JPH05311361A - Method for stress relieving anneling aluminum alloy substrate - Google Patents

Method for stress relieving anneling aluminum alloy substrate

Info

Publication number
JPH05311361A
JPH05311361A JP13991292A JP13991292A JPH05311361A JP H05311361 A JPH05311361 A JP H05311361A JP 13991292 A JP13991292 A JP 13991292A JP 13991292 A JP13991292 A JP 13991292A JP H05311361 A JPH05311361 A JP H05311361A
Authority
JP
Japan
Prior art keywords
spacer
disk
aluminum alloy
cooling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13991292A
Other languages
Japanese (ja)
Inventor
Minoru Kawasaki
稔 川崎
Junjiro Kawakami
川上順次郎
Nobuyuki Abe
安部信行
Keiji Okada
岡田圭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13991292A priority Critical patent/JPH05311361A/en
Publication of JPH05311361A publication Critical patent/JPH05311361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the flatness of a substrate by releasing the load of a spacer on a disk material and cooling the substrate. CONSTITUTION:The aluminum alloy disk substrate which has been rolled and punched into a doughnut shape is stress relieving annealed. One to six disk materials are laminated with a spacer in between, the laminate is pressed under 20X10<-4> to 120X10<-2>N/mm<2> load, heated to 250-500 deg.C and kept at that temp. for 0 to 1800sec, then the upper spacer and load are released, and the disk material is cooled. The spacer is made of ceramic or heat-resistant steel, preheated and used to center the disk at ordinary temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金基盤
の製造方法に関し、更に詳細には、コンピューター用磁
気ディスク用等のアルミニウム合金基盤の歪み取り焼鈍
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum alloy substrate, and more particularly to a method for strain relief annealing an aluminum alloy substrate for magnetic disks for computers and the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】コンピ
ューター用の外部記憶装置に用いられる磁気ディスク基
盤には、通常アルミニウム合金が使用されており、この
アルミニウム合金基盤の製造に際しては、元板からドー
ナッツ状に打ち抜かれた後、歪み矯正のための熱処理が
必要である。これは、圧延加工組織を再結晶組織に変化
させ、基盤形状の経年変化が生じるのを防止するために
施す熱処理である。
2. Description of the Related Art An aluminum alloy is usually used for a magnetic disk substrate used in an external storage device for a computer, and when manufacturing this aluminum alloy substrate, donuts are removed from a base plate. After being punched into a shape, heat treatment is necessary to correct the distortion. This is a heat treatment performed to change the rolling structure into a recrystallized structure and prevent the base shape from changing over time.

【0003】一方、記録密度を増加させるためにはヘッ
ド浮上量の低下が必要であり、平坦度低下の要求も厳し
くなってきている。これらの高容量化に伴う平坦度低下
を解決する方法として、従来より、鉄製の定盤上に歪み
矯正すべき金属製ディスクを複数枚積み付け、上方から
100〜2000Kgの荷重を負荷した状態で、これら
全体を加熱炉に挿入して矯正する方法が行われていた
(実開昭62−88748号参照)。
On the other hand, it is necessary to reduce the flying height of the head in order to increase the recording density, and the demand for lowering the flatness is becoming stricter. As a method for solving the decrease in flatness due to the increase in capacity, conventionally, a plurality of metal disks to be strain-corrected are stacked on an iron surface plate, and a load of 100 to 2000 kg is applied from above. , There was a method of straightening them by inserting them into a heating furnace.
(See Jitsukai Sho 62-88748).

【0004】しかし、上記実開昭62−88748号の
方法においては、 Alスペーサーを使用する場合、平坦度の低下及び表
面疵等により、使用毎にスペーサー研磨を行っている。 バッチ焼鈍のため矯正に長時間を要する。 Alスペーサーを使用する場合、スペーサーとディス
ク材との剥離が困難である。 スペーサーとして、Alに代えて、セラミックスや耐
熱鋼を用いた場合、熱膨張係数が異なることから、歪み
矯正のためには使用が困難である。 等の問題がある。
However, in the method disclosed in Japanese Utility Model Laid-Open No. 62-88748, when an Al spacer is used, the spacer is polished every time it is used due to a decrease in flatness and surface defects. It takes a long time to straighten because of batch annealing. When using an Al spacer, it is difficult to separate the spacer from the disc material. When ceramics or heat-resistant steel is used as the spacer instead of Al, it is difficult to use it for straightening the strain because of different thermal expansion coefficients. There are problems such as.

【0005】このため、高容量化の要望がますます厳し
くなってきており、平坦度の向上要求が望まれてきてい
る近年、かゝる従来の矯正工程のままでは、これらの要
求を満足することができなくなってきた。
For this reason, the demand for higher capacity is becoming more and more strict, and in recent years, the demand for improvement in flatness has been demanded, and these conventional straightening processes satisfy these demands. I can't do it.

【0006】この対策として、特開昭63−14441
4号にホットプレスによる方法が提案されている。この
方法は、ディスク基盤を加熱後、このディスクと同程度
の温度に保持されたスペーサーを用いて加圧し歪み矯正
する方法である。しかしながら、このような開発例によ
っても、上記実開昭62−88748号と同等程度の平
坦度しか得られず、また、ディスク昇温過程に加圧し
なければ矯正効果が得られない、冷却時には、スペー
サーとしてAlに代えセラミックスや耐熱鋼を用いた場
合、熱膨張係数が異なることから歪み矯正に使用するこ
とは困難である、等の問題がある。更に、従来方法は、
バッチ焼鈍のため入炉時間が約10時間かかり、また連
続化が困難であった。
As a countermeasure against this, Japanese Patent Laid-Open No. 63-14441
No. 4 proposes a method by hot pressing. This method is a method in which after heating a disk substrate, a spacer held at the same temperature as the disk is used to pressurize and correct the distortion. However, even with such a development example, only the flatness equivalent to that of the above-mentioned Japanese Utility Model Laid-Open No. 62-88748 can be obtained, and the correction effect cannot be obtained unless pressure is applied during the disk temperature rising process. When ceramics or heat-resistant steel is used as the spacer in place of Al, there is a problem that it is difficult to use it for strain correction because of different thermal expansion coefficients. Furthermore, the conventional method is
Because of the batch annealing, it took about 10 hours to enter the furnace and it was difficult to make it continuous.

【0007】本発明は、上記従来技術の問題点を解決す
るためになされたものであって、平坦度の優れたアルミ
ニウム合金ディスク材を基盤同士或いは基盤とスペーサ
ーの剥離の問題もなく、連続的かつ短時間に製作し得る
平坦度矯正技術を提供することを目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is possible to continuously use aluminum alloy disk materials having excellent flatness without the problem of separation between substrates or between the substrate and spacers. Moreover, it aims at providing the flatness correction technique which can be manufactured in a short time.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記課題を
解決するため、耐久性に優れる耐熱鋼、セラミックス等
のスペーサー(定盤)において熱膨張差に起因する平坦度
劣化の防止策について鋭意研究を重ねた結果、ここに本
発明を完成したものである。
In order to solve the above problems, the present inventor has taken measures to prevent deterioration of flatness due to a difference in thermal expansion in spacers (platens) made of heat-resistant steel, ceramics or the like having excellent durability. As a result of intensive studies, the present invention has been completed here.

【0009】すなわち、本発明は、Mgを含む磁気ディ
スク用アルミニウム合金基盤において、スペーサー間に
挾んだ該ディスク材に対する加圧、焼鈍後の冷却に際
し、上部スペーサー及び加圧を開放した状態で冷却する
ことを特徴とするアルミニウム合金基盤の歪み取り焼鈍
方法を要旨とするものである。
That is, according to the present invention, in an aluminum alloy base for a magnetic disk containing Mg, when pressing the disk material sandwiched between the spacers and cooling after annealing, cooling is performed with the upper spacer and the pressure released. The gist is a strain relief annealing method for an aluminum alloy substrate, which is characterized by

【0010】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0011】[0011]

【作用】[Action]

【0012】アルミニウム合金ディスク基盤は、ドーナ
ッツ状に圧延及び打ち抜き工程で加工されるに際し、残
留応力を生じる。これを除去するために、熱膨張係数の
等しい平坦度の優れたスペーサー間に挾んで負荷荷重を
かけ、見掛け上の平坦度の向上と加熱による弾性変形応
力の除去効果との相乗効果によって平坦度は向上すると
されている。しかし、このスペーサー材質がディスク材
質と異なり熱膨張係数が大きく異なる場合、加圧したス
ペーサーとディスク材が互いに拘束された状態で加熱・
冷却すると、熱膨張係数の違いから熱歪みが発生し、良
好な矯正効果が得られないとされている。
The aluminum alloy disc substrate produces residual stress when processed into a donut shape during the rolling and punching process. In order to remove this, a load is sandwiched between spacers with excellent flatness with the same coefficient of thermal expansion to apply a load, and the flatness is increased by the synergistic effect of the apparent flatness improvement and the elastic deformation stress removal effect due to heating. Is said to improve. However, if this spacer material is different from the disc material and the coefficient of thermal expansion is significantly different, heating / pressing the spacer and disc material under pressure
It is said that when cooled, thermal distortion occurs due to a difference in thermal expansion coefficient, and a good straightening effect cannot be obtained.

【0013】この点、熱膨張係数の違いによる平坦度の
劣化を防止する方法として、繰り返し加圧により加圧し
た状態で矯正し、解放した状態で熱膨張を吸収させる方
法も考えられるが、この方法では、高温下においての繰
り返し加圧のハンドリング、方法等、加圧力の精度が不
可欠などのことが判明したため、好ましくない。
In this respect, as a method of preventing the deterioration of the flatness due to the difference in the coefficient of thermal expansion, it is possible to correct it by repeatedly applying pressure and absorb the thermal expansion in the released state. In the method, it was found that the accuracy of the pressing force is indispensable, such as the handling of the repeated pressurization under high temperature, the method, etc., and therefore it is not preferable.

【0014】これに対し、本発明では、矯正効果は昇温
過程において現れることが判明したので、冷却は、上部
スペーサー及び加圧を解放した状態で行うこととしたも
のである。冷却過程において矯正すると、スペーサーと
ディスク材の熱伝導率の違いによる冷却速度の差、熱収
縮時の拘束などにより平坦度に悪影響を与える。
On the other hand, in the present invention, since it was found that the correction effect appears in the temperature rising process, cooling is performed with the upper spacer and the pressure being released. If it is corrected during the cooling process, the flatness is adversely affected by the difference in cooling rate due to the difference in thermal conductivity between the spacer and the disk material, the restriction during thermal contraction, and the like.

【0015】この冷却に際しては、ファン等で強制的に
行っても差し支えなく、特に炉内冷却、自然冷却等を行
う必要がない。従来は、ディスク材を2つのスペーサー
に挾んで荷重をかけたまま冷却を行っていたため、冷却
時間も多分に必要であったが、こりように上部スペーサ
ー(上定盤)及び荷重を除去した状態で冷却することによ
り、冷却時間も大幅に短縮することができる。
This cooling may be forcedly performed by a fan or the like, and it is not particularly necessary to perform in-furnace cooling or natural cooling. In the past, since the disk material was sandwiched between two spacers and cooled while the load was applied, it took a long time to cool down. However, the upper spacer (upper surface plate) and the load were removed like this. By cooling with, the cooling time can be significantly shortened.

【0016】なお、歪み取り焼鈍において上述の冷却を
行うまでの方法としては、特に制限されず、従来と同様
の方法も可能であるが、歪み矯正を連続処理化し、短時
間処理化するためには、以下の態様が好ましい。
The method until the above-mentioned cooling in the strain relief annealing is not particularly limited, and the same method as the conventional method is also possible, but in order to make the strain straightening continuous treatment and shorten the treatment. The following modes are preferable.

【0017】第1の態様としては、スペーサー間にディ
スク材を一枚若しくは複数枚挾んで加圧、加熱し、最高
温度に到達した時点で、上部スペーサー及び加圧を開放
した状態で冷却する方法である。ディスク材のサイズ及
び板厚等を考慮した適当な加圧力をもって所定の処理温
度まで昇温する。昇温速度は特に制限されないが、例え
ば、O材の焼鈍であれば組織的に再結晶していればよ
い。また最高温度における保持は行わなくともよいが、
好ましくは適度に保持するのがよい。
In a first mode, one or more disc members are sandwiched between the spacers to apply pressure and heat, and when the maximum temperature is reached, cooling is performed with the upper spacer and the pressure released. Is. The temperature is raised to a predetermined processing temperature with an appropriate pressure in consideration of the size and thickness of the disc material. The rate of temperature increase is not particularly limited, but for example, if the O material is annealed, it may be structurally recrystallized. Also, it is not necessary to hold at the maximum temperature,
It is preferable to hold it appropriately.

【0018】第2の態様としては、予め事前に加熱され
たスペーサー間に常温のディスクを挾み、急速に加熱し
加圧を行う方法である。スペーサーの事前の加熱温度と
しては250〜500℃の範囲が好ましい。また、短時
間加熱後の加圧保持時間は0秒以上、1800秒以下が
好ましい。
The second mode is a method in which a disk at room temperature is sandwiched between spacers that have been heated in advance, and heating and pressing are performed rapidly. The heating temperature of the spacer in advance is preferably in the range of 250 to 500 ° C. The pressure holding time after heating for a short time is preferably 0 seconds or more and 1800 seconds or less.

【0019】従来のバッチ焼鈍方法では、高負荷荷重・
長時間加熱であり、100kg/面程度の加圧力で、34
0〜380℃で約10時間の加熱が必要であった。しか
し、連続を主とした時には、短時間処理が望ましく、本
発明によれば、上述の態様のように、短時間処理が可能
である。
In the conventional batch annealing method, high load load
It is heated for a long time, and with a pressure of about 100 kg / side, 34
Heating at 0-380 ° C for about 10 hours was required. However, when the main purpose is continuous, short time processing is desirable, and according to the present invention, short time processing is possible as in the above-mentioned aspect.

【0020】しかも、本発明によれば、短時間処理の場
合、従来の常識に反し、低荷重の方が良好な平坦度が得
られる。低荷重の好ましい加圧力は、ディスク材1枚当
たり20×10-4N/mm2以上、120×10-4N/mm2
以下である。
Moreover, according to the present invention, in the case of short-time treatment, contrary to the conventional wisdom, it is possible to obtain better flatness under a low load. The preferred pressure of low load is 20 × 10 -4 N / mm 2 or more, 120 × 10 -4 N / mm 2 per disc material.
It is below.

【0021】また、ディスクと熱膨張係数の異なるスペ
ーサー(セラミックス、耐熱鋼等)を用いても、セラミッ
クス又はステンレス鋼の方がAlよりも高温強度に優れ
ていることは勿論のこと、スペーサーの平坦度、表面同
士のすべり性が良いことにより、ディスクと同じアルミ
ニウム合金のスペーサーを用いた場合よりも良好な矯正
効果が見られる。なお、セラミックスとしてはアルミ
ナ、Zr−アルミナ、SiC等が挙げられ、耐熱鋼として
はSUS304等のステンレス鋼が挙げられる。
Even if a spacer (ceramics, heat-resistant steel, etc.) having a different thermal expansion coefficient from that of the disk is used, it is needless to say that ceramics or stainless steel is superior to Al in high temperature strength, and the spacer is flat. In addition, due to the good sliding property between the surfaces, a better straightening effect can be seen as compared with the case where the spacer made of the same aluminum alloy as the disc is used. Examples of ceramics include alumina, Zr-alumina, and SiC, and examples of heat-resistant steels include stainless steel such as SUS304.

【0022】なお、スペーサー間に挾むディスクの枚数
は、1枚若しくは6枚以内が望ましい。6枚を超える
と、冷却過程で、加載したディスク間に歪に悪影響を及
ぼす、冷却速度の相違が生じる等のため好ましくない。
The number of disks sandwiched between the spacers is preferably 1 or 6 or less. If the number of disks exceeds 6, it is not preferable because in the cooling process, distortion is adversely affected between the loaded disks and a difference in cooling rate occurs.

【0023】また、アルミニウム合金としては、従来と
同様、Mgを含む各種の組成のAl合金が可能であること
は云うまでもない。なお、デイスク材にはブランク材及
びサブストレート材の状態が含まれる。
Needless to say, as the aluminum alloy, Al alloys of various compositions containing Mg can be used as in the conventional case. The disk material includes a blank material and a substrate material.

【0024】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0025】[0025]

【実施例1】予め高精度な平坦度に加工を施した97mm
φ×23mmφ×10mmtのスペーサー(耐熱鋼、セラミ
ックス)により、3.5インチのAl合金打抜きディスク
材(A5086相当のAl合金)を1枚又は複数枚挾み、
[Example 1] 97 mm that has been processed to have a highly accurate flatness in advance
With a spacer of φ × 23mmφ × 10mmt (heat resistant steel, ceramics), sandwich one or more 3.5 inch Al alloy punched disc materials (Al alloy equivalent to A5086),

【表1】 に示す加圧力及び温度まで昇温・加熱し(図1参照)、冷
却した。加圧解放及び冷却方法は、上部スペーサー及び
加圧を解放して冷却する方法(図2)により行った(本発
明例)。比較のため、スペーサー間にディスク材を挾ん
だままで冷却する方法(図2)でも行った(従来例)。
[Table 1] The temperature and temperature were increased to the pressure and temperature shown in (1) (see FIG. 1) and cooled. The method of releasing pressure and cooling was performed by releasing the upper spacer and pressure and cooling (FIG. 2) (Example of the present invention). For comparison, a method (FIG. 2) in which the disc material was sandwiched between the spacers and cooled was also performed (conventional example).

【0026】得られたディスク材の平坦度を表1に示
す。平坦度は“ニデック”(商品名)にて歪矯正後に測定
した。同表より、本発明例は、スペーサーとして耐熱鋼
やセラミックスを使用した場合であっても優れた平坦度
を示していることがわかる。
Table 1 shows the flatness of the obtained disc material. The flatness was measured after straightening with "NIDEK" (trade name). From the table, it can be seen that the examples of the present invention exhibit excellent flatness even when heat-resistant steel or ceramics is used as the spacer.

【0027】[0027]

【実施例2】スペーサーとして、実施例1の場合と同様
に加工したスペーサー(Al材、耐熱鋼、セラミックス)
を準備した。また、常法により圧延、打ち抜き加工を行
った1.35t×95φ×24φ(mm)のAl合金ディスク
材(A5086相当のAl合金)を準備した。
[Example 2] As a spacer, a spacer processed in the same manner as in Example 1 (Al material, heat-resistant steel, ceramics)
Prepared. Further, an Al alloy disk material (Al alloy corresponding to A5086) of 1.35 t × 95φ × 24φ (mm) which was rolled and punched by a conventional method was prepared.

【0028】次いで、加熱炉内で所定温度に加熱したス
ペーサー間に、常温のディスク材を1枚若しくは複数枚
挾み、負荷荷重を乗せて加圧し、炉内で所定時間保持
し、保持後直ちに炉より抽出し、図2に示す要領にて上
部スペーサー及び加圧力を解放し、冷却した(本発明
例)。比較のため、図3に示す加圧解放及び冷却方法に
よっても冷却した(比較例)。
Then, one or more disc materials at room temperature are sandwiched between the spacers heated to a predetermined temperature in the heating furnace, a load is applied to the spacers to pressurize them, and they are held in the furnace for a predetermined time and immediately after the holding. It was extracted from the furnace, the upper spacer and the pressure were released and cooled in the manner shown in FIG. 2 (Example of the present invention). For comparison, it was also cooled by the pressure release and cooling method shown in FIG. 3 (comparative example).

【0029】得られたディスク材の矯正後歪みは、表2
に示すように、本発明例の場合は優れた平坦度を示して
いることがわかる。
The strain after straightening of the obtained disc material is shown in Table 2.
As shown in, it is understood that the example of the present invention exhibits excellent flatness.

【0030】[0030]

【実施例3】また、付加荷重と矯正後歪の関係を調べる
ために、
Example 3 In addition, in order to investigate the relationship between the applied load and the strain after straightening,

【表3】 に示す以外の条件は実施例2の本発明例と同様にして矯
正を行った。その結果、表3に示すように、付加荷重を
適切に設定することにより優れた平坦度が得られること
がわかる。
[Table 3] The conditions other than those shown in (1) were corrected in the same manner as in the example of the present invention of Example 2. As a result, as shown in Table 3, it can be seen that excellent flatness can be obtained by appropriately setting the additional load.

【0031】また、スペーサー材質と矯正後歪の関係を
調べるために、
In order to investigate the relationship between the spacer material and post-correction strain,

【表4】 に示す以外の条件は実施例2の本発明例と同様にして矯
正を行った。その結果、表4に示すように、スペーサー
としてセラミックスや耐熱鋼を使用した場合に優れた平
坦度が得られることがわかる。
[Table 4] The conditions other than those shown in (1) were corrected in the same manner as in the example of the present invention of Example 2. As a result, as shown in Table 4, it is found that excellent flatness is obtained when ceramics or heat resistant steel is used as the spacer.

【0032】また、矯正枚数と矯正後歪の関係を調べる
ために、
Further, in order to investigate the relationship between the number of straightened sheets and the strain after straightening,

【表5】 に示す以外の条件は実施例2の本発明例と同様にして矯
正を行った。その結果、表5に示すように、ディスク材
の枚数が6枚より多いと平坦度向上の効果が低下する傾
向があることがわかる。
[Table 5] The conditions other than those shown in (1) were corrected in the same manner as in the example of the present invention of Example 2. As a result, as shown in Table 5, it can be seen that the effect of improving the flatness tends to decrease when the number of disk materials is more than 6.

【0033】また、加熱方法(加熱炉、ホットプレス、
スペーサー予熱)及び加熱温度、保持時間と矯正後歪の
関係を調べるために、
Further, the heating method (heating furnace, hot press,
(Spacer preheating) and heating temperature, in order to investigate the relationship between holding time and post-correction strain,

【表6】 に示す以外の条件は実施例2の本発明例と同様にして矯
正を行った。なお、同表中、加熱方法が「スペーサー予
熱」の場合は実施例2の本発明例と同様の加熱方法の場
合であるが、「加熱炉」、「ホットプレス」の場合は、
スペーサー間にディスク材を挾んで加熱炉又はホットプ
レスにて加圧加熱する場合である。その結果を表6に示
すように、本発明例の場合は、低い付加荷重で短時間焼
鈍により優れた平坦度が得られている。
[Table 6] The conditions other than those shown in (1) were corrected in the same manner as in the example of the present invention of Example 2. In the table, the case where the heating method is “spacer preheating” is the same as the heating method similar to that of the example of the present invention in Example 2, but in the case of “heating furnace” and “hot press”,
This is the case where the disc material is sandwiched between the spacers and heated under pressure in a heating furnace or hot press. As shown in Table 6, in the case of the example of the present invention, excellent flatness was obtained by short-time annealing with a low applied load.

【0034】[0034]

【発明の効果】以上詳述したように、本発明によれば、
磁気ディスク用アルミニウム合金基盤の歪み取り焼鈍に
おいて、上部スペーサー及び加圧を開放した状態で冷却
することにより、優れた平坦度が得られ、短時間焼鈍が
可能である。また従来はスペーサー材質として熱膨張係
数が異なるために歪み取り焼鈍に使用できなかった耐久
性のある耐熱鋼やセラミックスなども使用することがで
きる。
As described in detail above, according to the present invention,
In the strain relief annealing of the aluminum alloy substrate for magnetic disks, by cooling in a state where the upper spacer and the pressure are released, excellent flatness can be obtained and annealing can be performed for a short time. Further, it is also possible to use durable heat-resistant steel or ceramics which could not be used for strain relief annealing because of different thermal expansion coefficients as spacer materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】スペーサー間にディスク材を挾んだ状態を示す
説明図である。
FIG. 1 is an explanatory diagram showing a state where a disc material is sandwiched between spacers.

【図2】本発明の冷却方法を説明する図で、上部スペー
サー及び加圧力を解放した状態で冷却することを示して
いる。
FIG. 2 is a diagram for explaining the cooling method of the present invention, showing that cooling is performed with the upper spacer and the pressing force released.

【図3】従来の冷却方法を説明する図で、スペーサー間
にディスク材を挾んだ状態で冷却することを示してい
る。
FIG. 3 is a diagram illustrating a conventional cooling method, which illustrates cooling with a disk material sandwiched between spacers.

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田圭司 栃木県真岡市鬼怒ヶ丘15番地株式会社神戸 製鋼所真岡製造所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Keiji Okada 15 Kinugaoka, Moka-shi, Tochigi Prefecture Kobe Steel Works Moka Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Mgを含む磁気ディスク用アルミニウム
合金基盤において、スペーサー間に挾んだ該ディスク材
に対する加圧、焼鈍後の冷却に際し、上部スペーサー及
び加圧を開放した状態で冷却することを特徴とするアル
ミニウム合金基盤の歪み取り焼鈍方法。
1. An aluminum alloy substrate for a magnetic disk containing Mg, characterized in that when pressure is applied to the disk material sandwiched between the spacers and cooling after annealing, cooling is performed with the upper spacer and the pressure released. Strain relief annealing method for aluminum alloy substrate.
【請求項2】 スペーサー間に該ディスク材を一枚若し
くは複数枚挾んで加圧、加熱し、最高温度に到達した時
点で、上部スペーサー及び加圧を開放した状態で冷却す
る請求項1に記載の方法。
2. The method according to claim 1, wherein one or a plurality of the disc members are sandwiched between the spacers to apply pressure and heat, and when the maximum temperature is reached, the upper spacer and the pressurization are cooled. the method of.
【請求項3】 予め事前に加熱されたスペーサー間に、
常温の1枚若しくは互いの中心がずれないように積み重
ねた6枚までの該ディスク材を挾み、加圧し、短時間保
持した後、上部スペーサー及び加圧を開放した状態で冷
却する請求項1に記載の方法。
3. Between the pre-heated spacers,
The method according to claim 1, wherein at least one disk material at room temperature or up to six disk materials stacked so that the centers of the disk materials are not separated from each other is sandwiched, pressed, and held for a short time, and then cooled with the upper spacer and the pressure released. The method described in.
【請求項4】 スペーサーの加熱温度が250〜500
℃である請求項3に記載の方法。
4. The heating temperature of the spacer is 250 to 500.
The method according to claim 3, wherein the method is at ° C.
【請求項5】 ディスク材1枚当たりの加圧力を20×
10-4N/mm2以上、120×10-4N/mm2以下とする
請求項3に記載の方法。
5. The pressing force per disk material is 20 ×
The method according to claim 3, wherein the amount is 10 -4 N / mm 2 or more and 120 × 10 -4 N / mm 2 or less.
【請求項6】 加圧保持時間を0秒以上、1800秒以
下とする請求項3に記載の方法。
6. The method according to claim 3, wherein the pressure holding time is 0 seconds or more and 1800 seconds or less.
【請求項7】 スペーサーとしてセラミックス又は耐熱
鋼を用いる請求項1に記載の方法。
7. The method according to claim 1, wherein ceramics or heat resistant steel is used as the spacer.
JP13991292A 1992-05-01 1992-05-01 Method for stress relieving anneling aluminum alloy substrate Pending JPH05311361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13991292A JPH05311361A (en) 1992-05-01 1992-05-01 Method for stress relieving anneling aluminum alloy substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13991292A JPH05311361A (en) 1992-05-01 1992-05-01 Method for stress relieving anneling aluminum alloy substrate

Publications (1)

Publication Number Publication Date
JPH05311361A true JPH05311361A (en) 1993-11-22

Family

ID=15256539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13991292A Pending JPH05311361A (en) 1992-05-01 1992-05-01 Method for stress relieving anneling aluminum alloy substrate

Country Status (1)

Country Link
JP (1) JPH05311361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219084B1 (en) * 2010-11-04 2013-01-11 주식회사 우진 Chilling apparatus for smoothing twisted metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219084B1 (en) * 2010-11-04 2013-01-11 주식회사 우진 Chilling apparatus for smoothing twisted metal plate

Similar Documents

Publication Publication Date Title
JP5903031B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JPH05311361A (en) Method for stress relieving anneling aluminum alloy substrate
US2113537A (en) Method of rolling and treating silicon steel
JPH0318425A (en) Hot straightening method for titanium magnetic disk base plate
JPS62133053A (en) Heat treatment of titanium-alloy rolled plate
JPH05117825A (en) Method for strain releasing annealing to aluminum alloy base board
JPS63144414A (en) Straightening method for metallic disk
JP5718036B2 (en) Manufacturing method of magnetic disk blank and magnetic disk blank
JPH02205204A (en) Hot leveling method for magnetic disk substrate made of titanium
JPH09157734A (en) Method for correcting strain of metal-made annular plate material
JPS6144162A (en) Straightening annealing method of metal sheet member
JPH06145928A (en) Strain relieving anneling method for aluminum alloy base board
JPH09165618A (en) Method for pressure annealing of blank for magnetic disk
JPH07102400B2 (en) Flatness correction method for metal plate
JP4337593B2 (en) Thick steel plate forced cooling device
JPH03230814A (en) Hot correcting method for magnetic disk base plate of titanium
JPH05174375A (en) Production of magnetic disk base board
JPS6147608B2 (en)
JPS63277704A (en) Flattening treatment for multi-plate type clutch plate
Leslie Metalworking I: Rolling
JPH0684170A (en) Pre-treatment method of correction annealing of aluminum alloy substrate for magnetic disk
JPS62240112A (en) Strain straightening method for metal disk
JPH06249580A (en) Pallet for high temperature burning, its manufacture and jig for high temperature burning
JPH04371557A (en) Hot leveling method of magnetic disk substrate made of titanium
JPH02111849A (en) Method for annealing aluminum-based metal plate