JP5336812B2 - Brazing sheet for automotive heat exchanger for brazed pipe - Google Patents

Brazing sheet for automotive heat exchanger for brazed pipe Download PDF

Info

Publication number
JP5336812B2
JP5336812B2 JP2008267310A JP2008267310A JP5336812B2 JP 5336812 B2 JP5336812 B2 JP 5336812B2 JP 2008267310 A JP2008267310 A JP 2008267310A JP 2008267310 A JP2008267310 A JP 2008267310A JP 5336812 B2 JP5336812 B2 JP 5336812B2
Authority
JP
Japan
Prior art keywords
brazing
core material
content
brazing sheet
sacrificial material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008267310A
Other languages
Japanese (ja)
Other versions
JP2010095758A (en
Inventor
路英 吉野
正和 江戸
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008267310A priority Critical patent/JP5336812B2/en
Publication of JP2010095758A publication Critical patent/JP2010095758A/en
Application granted granted Critical
Publication of JP5336812B2 publication Critical patent/JP5336812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、自動車用に設けられる熱交換器に用いられるアルミニウム合金ブレージングシートに関し、特にろう付法によって製造される熱交換器のチューブ材の製造に好適なブレージングシートに関する。   The present invention relates to an aluminum alloy brazing sheet used for a heat exchanger provided for an automobile, and more particularly to a brazing sheet suitable for manufacturing a tube material of a heat exchanger manufactured by a brazing method.

従来、自動車のラジエータやヒーターコアのチューブ材としては、Al−Mn系アルミニウム合金を芯材とし、この芯材の片面に犠牲陽極皮材として芯材よりも電気的に卑なAl−Zn系アルミニウム合金をクラッドし、芯材の他方の面にAl−Si系又はAl−Si−Zn系ろう材をクラッドした3層のアルミニウム合金ブレージングシート(以下、単にブレージングシート)が使用されている。
チューブは、このブレージングシートを管状に形成し、突合せ部を高周波加熱により電縫溶接して作製される。このチューブは、最も一般的には、芯材がJIS 3003合金、犠牲材がJIS 7072合金、ろう材がAl−Si系合金又はAl−Si−Zn系合金からなる。
Conventionally, as a tube material for an automobile radiator or heater core, an Al-Mn-based aluminum alloy is used as a core material, and an Al-Zn-based aluminum that is electrically base than the core material as a sacrificial anode skin material on one side of the core material. A three-layer aluminum alloy brazing sheet (hereinafter simply referred to as a brazing sheet) is used in which an alloy is clad and the other surface of the core is clad with an Al—Si or Al—Si—Zn brazing material.
The tube is produced by forming this brazing sheet into a tubular shape and electrowelding the butted portion by high frequency heating. In this tube, most commonly, the core material is made of JIS 3003 alloy, the sacrificial material is made of JIS 7072 alloy, and the brazing material is made of an Al—Si alloy or an Al—Si—Zn alloy.

犠牲材は、チューブの冷却水側(内周側)に位置し、熱交換器使用中の冷却水と接して、その犠牲陽極効果によって芯材に局部腐食が発生するのを防止している。つまり、犠牲材は芯材との電気化学的性質の違いにより犠牲材が主として腐食し、芯材への孔食を抑制する。ろう材は、ろう付け時にチューブとフィンの接合及びチューブとヘッダープレートとの接合に用いられる。   The sacrificial material is located on the cooling water side (inner peripheral side) of the tube and is in contact with the cooling water in use of the heat exchanger to prevent local corrosion of the core material due to the sacrificial anode effect. That is, the sacrificial material mainly corrodes due to the difference in electrochemical properties from the core material, and suppresses pitting corrosion to the core material. The brazing material is used for joining the tube and the fin and joining the tube and the header plate at the time of brazing.

ところで、近年は熱交換器の軽量化、コスト低減を目的とし、使用部材、チューブが薄肉化される傾向にある。電縫溶接により作製されるチューブは、成形性の問題から薄肉化の限界が0.20mm程度である。それ以上の薄肉化を実現するために、例えば特許文献1に開示されているように、犠牲材が内周側に配置されるようにチューブ材をB型形状に折り曲げて、突き合される両縁をろう付により接合されたチューブ(以下、ろう付型チューブ)が提案され、昨今では主流になりつつある。   By the way, in recent years, for the purpose of reducing the weight of the heat exchanger and reducing the cost, the members used and the tubes tend to be thinned. A tube produced by electro-welding welding has a limit of thinning of about 0.20 mm due to the problem of formability. In order to realize further thinning, for example, as disclosed in Patent Document 1, the tube material is folded into a B-shape so that the sacrificial material is arranged on the inner peripheral side, and both of them are abutted. A tube having an edge joined by brazing (hereinafter referred to as a brazed tube) has been proposed and is now becoming mainstream.

ろう付型チューブの場合、曲げ加工される形状が電縫溶接チューブよりも高い成形性が要求される。チューブの成形性を高めるための手法として、電縫溶接チューブを対象に芯材の組織を繊維組織とすることにより、成形性に優れたチューブ材が開発されている(例えば、特許文献2、3)。   In the case of a brazed tube, the shape to be bent requires higher formability than an ERW welded tube. As a technique for improving the formability of the tube, a tube material excellent in formability has been developed by making the structure of the core material into a fiber structure for the ERW welded tube (for example, Patent Documents 2 and 3). ).

特開平2−75414号公報JP-A-2-75414 特開2001−170793号公報JP 2001-170793 A 特開2001−170794号公報JP 2001-170794 A

しかし、ろう付型チューブは電縫溶接チューブよりもさらに成形が困難であり、芯材を繊維組織としたチューブ材を用いて、肉厚が薄いろう付型チューブを作製すると、曲げ加工時に割れが生じ、あるいは表面肌が劣化するという技術的課題が生じた。
本発明は、このような技術的課題に基づいてなされたもので、肉厚の薄いろう付型チューブを作製する際の割れ、表面肌の劣化を防止することのできる成形性に優れたブレージングシートを提供することを目的とする。
However, brazing tubes are more difficult to mold than ERW welded tubes, and if a brazed tube with a thin wall thickness is made using a tube material with a core as the fiber structure, cracks will occur during bending. The technical problem that this occurs or the surface skin deteriorates has occurred.
The present invention was made on the basis of such a technical problem, and is a brazing sheet excellent in formability capable of preventing cracking and deterioration of the surface skin when producing a thin brazed tube. The purpose is to provide.

本発明者らは、上述した割れ、表面肌劣化の原因を検討した。その結果、ろう付型チューブのようにB型に曲げ加工した際に、芯材と犠牲材との変形能が異なることによって、犠牲材中に存在する金属間化合物の周囲に不均一な変形が生じる。その結果、当該金属間化合物を基点として加工時に割れが生じ、あるいは表面肌が劣化することを本発明者等は究明した。
そこで本発明者等は、成形性に優れるブレージングシートを得ることを目的に鋭意検討を重ねた結果、芯材を繊維組織にすることに加えて、犠牲材をも繊維組織にすることによって、芯材と犠牲材の変形能をともに高めるとともに、芯材と犠牲材との変形能を均等にすることにより、成形性を著しく向上できることを見出した。
以上の検討に基づいてなされた本発明のブレージングシートは、組織が繊維状であるアルミニウム合金からなる芯材と、芯材の一方の面側に配置され、組織が繊維状であるアルミニウム合金からなる犠牲材と、芯材の他方の面側に配置され、Al−Si系合金又はAl−Si−Zn系合金からなるろう材と、からなりろう付造管されることを特徴とする。
The present inventors examined the cause of the above-described cracking and surface skin deterioration. As a result, when the core material and the sacrificial material are deformed differently when bent into a B shape like a brazed tube, non-uniform deformation occurs around the intermetallic compound present in the sacrificial material. Arise. As a result, the present inventors have found that cracking occurs during processing or the surface skin deteriorates with the intermetallic compound as a starting point.
Therefore, as a result of intensive studies for the purpose of obtaining a brazing sheet having excellent moldability, the present inventors have made the core material into a fiber structure, and by making the sacrificial material into a fiber structure as well, It has been found that the moldability can be remarkably improved by increasing both the deformability of the material and the sacrificial material and making the deformability of the core material and the sacrificial material uniform.
The brazing sheet of the present invention made on the basis of the above studies is composed of a core material made of an aluminum alloy whose structure is fibrous, and an aluminum alloy which is arranged on one surface side of the core material and whose structure is fibrous. The sacrificial material is disposed on the other surface side of the core material, and is brazed with a brazing material made of an Al—Si based alloy or an Al—Si—Zn based alloy.

本発明のブレージングシートは、芯材が、質量%で、Mn:1.0〜2.0%、Si:0.5〜1.0%、Cu:0.3〜1.0%、Fe:0.1〜0.5%、残部がAl及び不可避不純物からなり、犠牲材が、Zn:2.5〜6.0%、Si:0.3〜1.0%、Mn:0.5〜1.5%、残部がAl及び不可避不純物からなる。
そして、芯材がさらに、Mg:0.05〜0.5%を含有することが好ましく、Ti:0.05〜0.3%、Cr:0.05〜0.3%、及びZr:0.05〜0.3%の内の1種又は2種以上を含有することがさらに好ましい。また、犠牲材がさらに、Ni:0.1〜1.0%、及びFe:0.3〜1.0%の1種又は2種を含有することが好ましく、Ti:0.05〜0.3%、Cr:0.05〜0.3%、及びZr:0.05〜0.3%の内の1種又は2種以上を含有することがさらに好ましい。
なお、本発明におけるブレージングシートとは、JIS Z 3001に定義されるように、母材(芯材)の片面又は両面に、圧延加工などによってろう材をクラッドして作った板を意味する。
In the brazing sheet of the present invention, the core material is mass%, Mn: 1.0 to 2.0%, Si: 0.5 to 1.0%, Cu: 0.3 to 1.0%, Fe: 0.1 to 0.5%, the balance is made of Al and inevitable impurities, and the sacrificial material is Zn: 2.5 to 6.0%, Si: 0.3 to 1.0%, Mn: 0.5 to 1.5%, the balance ing of Al and unavoidable impurities.
And it is preferable that a core material contains Mg: 0.05-0.5% further, Ti: 0.05-0.3%, Cr: 0.05-0.3%, and Zr: 0 It is more preferable to contain one or more of 0.05 to 0.3%. The sacrificial material preferably further contains one or two of Ni: 0.1 to 1.0% and Fe: 0.3 to 1.0%, and Ti: 0.05 to 0.00. More preferably, it contains one or more of 3%, Cr: 0.05 to 0.3%, and Zr: 0.05 to 0.3%.
The brazing sheet in the present invention means a plate made by clad a brazing material by rolling or the like on one side or both sides of a base material (core material) as defined in JIS Z 3001.

本発明によれば、芯材と犠牲材の両者を繊維状の組織とすることにより、肉厚の薄いろう付型チューブを作製する際の割れ、表面肌の劣化を防止することのできる、成形性に優れたブレージングシートを提供する。   According to the present invention, by forming both the core material and the sacrificial material into a fibrous structure, it is possible to prevent cracking and deterioration of the surface skin when producing a thin brazed tube. A brazing sheet having excellent properties is provided.

以下、実施の形態に基づいてこの発明を詳細に説明する。
本発明のブレージングシートは、アルミニウム合金からなる芯材と、芯材の一方の面側に配置されるアルミニウム合金からなる犠牲材と、芯材の他方の面側に配置されるろう材と、からなるが、芯材及び犠牲材の両者が繊維状の組織を有していることが特徴である。そこで、芯材及び犠牲材の組織について説明し、ついで、本発明の好ましい組成、ブレージングシートの好ましい製造方法の順に説明する。
Hereinafter, the present invention will be described in detail based on embodiments.
The brazing sheet of the present invention comprises a core material made of an aluminum alloy, a sacrificial material made of an aluminum alloy arranged on one surface side of the core material, and a brazing material arranged on the other surface side of the core material. However, both the core material and the sacrificial material are characterized by having a fibrous structure. Therefore, the structure of the core material and the sacrificial material will be described, and then the preferable composition of the present invention and the preferable manufacturing method of the brazing sheet will be described in this order.

<芯材の結晶組織>
本発明に係るブレージングシートの芯材は、マトリックスの結晶組織(以下、単に組織という)が繊維状であることにより、チューブ成形時の曲げ加工性が良好となる。芯材の組織が、再結晶組織の場合、又は再結晶組織と繊維状組織との混合組織の場合には、成形時に芯材内の変形が不均一となり成形性が低下する。
芯材の組織は、芯材を構成するアルミニウム合金(芯材合金)の成分、均質化処理の条件、中間焼鈍の条件等の製造条件によって大きく変わるため、組織を繊維状とする条件を一概に特定することはできないが、特に最終圧延前の中間焼鈍の加熱温度が最も重要である。
<Crystal structure of core material>
The core material of the brazing sheet according to the present invention has a good bending workability at the time of tube forming because the crystal structure of the matrix (hereinafter simply referred to as the structure) is fibrous. When the structure of the core material is a recrystallized structure or a mixed structure of the recrystallized structure and the fibrous structure, deformation in the core material becomes non-uniform during molding and the moldability is lowered.
The structure of the core material varies greatly depending on the manufacturing conditions such as the components of the aluminum alloy (core material alloy) constituting the core material, the conditions for homogenization, and the conditions for intermediate annealing. Although it cannot be specified, the heating temperature of the intermediate annealing before the final rolling is particularly important.

<犠牲材の結晶組織>
上述したように、芯材の組織を繊維状とすることにより、チューブの成形性が良好となる。しかし、ろう付型チューブの場合には、B型形状にするための曲げ加工の条件が厳しいため、芯材の組織を繊維状としただけでは足りない。そこで、本発明では、犠牲材の組織を繊維状とすることにより、チューブ全体としての成形性を向上する。犠牲材の組織が、再結晶組織の場合、又は再結晶組織と繊維組織との混合組織の場合には、犠牲材と芯材との変形能が異なることによって、犠牲材中の金属間化合物の周囲に不均一な変形が生じ、金属間化合物を基点として加工時に割れが生じ、あるいは表面肌が劣化するなどの不具合が生じる。
犠牲材の組織は、犠牲材を構成するアルミニウム合金の成分、鋳造条件、均質化処理条件、中間焼鈍条件等の製造条件によって大きく変わるため、組織を繊維状とする条件を一概に特定することはできないが、特に均質化処理の条件が最も重要であり、均質化処理を行わないか、均質化処理を行なう場合には低温が好ましい。
<Crystal structure of sacrificial material>
As described above, the formability of the tube is improved by making the structure of the core material fibrous. However, in the case of a brazed tube, the bending process conditions for making the B shape are severe, so it is not sufficient to make the core structure fibrous. Therefore, in the present invention, the formability of the entire tube is improved by making the structure of the sacrificial material fibrous. When the structure of the sacrificial material is a recrystallized structure or a mixed structure of the recrystallized structure and the fiber structure, the deformability of the sacrificial material and the core material is different, and thus the intermetallic compound in the sacrificial material Inhomogeneous deformation occurs around the periphery, cracks occur during processing with the intermetallic compound as a base point, or defects such as deterioration of the surface skin occur.
Since the structure of the sacrificial material varies greatly depending on the production conditions such as the components of the aluminum alloy constituting the sacrificial material, casting conditions, homogenization treatment conditions, and intermediate annealing conditions, it is generally possible to specify the conditions for making the structure fibrous. However, the conditions for the homogenization treatment are most important, and a low temperature is preferred when the homogenization treatment is not performed or when the homogenization treatment is performed.

次に、本発明における成分限定理由について説明する。なお、以下の%は質量%を意味する。
<芯材>
Mn:1.0〜2.0%
Mnはマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下してしまう。
好ましいMnの含有量は1.2〜1.8%であり、より好ましいMnの含有量は1.4〜1.6%である。
Next, the reason for component limitation in the present invention will be described. In addition, the following% means the mass%.
<Core>
Mn: 1.0-2.0%
Mn forms an Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compound in the matrix and has the effect of increasing the strength of the material. However, if the content is less than the lower limit, the effect is not sufficiently exerted. If the content exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, so that the formability of the material is lowered.
A preferable Mn content is 1.2 to 1.8%, and a more preferable Mn content is 1.4 to 1.6%.

Si:0.5〜1.0%
Siはマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。さらにマトリックス中に固溶したSiは材料の局部変形に対する抵抗を高め、成形性を向上させる効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると材料の融点が低下してしまう。
好ましいSiの含有量は0.6〜0.9%であり、より好ましいSiの含有量は0.6〜0.8%である。
Si: 0.5 to 1.0%
Si has the effect of forming Al-Mn-Si-based and Al-Mn-Fe-Si-based intermetallic compounds in the matrix and increasing the strength of the material. Further, Si dissolved in the matrix has an effect of increasing resistance to local deformation of the material and improving formability. However, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, the melting point of the material is lowered.
A preferable Si content is 0.6 to 0.9%, and a more preferable Si content is 0.6 to 0.8%.

Cu:0.3〜1.0%
Cuはマトリックス中に固溶し、材料の強度を高める効果や、材料の局部変形に対する抵抗を高め、成形性を向上させる効果、さらに芯材に添加した場合、芯材の電位を貴として犠牲材との電位差を大きくして耐食性を向上させる効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると材料の融点が低下してしまう。
好ましいCuの含有量は0.4〜0.8%であり、より好ましいCuの含有量は0.5〜0.7%である。
Cu: 0.3 to 1.0%
Cu dissolves in the matrix, increases the strength of the material, increases the resistance to local deformation of the material, improves the formability, and when added to the core material, the potential of the core material is noble and sacrificial It has the effect of increasing the potential difference between and the corrosion resistance. However, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, the melting point of the material is lowered.
The preferable Cu content is 0.4 to 0.8%, and the more preferable Cu content is 0.5 to 0.7%.

Fe:0.1〜0.5%
Feはマトリックス中にAl−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時の巨大な金属間化合物を生成し、材料の成形性が低下してしまう。
好ましいFeの含有量は0.1〜0.4%であり、より好ましいFeの含有量は0.2〜0.4%である。
Fe: 0.1 to 0.5%
Fe has the effect of forming Al-Mn-Fe-based and Al-Mn-Fe-Si-based intermetallic compounds in the matrix and increasing the strength of the material. However, if the content is less than the lower limit, the effect is not sufficiently exhibited. If the content exceeds the upper limit, a huge intermetallic compound is produced at the time of casting, and the moldability of the material is lowered.
A preferable Fe content is 0.1 to 0.4%, and a more preferable Fe content is 0.2 to 0.4%.

本発明による芯材は、上記のようにMn、Si、Cu及びFeを含むアルミニウム合金から構成されることが好ましいが、下記のようにMg、さらには、Ti、Cr、Zrの1種又は2種以上をさらに含むことができる。各元素の限定理由は以下の通りである。
Mg:0.05〜0.5%
Mgはマトリックス中にMgSi金属間化合物を微細に形成し、材料の強度を高める効果がある。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えるとろう付性が低下してしまう。
好ましいMgの含有量は0.1〜0.4%であり、より好ましいMgの含有量は0.15〜0.3%である。
The core material according to the present invention is preferably composed of an aluminum alloy containing Mn, Si, Cu and Fe as described above. However, as described below, Mg, and further one or two of Ti, Cr and Zr are used. More species may be included. The reasons for limiting each element are as follows.
Mg: 0.05-0.5%
Mg has the effect of forming a Mg 2 Si intermetallic compound finely in the matrix and increasing the strength of the material. However, if the content is less than the lower limit, the effect is not sufficiently exhibited.
A preferable Mg content is 0.1 to 0.4%, and a more preferable Mg content is 0.15 to 0.3%.

Ti、Cr、Zr:0.05〜0.3%(各々)
Ti、Cr、Zrは、各々AlTi、AlCr、またはAlZrを形成し、材料の強度を向上させる効果がある。その含有量が下限未満ではその効果が少なく、上限を超えると鋳造時に巨大化合物を形成し、成形性が低下してしまう。
好ましいTi、Cr、Zr(各々)の含有量は0.05〜0.25%であり、より好ましいTi、Cr、Zr(各々)の含有量は0.05〜0.2%である。
Ti, Cr, Zr: 0.05 to 0.3% (each)
Ti, Cr, and Zr each form Al 3 Ti, Al 3 Cr, or Al 3 Zr, and have an effect of improving the strength of the material. If the content is less than the lower limit, the effect is small. If the content exceeds the upper limit, a giant compound is formed at the time of casting, and the moldability deteriorates.
The preferable content of Ti, Cr and Zr (respectively) is 0.05 to 0.25%, and the more preferable content of Ti, Cr and Zr (respectively) is 0.05 to 0.2%.

<犠牲材>
Zn:2.5〜6.0%
Znを添加すると犠牲材の電位が卑となり、芯材との電位差が大きくなり、ブレージングシートの耐食性を向上する効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると材料の自己耐食性が低下してしまう。
好ましいZnの含有量は3.0〜5.5%であり、より好ましいZnの含有量は3.5〜5.0%である。
<Sacrificial material>
Zn: 2.5-6.0%
When Zn is added, the potential of the sacrificial material becomes base, the potential difference from the core material increases, and there is an effect of improving the corrosion resistance of the brazing sheet. However, if the content is less than the lower limit, the effect is not sufficiently exhibited. If the content exceeds the upper limit, the self-corrosion resistance of the material is lowered.
The preferable Zn content is 3.0 to 5.5%, and the more preferable Zn content is 3.5 to 5.0%.

Si:0.3〜1.0%
Siを添加すると犠牲材のマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系金属間化合物が微細に形成されて、犠牲材の再結晶を遅延させる。その結果、繊維状の組織が得られやすくなる。また、マトリックス中に固溶したSiは犠牲材の局部変形に対する抵抗を高め、成形性を向上させる効果がある。さらに、Siは犠牲材の強度を高める効果がある。しかし、その含有量が下限未満では以上の効果が十分発揮されず、上限を超えると材料の融点が低下してしまう。
好ましいSiの含有量は0.35〜0.8%であり、より好ましいSiの含有量は0.4〜0.6%である。
Si: 0.3 to 1.0%
When Si is added, Al-Mn-Si-based and Al-Mn-Fe-Si-based intermetallic compounds are finely formed in the matrix of the sacrificial material, and the recrystallization of the sacrificial material is delayed. As a result, a fibrous structure is easily obtained. In addition, Si dissolved in the matrix has an effect of increasing resistance to local deformation of the sacrificial material and improving formability. Furthermore, Si has the effect of increasing the strength of the sacrificial material. However, if the content is less than the lower limit, the above effects are not sufficiently exhibited, and if the content exceeds the upper limit, the melting point of the material is lowered.
A preferable Si content is 0.35 to 0.8%, and a more preferable Si content is 0.4 to 0.6%.

Mn:0.5〜1.5%
Mnを添加すると犠牲材のマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物が微細に形成されて、犠牲材の再結晶を遅延させる。その結果、繊維状の組織が得られやすくなる。また、マトリックス中に固溶したMnは材料の局部変形に対する抵抗を高め、成形性を向上させる効果がある。さらに、Mnは犠牲材の強度を高める効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下してしまう。
好ましいMnの含有量は0.7〜1.4%であり、より好ましいMnの含有量は0.8〜1.3%である。
Mn: 0.5 to 1.5%
When Mn is added, Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compounds are finely formed in the matrix of the sacrificial material, and the recrystallization of the sacrificial material is delayed. . As a result, a fibrous structure is easily obtained. Further, Mn dissolved in the matrix has an effect of increasing resistance to local deformation of the material and improving formability. Furthermore, Mn has the effect of increasing the strength of the sacrificial material. However, if the content is less than the lower limit, the effect is not sufficiently exerted. If the content exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, so that the formability of the material is lowered.
A preferable Mn content is 0.7 to 1.4%, and a more preferable Mn content is 0.8 to 1.3%.

本発明による犠牲材は、上記のようにZn、Si、Mn及びFeを含むアルミニウム合金から構成されることが好ましいが、下記のようにNi及びFeの1種又は2種、さらにTi、Cr及びZrの1種又は2種以上を含むことができる。各元素の限定理由は以下の通りである。
Ni:0.1〜1.0%
Niはマトリックス中にAl−Ni系金属間化合物を形成し、これが腐食環境において孔食の起点となるため、深さ方向への孔食成長を抑制する効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると材料の成形性が低下するとともに自己耐食性が低下してしまう。
好ましいNiの含有量は0.2〜0.8%であり、より好ましいNiの含有量は0.3〜0.7%である。
The sacrificial material according to the present invention is preferably composed of an aluminum alloy containing Zn, Si, Mn and Fe as described above, but one or two of Ni and Fe as described below, and further Ti, Cr and 1 type (s) or 2 or more types of Zr can be included. The reasons for limiting each element are as follows.
Ni: 0.1 to 1.0%
Ni forms an Al—Ni-based intermetallic compound in the matrix, which serves as a starting point for pitting corrosion in a corrosive environment, and therefore has an effect of suppressing pitting growth in the depth direction. However, if the content is less than the lower limit, the effect is not sufficiently exhibited. If the content exceeds the upper limit, the moldability of the material is lowered and the self-corrosion resistance is lowered.
A preferable Ni content is 0.2 to 0.8%, and a more preferable Ni content is 0.3 to 0.7%.

Fe:0.3〜1.0%
Feはマトリックス中にAl−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果や、同化合物が腐食の起点となるため、犠牲材に添加された場合には深さ方向への孔食成長を抑制し、耐食性を向上させる効果がある。しかし、その含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時の巨大な金属間化合物を生成し、材料の成形性が低下してしまう。
好ましいFeの含有量は0.35〜0.8%であり、より好ましいFeの含有量は0.4〜0.7%である。
Fe: 0.3 to 1.0%
Fe forms an Al-Mn-Fe-based and Al-Mn-Fe-Si-based intermetallic compound in the matrix to increase the strength of the material, and the compound serves as a starting point for corrosion. When added, it has the effect of suppressing pitting growth in the depth direction and improving corrosion resistance. However, if the content is less than the lower limit, the effect is not sufficiently exhibited. If the content exceeds the upper limit, a huge intermetallic compound is produced at the time of casting, and the moldability of the material is lowered.
A preferable Fe content is 0.35 to 0.8%, and a more preferable Fe content is 0.4 to 0.7%.

Ti、Cr、Zr:0.05〜0.3%(各々)
Ti、Cr、ZrはAlTi、AlCr、またはAlZrを形成し、材料の強度を向上させる効果がある。その含有量が下限未満ではその効果が少なく、上限を超えると鋳造時に巨大化合物を形成し、成形性が低下してしまう。
好ましいTi、Cr、Zr(各々)の含有量は0.05〜0.25%であり、より好ましいTi、Cr、Zr(各々)の含有量は0.05〜0.2%である。
Ti, Cr, Zr: 0.05 to 0.3% (each)
Ti, Cr, and Zr form Al 3 Ti, Al 3 Cr, or Al 3 Zr, and have an effect of improving the strength of the material. If the content is less than the lower limit, the effect is small. If the content exceeds the upper limit, a giant compound is formed at the time of casting, and the moldability deteriorates.
The preferable content of Ti, Cr and Zr (respectively) is 0.05 to 0.25%, and the more preferable content of Ti, Cr and Zr (respectively) is 0.05 to 0.2%.

<ろう材>
本発明のブレージングシートに使用するろう材は、Al−Si系(JIS 4045合金,4343合金)又はAl−Si−Zn系のアルミニウム合金からなるろう材であればよく、特に限定されるものではない。
ろう材中に含まれるSiは融点を下げると共に流動性を付与する成分であり、その含有量が5%未満では所望の効果が不十分であり、一方、15%を越えて含有するとかえって流動性が低下するので好ましくない。したがって、ろう材中の好ましいSiの含有量は5〜15%が好ましい。ろう材中のSi含有量のより好ましい範囲は7〜12%である。
また、Al−Si−Zn系のろう材は前記Al−Si系ろう材にZnを1.0〜5.0%含有させたものが好ましい。
また、さらにMg、Cu、Li等を含有するAl−Si系合金、Al−Si−Zn系合金を本発明のろう材として用いることもできる。
<Brazing material>
The brazing material used in the brazing sheet of the present invention is not particularly limited as long as it is a brazing material made of an Al—Si based (JIS 4045 alloy, 4343 alloy) or Al—Si—Zn based aluminum alloy. .
Si contained in the brazing filler metal is a component that lowers the melting point and imparts fluidity. If its content is less than 5%, the desired effect is insufficient. On the other hand, if it contains more than 15%, it is rather fluid. Is unfavorable because it decreases. Therefore, the preferable Si content in the brazing material is preferably 5 to 15%. A more preferable range of the Si content in the brazing material is 7 to 12%.
Further, the Al—Si—Zn brazing material is preferably one in which the Al—Si brazing material contains 1.0 to 5.0% of Zn.
Further, an Al—Si based alloy or Al—Si—Zn based alloy containing Mg, Cu, Li or the like can also be used as the brazing material of the present invention.

<製造工程>
図1を参照しながら本発明の自動車熱交換器用ブレージングシートの製造方法概略を説明する。
芯材、犠牲材及びろう材を構成するアルミニウム合金を例えば半連続鋳造法により鋳塊を製造する。
得られた芯材鋳塊及びろう材鋳塊は均質化処理が施される。芯材鋳塊の均質化処理は、380〜580℃で1〜12時間の範囲で適宜選択され、ろう材鋳塊の均質化処理は、400〜550℃で2〜10時間の範囲で適宜選択されるのが好ましい。一方、犠牲材鋳塊は、均質化処理を行わないのが好ましく、行う場合には350〜450℃、さらには370〜430℃で1〜15時間の条件で行なうことが好ましい。そうすることにより犠牲材の組織を繊維状とすることができる。
その後、所定厚さとされた芯材鋳塊、犠牲材鋳塊及びろう材鋳塊は、芯材鋳塊の一方の面側に犠牲材鋳塊を、さらに他方の面側にろう材鋳塊を組み合わせて熱間圧延し、クラッド材(ブレージングシート前駆体)とする。
<Manufacturing process>
An outline of a method for producing a brazing sheet for an automobile heat exchanger according to the present invention will be described with reference to FIG.
An ingot is produced by, for example, a semi-continuous casting method of an aluminum alloy constituting the core material, the sacrificial material, and the brazing material.
The obtained core material ingot and brazing material ingot are homogenized. The homogenization treatment of the core material ingot is appropriately selected at 380 to 580 ° C. for 1 to 12 hours, and the homogenization treatment of the brazing material ingot is appropriately selected at 400 to 550 ° C. for 2 to 10 hours. Preferably it is done. On the other hand, it is preferable that the ingot of the sacrificial material is not subjected to a homogenization treatment. By doing so, the structure of the sacrificial material can be made fibrous.
Thereafter, the core material ingot, sacrificial material ingot and brazing material ingot having a predetermined thickness are provided with a sacrificial material ingot on one side of the core material ingot and a brazing material ingot on the other surface side. Combined and hot-rolled to obtain a clad material (brazing sheet precursor).

ついで、冷間圧延を行なうが、その途中で圧延続行のための中間焼鈍(第1中間焼鈍)を行い、さらに所定の厚さまで冷間圧延を行った後に、中間焼鈍(第2中間焼鈍)を行い、冷間における最終の圧延により0.15〜0.25mmの厚さを有するブレージングシートを得る。
第1中間焼鈍は250〜400℃で1〜10時間保持する条件で、第2中間焼鈍は150〜230℃で1〜10時間保持する条件で行えばよい。
このようにして得られた本発明のブレージングシートは、例えば特許文献1に開示された方法で、犠牲材が内周側に配置されるようにチューブ材をB型形状に折り曲げて、突き合される両縁をろう付により接合されたチューブに形成される。
本発明のアルミニウム合金ブレージングシートをチューブ等とし、自動車用のラジエータやヒーターコアなどのアルミニウム合金製熱交換器の組み立てに使用する場合には、アルミニウム合金のフィン材を組み合わせ、ろう付炉中においてフラックスを用いる不活性雰囲気ろう付けあるいは真空ろう付を行う。
Next, cold rolling is performed, and intermediate annealing (first intermediate annealing) is performed in the middle of the rolling, followed by cold rolling to a predetermined thickness, followed by intermediate annealing (second intermediate annealing). And a brazing sheet having a thickness of 0.15 to 0.25 mm is obtained by final rolling in cold.
The first intermediate annealing may be performed under the condition of holding at 250 to 400 ° C. for 1 to 10 hours, and the second intermediate annealing may be performed under the condition of holding at 150 to 230 ° C. for 1 to 10 hours.
The brazing sheet of the present invention thus obtained is abutted by folding the tube material into a B shape so that the sacrificial material is arranged on the inner peripheral side by the method disclosed in Patent Document 1, for example. Both edges are formed into a tube joined by brazing.
When the aluminum alloy brazing sheet of the present invention is a tube or the like and used for assembling a heat exchanger made of aluminum alloy such as a radiator or heater core for automobiles, a fin material of aluminum alloy is combined and a flux in a brazing furnace. Perform inert atmosphere brazing or vacuum brazing.

表1に示す成分組成のアルミニウム合金を溶解、鋳造して鋳塊を製造し、この鋳塊を通常の条件で熱間圧延を行い、厚さ:150mmの芯材No.1〜30を作製し、450℃で8時間保持する均質化処理を行なった。   An aluminum alloy having the composition shown in Table 1 is melted and cast to produce an ingot, and the ingot is hot-rolled under normal conditions. 1-30 were produced and the homogenization process hold | maintained at 450 degreeC for 8 hours was performed.

Figure 0005336812
Figure 0005336812

次に、表2に示す成分組成のアルミニウム合金を溶解、鋳造して鋳塊を製造し、この鋳塊を通常の条件で熱間圧延を行い、厚さ:30mmの熱延板からなる犠牲材No.1〜30を作製した。なお、得られた犠牲材について、均質化処理は行なわなかった。   Next, an aluminum alloy having the composition shown in Table 2 is melted and cast to produce an ingot. The ingot is hot-rolled under normal conditions, and a sacrificial material made of a hot rolled sheet having a thickness of 30 mm. No. 1-30 were produced. The obtained sacrificial material was not homogenized.

Figure 0005336812
Figure 0005336812

さらに、表3に示す成分組成のろう材用アルミニウム合金を溶解、鋳造して鋳塊を製造し、この鋳塊を通常の条件で熱間圧延を行い、厚さ:20mmの熱延板からなるろう材No.1,2を作製し、500℃で6時間保持する均質化処理を行なった。   Further, an aluminum alloy for brazing filler metal having the composition shown in Table 3 is melted and cast to produce an ingot, and this ingot is hot-rolled under normal conditions, and consists of a hot-rolled sheet having a thickness of 20 mm. Brazing material No. 1 and 2 were prepared and homogenized by holding at 500 ° C. for 6 hours.

Figure 0005336812
Figure 0005336812

これら表1の芯材No.1〜No.30、表2の犠牲材No.1〜30及び表3のろう材No.1,2を、表4〜表6に示されるブレージングシートの構成にしたがって重ね合わせ、熱間圧延にてクラッドし、引き続いて冷間圧延、第1中間焼鈍(350℃×3時間)、冷間圧延、第2中間焼鈍(220℃×5時間)を行ったのち、冷間圧延を行うことによりいずれも板厚:0.20mm、犠牲材及びろう材のクラッド率がそれぞれ15%、10%で調質H14のブレージングシートを作製した。ただし、表4のブレージングシートNo.1〜3は、上記製造工程と下記の点が相違する。
No.1:犠牲材均質化処理;500℃×6時間、第2中間焼鈍;350℃×3時間
No.2:犠牲材均質化処理;500℃×6時間、第2中間焼鈍;220℃×5時間
No.3:犠牲材均質化処理;なし、 第2中間焼鈍;300℃×5時間
These core material Nos. 1-No. 30, sacrificial material No. 1 to 30 and Table 3 brazing material No. 1 and 2 are superposed according to the structure of the brazing sheet shown in Tables 4 to 6, clad by hot rolling, followed by cold rolling, first intermediate annealing (350 ° C. × 3 hours), cold After rolling and second intermediate annealing (220 ° C. × 5 hours), by cold rolling, the plate thickness is 0.20 mm, and the clad rate of the sacrificial material and brazing material is 15% and 10%, respectively. A tempered H14 brazing sheet was prepared. However, the brazing sheet no. 1-3 differ from the above manufacturing process in the following points.
No. 1: Sacrificial material homogenization treatment: 500 ° C. × 6 hours, second intermediate annealing; 350 ° C. × 3 hours 2: Sacrificial material homogenization treatment; 500 ° C. × 6 hours, second intermediate annealing; 220 ° C. × 5 hours 3: Sacrificial material homogenization treatment; none, second intermediate annealing; 300 ° C. × 5 hours

<組織観察>
得られたブレージングシートについて、板厚方向と垂直な断面を研磨してミクロ組織を顕微鏡で観察することにより芯材、犠牲材の組織を調査(倍率:100,視野数:20)した。
その結果を表4〜表6に示す。なお、表4〜表6の「芯材組織」、「犠牲材組織」の欄において、「R」は再結晶組織を、また、「F」は繊維状の組織を示している。
<Tissue observation>
About the obtained brazing sheet, the cross section perpendicular to the plate thickness direction was polished, and the microstructure was observed with a microscope to examine the structure of the core material and the sacrificial material (magnification: 100, number of fields of view: 20).
The results are shown in Tables 4-6. In the columns of “core material structure” and “sacrificial material structure” in Tables 4 to 6, “R” indicates a recrystallized structure and “F” indicates a fibrous structure.

<成形性評価>
得られたブレージングシートを用いて成形性の評価を行った。評価は、犠牲材を内側にしてB型形状に造管した後、目視により芯材、犠牲材に割れが生じたかを観察した。その測定結果を表4〜6に示す。なお、表4〜表6において、×は芯材及び犠牲材の両者に割れが発生し、△は芯材又は犠牲材にしわが発生し、○は芯材及び犠牲材の両者に割れが発生しなかったことを意味する。
<Formability evaluation>
The moldability was evaluated using the obtained brazing sheet. In the evaluation, after the pipe was formed into a B shape with the sacrificial material inside, it was observed by visual observation whether a crack occurred in the core material and the sacrificial material. The measurement results are shown in Tables 4-6. In Tables 4 to 6, × indicates that cracks occur in both the core material and the sacrificial material, Δ indicates that wrinkles occur in the core material or the sacrificial material, and ○ indicates that cracks occur in both the core material and the sacrificial material. It means no.

<耐食性評価>
また、これらブレージングシートを用いてそれぞれの試験片を作製し、これら試験片を窒素ガス雰囲気中で600℃に5分間保持した後、冷却速度:100℃/min.で室温まで冷却するろう付け相当の熱処理を行い、その後、下記の条件の腐食試験1〜2を行った。なお、腐食試験1は酸性環境下での耐食性を評価するものであり、腐食試験2はアルカリ環境下での耐食性を評価するものである。
<Corrosion resistance evaluation>
Moreover, after preparing each test piece using these brazing sheets and hold | maintaining these test pieces at 600 degreeC in nitrogen gas atmosphere for 5 minutes, cooling rate: 100 degree-C / min. Then, a heat treatment equivalent to brazing for cooling to room temperature was performed, and then corrosion tests 1 and 2 under the following conditions were performed. The corrosion test 1 is for evaluating the corrosion resistance under an acidic environment, and the corrosion test 2 is for evaluating the corrosion resistance under an alkaline environment.

腐食試験1:
試験片のろう材側を接着剤にて被覆して得られた試験材を用意し、さらにCl:195ppm,SO 2−:60ppm,Fe3+:30ppm,Cu2+:1ppmを含む水溶液(pH:3.0)を腐食液として用意し、この腐食液を自動車用熱交換器の冷却水と想定して、試験材を温度:80℃の腐食液に8時間浸漬保持した後、室温で16時間浸漬保持すると云う温度サイクルを加える操作を14日間行い、14日間経過後の犠牲陽極皮材層の表面からの最大孔食深さを測定した。その測定結果を表4〜6に示す。
Corrosion test 1:
A test material obtained by coating the brazing filler metal side of the test piece with an adhesive was prepared, and further an aqueous solution (pH) containing Cl : 195 ppm, SO 4 2− : 60 ppm, Fe 3+ : 30 ppm, Cu 2+ : 1 ppm. : 3.0) is prepared as a corrosive liquid, and this corrosive liquid is assumed to be a cooling water for an automotive heat exchanger, and the test material is immersed and held in a corrosive liquid at a temperature of 80 ° C. for 8 hours, and then at room temperature. An operation of applying a temperature cycle of holding for a period of time was performed for 14 days, and the maximum pitting depth from the surface of the sacrificial anode skin layer after 14 days was measured. The measurement results are shown in Tables 4-6.

腐食試験2:
試験片のろう材側を接着剤にて被覆して得られた試験材を用意し、Cl-:195ppm,SO 2−:60ppm,Fe3+:30ppm,Cu2+:60ppmを含む水溶液をNaOHでpH11に調整した水溶液を腐食液として用意し、前記腐食液を自動車用熱交換器の冷却水を想定して、試験材を温度:80℃の腐食液の中に8時間浸漬保持した後、室温の静止腐食液の中に16時間に浸漬保持すると云う温度サイクルを加える操作を14日間行い、14日間経過後の犠牲陽極皮材層の表面からの最大腐食深さを測定した。その測定結果を表4〜6に示す。
Corrosion test 2:
A test material obtained by coating the brazing material side of the test piece with an adhesive was prepared, and an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Fe 3+ : 30 ppm, Cu 2+ : 60 ppm with NaOH. An aqueous solution adjusted to pH 11 is prepared as a corrosive liquid, and the test liquid is immersed in a corrosive liquid having a temperature of 80 ° C. for 8 hours, assuming the cooling water of an automotive heat exchanger, and then room temperature is set. The operation of applying a temperature cycle of holding for 16 hours in a static corrosion solution was performed for 14 days, and the maximum corrosion depth from the surface of the sacrificial anode skin layer after 14 days was measured. The measurement results are shown in Tables 4-6.

<強度評価>
得られたブレージングシートを用いて機械的強度の評価を行った。評価は、前記ろう付相当熱処理を行った後、圧延方向と平行にJIS13号B試験片を切り出し、引張試験により行なった。その測定結果を表4〜6に示す。
<Strength evaluation>
Mechanical strength was evaluated using the obtained brazing sheet. Evaluation was performed by performing a tensile test after cutting the JIS No. 13 B test piece parallel to the rolling direction after performing the brazing equivalent heat treatment. The measurement results are shown in Tables 4-6.

Figure 0005336812
Figure 0005336812

Figure 0005336812
Figure 0005336812

Figure 0005336812
Figure 0005336812

本発明のブレージングシートの製造工程を示す図である。It is a figure which shows the manufacturing process of the brazing sheet of this invention.

Claims (5)

組織が繊維状であるアルミニウム合金からなる芯材と、
前記芯材の一方の面側に配置され、組織が繊維状のアルミニウム合金からなる犠牲材と、
前記芯材の他方の面側に配置され、Al−Si系合金又はAl−Si−Zn系合金からなるろう材と、からなり
前記芯材が、質量%で、
Mn:1.0〜2.0%、
Si:0.5〜1.0%、
Cu:0.3〜1.0%、
Fe:0.1〜0.5%、
残部がAl及び不可避不純物からなり、
前記犠牲材が、質量%で、
Zn:2.5〜6.0%、
Si:0.3〜1.0%、
Mn:0.5〜1.5%、
残部がAl及び不可避不純物からなり、ろう付造管されることを特徴とするろう付造管用自動車熱交換器用ブレージングシート。
A core material made of an aluminum alloy having a fibrous structure;
A sacrificial material disposed on one surface side of the core material, the structure of which is a fibrous aluminum alloy; and
The brazing material is arranged on the other surface side of the core material and made of an Al-Si alloy or an Al-Si-Zn alloy ,
The core material is mass%,
Mn: 1.0-2.0%,
Si: 0.5 to 1.0%
Cu: 0.3 to 1.0%,
Fe: 0.1 to 0.5%,
The balance consists of Al and inevitable impurities,
The sacrificial material is mass%,
Zn: 2.5-6.0%,
Si: 0.3 to 1.0%,
Mn: 0.5 to 1.5%
A brazing sheet for an automotive heat exchanger for brazed pipes , wherein the balance is made of Al and inevitable impurities and is brazed.
前記芯材がさらに、質量%で、
Mg:0.05〜0.5%を含有する請求項に記載のろう付造管用自動車熱交換器用ブレージングシート。
The core material is further mass%,
The brazing sheet for automotive heat exchangers for brazed pipes according to claim 1 , containing Mg: 0.05 to 0.5%.
前記芯材がさらに、質量%で、
Ti:0.05〜0.3%、
Cr:0.05〜0.3%、及び
Zr:0.05〜0.3%の内の1種又は2種以上を含有する請求項又はに記載のろう付造管用自動車熱交換器用ブレージングシート。
The core material is further mass%,
Ti: 0.05 to 0.3%,
The automotive heat exchanger for brazed pipes according to claim 1 or 2 , comprising one or more of Cr: 0.05 to 0.3% and Zr: 0.05 to 0.3%. Brazing sheet.
前記犠牲材がさらに、質量%で、
Ni:0.1〜1.0%、及び
Fe:0.3〜1.0%の内の1種又は2種を含有する請求項〜請求項のいずれかに記載のろう付造管用自動車熱交換器用ブレージングシート。
The sacrificial material is further mass%,
Ni: 0.1 to 1.0%, and Fe: containing one or two of from 0.3 to 1.0% claim 1 for brazing of pipe according to any one of claims 3 Brazing sheet for automobile heat exchanger.
前記犠牲材がさらに、質量%で、
Ti:0.05〜0.3%、
Cr:0.05〜0.3%、及び
Zr:0.05〜0.3%の内の1種又は2種以上を含有する請求項のいずれかに記載のろう付造管用自動車熱交換器用ブレージングシート。
The sacrificial material is further mass%,
Ti: 0.05 to 0.3%,
The automobile for brazed pipe according to any one of claims 1 to 4 , comprising one or more of Cr: 0.05 to 0.3% and Zr: 0.05 to 0.3%. Brazing sheet for heat exchanger.
JP2008267310A 2008-10-16 2008-10-16 Brazing sheet for automotive heat exchanger for brazed pipe Active JP5336812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267310A JP5336812B2 (en) 2008-10-16 2008-10-16 Brazing sheet for automotive heat exchanger for brazed pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267310A JP5336812B2 (en) 2008-10-16 2008-10-16 Brazing sheet for automotive heat exchanger for brazed pipe

Publications (2)

Publication Number Publication Date
JP2010095758A JP2010095758A (en) 2010-04-30
JP5336812B2 true JP5336812B2 (en) 2013-11-06

Family

ID=42257643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267310A Active JP5336812B2 (en) 2008-10-16 2008-10-16 Brazing sheet for automotive heat exchanger for brazed pipe

Country Status (1)

Country Link
JP (1) JP5336812B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737798B2 (en) * 2010-07-08 2015-06-17 三菱アルミニウム株式会社 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
JP5878365B2 (en) * 2011-12-27 2016-03-08 三菱アルミニウム株式会社 Aluminum alloy brazing sheet
JP6166856B2 (en) * 2012-09-13 2017-07-19 株式会社Uacj Aluminum clad tube and manufacturing method thereof
JP6351924B2 (en) * 2012-09-13 2018-07-04 株式会社Uacj Aluminum clad plate for heat exchanger and method for producing the same, aluminum heat exchanger using the clad plate and method for producing the same
JP5985973B2 (en) * 2012-12-07 2016-09-06 株式会社Uacj Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet
JP6407253B2 (en) * 2014-03-19 2018-10-17 株式会社Uacj Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
JP6399439B2 (en) * 2014-06-16 2018-10-03 三菱アルミニウム株式会社 Heat exchanger
JP6498911B2 (en) * 2014-11-10 2019-04-10 三菱アルミニウム株式会社 Aluminum alloy brazing sheet with high strength, high corrosion resistance and high material elongation
CN107429333B (en) * 2015-03-12 2019-12-27 三菱铝株式会社 Brazing sheet having excellent corrosion resistance after brazing
JP6624417B2 (en) * 2015-03-12 2019-12-25 三菱アルミニウム株式会社 Brazing sheet with excellent corrosion resistance after brazing
JP7053140B2 (en) * 2016-11-08 2022-04-12 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchanger and its manufacturing method and manufacturing method of aluminum alloy tube for heat exchanger
JP6345296B2 (en) * 2017-03-31 2018-06-20 株式会社Uacj Aluminum clad tube and manufacturing method thereof
JP6803827B2 (en) * 2017-12-20 2020-12-23 三菱アルミニウム株式会社 Aluminum alloy material for heat exchanger and heat exchanger
CN111778461A (en) * 2019-04-04 2020-10-16 西南铝业(集团)有限责任公司 Production process of 7075 ultrahigh-strength extruded bar
WO2024048723A1 (en) * 2022-08-31 2024-03-07 Maアルミニウム株式会社 Aluminum alloy brazing sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305307A (en) * 1992-05-01 1993-11-19 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JP4424568B2 (en) * 1999-12-15 2010-03-03 住友軽金属工業株式会社 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP4424569B2 (en) * 1999-12-15 2010-03-03 住友軽金属工業株式会社 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP4166613B2 (en) * 2002-06-24 2008-10-15 株式会社デンソー Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP3910506B2 (en) * 2002-08-13 2007-04-25 住友軽金属工業株式会社 Aluminum alloy clad material and manufacturing method thereof
JP4352457B2 (en) * 2003-12-22 2009-10-28 三菱アルミニウム株式会社 Method for producing brazing sheet excellent in strength and wax erosion resistance

Also Published As

Publication number Publication date
JP2010095758A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5336812B2 (en) Brazing sheet for automotive heat exchanger for brazed pipe
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
US9138833B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP5230231B2 (en) Aluminum alloy brazing sheet, heat exchanger and method for producing the same
JP2006291311A (en) Brazing sheet made of aluminum alloy, and tube made of aluminum alloy for heat exchanger
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
JP2015529747A (en) Strip with excellent corrosion resistance after brazing
JP5750077B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2013213235A (en) Aluminum alloy brazing sheet for heat exchanger
JP2010255014A (en) Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
EP1580286A2 (en) High strength long-life aluminium tube material with high sagging resistance
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
US7691489B2 (en) High strength long-life aluminium tube material with high sagging resistance
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP5498229B2 (en) Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP2018095925A (en) Aluminum alloy brazing sheet and production method thereof
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP3968024B2 (en) Aluminum alloy clad material for heat exchanger
JP5416439B2 (en) Aluminum alloy brazed body, heat treatment method thereof, and heat exchanger
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP2001026850A (en) Production of tube material for heat exchanger excellent in tube formability
JP2017057497A (en) Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5336812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250