surface plate (21) (22) and the tightening tool (31) (
32) respectively 4- linear expansion coefficient a. The reason why the function of b is defined as a≧b is because if the linear expansion coefficient function is a < b, the compressive stress will be unloaded with heating, and a sufficient leap flattening effect will not be obtained. This is because there is no Furthermore, if this linear expansion coefficient ratio a/b is sufficiently large, it is expected that compressive stress will increase during hot straightening and that uneven plate thickness will occur due to severe creep deformation.
The difference in linear expansion coefficient at 0°C is at most 10 μm per 1 mm of plate thickness of the titanium magnetic disk substrate (1), and this degree of non-uniformity in plate thickness does not pose a practical problem, so a /
There is no upper limit for b.
又定盤(21) (22)の平坦度は次のような理由か
ら限定された。本発明で使用される定II (21)
(22)はチタン製磁気ディスク基板(1)へ優れた平
坦度を与える役割を果たしており、そのため定盤(21
)(22)の平坦度が100μmより大きい場合、熱間
矯正により平坦度の低い定盤(21) (22)の状態
がチタン製磁気ディスク基板(1)へ転写されることに
なって平坦度の優れたものが得られなくなってしまうか
らである。Furthermore, the flatness of the surface plates (21) and (22) was limited for the following reasons. Constant II used in the present invention (21)
(22) plays the role of providing excellent flatness to the titanium magnetic disk substrate (1), and therefore the surface plate (21)
) (22) is greater than 100 μm, hot straightening will transfer the low flatness of the surface plates (21) and (22) to the titanium magnetic disk substrate (1), reducing the flatness. This is because you will no longer be able to obtain superior products.
更に締め付け具(31) (32)による締め付け圧力
については、その圧力が0,03kg f / rm2
未満では上記熱間矯正温度でのクリープ変形が起こらず
熱間矯正で平坦度の改善を図ることが不可能となるから
であり、またその締め付け圧力が1 kg f / n
u2以上の場合は強度のクリープ変形が起こるので熱間
矯正で平坦度の改善が図られるものの、板厚が不均一と
なり、磁気ディスク基板としては不適当なものとなるか
らである。Furthermore, regarding the tightening pressure by the tightening tools (31) (32), the pressure is 0.03 kg f / rm2
This is because if the temperature is less than 1 kg f/n, creep deformation will not occur at the hot straightening temperature, making it impossible to improve the flatness by hot straightening, and the tightening pressure is 1 kg f/n.
If it is more than u2, strong creep deformation occurs, and although the flatness can be improved by hot straightening, the plate thickness becomes non-uniform, making it unsuitable for use as a magnetic disk substrate.
一方、熱間矯正の下限温度を500℃、また熱間矯正時
間を1時間以上と規定したのは、共にそれ以下の条件で
は十分なりリープ変形が起こらず、平坦度の優れたチタ
ン製磁気ディスク基板(1)が得られないためである。On the other hand, the lower limit temperature for hot straightening was set at 500°C, and the hot straightening time was set at 1 hour or more because both conditions are sufficient to prevent leap deformation and provide excellent flatness for titanium magnetic disks. This is because the substrate (1) cannot be obtained.
熱間矯正の温度の上限及び時間の上限は定盤(21)
(22)、締め付け具(31)(32)のクリープ強度
に依存することとなり、チタンの熱間矯正条件固有の上
限条件は存在しないが、チタン製磁気ディスク(1)の
鏡面加工のし易さ(細粒組織が鏡面加工し易い)から熱
間矯正温度の上限は650℃、熱間矯正の上限時間は1
0時間が望ましい。The upper limit of temperature and upper limit of time for hot straightening is set on the surface plate (21).
(22) It depends on the creep strength of the fasteners (31) and (32), and there is no upper limit condition specific to the hot straightening conditions for titanium, but the ease of mirror finishing of the titanium magnetic disk (1) (The fine grain structure is easy to mirror finish), so the upper limit of hot straightening temperature is 650℃, and the upper limit of hot straightening time is 1
0 hours is desirable.
外径95mm、内径25mn、板厚1.5鵬の円環状純
チタン板を供試材として準備し、前記図面に示されるよ
うに、供試材30枚を定盤(21) (22)で挾む。An annular pure titanium plate with an outer diameter of 95 mm, an inner diameter of 25 mm, and a plate thickness of 1.5 mm was prepared as a test material, and as shown in the drawing, 30 test materials were placed on a surface plate (21) (22). Sandwich.
次いで締め付け具(31)(32)で締め付けて所要の
締め付け圧力を付与し、熱間矯正を実施した。Next, it was tightened with tightening tools (31) and (32) to apply the required tightening pressure, and hot straightening was performed.
上記純チタン素材の板厚精度は1.5mm±lOμ膿、
平坦度150μmである。又上部線め付け具(31)
(32)には、SKD 61(線膨張係数14.2X1
0 ’/℃)、Ti −6AI−4V合金(線膨張係数
18.7 X IF’ / ℃)、アルミナ(線膨張係
数7.8 X IO−’ / ℃)及び炭化ケイ素(線
膨張係数4.OX 10−” / ”C)で製造された
ものが使用され、一方、定盤(21) (22)には平
坦度が200μmから10μmのものが使用された。ま
たその締め付け圧力は0.01kg f / rm2か
ら5kg f / an2の間で調整され、熱間矯正温
度については400℃から700℃、及び熱間矯正時間
は0.5時間より、20時間まで変化させた。The plate thickness accuracy of the above pure titanium material is 1.5mm±lOμpus,
The flatness is 150 μm. Also, upper wire fitting tool (31)
(32) has SKD 61 (linear expansion coefficient 14.2X1
0'/°C), Ti-6AI-4V alloy (linear expansion coefficient 18.7 x IF'/°C), alumina (linear expansion coefficient 7.8 x IO-'/°C) and silicon carbide (linear expansion coefficient 4. OX 10-''/''C) was used, while the surface plates (21) and (22) had a flatness of 200 μm to 10 μm. In addition, the tightening pressure is adjusted between 0.01 kg f/rm2 and 5 kg f/an2, the hot straightening temperature varies from 400℃ to 700℃, and the hot straightening time varies from 0.5 hours to 20 hours. I let it happen.
各試験終了後、供試材30枚の中からランダムに5枚の
供試材を抽出し、1枚毎に板厚精度と平坦度を測定し、
夫々の平均値を求めた。その結果をこれらの各熱間矯正
条件と共に下表にまとめた。After each test, 5 test materials were selected at random from among the 30 test materials, and the thickness accuracy and flatness were measured for each test material.
The average value of each was determined. The results are summarized in the table below along with these hot straightening conditions.
この表から明らかな様に、線膨張係数が定盤(21)
(22)の線膨張係数と同じかそれより低い(即ち、a
≧b)材質の締め付け具(31)(32)を用い、締め
付け圧力が0.03〜1kg f / wn2の条件で
熱間矯正を行なった場合のみ、平坦度と板厚精度に優れ
たチタン製磁気ディスク基板(1)が得られている。As is clear from this table, the coefficient of linear expansion is the surface plate (21)
(22) is the same as or lower than the linear expansion coefficient (i.e., a
≧b) Made of titanium with excellent flatness and plate thickness accuracy, only when hot straightening is performed using tightening tools (31) (32) of the material and the tightening pressure is 0.03 to 1 kg f / wn2. A magnetic disk substrate (1) has been obtained.
これとは逆に線膨張係数が定盤(21) (22)のも
のより高い(即ちa < b )材質の締め付け具(3
1)(32)を用いた場合(比較例Nα29)は、締め
付け圧力条件が本発明で規定された範囲内にあるもので
も良好な平坦度が得られていない。又定盤(21) (
22)の線膨張係数が締め付け具(31) (32)の
それと同じか又はそれより大きい場合(a≧b)でも、
締め付け圧力が本発明で規定した下限値より小さい場合
(比較例Nα19)は良好な平坦度が得られず、又締め
付け圧力がその上限値より大きい場合(比較例NO2O
乃至&22)には板厚精度が低下している。On the contrary, the fastener (3) is made of a material with a linear expansion coefficient higher than that of the surface plates (21) (22) (i.e., a < b).
1) When (32) is used (comparative example Nα29), good flatness is not obtained even if the tightening pressure conditions are within the range defined by the present invention. Also, surface plate (21) (
Even if the linear expansion coefficient of 22) is the same as or larger than that of the fasteners (31) and (32) (a≧b),
Good flatness cannot be obtained when the tightening pressure is smaller than the lower limit specified by the present invention (Comparative Example No. 19), and when the tightening pressure is larger than the upper limit (Comparative Example No. 2
To &22), the plate thickness accuracy is decreased.
以上の結果より、本発明条件を順守する限り、板厚精度
と平坦度に優れたチタン製磁気ディスク基板素材が製造
されることが明らかとなった。From the above results, it has become clear that as long as the conditions of the present invention are adhered to, a titanium magnetic disk substrate material with excellent plate thickness accuracy and flatness can be manufactured.
尚、本発明例で得られたチタン製磁気ディスク基板素材
(板厚精度10μm、平坦度83μm以下)を用いて、
両面鏡面研磨加工を施したところ、板厚精度±5μm以
下、平坦度15μm以下の高精度の、従来方法では得ら
れないチタン製磁気ディスク基板が得られた。In addition, using the titanium magnetic disk substrate material (plate thickness accuracy of 10 μm, flatness of 83 μm or less) obtained in the example of the present invention,
When double-sided mirror polishing was performed, a highly accurate titanium magnetic disk substrate with a plate thickness accuracy of ±5 μm or less and a flatness of 15 μm or less, which could not be obtained by conventional methods, was obtained.
以上のように本発明の熱間矯正方法によれば、チタン製
磁気ディスク基板を定盤と締め付け具を用いて、0.0
3kg f / wn”以上1 kg f / rrt
n”未満の締め付け圧力を負荷しながら、500℃以上
の温度で1時間以上の加熱処理を施すことにより、平坦
度に非常に優れたチタン製磁気ディスク基板素材が得ら
れることになる。As described above, according to the hot straightening method of the present invention, a titanium magnetic disk substrate is 0.0
3kg f/wn” or more 1kg f/rrt
By performing heat treatment at a temperature of 500° C. or higher for 1 hour or more while applying a tightening pressure of less than n'', a titanium magnetic disk substrate material with excellent flatness can be obtained.
添付図面はチタン製磁気ディスク基板を定盤間で挾んで
締め付け具で締め付けた状態の例を示す説明図である。
図中(1)はチタン製磁気ディスク基板、(21)(2
2)は定盤、(31)(32)は締め付け具を各示す。The accompanying drawing is an explanatory view showing an example of a state in which a titanium magnetic disk substrate is sandwiched between surface plates and tightened with a tightening tool. In the figure, (1) is a titanium magnetic disk substrate, (21) (2
2) shows the surface plate, and (31) and (32) show the tightening tools.
Claims (1)
で締め付け、次いで加熱処理を施すチタン製磁気ディス
ク基板の熱間矯正方法において、定盤の線膨張係数aと
締め付け具の線膨張係数bの関係をa≧bとし、且つ該
定盤の平坦度を100μm以下にすると共に、締め付け
圧力を0.03kgf/mm^2以上1kgf/mm^
2未満とし、更に加熱温度を500℃以上、加熱時間を
1時間以上として前記加熱処理を行なうことを特徴とす
るチタン製磁気ディスク基板の熱間矯正方法。In a hot straightening method for titanium magnetic disk substrates, which involves sandwiching a titanium magnetic disk substrate between surface plates, tightening it with a fastener, and then subjecting it to heat treatment, the linear expansion coefficient a of the surface plate and the linear expansion coefficient b of the fastener are determined. The relationship is a≧b, and the flatness of the surface plate is 100 μm or less, and the tightening pressure is 0.03 kgf/mm^2 or more and 1 kgf/mm^
A method for hot straightening a titanium magnetic disk substrate, characterized in that the heat treatment is carried out at a heating temperature of 500° C. or higher and a heating time of 1 hour or longer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2205690A JPH03230814A (en) | 1990-02-02 | 1990-02-02 | Hot correcting method for magnetic disk base plate of titanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2205690A JPH03230814A (en) | 1990-02-02 | 1990-02-02 | Hot correcting method for magnetic disk base plate of titanium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03230814A true JPH03230814A (en) | 1991-10-14 |
Family
ID=12072260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2205690A Pending JPH03230814A (en) | 1990-02-02 | 1990-02-02 | Hot correcting method for magnetic disk base plate of titanium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03230814A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035336A (en) * | 2005-07-25 | 2007-02-08 | Hitachi Metals Ltd | Manufacturing method of metallic frame for vapor deposition mask |
CN109500550A (en) * | 2018-12-12 | 2019-03-22 | 攀钢集团成都钛材有限公司江油分公司 | A kind of wide cut titanium alloy cut deal pressure squaring method |
JP2021133369A (en) * | 2020-02-21 | 2021-09-13 | リカザイ株式会社 | Manufacturing method for metallic foil |
-
1990
- 1990-02-02 JP JP2205690A patent/JPH03230814A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035336A (en) * | 2005-07-25 | 2007-02-08 | Hitachi Metals Ltd | Manufacturing method of metallic frame for vapor deposition mask |
CN109500550A (en) * | 2018-12-12 | 2019-03-22 | 攀钢集团成都钛材有限公司江油分公司 | A kind of wide cut titanium alloy cut deal pressure squaring method |
JP2021133369A (en) * | 2020-02-21 | 2021-09-13 | リカザイ株式会社 | Manufacturing method for metallic foil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774531A1 (en) | Method for manufacturing alpha + beta type titanium alloy plate having small anisotropy | |
JPS60155658A (en) | Thermodynamic treatment for superalloy to obtain structure equipped with good mechanical properties | |
CN111394615B (en) | Medical high-performance TA3G pure titanium plate and preparation method thereof | |
JP2005528525A (en) | High purity ferromagnetic sputter target | |
JPS62109956A (en) | Manufacture of titanium alloy | |
JPH03230814A (en) | Hot correcting method for magnetic disk base plate of titanium | |
JPH0318425A (en) | Hot straightening method for titanium magnetic disk base plate | |
CA2206108A1 (en) | Method of straightening annular metallic sheets | |
JPH02205204A (en) | Hot leveling method for magnetic disk substrate made of titanium | |
TWI731799B (en) | Method for manufacturing high purity target | |
JPS62133053A (en) | Heat treatment of titanium-alloy rolled plate | |
JP5718036B2 (en) | Manufacturing method of magnetic disk blank and magnetic disk blank | |
JPH0115562B2 (en) | ||
JPH02200757A (en) | Method for annealing thin titanium alloy sheet | |
JPS63130753A (en) | Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength | |
JPS63144414A (en) | Straightening method for metallic disk | |
JPS6376706A (en) | Production of thin sheet made of alpha+beta type alloy titanium | |
US3073729A (en) | Process for producing predetermined secondary recrystallization textures in metals | |
JPS59215450A (en) | Hot worked plate of ti-base material and its manufacture | |
JPS62137121A (en) | Shape straightening method for hard material of austenitic stainless cold rolled steel plate | |
JPH0744864A (en) | Production of titanium substrate for magnetic disk | |
JPH03170649A (en) | Method for forming polished specular surface in ti alloy member | |
JPH09165618A (en) | Method for pressure annealing of blank for magnetic disk | |
JPH05311361A (en) | Method for stress relieving anneling aluminum alloy substrate | |
JPH01154802A (en) | Manufacture of mirror finished stainless steel sheet |