JP2017057497A - Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material - Google Patents

Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material Download PDF

Info

Publication number
JP2017057497A
JP2017057497A JP2016171327A JP2016171327A JP2017057497A JP 2017057497 A JP2017057497 A JP 2017057497A JP 2016171327 A JP2016171327 A JP 2016171327A JP 2016171327 A JP2016171327 A JP 2016171327A JP 2017057497 A JP2017057497 A JP 2017057497A
Authority
JP
Japan
Prior art keywords
temperature
brazing
aluminum alloy
fin material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016171327A
Other languages
Japanese (ja)
Inventor
安藤誠
Makoto Ando
福元敦志
Atsushi Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to US15/760,857 priority Critical patent/US20200239989A1/en
Priority to PCT/JP2016/076579 priority patent/WO2017047514A1/en
Priority to CN201680044902.2A priority patent/CN107849649A/en
Priority to EP16846385.9A priority patent/EP3351648A4/en
Publication of JP2017057497A publication Critical patent/JP2017057497A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material for a heat exchanger, excellent in fin melting resistance upon being brazed and exhibiting excellent high temperature durability after being brazed, and a heat exchanger using same.SOLUTION: The aluminum alloy fin material for a heat exchanger is provided which is characterized in that: it contains Si:0.70 to 1.50 mass%, Fe:0.05 to 2.00 mass%, Mn:1.0 to 2.0 mass%, Zn:0.5 to 4.0 mass% and the balance Al with inevitable impurities; and in heating before brazing, the quantity of solid solution Si is 0.60 mass% or less and the quantity of solid solution Mn is 0.60 mass or less and recrystallization temperature in a temperature rising process during brazing is 450°C or less. There are also provided a method for manufacturing the aluminum alloy fin material, a heat exchanger using the aluminum alloy fin material and a method for manufacturing the heat exchanger.SELECTED DRAWING: None

Description

本発明は、熱交換器用アルミニウム合金フィン材、詳細には、ラジエータ、ヒータコア、オイルクーラ、インタークーラ、カーエアコンのコンデンサ、エバポレータ等のように、フィンと作動流体通路の構成材料とをろう付けにより接合する熱交換器用アルミニウム合金フィン材、特にろう付時の耐フィン溶融性とろう付後の高温耐久性に優れた熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、当該アルミニウム合金フィン材を組付けた熱交換器に関する。   The present invention relates to an aluminum alloy fin material for a heat exchanger, in particular, a radiator, a heater core, an oil cooler, an intercooler, a car air conditioner condenser, an evaporator, and the like by brazing the fin and the constituent material of the working fluid passage. Aluminum alloy fin material for heat exchanger to be joined, especially aluminum alloy fin material for heat exchanger excellent in fin melting resistance during brazing and high temperature durability after brazing, its production method, and aluminum alloy fin material The present invention relates to an assembled heat exchanger.

アルミニウム合金は軽量かつ高熱伝導性を備えており、適切な処理により高耐食性が実現できるため、自動車用などの熱交換器、例えば、ラジエータ、コンデンサ、エバポレータ、ヒータ、インタークーラ、オイルクーラなどに用いられている。自動車用熱交換器のチューブ材としては、3003合金などのAl−Mn系合金を芯材として、その一方の面に、Al−Si系合金のろう材や、Al−Zn系合金の犠牲陽極材をクラッドした2層チューブ材、更に他方の面にAl−Si系合金のろう材をクラッドした3層チューブ材などが使用されている。熱交換器は、通常、このようなチューブ材とコルゲート成形したアルミニウム合金フィン材を組み合わせ、600℃程度の高温でろう付することによって接合される。   Aluminum alloy is lightweight and has high thermal conductivity, and high corrosion resistance can be realized by appropriate treatment, so it is used for heat exchangers for automobiles, such as radiators, condensers, evaporators, heaters, intercoolers, oil coolers, etc. It has been. As a tube material for an automobile heat exchanger, an Al—Mn alloy such as a 3003 alloy is used as a core material, and an Al—Si alloy brazing material or an Al—Zn alloy sacrificial anode material is provided on one surface thereof. A two-layer tube material clad with an Al—Si alloy brazing material on the other surface is used. The heat exchanger is usually joined by combining such a tube material and a corrugated aluminum alloy fin material and brazing at a high temperature of about 600 ° C.

このような熱交換器において、アルミニウム合金フィン材としては、熱伝導性に優れるJIS1050合金等の純アルミニウム系合金や、強度及び耐座屈性に優れるJIS3003合金等のAl−Mn系合金が一般的に用いられてきた。   In such a heat exchanger, as the aluminum alloy fin material, pure aluminum alloys such as JIS1050 alloy having excellent thermal conductivity, and Al-Mn alloys such as JIS3003 alloy having excellent strength and buckling resistance are generally used. Has been used.

ところで、近年になって、熱交換器に対して軽量化、小型化及び高性能化の要求が高まってきている。これに伴い、ろう付接合されるアルミニウム合金フィン材についても、薄肉で、かつ、ろう付性が良好であり、しかもろう付加熱後の強度、熱伝導性及び耐食性等の特性が優れていることが特に要望されている。しかしながら、薄肉化が進むにつれ、下記のような問題の解決が特に困難となってきた。   By the way, in recent years, demands for weight reduction, miniaturization, and high performance have been increasing for heat exchangers. Along with this, the aluminum alloy fin material to be joined by brazing is also thin and has good brazing properties, and excellent properties such as strength, thermal conductivity and corrosion resistance after brazing addition heat. Is particularly desired. However, as the thinning progresses, it has become particularly difficult to solve the following problems.

一つは、ろう付時においてAl−Si系ろう材から生じたろうによってフィンが侵食され、結晶粒界においてフィンが溶融してしまうという問題である。結晶粒界にはZnやSiが偏析するため、マトリクスに比べてZnやSiの濃度が高く、融点が低い状態にある。しかも、ろう付時において、溶融したろうからフィンへSiが拡散するが、このとき結晶粒界におけるSiの拡散速度はマトリクスにおけるSiの拡散速度に比べ大幅に大きいため、特に粒界へ多量のSiが拡散する。Siはフィンの板厚全体にわたって拡散するため、フィンの板厚が厚ければその影響は大きくないが、板厚が薄い場合には、フィン材の粒界におけるSi固溶量が大きく増大して、粒界の融点が低下し、フィンの溶融が生じてしまう。そのため、ろう付前のフィン材におけるSi固溶量を予め低下させておくことが必要となる。   One problem is that the fins are eroded by the brazing produced from the Al—Si brazing material during brazing, and the fins melt at the grain boundaries. Since Zn and Si are segregated at the grain boundaries, the concentration of Zn and Si is higher and the melting point is lower than that of the matrix. In addition, during brazing, Si diffuses from the molten braze into the fins. At this time, the diffusion rate of Si at the crystal grain boundary is significantly larger than the diffusion rate of Si in the matrix, and therefore, a large amount of Si is particularly introduced into the grain boundary. Diffuses. Since Si diffuses throughout the fin plate thickness, the effect is not significant if the fin plate thickness is thick, but if the plate thickness is thin, the amount of Si solid solution at the grain boundary of the fin material greatly increases. The melting point of the grain boundary is lowered and the fin is melted. Therefore, it is necessary to reduce the amount of Si solid solution in the fin material before brazing in advance.

フィン材の固溶Si量を抑制する技術は、特許文献1に記載されている。この技術においては、ろう付加熱後のフィン厚さ中央部におけるSi固溶量を0.7%以下にすることにより、フィンの粒界腐食を抑制できるとしている。しかしながら、この技術は、粒界におけるフィンの溶融という問題点を解決するためのものとはされていない。従って、ろう付前の固溶Si量や、況してや結晶粒界への偏析が耐フィン溶融性に影響するという問題点については一切認識されておらず、その解決法を何ら示唆するものではない。   A technique for suppressing the amount of dissolved Si in the fin material is described in Patent Document 1. In this technique, it is said that the intergranular corrosion of fins can be suppressed by setting the Si solid solution amount at the fin thickness center after brazing heat to 0.7% or less. However, this technique is not intended to solve the problem of fin melting at grain boundaries. Therefore, the amount of solid solution Si before brazing and the problem that segregation to the grain boundary influences the fin melting resistance is not recognized at all, and does not suggest any solution. .

もう一つは、高温における耐久性に劣るという問題である。例えばラジエータのフィンとして用いられる場合、チューブ内部を流れる冷却水は85〜120℃程度の高温となり、しかも内圧によってチューブに繰り返しの膨れが生じ、フィンには繰り返しの高温疲労損傷が与えられる。従って、フィンの板厚が薄いと、高温疲労損傷により破断を生じてしまう。   The other is the problem of poor durability at high temperatures. For example, when used as a fin of a radiator, the cooling water flowing inside the tube becomes a high temperature of about 85 to 120 ° C., and the tube is repeatedly swollen by the internal pressure, and the high temperature fatigue damage is given to the fin. Therefore, if the fin plate is thin, it will break due to high temperature fatigue damage.

フィンの耐久性を向上させる技術としては、特許文献2に記載されている。この技術においては、Al−(Mn、Fe)−Si系化合物を適切な数密度に制御することにより、ろう付加熱後におけるフィン材の強度を向上させ、その結果、熱交換器としての強度、すなわち耐久性を向上させるとしている。しかしながら、この技術においては、熱交換器が高温になるということについては一切触れられておらず、従って高温疲労損傷によるフィン破断という問題点に対し、その解決法を何ら示唆するものではない。   A technique for improving the durability of the fin is described in Patent Document 2. In this technique, the strength of the fin material after brazing addition heat is improved by controlling the Al— (Mn, Fe) —Si-based compound to an appropriate number density. As a result, the strength as a heat exchanger, That is, durability is improved. However, in this technique, no mention is made of the fact that the heat exchanger becomes high temperature, and therefore no solution is suggested for the problem of fin breakage due to high temperature fatigue damage.

特開2004−084060号公報JP 2004-084060 A 特開2012−126950号公報JP 2012-126950 A

このように、薄肉のアルミニウム合金フィン材を熱交換器に用いる際に、ろう付時において粒界におけるフィンの溶融を抑制し、しかもろう付後には高温耐久性に優れるアルミニウム合金フィン材を提供することは、従来の技術では困難であった。   Thus, when a thin aluminum alloy fin material is used in a heat exchanger, an aluminum alloy fin material that suppresses melting of fins at grain boundaries during brazing and is excellent in high-temperature durability after brazing is provided. This has been difficult with the prior art.

本発明は、上述の問題点を解消するべく完成したものであって、ろう付時の耐フィン溶融性に優れ、ろう付後には優れた高温耐久性を有する熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、これを用いた自動車用などの熱交換器の提供を目的とする。   The present invention has been completed to solve the above-described problems, and has excellent fin melting resistance during brazing, and has excellent high temperature durability after brazing, and an aluminum alloy fin material for heat exchangers and its It is an object of the present invention to provide a manufacturing method and a heat exchanger for automobiles using the same.

本発明は請求項1において、Si:0.70〜1.50mass%、Fe:0.05〜2.00mass%、Mn:1.0〜2.0mass%、Zn:0.5〜4.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において固溶Si量が0.60mass%以下及び固溶Mn量が0.60mass%以下であり、ろう付加熱時の昇温過程における再結晶温度が450℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材とした。   In the first aspect of the present invention, Si: 0.70 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 1.0 to 2.0 mass%, Zn: 0.5 to 4.0 mass %, The balance Al and inevitable impurities are made of an aluminum alloy, the amount of solid solution Si is 0.60 mass% or less and the amount of solid solution Mn is 0.60 mass% or less before brazing heat, The aluminum alloy fin material for heat exchangers was characterized in that the recrystallization temperature in the temperature rising process was 450 ° C. or lower.

本発明は請求項2では請求項1において、ろう付加熱後の前記アルミニウム合金において、固溶Mn量が0.60mass%以下であり、粒界近傍におけるSi及びZnの濃度をそれぞれS1mass%、Z1mass%とし、マトリクスにおけるSi及びZnの濃度をそれぞれS2mass%、Z2mass%としたとき、S1/S2及びZ1/Z2の値がいずれも1.20以下であるものとした。   In the second aspect of the present invention, in the first aspect of the present invention, in the aluminum alloy after brazing addition heat, the solid solution Mn amount is 0.60 mass% or less, and the Si and Zn concentrations in the vicinity of the grain boundary are respectively S1 mass% and Z1 mass. %, And the Si and Zn concentrations in the matrix were S2 mass% and Z2 mass%, respectively, the values of S1 / S2 and Z1 / Z2 were both 1.20 or less.

本発明は請求項3では請求項1又は2において、前記アルミニウム合金が、Cu:0.05〜0.30mass%、Ti:0.05〜0.30mass%、Zr:0.05〜0.30mass%、Cr:0.05〜0.30mass%及びV:0.05〜0.30mass%から選択される1種又は2種以上を更に含有するものとした。   According to a third aspect of the present invention, in the first or second aspect, the aluminum alloy is Cu: 0.05 to 0.30 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, or one or more selected from 0.05 to 0.30 mass%.

本発明の熱交換器用アルミニウム合金フィン材の第1態様に係る製造方法は請求項4において、請求項1〜3のいずれか一項に記載の熱交換器用アルミニウム合金フィン材の製造方法であって、前記アルミニウム合金を鋳造する工程と、鋳造した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含み、前記熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450〜560℃であり保持時間が0.5時間以上であり、熱間圧延段階中において、熱間圧延板の温度が400℃以上である時間が5分間以上であり、前記冷間圧延工程において、冷間圧延板の温度が120℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材の製造方法とした。   The manufacturing method according to the first aspect of the aluminum alloy fin material for a heat exchanger of the present invention is the method for manufacturing an aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 3, in claim 4. , A step of casting the aluminum alloy, a hot rolling step of hot rolling the cast ingot, a cold rolling step of cold rolling a hot rolled plate, and a cold rolling step in the middle of the cold rolling step One or more annealing steps for annealing the cold rolled sheet in one or both of the steps, wherein the hot rolling step includes a heating step, a holding step, and a hot rolling step, and in the heating step, 400 The rate of temperature rise from the time of reaching ° C to the time of reaching the holding temperature in the holding stage is 60 ° C / h or less, the holding temperature in the holding stage is 450 to 560 ° C, the holding time is 0.5 hours or more, During the rolling stage, heat An aluminum alloy fin material for a heat exchanger characterized in that the time during which the temperature of the rolled plate is 400 ° C or higher is 5 minutes or longer, and the temperature of the cold rolled plate is 120 ° C or lower in the cold rolling step. It was set as the manufacturing method.

本発明の熱交換器用アルミニウム合金フィン材の第2態様に係る製造方法は請求項5において、請求項1〜3のいずれか一項に記載の熱交換器用アルミニウム合金フィン材の製造方法であって、前記アルミニウム合金を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含み、前記均質化処理工程が加熱段階と保持段階と冷却段階とを含み、加熱段階において、400℃に達してから保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450〜560℃であり保持時間が1.0時間以上であり、冷却段階中において、鋳塊の温度が400℃に達するまでの冷却速度が60℃/h以下であり、前記冷間圧延工程において、冷間圧延板の温度が120℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材の製造方法とした。   The manufacturing method which concerns on the 2nd aspect of the aluminum alloy fin material for heat exchangers of this invention is a manufacturing method of the aluminum alloy fin material for heat exchangers as described in any one of Claims 1-3 in Claim 5. , A process of casting the aluminum alloy, a homogenization process of homogenizing the cast ingot, a hot rolling process of hot rolling the homogenized ingot, and cold rolling the hot rolled plate A cold rolling step, and one or more annealing steps for annealing the cold rolled sheet in one or both of the cold rolling step and in the middle of the cold rolling step, and the homogenization step is a heating step A holding stage and a cooling stage, and in the heating stage, the rate of temperature rise from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less, and the holding temperature in the holding stage is 450 to 560. ℃ and hold 1.0 hour or more, and during the cooling stage, the cooling rate until the temperature of the ingot reaches 400 ° C. is 60 ° C./h or less. In the cold rolling step, the temperature of the cold rolled sheet is It was set as the manufacturing method of the aluminum alloy fin material for heat exchangers characterized by being 120 degrees C or less.

本発明は請求項6において、請求項1〜3のいずれか一項に記載のアルミニウム合金フィン材が、ろう付けにより組付けられていることを特徴とする熱交換器とした。   The present invention provides a heat exchanger according to claim 6, wherein the aluminum alloy fin material according to any one of claims 1 to 3 is assembled by brazing.

本発明は請求項7において、請求項6に記載の熱交換器の製造方法であり、請求項1〜3のいずれか一項に記載のアルミニウム合金フィン材を他の部材と組み合わせ、これを590〜615℃の到達温度で2〜6分間ろう付加熱する方法であって、ろう付時の昇温過程における再結晶温度を450℃以下とし、300〜580℃の温度域における昇温速度を60〜160℃/minとすることを特徴とする熱交換器の製造方法とした。   This invention is the manufacturing method of the heat exchanger of Claim 6 in Claim 7, Comprising: The aluminum alloy fin material as described in any one of Claims 1-3 is combined with another member, This is 590. It is a method of performing brazing addition heat for 2 to 6 minutes at an ultimate temperature of ˜615 ° C., wherein the recrystallization temperature in the temperature raising process during brazing is 450 ° C. or less, and the temperature rise rate in the temperature range of 300 to 580 ° C. is 60 It was set as the manufacturing method of the heat exchanger characterized by setting it to -160 degreeC / min.

本発明によれば、ろう付時の耐フィン溶融性に優れ、ろう付後には優れた高温耐久性を示す熱交換器用アルミニウム合金フィン材、ならびに、これを用いた自動車用などの熱交換器が提供される。本発明に係るアルミニウム合金フィン材は、成形性や、ろう付加熱後の耐食性、熱伝導性にも優れるため、自動車用などの熱交換器のフィン材として好適に用いられる。   According to the present invention, there is provided an aluminum alloy fin material for a heat exchanger that exhibits excellent resistance to fin melting at the time of brazing and exhibits excellent high-temperature durability after brazing, and an automotive heat exchanger using the same. Provided. Since the aluminum alloy fin material according to the present invention is excellent in formability, corrosion resistance after brazing addition heat, and thermal conductivity, it is suitably used as a fin material for heat exchangers for automobiles and the like.

本発明に係るアルミニウム合金フィン材及びその製造方法、ならびに、このアルミニウム合金フィン材を用いた熱交換器の好適な実施態様について、詳細に説明する。   A preferred embodiment of an aluminum alloy fin material according to the present invention, a method for producing the same, and a heat exchanger using the aluminum alloy fin material will be described in detail.

1.アルミニウム合金フィン材の構成及びろうの供給方法
本発明に係る熱交換器用アルミニウム合金フィン材(以下、単に「アルミニウム合金フィン材」と記す)は、ろう材などの皮材をクラッドしない、一層構成のベア材であることを前提とする。ろう付に必要なろうは、例えば接合の相手材となる流路形成部品に低融点のAl−Si合金をクラッドすることなどにより供給される。
1. Structure of Aluminum Alloy Fin Material and Brazing Supply Method The aluminum alloy fin material for heat exchanger according to the present invention (hereinafter simply referred to as “aluminum alloy fin material”) has a single layer structure that does not clad a skin material such as a brazing material. It is assumed that it is a bare material. The brazing necessary for brazing is supplied, for example, by clad a low-melting point Al—Si alloy on a flow path forming component that is a mating material.

2.合金成分
本発明に係るアルミニウム合金フィン材は、Si:0.70〜1.50mass%(以下、単に「%」と記す)、Fe:0.05〜2.00%、Mn:1.0〜2.0%及びZn:0.5〜4.0%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。また、このアルミニウム合金は、Cu:0.05〜0.30%、Ti:0.05〜0.30%、Zr:0.05〜0.30%、Cr:0.05〜0.30%及びV:0.05〜0.30%から選択される1種又は2種以上を選択的添加元素として更に含有してもよい。更に、上記必須元素及び選択的添加元素の他に不可避的不純物として、Ni、Coなどを各々0.05%以下、全体で0.15%含有していてもよい。以下に、各成分について詳細に説明する。
2. Alloy Components The aluminum alloy fin material according to the present invention has Si: 0.70 to 1.50 mass% (hereinafter simply referred to as “%”), Fe: 0.05 to 2.00%, Mn: 1.0 to An aluminum alloy containing 2.0% and Zn: 0.5 to 4.0% as essential elements, and the balance being Al and inevitable impurities is used. Moreover, this aluminum alloy has Cu: 0.05 to 0.30%, Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30% And V: You may further contain 1 type, or 2 or more types selected from 0.05 to 0.30% as a selective addition element. Furthermore, in addition to the above essential elements and selective additive elements, Ni, Co, etc. may be contained in amounts of 0.05% or less, and 0.15% in total as unavoidable impurities. Below, each component is demonstrated in detail.

Si
Siは、Fe、Mnと共にAl−Fe―Si系、Al−Mn−Si系、Al−Fe―Mn−Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Si含有量は、0.70〜1.50%である。0.70%未満では上記効果が不十分となり、1.50%を超えると融点が低下して溶融が生じる虞が高くなる。Siの好ましい含有量は、0.75〜1.20%である。
Si
Si forms an intermetallic compound of Al—Fe—Si, Al—Mn—Si, and Al—Fe—Mn—Si together with Fe and Mn, and improves strength by dispersion strengthening, or an aluminum matrix Strengthen the solid solution by solid solution strengthening. Si content is 0.70 to 1.50%. If the content is less than 0.70%, the above effect is insufficient, and if it exceeds 1.50%, the melting point is lowered and the possibility of melting is increased. The preferable content of Si is 0.75 to 1.20%.

Fe
Feは、Si、Mnと共にAl−Fe−Mn−Si系の金属間化合物を形成し、分散強化により強度を向上させる。Feの含有量は、0.05〜2.00%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10〜1.50%である。
Fe
Fe forms an Al—Fe—Mn—Si based intermetallic compound together with Si and Mn, and improves the strength by dispersion strengthening. The content of Fe is 0.05 to 2.00%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. The preferable content of Fe is 0.10 to 1.50%.

Mn
Mnは、Siと共にAl−Mn−Si系金属間化合物を、また、Si、Feと共にAl−Mn−Fe−Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Mn含有量は、1.0〜2.0%である。1.0%未満では上記効果が不十分となり、2.0%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mnの好ましい含有量は、1.1〜1.8%である。
Mn
Mn forms an Al—Mn—Si intermetallic compound together with Si, and an Al—Mn—Fe—Si intermetallic compound together with Si and Fe to improve the strength by dispersion strengthening, or an aluminum matrix. Strengthened by solid solution in the phase and solid solution strengthening. Mn content is 1.0 to 2.0%. If the content is less than 1.0%, the above effect is insufficient. If the content exceeds 2.0%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. The preferable content of Mn is 1.1 to 1.8%.

Zn
Znは孔食電位を卑にすることができ、チューブなどろう付した相手の材料との電位差を形成することで、犠牲防食効果により、相手材の耐食性を向上させることができる。Znの含有量は、0.5〜4.0%である。0.5%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、4.0%を超えると、フィンの腐食速度が大きくなり、早期に消失してしまい、耐食性が不十分となる。Znの好ましい含有量は、1.0〜3.5%である。
Zn
Zn can reduce the pitting corrosion potential, and by forming a potential difference with a brazed counterpart material such as a tube, the corrosion resistance of the counterpart material can be improved due to the sacrificial anticorrosive effect. The Zn content is 0.5 to 4.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 4.0%, the corrosion rate of the fin increases and disappears early, resulting in insufficient corrosion resistance. The preferable content of Zn is 1.0 to 3.5%.

Cu
Cuは、固溶強化により強度を向上させるので含有させてもよい。Cu含有量は、0.05〜0.30%である。0.05%未満では上記効果が不十分となり、0.30%を超えると孔食電位が貴となり、犠牲防食効果が不十分となる。Cuの好ましい含有量は、0.10〜0.30%である。
Cu
Since Cu improves strength by solid solution strengthening, Cu may be contained. The Cu content is 0.05 to 0.30%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.30%, the pitting potential becomes noble and the sacrificial anticorrosive effect becomes insufficient. The preferable content of Cu is 0.10 to 0.30%.

Ti
Tiは、固溶強化により強度を向上させるので含有させてもよい。Ti含有量は、0.05〜0.30%である。0.05%未満では上記効果が不十分となる。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Tiの好ましい含有量は、0.10〜0.20%である。
Ti
Ti may be contained because it improves the strength by solid solution strengthening. Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect is insufficient. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The preferable content of Ti is 0.10 to 0.20%.

Zr
Zrは、固溶強化により強度を向上させると共に、Al−Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05〜0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zrの好ましい含有量は、0.10〜0.20%である。
Zr
Zr may be included because it has the effect of improving strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after heat of brazing addition. The Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The preferable content of Zr is 0.10 to 0.20%.

Cr
Crは、固溶強化により強度を向上させると共に、Al−Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05〜0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Crの好ましい含有量は、0.10〜0.20%である。
Cr
Cr has the effect of improving strength by solid solution strengthening and precipitating Al—Cr intermetallic compounds to coarsen the crystal grains after brazing addition heat. The Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The preferable content of Cr is 0.10 to 0.20%.


Vは、固溶強化により強度を向上させると共に、耐食性も向上させるので含有させてもよい。V含有量は、0.05〜0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Vの好ましい含有量は、0.10〜0.20%である。
V
V improves the strength by solid solution strengthening and also improves the corrosion resistance. V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. A preferable content of V is 0.10 to 0.20%.

これらCu、Ti、Zr、Cr及びVは、必要により少なくとも1種が添加されていればよい。   These Cu, Ti, Zr, Cr, and V may be added at least one type as necessary.

3.ろう付前及びろう付後の固溶量
本発明に係るアルミニウム合金フィン材では、ろう付加熱前における固溶Si量を0.60%以下、固溶Mn量を0.60%以下に限定する。これらの限定事項は、ろう付加熱時のフィン溶融を防止し、なおかつ、ろう付加熱後の高温耐久性を向上させるためのものである。以下にこの限定理由を説明する。
3. Solid solution amount before brazing and after brazing In the aluminum alloy fin material according to the present invention, the amount of solid solution Si before brazing addition heat is limited to 0.60% or less, and the amount of solid solution Mn is limited to 0.60% or less. . These limitations are intended to prevent fin melting during brazing heat and improve high temperature durability after brazing heat. The reason for this limitation will be described below.

既に述べたように、ろう付時には溶融したろうからフィン材の結晶粒界へ多量のSiが拡散し、フィン材の結晶粒界における融点を低下させる。このようなろう付時におけるSiの拡散を無くすことは不可能であるため、ろう付前のフィン材において、予め固溶Siを少なくしておくことが重要である。ろう付前の固溶Si量が0.60%以下であれば、溶融ろうからフィン材の結晶粒界へ例え多量のSiが拡散したとしても、結晶粒界における総Si濃度を所定レベル以下に抑制できるので、ろう付時における結晶粒界の融点低下を抑制して結晶粒界の溶融を防止することができる。一方、ろう付前の固溶Si量が0.60%を超えると、溶融ろうからフィン材の結晶粒界へ多量のSiが拡散すると、結晶粒界における総Si濃度が所定レベルを超えるので、ろう付時の結晶粒界の融点が低下し、結晶粒界の溶融が生じてしまう。従って、ろう付前の固溶Si量は0.60%以下に規制され、好ましくは0.55%以下に規制される。なお、ろう付時の溶融の観点からは、ろう付前の固溶Si量の下限値が限定されるものではないが、本発明で規定するSi含有量の範囲内では、0.05%以下とすることは困難である。   As already described, during brazing, a large amount of Si diffuses from the molten brazing to the crystal grain boundary of the fin material, and the melting point at the crystal grain boundary of the fin material is lowered. Since it is impossible to eliminate the diffusion of Si at the time of brazing, it is important to reduce solute Si in advance in the fin material before brazing. If the amount of solute Si before brazing is 0.60% or less, even if a large amount of Si diffuses from the molten braze to the crystal grain boundaries of the fin material, the total Si concentration at the crystal grain boundaries is below a predetermined level. Since it can suppress, the fall of melting | fusing point of the crystal grain boundary at the time of brazing can be suppressed, and melting | fusing of a crystal grain boundary can be prevented. On the other hand, if the amount of solid solution Si before brazing exceeds 0.60%, when a large amount of Si diffuses from the melt brazing to the crystal grain boundaries of the fin material, the total Si concentration at the crystal grain boundaries exceeds a predetermined level. The melting point of the crystal grain boundary at the time of brazing is lowered, and the crystal grain boundary is melted. Therefore, the amount of solute Si before brazing is restricted to 0.60% or less, preferably 0.55% or less. In addition, from the viewpoint of melting at the time of brazing, the lower limit value of the solute Si amount before brazing is not limited, but within the range of the Si content defined in the present invention, 0.05% or less It is difficult to do.

一方、既に述べたように、例えばラジエータのフィンとして用いられる場合、チューブ内部を流れる冷却水は85〜120℃程度の高温となり、しかも内圧によってチューブに繰り返しの膨れが生じ、フィンには繰り返しの高温疲労損傷が与えられる。但し、高温においては、与えられた疲労損傷の一部は回復する現象が見られる。本発明者らは鋭意研究を重ねた結果、固溶Mnがこの回復を妨げる因子であることを明らかにした。そして、この事実に基づき、ろう付加熱後における固溶Mn量を低く抑制することにより、高温耐久性を向上できることを見出した。   On the other hand, as already described, for example, when used as a fin of a radiator, the cooling water flowing inside the tube becomes a high temperature of about 85 to 120 ° C., and the tube is repeatedly swollen by the internal pressure, and the fin has a high temperature repeatedly. Fatigue damage is given. However, at high temperatures, a phenomenon is observed in which part of the applied fatigue damage is recovered. As a result of intensive studies, the present inventors have revealed that solute Mn is a factor that hinders this recovery. And based on this fact, it discovered that high temperature durability could be improved by suppressing the amount of solid solution Mn after brazing addition heat low.

具体的には、ろう付加熱後における固溶Mn量が0.60%以下であれば、疲労損傷の回復が十分に生じ、優れた高温耐久性を得ることができる。ろう付後にける固溶Mn量が0.60%を超えると、疲労損傷の回復が妨げられ高温耐久性が不十分となる。従って、ろう付後における固溶Mn量は0.60%以下に規制され、好ましくは0.55%以下に規制される。   Specifically, if the amount of dissolved Mn after the heat of brazing is 0.60% or less, the fatigue damage is sufficiently recovered and excellent high temperature durability can be obtained. If the amount of dissolved Mn after brazing exceeds 0.60%, recovery from fatigue damage is hindered and high-temperature durability becomes insufficient. Therefore, the amount of solute Mn after brazing is regulated to 0.60% or less, preferably 0.55% or less.

ろう付時には、Al−Mn−Si系、Al−Fe−Mn−Si系及びAl−Mn系の金属間化合物の固溶が生じるため、ろう付後の固溶Mn量はろう付前よりも増加する。従って、ろう付前の状態において、固溶Mn量は少なくとも0.60%以下となっていなければ、ろう付後の状態の固溶Mn量を0.60%以下とすることができない。従って、ろう付前における固溶Mn量もまた、0.60%以下に規制される。これによって、優れた高温耐久性が発揮される。これに対して、ろう付前の固溶Mn量が0.60%を超えると、ろう付後の固溶Mn量を0.60%以下に抑制することができず、優れた高温耐久性が得られない。以上により、ろう付の前及び後の固溶Mn量は0.60%以下に規制され、好ましくは0.55%以下に規制される。なお、高温耐久性の観点からは、ろう付前及びろう付後の固溶Mn量の下限値が限定されるものではないが、本発明で規定するMn含有量の範囲内では、0.05%以下とすることは困難である。   During brazing, solid solution of Al-Mn-Si, Al-Fe-Mn-Si, and Al-Mn intermetallic compounds occurs, so the amount of solid solution Mn after brazing is higher than before brazing. To do. Therefore, in the state before brazing, the solid solution Mn content in the state after brazing cannot be 0.60% or less unless the solid solution Mn content is at least 0.60% or less. Therefore, the amount of dissolved Mn before brazing is also restricted to 0.60% or less. Thereby, excellent high temperature durability is exhibited. On the other hand, if the amount of solid solution Mn before brazing exceeds 0.60%, the amount of solid solution Mn after brazing cannot be suppressed to 0.60% or less, and excellent high-temperature durability is achieved. I can't get it. As described above, the amount of dissolved Mn before and after brazing is restricted to 0.60% or less, preferably 0.55% or less. From the viewpoint of high temperature durability, the lower limit of the amount of dissolved Mn before brazing and after brazing is not limited, but within the range of Mn content defined in the present invention, 0.05% % Or less is difficult.

4.ろう付後の粒界偏析
本発明に係るアルミニウム合金フィン材では、ろう付時において、粒界近傍におけるSi及びZnの濃度をそれぞれS1%、Z1%、マトリクスにおけるSi及びZnの濃度をそれぞれS2%、Z2%としたとき、S1/S2及びZ1/Z2の値をいずれも1.20以下に規定する。この限定事項は、ろう付時のフィン溶融を防止するためのものである。以下にこの限定理由について説明する。
4). Grain boundary segregation after brazing In the aluminum alloy fin material according to the present invention, at the time of brazing, the concentration of Si and Zn in the vicinity of the grain boundary is S1% and Z1%, respectively, and the concentration of Si and Zn in the matrix is S2%, respectively. , Z2%, the values of S1 / S2 and Z1 / Z2 are both specified to be 1.20 or less. This limitation is intended to prevent fin melting during brazing. The reason for this limitation will be described below.

ろう付時において、アルミニウム合金フィン材には再結晶が生じる。既に述べたように、結晶粒界にはZnやSiが偏析するため、マトリクスに比べて結晶粒界近傍ではZnやSiの濃度が高くなって融点が低い状態にある。従って、フィンの溶融を抑制するためには、ろう付時の粒界偏析を抑制する必要がある。   At the time of brazing, recrystallization occurs in the aluminum alloy fin material. As already described, since Zn and Si are segregated in the crystal grain boundary, the concentration of Zn and Si is higher in the vicinity of the crystal grain boundary and the melting point is lower than in the matrix. Therefore, in order to suppress melting of the fins, it is necessary to suppress grain boundary segregation during brazing.

本発明者らは鋭意研究を重ねた結果、ろう付後における粒界近傍とマトリクスとの固溶Zn量比と固溶Si量比、すなわち粒界近傍におけるSi及びZnの濃度をそれぞれS1%、Z1%とし、マトリクスにおけるSi及びZnの濃度をそれぞれS2%、Z2%としたときの、S1/S2及びZ1/Z2の値がいずれも1.20以下となっている場合に、結晶粒界の溶融を抑制できることを見出した。S1/S2及びZ1/Z2の値がいずれも1.20以下の場合には、ろう付中の粒界偏析は十分に抑制されており、結晶粒界の溶融は生じない。一方、S1/S2及びZ1/Z2のいずれか一方又は両方の値が1.20を超える場合には、ろう付中の粒界偏析の抑制が不十分であり、結晶粒界の溶融が生じてしまう。S1/S2及びZ1/Z2の好ましい値はともに、1.10以下である。また、フィン溶融の観点から、S1/S2及びZ1/Z2の下限値が限定されるものではないが、粒界近傍の固溶元素量がマトリクスに対して低すぎると、マトリクスの元素が粒界に拡散してくるため、S1/S2及びZ1/Z2をそれぞれ0.50以下とすることは困難である。   As a result of intensive studies, the present inventors have determined that the solid solution Zn content ratio and the solid solution Si content ratio between the vicinity of the grain boundary and the matrix after brazing, that is, the Si and Zn concentrations in the vicinity of the grain boundary are S1%, When the values of S1 / S2 and Z1 / Z2 are both 1.20 or less when the concentration of Si and Zn in the matrix is S2% and Z2%, respectively, It has been found that melting can be suppressed. When the values of S1 / S2 and Z1 / Z2 are both 1.20 or less, grain boundary segregation during brazing is sufficiently suppressed, and no melting of crystal grain boundaries occurs. On the other hand, when the value of either one or both of S1 / S2 and Z1 / Z2 exceeds 1.20, the suppression of grain boundary segregation during brazing is insufficient, and the melting of crystal grain boundaries occurs. End up. Preferred values of S1 / S2 and Z1 / Z2 are both 1.10 or less. Further, from the viewpoint of fin melting, the lower limit values of S1 / S2 and Z1 / Z2 are not limited. However, if the amount of solid solution elements in the vicinity of the grain boundary is too low with respect to the matrix, the elements of the matrix become grain boundaries. Therefore, it is difficult to set S1 / S2 and Z1 / Z2 to 0.50 or less, respectively.

なお、ろう付の冷却過程においては、粒界近傍で優先的に析出が生じ、粒界近傍の固溶量が減少する。従って、ろう付中に粒界偏析が生じていたとしても、ろう付後においては粒界の固溶量の方がマトリクスの固溶量よりも少なくなる場合もあり、S1/S2及びZ1/Z2の値が1.00未満となる場合もある。また、ここでの粒界近傍の固溶量とは、粒界からその両側0.05μmの範囲内における固溶量の平均値をいうものとする。   In the brazing cooling process, precipitation occurs preferentially in the vicinity of the grain boundary, and the amount of solid solution in the vicinity of the grain boundary decreases. Therefore, even if grain boundary segregation occurs during brazing, the solid solution amount of the grain boundary may be less than the solid solution amount of the matrix after brazing, and S1 / S2 and Z1 / Z2 May be less than 1.00. Further, the solid solution amount in the vicinity of the grain boundary here means an average value of the solid solution amount within a range of 0.05 μm on both sides from the grain boundary.

5.ろう付時の再結晶温度
本発明に係るアルミニウム合金フィン材では、ろう付時の昇温過程における再結晶温度を450℃以下に規定する。この限定事項は、ろう付時のフィン溶融を防止するためのものである。以下にこの限定理由について説明する。
5. Recrystallization temperature at the time of brazing In the aluminum alloy fin material according to the present invention, the recrystallization temperature in the temperature raising process at the time of brazing is regulated to 450 ° C. or less. This limitation is intended to prevent fin melting during brazing. The reason for this limitation will be described below.

既に述べたように、ろう付時における結晶粒界の溶融を防止するためには、ろう付中の再結晶時における粒界偏析を抑制することが必要である。しかしながら、マトリクス中に一定量のSiやZnが固溶している以上、再結晶時に生じる粒界偏析を完全に無くすことは困難である。ここで、粒界偏析を生じたとしても、ろう付時に再結晶が生じてからろう材が溶融するまでの時間が十分にあり、その間に粒界に偏析した元素がマトリクスへ拡散することにより粒界偏析が解消されていれば、結晶粒界の溶融は生じない。本発明者らはこのことに着目して鋭意研究を重ねた結果、ろう付時の昇温過程における再結晶を早期に完了させることで、ろうが溶融する前に粒界偏析を解消することにより、結晶粒界の溶融を抑制できることを見出した。   As already described, in order to prevent melting of the crystal grain boundaries during brazing, it is necessary to suppress grain boundary segregation during recrystallization during brazing. However, as long as a certain amount of Si or Zn is dissolved in the matrix, it is difficult to completely eliminate the grain boundary segregation that occurs during recrystallization. Here, even if grain boundary segregation occurs, there is sufficient time from recrystallization during brazing to melting of the brazing material, and during this time, the elements segregated at the grain boundaries diffuse into the matrix. If the boundary segregation is eliminated, the crystal grain boundary does not melt. As a result of intensive studies focusing on this, the present inventors have completed recrystallization in the temperature rising process during brazing at an early stage, thereby eliminating grain boundary segregation before the solder melts. The inventors have found that melting of crystal grain boundaries can be suppressed.

具体的には、ろう付時の昇温過程における再結晶温度が450℃以下であれば、ろうの溶融までに粒界偏析が解消されて、結晶粒界の溶融は生じないことを見出した。すなわち、ろう付時の昇温過程における再結晶温度が450℃以下の場合には、上述のS1/S2及びZ1/Z2の値がいずれも1.20以下に制御でき、これによって、ろう付中の粒界偏析が十分に抑制され結晶粒界の溶融は生じない。一方、ろう付時の昇温過程における再結晶温度が450℃を超える場合、ろうの溶融までに粒界偏析が解消されず、結晶粒界の溶融が生じてしまう。すなわち、ろう付時の昇温過程における再結晶温度が450℃を超える場合には、上述のS1/S2及びZ1/Z2のいずれか一方又は両方の値が1.20を超え、これによって、ろう付中の粒界偏析の抑制が不十分となり、結晶粒界の溶融が生じてしまう。ろう付時の昇温過程における再結晶温度は、好ましくは400℃以下である。なお、耐フィン溶融の観点からは、ろう付時の昇温過程における再結晶温度の下限が限定されるものではないが、本発明のアルミニウム合金フィン材では、低すぎる温度域では再結晶を生じさせるための熱エネルギーが不十分となるため、250℃以下とすることは困難である。   Specifically, it has been found that if the recrystallization temperature in the temperature raising process during brazing is 450 ° C. or less, the grain boundary segregation is eliminated by the melting of the brazing, and the crystal grain boundary does not melt. That is, when the recrystallization temperature in the temperature rising process during brazing is 450 ° C. or lower, the values of S1 / S2 and Z1 / Z2 can both be controlled to 1.20 or lower. Grain boundary segregation is sufficiently suppressed and melting of the crystal grain boundaries does not occur. On the other hand, when the recrystallization temperature in the temperature rising process at the time of brazing exceeds 450 ° C., the grain boundary segregation is not eliminated by the melting of the brazing, and the crystal grain boundaries are melted. That is, when the recrystallization temperature in the temperature rising process at the time of brazing exceeds 450 ° C., one or both of the above-mentioned S1 / S2 and Z1 / Z2 exceed 1.20. Suppression of grain boundary segregation during attachment is insufficient, and crystal grain boundaries are melted. The recrystallization temperature in the temperature raising process during brazing is preferably 400 ° C. or lower. From the viewpoint of resistance to fin melting, the lower limit of the recrystallization temperature in the temperature raising process during brazing is not limited. However, in the aluminum alloy fin material of the present invention, recrystallization occurs in a temperature range that is too low. Since the heat energy for making it become inadequate, it is difficult to set it as 250 degrees C or less.

なお、ろう付加熱条件(ろう付加熱相当条件)は特に限定されるものではないが、通常は300〜580℃の温度域における昇温速度を60〜160℃/min、好ましくは80〜140℃/minとし、到達温度が585〜620℃で2〜10分間、好ましくは到達温度が590〜615℃で2〜6分間とすることにより行われる。300〜580℃の温度域における昇温速度が60℃/min未満の場合は、昇温速度が遅過ぎて生産効率を著しく損なう。一方、この昇温速度が160℃/minを超える場合は、ろう付時における温度分布が不均一となることがある。また、到達温度が585℃未満の場合には、ろうの溶融が不十分となり良好なろう付が得られない虞があり、620℃を超える場合には、材料に溶融が生じる虞がある。なお、ろう付されたものは、通常、20〜500℃/分の冷却速度で冷却される。   The brazing heat addition condition (corresponding to the brazing heat addition condition) is not particularly limited, but the heating rate in the temperature range of 300 to 580 ° C. is usually 60 to 160 ° C./min, preferably 80 to 140 ° C. / Min, and the ultimate temperature is 585 to 620 ° C. for 2 to 10 minutes, preferably the ultimate temperature is 590 to 615 ° C. for 2 to 6 minutes. When the temperature increase rate in the temperature range of 300 to 580 ° C. is less than 60 ° C./min, the temperature increase rate is too slow and the production efficiency is significantly impaired. On the other hand, when this rate of temperature rise exceeds 160 ° C./min, the temperature distribution during brazing may be non-uniform. Further, when the ultimate temperature is less than 585 ° C., the melting of the brazing may be insufficient and good brazing may not be obtained, and when it exceeds 620 ° C., the material may be melted. In addition, what was brazed is normally cooled at the cooling rate of 20-500 degreeC / min.

6.アルミニウム合金フィン材の製造方法
本発明に係るアルミニウム合金フィン材は、異なる二つの態様による製造方法によって製造することができる。第1態様の製造方法は、熱間圧延工程と冷間圧延工程に特徴を有し、後述の第2態様とは熱間圧延工程が相違し、更に、均質化処理工程を任意工程としつつ、その条件も第2態様と相違する。一方、第2態様の製造方法は、均質化処理工程と冷間圧延工程に特徴を有し、第1態様とは均質化処理工程を必須工程とする点で相違し、その条件も第1態様と相違する。更に、第2態様の製造方法では、熱間圧延工程が第1態様のものと相違する。
6). Manufacturing method of aluminum alloy fin material The aluminum alloy fin material according to the present invention can be manufactured by two different manufacturing methods. The manufacturing method of the first aspect has a feature in the hot rolling process and the cold rolling process, the hot rolling process is different from the second aspect described later, and further, the homogenization treatment process is an optional process, The conditions are also different from the second mode. On the other hand, the production method of the second aspect is characterized by a homogenization treatment process and a cold rolling process, and is different from the first aspect in that the homogenization treatment process is an essential process, and the conditions are also the first aspect. Is different. Furthermore, in the manufacturing method of the second aspect, the hot rolling step is different from that of the first aspect.

6−1.第1態様の製造方法
まず、本発明に係るアルミニウム合金フィン材の第1態様の製造方法について説明する。
6-1. First, the manufacturing method of the first aspect of the aluminum alloy fin material according to the present invention will be described.

6−1−1.各製造工程
本発明に係るアルミニウム合金フィン材の第1態様の製造方法は、アルミニウム合金を鋳造する工程と、鋳造した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含む。
6-1-1. Each manufacturing process The manufacturing method of the 1st aspect of the aluminum alloy fin material which concerns on this invention is the process of casting an aluminum alloy, the hot rolling process of hot-rolling the cast ingot, and cold-rolling a hot-rolled sheet A cold rolling step for rolling, and one or more annealing steps for annealing the cold rolled sheet in one or both of the cold rolling step and one or both after the cold rolling step.

本発明のアルミニウム合金フィン材は、固溶Si量及び固溶Mn量、ならびに、ろう付時の再結晶温度を制御することにより、優れた耐フィン溶融性と高温耐久性を実現するものである。本発明者らは鋭意研究の結果、製造工程中で固溶Si量及び固溶Mn量に及ぼす影響が最も大きいのは熱間圧延工程であり、ろう付時の再結晶温度に及ぼす影響が最も大きいのは冷間圧延工程であることを見出した。以下では、これら熱間圧延工程及び冷間圧延工程の制御方法について説明する。   The aluminum alloy fin material of the present invention realizes excellent fin melting resistance and high temperature durability by controlling the amount of solid solution Si and solid solution Mn, and the recrystallization temperature during brazing. . As a result of intensive studies, the inventors have the hot rolling process that has the largest effect on the solute Si content and solute Mn content in the manufacturing process, and the effect on the recrystallization temperature during brazing is the most. It has been found that the larger is the cold rolling process. Below, the control method of these hot rolling processes and cold rolling processes is demonstrated.

6−2.熱間圧延工程
本発明に係るアルミニウム合金フィン材の第1態様の製造方法では、鋳造したアルミニウム合金の鋳塊を熱間圧延する熱間圧延工程にまず特徴を有する。この熱間圧延工程は、鋳塊を加熱する加熱段階と、これに続く保持段階と、加熱保持した鋳塊を圧延する熱間圧延段階を含む。そして、加熱段階においては、400℃到達時から保持段階の保持温度到達時までの昇温速度を60℃/h以下に規定する。また、保持段階においては、保持温度を450〜560℃で保持時間を0.5時間以上に規定する。更に、熱間圧延段階においては、熱間圧延板の温度が400℃以上である時間を5分以上に規定する。このようにアルミニウム合金の熱間圧延工程の条件を規定することにより、本発明に係るアルミニウム合金フィン材は、本発明で規定するろう付前における固溶Si量、ならびに、本発明で規定するろう付前及びろう付後における固溶Mn量(以下、「本発明で規定する固溶Si量及び固溶Mn量」と記す)を達成することができ、ろう付中に優れた耐フィン溶融性と高温耐久性を発揮することができる。以下において、この理由を説明する。
6-2. Hot Rolling Process The first aspect of the method for producing an aluminum alloy fin material according to the present invention is characterized by a hot rolling process in which a cast aluminum alloy ingot is hot rolled. The hot rolling process includes a heating stage for heating the ingot, a holding stage following the heating stage, and a hot rolling stage for rolling the heated and held ingot. In the heating stage, the rate of temperature increase from the time when reaching 400 ° C. to the time when the holding temperature is reached in the holding stage is regulated to 60 ° C./h or less. In the holding stage, the holding temperature is set to 450 to 560 ° C. and the holding time is set to 0.5 hour or more. Furthermore, in the hot rolling stage, the time during which the temperature of the hot rolled sheet is 400 ° C. or higher is specified to be 5 minutes or longer. By defining the conditions of the hot rolling process of the aluminum alloy in this way, the aluminum alloy fin material according to the present invention will be defined by the solid solution Si amount before brazing as defined by the present invention, as well as by the present invention. The amount of solid solution Mn before brazing and after brazing (hereinafter referred to as “the amount of solid solution Si and the amount of solid solution Mn defined in the present invention”) can be achieved, and excellent fin melt resistance during brazing And high temperature durability. The reason for this will be described below.

アルミニウム合金の鋳造工程において、多量のSi及びMnが鋳塊のマトリクス中に固溶する。このようにマトリクス中に固溶した多量のSi及びMnは、熱間圧延工程における圧延段階の前の加熱段階において、Al−Mn系やAl−Mn−Si系の金属間化合物の核を生成し、これらの核を基にして圧延段階において上記金属間化合物が多量に析出する。その結果、加熱段階も含めた熱間圧延工程がアルミニウム合金フィン材の本発明で規定する固溶Si量及び固溶Mn量をほぼ決定する。   In the aluminum alloy casting process, a large amount of Si and Mn are dissolved in the ingot matrix. A large amount of Si and Mn dissolved in the matrix in this way forms nuclei of Al-Mn-based and Al-Mn-Si-based intermetallic compounds in the heating stage before the rolling stage in the hot rolling process. Based on these nuclei, a large amount of the intermetallic compound is precipitated in the rolling stage. As a result, the hot rolling process including the heating step almost determines the solute Si amount and solute Mn amount of the aluminum alloy fin material defined in the present invention.

従って、固溶Si量及び固溶Mn量を減少させるためには、この加熱段階において、できるだけ多くのAl−Mn系やAl−Mn−Si系の金属間化合物の核を生成し、圧延段階においてできるだけ多量に析出させれば良い。特に、加熱段階において400℃に達してからの核生成量が多くなるため、これ以降の温度制御が重要である。加熱段階において400℃に達してから保持温度到達時までの昇温速度を60℃/h以下とし、なおかつ、保持段階においては450〜560℃の保持温度で保持時間を0.5時間以上とし、熱間圧延段階においては熱間圧延板の温度が400℃以上である時間を5分以上とすることにより、Al−Mn系やAl−Mn−Si系の金属間化合物が十分に析出し、本発明で規定する固溶Si量及び固溶Mn量を得ることができる。   Therefore, in order to reduce the amount of solute Si and the amount of solute Mn, in this heating stage, as many nuclei of Al—Mn and Al—Mn—Si intermetallic compounds as possible are generated, and in the rolling stage. It is sufficient to deposit as much as possible. In particular, since the amount of nucleation after reaching 400 ° C. in the heating stage increases, temperature control after this is important. The heating rate from reaching 400 ° C. to reaching the holding temperature in the heating stage is 60 ° C./h or less, and in the holding stage, the holding time is 450 to 560 ° C. and the holding time is 0.5 hours or more, In the hot rolling stage, by setting the time during which the temperature of the hot rolled sheet is 400 ° C. or more to 5 minutes or more, an Al—Mn based or Al—Mn—Si based intermetallic compound is sufficiently precipitated. The solute Si amount and the solute Mn amount specified in the invention can be obtained.

加熱段階において400℃に達してから保持温度到達時までの昇温速度が60℃/hを超える場合、又は、保持段階において保持温度が450〜560℃での保持時間が0.5時間未満の場合は、生成する核の量が不十分であり、本発明で規定する固溶Si量及び固溶Mn量を得ることができない。また、圧延段階において熱間圧延板の温度が400℃以上である時間が5分間未満の場合は、Al−Mn系やAl−Mn−Si系の金属間化合物の析出量が不十分であり、本発明で規定する固溶Si量及び固溶Mn量を得ることができない。保持段階における保持温度が560℃を超える場合は、生成した金属間化合物の核が再固溶してしまい、本発明で規定する固溶Si量及び固溶Mn量を得ることができない。更に、保持温度が560℃を超える場合は、アルミニウム合金に溶融が生じてしまい、フィン材を製造できない虞がある。また、保持段階における保持温度が450℃未満の場合は、熱間圧延時の塑性加工性が不十分となり、熱間圧延中に割れが生じて、アルミニウム合金材を製造できないおそれがある。   When the heating rate from reaching 400 ° C. in the heating stage to reaching the holding temperature exceeds 60 ° C./h, or in the holding stage, the holding time at 450 to 560 ° C. is less than 0.5 hours. In this case, the amount of nuclei produced is insufficient, and the solid solution Si amount and the solid solution Mn amount specified in the present invention cannot be obtained. In addition, when the time during which the temperature of the hot-rolled sheet is 400 ° C. or more is less than 5 minutes in the rolling stage, the precipitation amount of the Al—Mn-based or Al—Mn—Si-based intermetallic compound is insufficient, The solute Si amount and solute Mn amount specified in the present invention cannot be obtained. When the holding temperature in the holding stage exceeds 560 ° C., the nucleus of the generated intermetallic compound is re-dissolved, and the solid solution Si amount and the solid solution Mn amount specified in the present invention cannot be obtained. Furthermore, when the holding temperature exceeds 560 ° C., melting occurs in the aluminum alloy, and there is a possibility that the fin material cannot be manufactured. Further, when the holding temperature in the holding stage is less than 450 ° C., the plastic workability during hot rolling becomes insufficient, and cracks may occur during hot rolling, making it impossible to produce an aluminum alloy material.

加熱段階において400℃に達してから保持温度到達時までの昇温速度は、好ましくは50℃/h以下であり、保持段階における保持時間は、好ましくは1.0時間以上であり、保持段階における保持温度は、好ましくは460〜540℃であり、熱間圧延段階において熱間圧延板の温度が400℃以上である時間は、好ましくは7分以上である。   The heating rate from reaching 400 ° C. until reaching the holding temperature in the heating stage is preferably 50 ° C./h or less, and the holding time in the holding stage is preferably 1.0 hour or more, and in the holding stage. The holding temperature is preferably 460 to 540 ° C., and the time during which the temperature of the hot rolled sheet is 400 ° C. or higher in the hot rolling stage is preferably 7 minutes or longer.

本発明で規定する固溶Si量及び固溶Mn量の観点からは、400℃到達時から保持段階の保持温度到達時までの昇温速度の下限値は特に限定されるものではないが、10℃/h未満とした場合には、昇温に極めて長時間を要してしまい経済性が著しく損なわれる。また、本発明で規定する固溶Si量及び固溶Mn量の観点からは、上記保持段階における保持時間の上限値は特に限定されるものではないが、20時間を超えると経済性が著しく損なわれる。更に、熱間圧延段階において熱間圧延板の温度が400℃以上である時間の上限値は特に限定されるものではないが、50分を超えると経済性が著しく損なわれる。となる。   From the viewpoint of the amount of solute Si and the amount of solute Mn specified in the present invention, the lower limit of the rate of temperature increase from when reaching 400 ° C. until reaching the holding temperature in the holding stage is not particularly limited. If it is less than ° C./h, it takes a very long time to raise the temperature, and the economy is significantly impaired. Moreover, from the viewpoint of the amount of solute Si and the amount of solute Mn specified in the present invention, the upper limit value of the holding time in the holding stage is not particularly limited, but if it exceeds 20 hours, the economic efficiency is significantly impaired. It is. Furthermore, the upper limit of the time during which the temperature of the hot-rolled sheet is 400 ° C. or higher in the hot rolling stage is not particularly limited, but if it exceeds 50 minutes, the economy is significantly impaired. It becomes.

6−3.冷間圧延工程
本発明に係るアルミニウム合金フィン材の第1態様の製造方法では、冷間圧延工程において更に特徴を有する。この冷間圧延工程では、冷間圧延板の温度を120℃以下に規定する。この制御により、ろう付中の再結晶温度を低くすることができ、それによってろう付加熱時の昇温過程における再結晶温度を450℃以下とすることができ、その結果、ろう付中のろう溶融前において粒界偏析が解消され、更にその結果、S1/S2及びZ1/Z2の値がいずれも1.20以下となり、フィンの溶融を抑制することができる。以下に、この理由を説明する。
6-3. Cold rolling process The manufacturing method of the first aspect of the aluminum alloy fin material according to the present invention further has a feature in the cold rolling process. In this cold rolling process, the temperature of the cold rolled sheet is regulated to 120 ° C. or lower. This control makes it possible to lower the recrystallization temperature during brazing, thereby reducing the recrystallization temperature in the temperature rising process during brazing addition heat to 450 ° C. or less. Grain boundary segregation is eliminated before melting, and as a result, the values of S1 / S2 and Z1 / Z2 are both 1.20 or less, and fin melting can be suppressed. The reason for this will be described below.

既に述べたように、ろう付中のアルミニウム合金フィン材には再結晶が生じるが、この再結晶の駆動力となるものは、冷間圧延中にアルミニウム合金に加えられた加工ひずみである。しかしながら、冷間圧延中にも加工により発熱が生じるため、単に冷間圧延を行っただけではこの加工発熱によって材料温度が上昇し、加えられた加工ひずみが回復してしまうため、十分な加工ひずみを得ることができない。本発明者らはこのことに着目して鋭意研究を重ねた結果、冷間圧延工程中における冷間圧延板の温度が120℃以下であれば、十分な加工ひずみを得られ、ろう付時の再結晶温度を450℃以下に低くすることができることを見出した。   As already described, recrystallization occurs in the aluminum alloy fin material during brazing, and the driving force for this recrystallization is the processing strain applied to the aluminum alloy during cold rolling. However, since heat is generated by processing even during cold rolling, simply performing cold rolling increases the material temperature due to this processing heat generation and recovers the applied processing strain. Can't get. As a result of intensive studies focusing on this, the present inventors have obtained a sufficient work strain if the temperature of the cold-rolled sheet during the cold-rolling process is 120 ° C. or less. It has been found that the recrystallization temperature can be lowered to 450 ° C. or lower.

冷間圧延中の冷間圧延板の温度が120℃を超える場合は、加えた加工ひずみが回復してしまい、ろう付時の再結晶温度を450℃以下に低くすることができない。冷間圧延中の冷間圧延板の温度は、好ましくは100℃以下である。なお、加工ひずみの観点からは、冷間圧延中のアルミニウム合金の温度の下限値は制限されるものではないが、加工発熱を完全に無くすことはできないため、60℃以下とすることは困難である。なお、冷間圧延中のアルミニウム合金の温度を制御する方法は特に制限されるものではないが、例えば冷間圧延出側の温度を測定して、冷間圧延の速度にフィードバックする方法などにより制御することができる。   When the temperature of the cold-rolled sheet during cold rolling exceeds 120 ° C, the applied processing strain is recovered, and the recrystallization temperature during brazing cannot be lowered to 450 ° C or lower. The temperature of the cold rolled sheet during the cold rolling is preferably 100 ° C. or lower. From the viewpoint of processing strain, the lower limit value of the temperature of the aluminum alloy during cold rolling is not limited, but it is difficult to reduce the heat generation to 60 ° C. or less because the processing heat generation cannot be completely eliminated. is there. The method for controlling the temperature of the aluminum alloy during the cold rolling is not particularly limited. For example, the temperature is controlled by a method of measuring the temperature at the cold rolling outlet and feeding it back to the cold rolling speed. can do.

なお、冷間圧延の途中で1回又は2回以上の焼鈍工程を施す場合は、最後の焼鈍を行った後の最終冷間圧延で上記温度制御を行えば良い。   In addition, what is necessary is just to perform the said temperature control by the last cold rolling after performing the last annealing, when performing the annealing process of 1 time or 2 times or more in the middle of cold rolling.

6−4.その他の工程
本発明に係るアルミニウム合金フィン材の第1態様における鋳造工程は、半連続鋳造(DC)法による。本発明に係るアルミニウム合金フィン材は、既に述べたように、熱間圧延工程における加熱段階、保持段階及び熱間圧延段階により、フィン溶融及び高温疲労によるフィン破断を抑制している。アルミニウム合金を鋳造する方法としては半連続鋳造法の他に連続鋳造法があるが、連続鋳造法で得られるアルミニウム合金は板厚が薄く、熱間圧延工程に供することができないため本発明に適用することはできない。
6-4. Other Steps The casting step in the first aspect of the aluminum alloy fin material according to the present invention is based on a semi-continuous casting (DC) method. As already described, the aluminum alloy fin material according to the present invention suppresses fin rupture due to fin melting and high-temperature fatigue by the heating stage, holding stage, and hot rolling stage in the hot rolling process. As a method of casting an aluminum alloy, there is a continuous casting method in addition to a semi-continuous casting method, but the aluminum alloy obtained by the continuous casting method has a thin plate thickness and cannot be used in a hot rolling process. I can't do it.

アルミニウム合金を鋳造して得られる鋳塊を、熱間圧延工程の前に均質化処理工程に供しても良い。均質化処理工程は、通常、450〜620℃で1〜24時間行うのが好ましく、480〜620℃で1〜20時間行うのがより好ましい。処理温度が450℃未満又は処理時間が1時間未満では均質化効果が十分でない場合があり、620℃を超えると鋳塊の溶融を生じてしまう虞がある。また、処理時間が24時間を超えると、経済性を著しく損なう。なお、均質化処理工程の加熱段階において、既に述べた熱間圧延工程の加熱段階における規定と同等の制御を行うことは可能である。しかしながら、均質化処理後に一旦アルミニウム合金を冷却すると、生成された金属間化合物の核が消失してしまうため、熱間圧延工程の加熱段階での処理と同等の効果を得ることはできない。   The ingot obtained by casting the aluminum alloy may be subjected to a homogenization treatment step before the hot rolling step. The homogenization treatment step is usually preferably performed at 450 to 620 ° C. for 1 to 24 hours, and more preferably at 480 to 620 ° C. for 1 to 20 hours. If the treatment temperature is less than 450 ° C. or the treatment time is less than 1 hour, the homogenizing effect may not be sufficient, and if it exceeds 620 ° C., the ingot may be melted. Further, if the treatment time exceeds 24 hours, the economy is remarkably impaired. In the heating stage of the homogenization treatment process, it is possible to perform the same control as defined in the heating stage of the hot rolling process already described. However, once the aluminum alloy is cooled after the homogenization treatment, the nuclei of the produced intermetallic compound disappear, and thus the same effect as the treatment in the heating stage of the hot rolling process cannot be obtained.

焼鈍工程は、成形性向上などの目的で、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において1回以上行われる。具体的には、(1)冷間圧延工程の途中において1回以上の中間焼鈍が実施され、(2)冷間圧延工程の後に最終焼鈍工程が1回実施され、或いは、(3)(1)及び(2)が実施されるものである。この焼鈍工程では、フィン材を200〜450℃で1〜10時間保持するのが好ましい。保持温度が200℃未満、保持時間が1時間未満の場合は、上記効果が十分でない場合がある。保持温度が450℃を超える場合、保持時間が10時間を超える場合は、経済性を著しく損なう。より好ましい焼鈍条件は、温度230〜420℃、保持時間1〜8時間である。なお、焼鈍工程の回数の上限は特に限定されるものではないが、工程数の増加によるコスト増加を回避するために、3回とするのが好ましい。また、冷間圧延の途中において焼鈍を行う場合、既に述べた加工ひずみの観点から、最後に焼鈍を行ってから最終板厚に達するまでの冷間圧延率は、15%以上とすることが好ましい。   The annealing process is performed once or more in the middle of the cold rolling process and / or after the cold rolling process for the purpose of improving formability. Specifically, (1) one or more intermediate annealings are performed during the cold rolling process, (2) the final annealing process is performed once after the cold rolling process, or (3) (1 ) And (2) are implemented. In this annealing step, it is preferable to hold the fin material at 200 to 450 ° C. for 1 to 10 hours. When the holding temperature is less than 200 ° C. and the holding time is less than 1 hour, the above effect may not be sufficient. When holding temperature exceeds 450 degreeC, when holding time exceeds 10 hours, economical efficiency will be impaired remarkably. More preferable annealing conditions are a temperature of 230 to 420 ° C. and a holding time of 1 to 8 hours. In addition, although the upper limit of the frequency | count of an annealing process is not specifically limited, In order to avoid the cost increase by the increase in the number of processes, it is preferable to set it as 3 times. Moreover, when performing annealing in the middle of cold rolling, from the viewpoint of the processing strain already described, the cold rolling rate from the last annealing to the final plate thickness is preferably 15% or more. .

6−2.第2態様の製造方法
次に、本発明に係るアルミニウム合金フィン材の第2態様の製造方法について説明する。
6-2. Next, the manufacturing method of the 2nd aspect of the aluminum alloy fin material which concerns on this invention is demonstrated.

6−2−1.各製造工程
本発明に係るアルミニウム合金フィン材の第2態様の製造方法は、アルミニウム合金を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含む。
6-2-1. Each manufacturing process The manufacturing method of the 2nd aspect of the aluminum alloy fin material which concerns on this invention is the process of casting an aluminum alloy, the homogenization process process of homogenizing the cast ingot, and the ingot which homogenized process Annealing a cold-rolled sheet in one or both of a hot-rolling process for hot-rolling, a cold-rolling process for cold-rolling a hot-rolled sheet, and during the cold-rolling process and after the cold-rolling process Including one or more annealing steps.

本発明のアルミニウム合金フィン材は、固溶Si量及び固溶Mn量、ならびに、ろう付時の再結晶温度を制御することにより、優れた耐フィン溶融性と高温耐久性を実現するものである。本発明者らは鋭意研究の結果、製造工程中で固溶Si量及び固溶Mn量に及ぼす影響が最も大きいのは均質化処理工程であり、ろう付時の再結晶温度に及ぼす影響が最も大きいのは冷間圧延工程であることを見出した。以下では、これら均質化処理工程及び冷間圧延工程の制御方法について説明する。   The aluminum alloy fin material of the present invention realizes excellent fin melting resistance and high temperature durability by controlling the amount of solid solution Si and solid solution Mn, and the recrystallization temperature during brazing. . As a result of intensive studies, the inventors have found that the homogenization treatment process has the largest effect on the amount of dissolved Si and the amount of dissolved Mn in the production process, and the effect on the recrystallization temperature during brazing is the largest. It has been found that the larger is the cold rolling process. Below, the control method of these homogenization process steps and cold rolling steps will be described.

6−2.均質化処理工程
本発明に係るアルミニウム合金フィン材の第2態様の製造方法では、鋳造したアルミニウム合金の鋳塊を均質化処理する均質化処理工程にまず特徴を有する。この均質化処理工程は、鋳塊を加熱する加熱段階と、これに続く保持段階と、加熱保持した鋳塊を冷却する冷却段階を含む。そして、加熱段階においては、400℃に達してから保持段階の保持温度到達時までの昇温速度を60℃/h以下に規定する。また、保持段階においては、保持温度が450〜560℃で保持時間を1.0時間以上に規定する。更に、冷却段階においては、鋳塊の温度が400℃に達するまでの冷却速度を60℃/h以下に規定する。このようにアルミニウム合金の均質化処理工程の条件を規定することにより、本発明に係るアルミニウム合金フィン材は、本発明で規定するろう付前における固溶Si量、ならびに、本発明で規定するろう付前及びろう付後における固溶Mn量(以下、「本発明で規定する固溶Si量及び固溶Mn量」と記す)を達成することができ、ろう付中に優れた耐フィン溶融性と高温耐久性を発揮することができる。以下において、この理由を説明する。
6-2. Homogenization treatment step The method for producing the second aspect of the aluminum alloy fin material according to the present invention is characterized by a homogenization treatment step of homogenizing the cast aluminum alloy ingot. This homogenization treatment process includes a heating stage for heating the ingot, a holding stage following the heating stage, and a cooling stage for cooling the heated and held ingot. In the heating stage, the rate of temperature rise from reaching 400 ° C. until reaching the holding temperature in the holding stage is regulated to 60 ° C./h or less. In the holding stage, the holding temperature is 450 to 560 ° C., and the holding time is defined as 1.0 hour or more. Furthermore, in the cooling stage, the cooling rate until the temperature of the ingot reaches 400 ° C. is regulated to 60 ° C./h or less. By defining the conditions of the homogenization process of the aluminum alloy as described above, the aluminum alloy fin material according to the present invention will be defined by the solid solution Si amount before brazing defined by the present invention and the present invention. The amount of solid solution Mn before brazing and after brazing (hereinafter referred to as “the amount of solid solution Si and the amount of solid solution Mn defined in the present invention”) can be achieved, and excellent fin melt resistance during brazing And high temperature durability. The reason for this will be described below.

アルミニウム合金の鋳造工程において、多量のSi及びMnが鋳塊のマトリクス中に固溶する。このようにマトリクス中に固溶した多量のSi及びMnは、均質化処理工程における加熱段階、保持段階及び冷却段階において、Al−Mn系やAl−Mn−Si系の金属間化合物を生成し、これら3つの段階からなる均質化処理工程の条件がろう付前のアルミニウム合金フィン材の本発明で規定する固溶Si量及び固溶Mn量をほぼ決定する。   In the aluminum alloy casting process, a large amount of Si and Mn are dissolved in the ingot matrix. Thus, a large amount of Si and Mn dissolved in the matrix generates Al-Mn-based and Al-Mn-Si-based intermetallic compounds in the heating stage, holding stage, and cooling stage in the homogenization treatment process. The conditions of the homogenization process consisting of these three stages substantially determine the solute Si amount and the solute Mn amount specified in the present invention of the aluminum alloy fin material before brazing.

従って、固溶Si量及び固溶Mn量を減少させるためには、この加熱段階、保持段階及び冷却段階において、できるだけ多くのAl−Mn系やAl−Mn−Si系の金属間化合物を析出させれば良い。特に、400℃以上の温度領域における析出量が多くなるため、これ以降の温度制御が重要である。加熱段階において400℃に達してから保持温度到達時までの昇温速度を60℃/h以下とし、保持段階においては450〜560℃の保持温度で保持時間を1.0時間以上とし、冷却段階においては鋳塊の温度が400℃に達するまでの冷却速度を60℃/h以下とすることにより、Al−Mn系やAl−Mn−Si系の金属間化合物が十分に析出し、本発明で規定する固溶Si量及び固溶Mn量を得ることができる。   Therefore, in order to reduce the amount of solute Si and the amount of solute Mn, as much Al—Mn and Al—Mn—Si intermetallic compounds as possible are precipitated in this heating stage, holding stage and cooling stage. Just do it. In particular, since the amount of precipitation increases in a temperature region of 400 ° C. or higher, temperature control after this is important. The temperature rising rate from reaching 400 ° C. until reaching the holding temperature in the heating stage is set to 60 ° C./h or less. In the holding stage, the holding time is set to 450 to 560 ° C. In the present invention, the cooling rate until the temperature of the ingot reaches 400 ° C. is set to 60 ° C./h or less, so that Al—Mn-based and Al—Mn—Si-based intermetallic compounds are sufficiently precipitated. The solute Si amount and the solute Mn amount can be obtained.

加熱段階において400℃に達してから保持温度到達時までの昇温速度が60℃/hを超える場合、又は、保持段階において保持温度が450℃未満の場合や保持時間が1.0時間未満の場合、又は、冷却段階において鋳塊の温度が400℃に達するまでの冷却速度が60℃/hを超える場合は、析出する金属間化合物の量が不十分であり、本発明で規定する固溶Si量及び固溶Mn量を得ることができない。保持段階における保持温度が560℃を超える場合は、析出した金属間化合物のSi及びMnが再固溶してしまい、本発明で規定する固溶Si量及び固溶Mn量を得ることができない。更に、保持温度が560℃を超える場合は、アルミニウム合金に溶融が生じてしまい、フィン材を製造できない虞がある。   When the heating rate from reaching 400 ° C. to reaching the holding temperature exceeds 60 ° C./h in the heating stage, or when the holding temperature is less than 450 ° C. or holding time is less than 1.0 hour in the holding stage. When the cooling rate until the temperature of the ingot reaches 400 ° C. in the cooling stage exceeds 60 ° C./h, the amount of precipitated intermetallic compound is insufficient, and the solid solution defined in the present invention The amount of Si and the amount of solute Mn cannot be obtained. When the holding temperature in the holding stage exceeds 560 ° C., the precipitated intermetallic compound Si and Mn are re-dissolved, and the solid solution Si amount and the solid solution Mn amount specified in the present invention cannot be obtained. Furthermore, when the holding temperature exceeds 560 ° C., melting occurs in the aluminum alloy, and there is a possibility that the fin material cannot be manufactured.

加熱段階において400℃に達してから保持温度到達時までの昇温速度は、好ましくは50℃/h以下であり、保持段階における保持時間は、好ましくは2.0時間以上であり、保持段階における保持温度は、好ましくは480〜530℃であり、冷却段階において鋳塊の温度が400℃に達するまでの冷却速度は、好ましくは50℃/h以下である。   The heating rate from reaching 400 ° C. until reaching the holding temperature in the heating stage is preferably 50 ° C./h or less, and the holding time in the holding stage is preferably 2.0 hours or more. The holding temperature is preferably 480 to 530 ° C., and the cooling rate until the temperature of the ingot reaches 400 ° C. in the cooling stage is preferably 50 ° C./h or less.

本発明で規定する固溶Si量及び固溶Mn量の観点からは、加熱段階において400℃に達してから保持段階の保持温度到達時までの昇温速度、ならびに、冷却段階において鋳塊の温度が400℃に達するまでの冷却速度の下限値は特に限定されるものではないが、10℃/h未満とした場合には、昇温や降温に極めて長時間を要してしまい経済性が著しく損なわれる。また、本発明で規定する固溶Si量及び固溶Mn量の観点からは、上記保持段階における保持時間の上限値は特に限定されるものではないが、20時間を超えると経済性が著しく損なわれる。   From the viewpoint of the amount of dissolved Si and the amount of dissolved Mn specified in the present invention, the rate of temperature increase from reaching 400 ° C. in the heating stage to the time when the holding temperature in the holding stage is reached, The lower limit of the cooling rate until the temperature reaches 400 ° C. is not particularly limited, but if it is less than 10 ° C./h, it takes a very long time to raise or lower the temperature, and the economy is extremely high. Damaged. Moreover, from the viewpoint of the amount of solute Si and the amount of solute Mn specified in the present invention, the upper limit value of the holding time in the holding stage is not particularly limited, but if it exceeds 20 hours, the economic efficiency is remarkably impaired. It is.

6−3.冷間圧延工程
本発明に係るアルミニウム合金フィン材の第2態様の製造方法では、冷間圧延工程において更に特徴を有する。この冷間圧延工程では、冷間圧延板の温度を120℃以下に規定する。この制御により、ろう付中の再結晶温度を低くすることができ、それによってろう付加熱時の昇温過程における再結晶温度を450℃以下とすることができ、その結果ろう付中のろう溶融前において粒界偏析が解消され、さらにその結果、S1/S2及びZ1/Z2の値がいずれも1.20以下となり、フィンの溶融を抑制することができる。以下に、この理由を説明する。
6-3. Cold rolling process The manufacturing method of the second aspect of the aluminum alloy fin material according to the present invention further has features in the cold rolling process. In this cold rolling process, the temperature of the cold rolled sheet is regulated to 120 ° C. or lower. This control makes it possible to lower the recrystallization temperature during brazing, thereby reducing the recrystallization temperature in the temperature rising process during brazing addition heat to 450 ° C. or lower, and as a result, melting of the brazing during brazing. Grain boundary segregation is eliminated before, and as a result, the values of S1 / S2 and Z1 / Z2 are both 1.20 or less, and the melting of fins can be suppressed. The reason for this will be described below.

既に述べたように、ろう付中のアルミニウム合金フィン材には再結晶が生じるが、この再結晶の駆動力となるものは、冷間圧延中にアルミニウム合金に加えられた加工ひずみである。しかしながら、冷間圧延中にも加工により発熱が生じるため、単に冷間圧延を行っただけではこの加工発熱によって材料温度が上昇し、加えられた加工ひずみが回復してしまうため、十分な加工ひずみを得ることができない。本発明者らはこのことに着目して鋭意研究を重ねた結果、冷間圧延工程中における冷間圧延板の温度が120℃以下であれば、十分な加工ひずみを得られ、ろう付時の再結晶温度を450℃以下に低くすることができることを見出した。   As already described, recrystallization occurs in the aluminum alloy fin material during brazing, and the driving force for this recrystallization is the processing strain applied to the aluminum alloy during cold rolling. However, since heat is generated by processing even during cold rolling, simply performing cold rolling increases the material temperature due to this processing heat generation and recovers the applied processing strain. Can't get. As a result of intensive studies focusing on this, the present inventors have obtained a sufficient work strain if the temperature of the cold-rolled sheet during the cold-rolling process is 120 ° C. or less. It has been found that the recrystallization temperature can be lowered to 450 ° C. or lower.

冷間圧延中の冷間圧延板の温度が120℃を超える場合は、加えた加工ひずみが回復してしまい、ろう付時の再結晶温度を450℃以下に低くすることができない。冷間圧延中の冷間圧延板の温度は、好ましくは100℃以下である。なお、加工ひずみの観点からは、冷間圧延中のアルミニウム合金の温度の下限値は制限されるものではないが、加工発熱を完全に無くすことはできないため、60℃以下とすることは困難である。なお、冷間圧延中のアルミニウム合金の温度を制御する方法は特に制限されるものではないが、例えば冷間圧延出側の温度を測定して、冷間圧延の速度にフィードバックする方法などにより制御することができる。   When the temperature of the cold-rolled sheet during cold rolling exceeds 120 ° C, the applied processing strain is recovered, and the recrystallization temperature during brazing cannot be lowered to 450 ° C or lower. The temperature of the cold rolled sheet during the cold rolling is preferably 100 ° C. or lower. From the viewpoint of processing strain, the lower limit value of the temperature of the aluminum alloy during cold rolling is not limited, but it is difficult to reduce the heat generation to 60 ° C. or less because the processing heat generation cannot be completely eliminated. is there. The method for controlling the temperature of the aluminum alloy during the cold rolling is not particularly limited. For example, the temperature is controlled by a method of measuring the temperature at the cold rolling outlet and feeding it back to the cold rolling speed. can do.

なお、冷間圧延の途中で1回又は2回以上の焼鈍工程を施す場合は、最後の焼鈍を行った後の最終冷間圧延で上記温度制御を行えば良い。   In addition, what is necessary is just to perform the said temperature control by the last cold rolling after performing the last annealing, when performing the annealing process of 1 time or 2 times or more in the middle of cold rolling.

6−4.その他の工程
本発明に係るアルミニウム合金フィン材の第2態様における鋳造工程は、半連続鋳造(DC)法による。本発明に係るアルミニウム合金フィン材は、既に述べたように、均質化処理工程における加熱段階、保持段階及び冷却段階により、フィン溶融及び高温疲労によるフィン破断を抑制している。アルミニウム合金を鋳造する方法としては半連続鋳造法の他に連続鋳造法があるが、連続鋳造法で得られるアルミニウム合金は板厚が薄く、熱間圧延工程に供することができないため本発明に適用することはできない。
6-4. Other Steps The casting step in the second aspect of the aluminum alloy fin material according to the present invention is based on a semi-continuous casting (DC) method. As described above, the aluminum alloy fin material according to the present invention suppresses fin rupture due to fin melting and high-temperature fatigue by the heating stage, holding stage, and cooling stage in the homogenization process. As a method of casting an aluminum alloy, there is a continuous casting method in addition to a semi-continuous casting method, but the aluminum alloy obtained by the continuous casting method has a thin plate thickness and cannot be used in a hot rolling process. I can't do it.

鋳造工程後、均質化処理工程に供されたアルミニウム合金の鋳塊は、次いで熱間圧延工程に供される。熱間圧延工程における加熱段階では、鋳塊を好ましくは400〜580℃で0.5時間以上、より好ましくは420〜550℃で1時間以上加熱する。加熱温度が400℃未満の場合は塑性加工性が低く、熱間圧延中に割れが生じる虞があり、加熱温度が580℃を超える場合は鋳塊に溶融が生じる虞があり、加熱時間が0.5時間未満の場合は鋳塊の温度が均一とならない虞がある。なお、加熱時間の上限値は特に限定されるものではないが、経済性の観点から本発明では20時間程度である。   After the casting process, the aluminum alloy ingot subjected to the homogenization treatment process is then subjected to a hot rolling process. In the heating stage in the hot rolling step, the ingot is preferably heated at 400 to 580 ° C for 0.5 hour or longer, more preferably 420 to 550 ° C for 1 hour or longer. When the heating temperature is less than 400 ° C., the plastic workability is low, and cracking may occur during hot rolling. When the heating temperature exceeds 580 ° C., the ingot may be melted, and the heating time is 0. If the time is less than 5 hours, the temperature of the ingot may not be uniform. In addition, although the upper limit of heating time is not specifically limited, it is about 20 hours in this invention from a viewpoint of economical efficiency.

焼鈍工程は、成形性向上などの目的で、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において1回以上行われる。具体的には、(1)冷間圧延工程の途中において1回以上の中間焼鈍が実施され、(2)冷間圧延工程の後に最終焼鈍工程が1回実施され、或いは、(3)(1)及び(2)が実施されるものである。この焼鈍工程では、フィン材を200〜450℃で1〜10時間保持するのが好ましい。保持温度が200℃未満、保持時間が1時間未満の場合は、上記効果が十分でない場合がある。保持温度が450℃を超える場合、保持時間が10時間を超える場合は、経済性を著しく損なう。より好ましい焼鈍条件は、温度230〜420℃、保持時間1〜8時間である。なお、焼鈍工程の回数の上限は特に限定されるものではないが、工程数の増加によるコスト増加を回避するために、3回とするのが好ましい。また、冷間圧延の途中において焼鈍を行う場合、既に述べた加工ひずみの観点から、最後に焼鈍を行ってから最終板厚に達するまでの冷間圧延率は、15%以上とすることが好ましい。   The annealing process is performed once or more in the middle of the cold rolling process and / or after the cold rolling process for the purpose of improving formability. Specifically, (1) one or more intermediate annealings are performed during the cold rolling process, (2) the final annealing process is performed once after the cold rolling process, or (3) (1 ) And (2) are implemented. In this annealing step, it is preferable to hold the fin material at 200 to 450 ° C. for 1 to 10 hours. When the holding temperature is less than 200 ° C. and the holding time is less than 1 hour, the above effect may not be sufficient. When holding temperature exceeds 450 degreeC, when holding time exceeds 10 hours, economical efficiency will be impaired remarkably. More preferable annealing conditions are a temperature of 230 to 420 ° C. and a holding time of 1 to 8 hours. In addition, although the upper limit of the frequency | count of an annealing process is not specifically limited, In order to avoid the cost increase by the increase in the number of processes, it is preferable to set it as 3 times. Moreover, when performing annealing in the middle of cold rolling, from the viewpoint of the processing strain already described, the cold rolling rate from the last annealing to the final plate thickness is preferably 15% or more. .

本発明に係るアルミニウム合金フィン材の板厚は特に限定されるものではないが、100μm以下の薄肉材である場合に、耐溶融性の向上及び高温耐久性の向上の優位性が十分に発揮される。板厚が100μmより大きい場合には、フィンの溶融や高温耐久性はそれほど問題とならないため、本発明の優位性は十分に発揮されない。   The plate thickness of the aluminum alloy fin material according to the present invention is not particularly limited, but when it is a thin material having a thickness of 100 μm or less, the advantages of improvement in melting resistance and improvement in high temperature durability are sufficiently exhibited. The When the plate thickness is larger than 100 μm, the melting of fins and high-temperature durability do not matter so much, and the superiority of the present invention is not sufficiently exhibited.

7.熱交換器
本発明に係るアルミニウム合金フィン材は、熱交換器用のフィンとして好適に用いられる。例えば、フィン形状にコルゲート成型した後、流路形成部品、ヘッダープレートなどの熱交換器用部材と組み合わせ、ろう付加熱に供することによって熱交換器を得ることができる。
7). Heat exchanger The aluminum alloy fin material according to the present invention is preferably used as a fin for a heat exchanger. For example, after corrugating into a fin shape, the heat exchanger can be obtained by combining with heat exchanger members such as flow path forming parts and header plates, and subjecting it to brazing additional heat.

上記熱交換器は、両端部分をヘッダープレートに取り付けた流路形成部品の外面にフィン材を配置して組立てる。次いで、流路形成部品の両端重ね合せ部分、フィン材と流路形成部品の外面、流路形成部品の両端とヘッダープレートを1回のろう付け加熱によって同時に接合する。ろう付け方法としては、フラックス無しろう付法、ノコロックろう付法、真空ろう付法が用いられるが、ノコロックろう付法が好ましい。このようなろう付においては、上述のように、ろう付時のフィン溶融を防止するために、ろう付時の昇温過程における再結晶温度を450℃以下とする。なお、他のろう付加熱条件は、上述の通り通りとするのが好ましい。   The heat exchanger is assembled by disposing a fin material on the outer surface of the flow path forming component having both end portions attached to the header plate. Next, the overlapping portions on both ends of the flow path forming component, the fin material and the outer surface of the flow path forming component, and both ends of the flow path forming component and the header plate are simultaneously joined by one brazing heating. As the brazing method, a flux-free brazing method, a nocolok brazing method, or a vacuum brazing method is used, but the nocolock brazing method is preferable. In such brazing, as described above, the recrystallization temperature in the temperature rising process during brazing is set to 450 ° C. or lower in order to prevent fin melting during brazing. Other brazing heat addition conditions are preferably as described above.

次に、本発明例と比較例に基づいて本発明を更に詳細に説明するが、本発明はこれらに制限されるものではない。   Next, the present invention will be described in more detail based on examples of the present invention and comparative examples, but the present invention is not limited to these.

第1実施例(本発明例1−1〜1−9、1−19〜1−28、比較例1−10〜1−18、1−29〜1−34)
まず、第1態様の製造方法で製造したアルミニウム合金フィン材について説明する。
表1に示す合金組成を有するアルミニウム合金をそれぞれDC鋳造により鋳造し、各々両面を面削して仕上げた。面削後の鋳塊厚さは、いずれも400mmとした。これらのアルミニウム合金の鋳塊を、表2に示す条件の均質化処理工程、熱間圧延工程、冷間圧延工程、焼鈍工程に供した。熱間圧延後の板厚はいずれも3mmであった。その後、(1)冷間圧延→中間焼鈍→最終冷間圧延の順、(2)冷間圧延→中間焼鈍→最終冷間圧延→最終焼鈍の順、(3)冷間圧延→最終焼鈍の順のいずれかで、最終板厚0.05mmのフィン材試料を作製した。中間焼鈍及び最終焼鈍の条件は、いずれも370℃にて2時間とし、中間焼鈍後の最終冷間圧延での圧延率は、いずれも30%とした。工程の組み合わせを表2に示す。
Example 1 (Invention Examples 1-1 to 1-9, 1-19 to 1-28, Comparative Examples 1-10 to 1-18, 1-29 to 1-34)
First, the aluminum alloy fin material manufactured by the manufacturing method of the first aspect will be described.
Each aluminum alloy having the alloy composition shown in Table 1 was cast by DC casting, and each side was chamfered and finished. The thickness of the ingot after chamfering was 400 mm in all cases. These aluminum alloy ingots were subjected to a homogenization treatment step, a hot rolling step, a cold rolling step, and an annealing step under the conditions shown in Table 2. The plate thickness after hot rolling was 3 mm in all cases. Then, (1) cold rolling → intermediate annealing → final cold rolling order, (2) cold rolling → intermediate annealing → final cold rolling → final annealing order, (3) cold rolling → final annealing order In either case, a fin material sample having a final thickness of 0.05 mm was produced. The conditions for the intermediate annealing and the final annealing were both 2 hours at 370 ° C., and the rolling ratio in the final cold rolling after the intermediate annealing was 30%. Table 2 shows the process combinations.

Figure 2017057497
Figure 2017057497

Figure 2017057497
Figure 2017057497

以上の製造工程において問題が発生せず、0.05mmの最終板厚まで圧延できた場合は製造性を「○」とし、鋳造時や圧延時に割れが生じて0.05mmの最終板厚まで圧延できなかったり、均質化処理工程で溶融が生じたりして、フィン材を製造できなかった場合は製造性を「×」として表3に示す。   No problems occur in the above manufacturing process, and if it can be rolled to a final plate thickness of 0.05 mm, the manufacturability is set to “◯”, and cracking occurs during casting or rolling to roll to a final plate thickness of 0.05 mm In the case where the fin material could not be manufactured due to the failure or the melting during the homogenization process, Table 3 shows the manufacturability as “x”.

上記フィン材試料を下記の各評価に供した。評価時のろう付加熱の条件(ろう付加熱相当条件)を表4に示し、評価結果を表3に示す。なお、表3における製造性「×」のものについては試料を製造できなかったため、下記評価は行うことができなかった。   The said fin material sample was used for each following evaluation. Table 4 shows the conditions for brazing heat addition during the evaluation (corresponding conditions for brazing heat addition), and Table 3 shows the evaluation results. In addition, since the sample was not able to be manufactured for those having the productivity “x” in Table 3, the following evaluation could not be performed.

Figure 2017057497
Figure 2017057497

Figure 2017057497
Figure 2017057497

(ろう付性の評価)
各フィン材試料をコルゲート成形して熱交換器フィンとした。このフィンを、A3003合金心材にA4045合金を10%クラッドした板厚0.3mmのチューブ相当材のろう材面と組み合わせ、5%のフッ化物フラックス水溶液中に浸漬し、表4のいずれかの条件にてろう付加熱に供して、ミニコア試料を作製した。このミニコア試料においてフィンに溶融が生じていない場合をろう付性が合格(○)とし、フィンに溶融が生じた場合をろう付性が不合格(×)とした。
(Evaluation of brazing)
Each fin material sample was corrugated to form heat exchanger fins. This fin is combined with a brazing material surface of a tube equivalent material having a plate thickness of 0.3 mm obtained by clad 10% A4045 alloy on an A3003 alloy core material, and immersed in a 5% fluoride flux aqueous solution. A mini-core sample was prepared by subjecting it to brazing heat. In this mini-core sample, the case where the fin was not melted was judged as acceptable (O), and the case where the fin was melted was judged as unacceptable (x).

(ろう付加熱後における引張強さの測定)
フィン材試料単体を、表4のいずれかの条件にてろう付相当加熱に供し、引張速度10mm/分、ゲージ長50mmの条件で、JIS Z2241に従って引張試験に供した。得られた応力−ひずみ曲線から引張強さを読み取った。その結果、引張強さが130MPa以上の場合を合格(○)とし、それ未満を不合格(×)とした。
(Measurement of tensile strength after brazing heat)
The fin material sample alone was subjected to brazing equivalent heating under any of the conditions in Table 4, and subjected to a tensile test according to JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm. The tensile strength was read from the obtained stress-strain curve. As a result, the case where the tensile strength was 130 MPa or more was determined to be acceptable (◯), and the case where the tensile strength was less than that was rejected (x).

(ろう付加熱後における高温疲労寿命の測定)
フィン材試料単体を、表4のいずれかの条件にてろう付相当加熱に供し、温度100℃の恒温槽内で、JIS Z2273に従って疲労試験に供した。応力比は0.1、最大応力は100MPa、周波数は20Hzとした。破断までの繰り返し数が10回以上であった場合を合格(○)とし、それ未満を不合格(×)とした。
(Measurement of high temperature fatigue life after brazing heat)
The fin material sample alone was subjected to brazing equivalent heating under any of the conditions in Table 4 and subjected to a fatigue test in a constant temperature bath at a temperature of 100 ° C. according to JIS Z2273. The stress ratio was 0.1, the maximum stress was 100 MPa, and the frequency was 20 Hz. The case where the number of repetitions until breakage was 10 6 times or more was regarded as acceptable (◯), and the number less than that was regarded as unacceptable (x).

(固溶Si量及び固溶Mn量の測定)
フィン材試料単体を、表4のいずれかの条件にてろう付相当加熱に供した。ろう付相当加熱を施したものと、施していないものとを試験サンプルとし、フェノール溶液に溶解し、未溶解となった金属間化合物をろ過により除去し、発光分析に供することにより測定した。SiとMnのそれぞれについて、含有量から金属間化合物として存在していた量を差し引いたものを、固溶量として求めた。
(Measurement of solute Si amount and solute Mn amount)
The fin material sample alone was subjected to brazing equivalent heating under any of the conditions in Table 4. Measurements were made by subjecting brazing-equivalent heating to those not subjected to brazing as test samples, dissolving them in a phenol solution, removing undissolved intermetallic compounds by filtration, and subjecting them to emission analysis. About each of Si and Mn, what subtracted the quantity which existed as an intermetallic compound from content was calculated | required as a solid solution amount.

(ろう付加熱中の再結晶温度の判定)
フィン材試料単体を、表4のいずれかの条件にて加熱し、昇温途中フィン材試料が450℃となった時点で取り出し、引張速度10mm/分、ゲージ長50mmの条件で、JIS Z2241に従って引張試験に供した。得られた応力−ひずみ曲線から0.2%耐力を読み取り、その値が80MPa以下となっていた場合に再結晶を完了していると判定し合格(○)とし、80MPaを超えていた場合に再結晶が未完了と判定し不合格(×)とした。
(Determination of recrystallization temperature during brazing heat)
A single fin material sample is heated under any of the conditions in Table 4, and is taken out when the temperature of the fin material sample reaches 450 ° C. in the course of temperature increase, and in accordance with JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm. The sample was subjected to a tensile test. When 0.2% proof stress is read from the obtained stress-strain curve, and the value is 80 MPa or less, it is determined that recrystallization has been completed and passed (O), and when it exceeds 80 MPa It was determined that recrystallization was incomplete, and the result was rejected (x).

(粒界偏析の評価)
フィン材試料単体を、表4もいずれかの条件にてろう付相当加熱に供した。ろう付相当加熱を施したものと、施していないものとを試験サンプルとし、FIB(集束イオンビーム)にて粒界が入るよう20μm×20μmのサイズのサンプリングを行なった。そして、このサンプルについて、透過走査型電子顕微鏡(STEM)を用いてエネルギー分散型X線分析(EDS)により0.2μm×0.2μmの視野においてSi及びZnのマッピングを行った。このマッピングの結果により、粒界からその両側0.05μmの範囲内におけるSi及びZnの濃度の半定量値の平均値を求め、それぞれS1及びZ1とした。また、マトリクスにおけるSi及びZnの濃度の半定量値の平均値を求め、それぞれS2及びZ2とし、S1/S2及びZ1/Z2の値を算出した。
(Evaluation of grain boundary segregation)
The fin material sample alone was subjected to brazing equivalent heating under any of the conditions shown in Table 4. Samples subjected to brazing equivalent heating and those not subjected to brazing were used as test samples, and sampling was performed with a size of 20 μm × 20 μm so that the grain boundaries could enter by FIB (focused ion beam). And about this sample, the mapping of Si and Zn was performed in the visual field of 0.2 micrometer x 0.2 micrometer by the energy dispersive X ray analysis (EDS) using the transmission scanning electron microscope (STEM). As a result of this mapping, the average values of the semi-quantitative values of the Si and Zn concentrations in the range of 0.05 μm on both sides from the grain boundary were obtained and were designated as S1 and Z1, respectively. Moreover, the average value of the semi-quantitative values of the Si and Zn concentrations in the matrix was determined, and S2 and Z2, respectively, and the values of S1 / S2 and Z1 / Z2 were calculated.

(腐食深さの測定による耐食性評価)
ろう付性の評価に用いたものと同様のミニコア試料を作製し、ASTM−G85に基づいてSWWAT試験に供した。1000時間でチューブ相当材に腐食貫通の生じなかったものを合格(○)とし、腐食貫通の生じたものを不合格(×)とした。
(Evaluation of corrosion resistance by measuring corrosion depth)
A minicore sample similar to that used for brazing evaluation was prepared and subjected to the SWWAT test based on ASTM-G85. Those in which corrosion penetration did not occur in the tube equivalent material in 1000 hours were evaluated as acceptable (◯), and those in which corrosion penetration occurred were determined to be unacceptable (x).

本発明例1−1〜1−9及び1−19〜1−28では、本発明で規定する条件を満たしており、製造性、ろう付性、ろう付加熱後における引張強さ、ろう付加熱後における高温疲労寿命、ならびに、耐食性のいずれも合格であった。   In Examples 1-1 to 1-9 and 1-19 to 1-28 of the present invention, the conditions specified in the present invention were satisfied, and manufacturability, brazing, tensile strength after brazing heat, brazing heat Both the high temperature fatigue life and the corrosion resistance later passed.

これに対して、比較例1−10ではSi成分が少な過ぎたため、ろう付加熱後における引張強さが不合格であった。   On the other hand, in Comparative Example 1-10, since there was too little Si component, the tensile strength after brazing addition heat was disqualified.

比較例1−11ではSi成分が多過ぎたため、ろう付時にフィン材に溶融が生じ、ろう付性が不合格であった。   In Comparative Example 1-11, since there was too much Si component, the fin material melted during brazing, and the brazing property was unacceptable.

比較例1−12ではFe成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 1-12, since there were too many Fe components, a crack was produced during rolling, and the fin material could not be produced, and the productivity was unacceptable.

比較例1−13ではMn成分が少な過ぎたため、ろう付加熱後における引張強さが不合格であった。   In Comparative Example 1-13, since there was too little Mn component, the tensile strength after brazing addition heat was disqualified.

比較例1−14ではMn成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 1-14, since there was too much Mn component, the crack generate | occur | produced at the time of rolling, a fin material could not be manufactured, and productivity was unsuccessful.

比較例1−15ではCu成分が多過ぎたため、耐食性が不合格であった。   In Comparative Example 1-15, since there was too much Cu component, corrosion resistance was unacceptable.

比較例1−16ではTi、Zr、Cr、V成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 1-16, since there were too many Ti, Zr, Cr, and V components, cracking occurred during rolling, and the fin material could not be produced, and the productivity was unacceptable.

比較例1−17ではZn成分が少な過ぎたため、耐食性が不合格であった。   In Comparative Example 1-17, since there was too little Zn component, corrosion resistance was unacceptable.

比較例1−18ではZn成分が多過ぎたため、耐食性が不合格であった。   In Comparative Example 1-18, since there was too much Zn component, corrosion resistance was unacceptable.

比較例1−29では、熱間圧延工程の加熱段階において、400℃到達時から保持温度到達時までの昇温速度が大き過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 1-29, in the heating stage of the hot rolling process, the rate of temperature increase from reaching 400 ° C. to reaching the holding temperature was too high, so that the amount of dissolved Si before and after brazing was too high during brazing. Melting occurred at the grain boundaries of the fin material and the brazing property was unacceptable, and the amount of Mn before and after brazing was too large, and the high temperature fatigue life was also unacceptable.

比較例1−30では、熱間圧延工程の保持段階において、保持温度が低過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 1-30, since the holding temperature was too low in the holding stage of the hot rolling process, the amount of solid solution Si before and after brazing was too much and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例1−31では、熱間圧延工程の保持段階において、保持温度が高過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 1-31, since the holding temperature was too high in the holding stage of the hot rolling process, the amount of solid solution Si before and after brazing was too much and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例1−32では、熱間圧延工程の保持段階において、保持時間が短過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 1-32, since the holding time was too short in the holding stage of the hot rolling process, the amount of solute Si before and after brazing was too much, and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例1−33では、熱間圧延工程の熱間圧延段階において、400℃以上となっている時間が短過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 1-33, in the hot rolling stage of the hot rolling process, since the time of 400 ° C. or higher was too short, the amount of solute Si before and after brazing was too large, and the grains of the fin material during brazing Melting occurred in the boundary and the brazing property was rejected, and the amount of Mn before and after brazing was too much, and the high temperature fatigue life was also rejected.

比較例1−34では、冷間圧延工程において冷間圧延板の温度が高過ぎたため、ろう付時の再結晶温度が450℃を超えており、その結果ろう付時に生じたSi及びZnの粒界偏析が解消されず、S1/S2及びZ1/Z2の値が高過ぎ、ろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であった。   In Comparative Example 1-34, the temperature of the cold rolled sheet was too high in the cold rolling process, so the recrystallization temperature during brazing exceeded 450 ° C., and as a result, the Si and Zn grains produced during brazing The segregation of the boundary was not eliminated, and the values of S1 / S2 and Z1 / Z2 were too high, and the brazing property was rejected due to melting at the grain boundaries of the fin material during brazing.

第2実施例(本発明例2−1〜2−9、2−19〜2−26、比較例2−10〜2−18、2−27〜2−32)
次に、第2態様の製造方法で製造したアルミニウム合金フィン材について説明する。
上記表1に示す合金組成を有するアルミニウム合金をそれぞれDC鋳造により鋳造し、各々両面を面削して仕上げた。面削後の鋳塊厚さは、いずれも400mmとした。これらのアルミニウム合金の鋳塊を、表5に示す条件の均質化処理工程、熱間圧延工程、冷間圧延工程、焼鈍工程に供した。均質化処理した鋳塊を熱間圧延工程の加熱段階において480℃で3時間加熱後に、熱間圧延段階にかけて板厚3mmの熱間圧延板を得た。その後、(1)冷間圧延→中間焼鈍→最終冷間圧延の順、(2)冷間圧延→中間焼鈍→最終冷間圧延→最終焼鈍の順、(3)冷間圧延→最終焼鈍の順のいずれかで、最終板厚0.05mmのフィン材試料を作製した。中間焼鈍及び最終焼鈍の条件は、いずれも370℃にて2時間とし、中間焼鈍後の最終冷間圧延での圧延率は、いずれも30%とした。工程の組み合わせを表2に示す。
Second Example (Invention Examples 2-1 to 2-9, 2-19 to 2-26, Comparative Examples 2-10 to 2-18, 2-27 to 2-32)
Next, the aluminum alloy fin material manufactured by the manufacturing method of the second aspect will be described.
Aluminum alloys having the alloy compositions shown in Table 1 were cast by DC casting, and each side was chamfered and finished. The thickness of the ingot after chamfering was 400 mm in all cases. These aluminum alloy ingots were subjected to a homogenization treatment process, a hot rolling process, a cold rolling process, and an annealing process under the conditions shown in Table 5. The ingot that had been homogenized was heated at 480 ° C. for 3 hours in the heating stage of the hot rolling process, and then subjected to the hot rolling stage to obtain a hot rolled sheet having a thickness of 3 mm. Then, (1) cold rolling → intermediate annealing → final cold rolling order, (2) cold rolling → intermediate annealing → final cold rolling → final annealing order, (3) cold rolling → final annealing order In either case, a fin material sample having a final thickness of 0.05 mm was produced. The conditions for the intermediate annealing and the final annealing were both 2 hours at 370 ° C., and the rolling ratio in the final cold rolling after the intermediate annealing was 30%. Table 2 shows the process combinations.

Figure 2017057497
Figure 2017057497

以上の製造工程において問題が発生せず、0.05mmの最終板厚まで圧延できた場合は製造性を「○」とし、鋳造時や圧延時に割れが生じて0.05mmの最終板厚まで圧延できなかったり、均質化処理工程で溶融が生じたりして、フィン材を製造できなかった場合は製造性を「×」として表6に示す。   No problems occur in the above manufacturing process, and if it can be rolled to a final plate thickness of 0.05 mm, the manufacturability is set to “◯”, and cracking occurs during casting or rolling to roll to a final plate thickness of 0.05 mm Table 6 shows the manufacturability as “x” when the fin material could not be manufactured due to the inability to melt or melting during the homogenization process.

上記フィン材試料を下記の各評価に供した。評価時のろう付加熱の条件(ろう付加熱相当条件)を上記表4に示し、評価結果を表6に示す。なお、表6における製造性「×」のものについては試料を製造できなかったため、下記評価は行うことができなかった。   The said fin material sample was used for each following evaluation. Table 4 shows the conditions of brazing heat applied during the evaluation (corresponding conditions for brazing heat addition), and Table 6 shows the evaluation results. In addition, since the sample was not able to be manufactured for those with the productivity “x” in Table 6, the following evaluation could not be performed.

Figure 2017057497
Figure 2017057497

ろう付性の評価、ろう付加熱後における引張強さの測定、ろう付加熱後における高温疲労寿命の測定、固溶Si量及び固溶Mn量の測定、ろう付加熱中の再結晶温度の判定、粒界偏析の評価、ならびに、腐食深さの測定による耐食性評価について、第1実施例と同じに測定、評価した   Brazing evaluation, measurement of tensile strength after brazing heat, measurement of high-temperature fatigue life after brazing heat, measurement of solute Si content and solute Mn content, determination of recrystallization temperature during brazing heat, The evaluation of grain boundary segregation and the corrosion resistance evaluation by measuring the corrosion depth were measured and evaluated in the same manner as in the first example.

本発明例2−1〜2−9及び2−19〜2−26では、本発明で規定する条件を満たしており、製造性、ろう付性、ろう付加熱後における引張強さ、ろう付加熱後における高温疲労寿命、ならびに、耐食性のいずれも合格であった。   In Invention Examples 2-1 to 2-9 and 2-19 to 2-26, the conditions specified in the present invention are satisfied, and the manufacturability, brazing property, tensile strength after brazing heat, brazing heat Both the high temperature fatigue life and the corrosion resistance later passed.

これに対して、比較例2−10ではSi成分が少な過ぎたため、ろう付加熱後における引張強さが不合格であった。   On the other hand, in Comparative Example 2-10, since there was too little Si component, the tensile strength after brazing addition heat was disqualified.

比較例2−11ではSi成分が多過ぎたため、ろう付時にフィン材に溶融が生じ、ろう付性が不合格であった。   In Comparative Example 2-11, since the Si component was too much, the fin material melted during brazing, and the brazing property was unacceptable.

比較例2−12ではFe成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 2-12, since there were too many Fe components, a crack was produced during rolling, and the fin material could not be produced, resulting in an unacceptable manufacturability.

比較例2−13ではMn成分が少な過ぎたため、ろう付加熱後における引張強さが不合格であった。   In Comparative Example 2-13, since there was too little Mn component, the tensile strength after brazing addition heat was disqualified.

比較例2−14ではMn成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 2-14, since the Mn component was too much, cracking occurred during rolling, and the fin material could not be produced, and the productivity was unacceptable.

比較例2−15ではCu成分が多過ぎたため、耐食性が不合格であった。   In Comparative Example 2-15, since there was too much Cu component, corrosion resistance was unacceptable.

比較例2−16ではTi、Zr、Cr、V成分が多過ぎたため、圧延時に割れが生じ、フィン材を製造することができず、製造性が不合格であった。   In Comparative Example 2-16, since there were too many Ti, Zr, Cr, and V components, cracking occurred during rolling, and the fin material could not be manufactured, and the productivity was unacceptable.

比較例2−17ではZn成分が少な過ぎたため、耐食性が不合格であった。   In Comparative Example 2-17, since there was too little Zn component, corrosion resistance was unacceptable.

比較例2−18ではZn成分が多過ぎたため、耐食性が不合格であった。   In Comparative Example 2-18, since there was too much Zn component, corrosion resistance was unacceptable.

比較例2−27では、均質化処理工程の加熱段階において、400℃達してから保持温度到達時までの昇温速度が大き過ぎたため、ろう付前後の固溶Si量、ならびに、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 2-27, in the heating stage of the homogenization treatment process, the rate of temperature increase from reaching 400 ° C. to reaching the holding temperature was too large, so the amount of solid solution Si before and after brazing, and before and after brazing The amount of solid solution Si was too high and melting occurred at the grain boundaries of the fin material at the time of brazing, and the brazing property was rejected. In addition, the amount of Mn before and after brazing was too large and the high temperature fatigue life was also rejected. It was.

比較例2−28では、均質化処理工程の保持段階において、保持温度が低過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 2-28, since the holding temperature was too low in the holding stage of the homogenization treatment process, the amount of solid solution Si before and after brazing was too much and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例2−29では、均質化処理工程の保持段階において、保持温度が高過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 2-29, since the holding temperature was too high in the holding stage of the homogenization treatment process, the amount of solid solution Si before and after brazing was too much and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例2−30では、均質化処理工程の保持段階において、保持時間が短過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 2-30, since the holding time was too short in the holding stage of the homogenization treatment process, the amount of solid solution Si before and after brazing was too much, and melting occurred at the grain boundaries of the fin material during brazing. In addition, the high-temperature fatigue life was also unacceptable due to the excessive amount of Mn before and after brazing.

比較例2−31では、均質化処理工程の熱間圧延段階において、冷却段階中において、鋳塊の温度が400℃に達するまでの冷却速度が大き過ぎたため、ろう付前後の固溶Si量が多すぎてろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であり、ならびに、ろう付前後のMn量が多過ぎて高温疲労寿命も不合格であった。   In Comparative Example 2-31, in the hot rolling stage of the homogenization treatment process, the cooling rate until the temperature of the ingot reached 400 ° C. was too high during the cooling stage, so the amount of solute Si before and after brazing was The amount of Mn before and after brazing was too much, and the high temperature fatigue life was also unacceptable.

比較例2−32では、冷間圧延工程において冷間圧延板の温度が高過ぎたため、ろう付時の再結晶温度が450℃を超えており、その結果ろう付時に生じたSi及びZnの粒界偏析が解消されず、S1/S2及びZ1/Z2の値が高過ぎ、ろう付時にフィン材の粒界に溶融が生じてろう付性が不合格であった。   In Comparative Example 2-32, the temperature of the cold rolled sheet was too high in the cold rolling process, so the recrystallization temperature during brazing exceeded 450 ° C., and as a result, the Si and Zn grains produced during brazing The segregation of the boundary was not eliminated, and the values of S1 / S2 and Z1 / Z2 were too high, and the brazing property was rejected due to melting at the grain boundaries of the fin material during brazing.

本発明に係るアルミニウム合金フィン材は、強度、耐食性、ろう付時の接合率や耐溶融性などのろう付性にも優れるので、特に自動車用熱交換器のフィンとして好適に用いられる。   The aluminum alloy fin material according to the present invention is excellent in brazing properties such as strength, corrosion resistance, joining rate at the time of brazing, and melting resistance, and therefore is particularly suitably used as a fin for an automotive heat exchanger.

Claims (7)

Si:0.70〜1.50mass%、Fe:0.05〜2.00mass%、Mn:1.0〜2.0mass%、Zn:0.5〜4.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において固溶Si量が0.60mass%以下及び固溶Mn量が0.60mass%以下であり、ろう付加熱時の昇温過程における再結晶温度が450℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材。   Si: 0.70-1.50 mass%, Fe: 0.05-2.00 mass%, Mn: 1.0-2.0 mass%, Zn: 0.5-4.0 mass%, the balance Al and It is made of an aluminum alloy composed of inevitable impurities, and has a solid solution Si amount of 0.60 mass% or less and a solid solution Mn amount of 0.60 mass% or less before brazing addition heat, and recrystallization in the temperature rising process during brazing addition heat An aluminum alloy fin material for heat exchangers, characterized in that the temperature is 450 ° C or lower. ろう付加熱後の前記アルミニウム合金において、固溶Mn量が0.6mass%以下であり、粒界近傍におけるSi及びZnの濃度をそれぞれS1mass%、Z1mass%とし、マトリクスにおけるSi及びZnの濃度をそれぞれS2mass%、Z2mass%としたとき、S1/S2及びZ1/Z2の値がいずれも1.20以下である、請求項1に記載の熱交換器用アルミニウム合金フィン材。   In the aluminum alloy after the brazing heat, the solid solution Mn amount is 0.6 mass% or less, the Si and Zn concentrations in the vicinity of the grain boundary are S1 mass% and Z1 mass%, respectively, and the Si and Zn concentrations in the matrix are respectively The aluminum alloy fin material for a heat exchanger according to claim 1, wherein the values of S1 / S2 and Z1 / Z2 are all 1.20 or less when S2 mass% and Z2 mass% are set. 前記アルミニウム合金が、Cu:0.05〜0.30mass%、Ti:0.05〜0.30mass%、Zr:0.05〜0.30mass%、Cr:0.05〜0.30mass%及びV:0.05〜0.30mass%から選択される1種又は2種以上を更に含有する、請求項1又は2に記載の熱交換器用アルミニウム合金フィン材。   The aluminum alloy is Cu: 0.05 to 0.30 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V The aluminum alloy fin material for a heat exchanger according to claim 1 or 2, further comprising one or more selected from 0.05 to 0.30 mass%. 請求項1〜3のいずれか一項に記載の熱交換器用アルミニウム合金フィン材の製造方法であって、前記アルミニウム合金を鋳造する工程と、鋳造した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含み、前記熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450〜560℃であり保持時間が0.5時間以上であり、熱間圧延段階中において、熱間圧延板の温度が400℃以上である時間が5分間以上であり、前記冷間圧延工程において、冷間圧延板の温度が120℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材の製造方法。   It is a manufacturing method of the aluminum alloy fin material for heat exchangers as described in any one of Claims 1-3, Comprising: The process of casting the said aluminum alloy, The hot rolling process of hot-rolling the cast ingot, A cold rolling process for cold rolling the hot rolled sheet, and one or more annealing processes for annealing the cold rolled sheet in one or both of the cold rolling process and after the cold rolling process. The hot rolling process includes a heating stage, a holding stage, and a hot rolling stage, and in the heating stage, the rate of temperature increase from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less. The holding temperature in the holding stage is 450 to 560 ° C. and the holding time is 0.5 hours or more. During the hot rolling stage, the time that the temperature of the hot rolled sheet is 400 ° C. or more is 5 minutes or more. In the cold rolling process, Method for producing a heat exchanger use aluminum alloy fin material, characterized in that the temperature of the rolled plate is 120 ° C. or less. 請求項1〜3のいずれか一項に記載の熱交換器用アルミニウム合金フィン材の製造方法であって、前記アルミニウム合金を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において冷間圧延板を焼鈍する1回以上の焼鈍工程とを含み、前記均質化処理工程が加熱段階と保持段階と冷却段階とを含み、加熱段階において、400℃に達してから保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450〜560℃であり保持時間が1.0時間以上であり、冷却段階中において、鋳塊の温度が400℃に達するまでの冷却速度が60℃/h以下であり、前記冷間圧延工程において、冷間圧延板の温度が120℃以下であることを特徴とする熱交換器用アルミニウム合金フィン材の製造方法。   It is a manufacturing method of the aluminum alloy fin material for heat exchangers as described in any one of Claims 1-3, Comprising: The process of casting the said aluminum alloy, The homogenization process process of homogenizing the cast ingot, , One or both of a hot rolling process for hot rolling the homogenized ingot, a cold rolling process for cold rolling the hot rolled sheet, and during the cold rolling process and after the cold rolling process At least one annealing step for annealing the cold-rolled sheet, and the homogenization treatment step includes a heating step, a holding step, and a cooling step, and the holding step is held after reaching 400 ° C. in the heating step. The temperature rising rate until reaching the temperature is 60 ° C./h or less, the holding temperature in the holding stage is 450 to 560 ° C., the holding time is 1.0 hour or more, and the temperature of the ingot is in the cooling stage. Cooling speed to reach 400 ℃ There is less 60 ° C. / h, in the cold rolling step, the manufacturing method of the heat exchanger use aluminum alloy fin material, characterized in that the temperature of the cold-rolled sheet is 120 ° C. or less. 請求項1〜3のいずれか一項に記載のアルミニウム合金フィン材が、ろう付けにより組付けられていることを特徴とする熱交換器。   The aluminum alloy fin material as described in any one of Claims 1-3 is assembled | attached by brazing, The heat exchanger characterized by the above-mentioned. 請求項6に記載の熱交換器の製造方法であり、請求項1〜3のいずれか一項に記載のアルミニウム合金フィン材を他の部材と組み合わせ、これを590〜615℃の到達温度で2〜6分間ろう付加熱する方法であって、ろう付時の昇温過程における再結晶温度を450℃以下とし、300〜580℃の温度域における昇温速度を60〜160℃/minとすることを特徴とする熱交換器の製造方法。   It is a manufacturing method of the heat exchanger of Claim 6, Comprising: The aluminum alloy fin material as described in any one of Claims 1-3 is combined with another member, This is 2 at the ultimate temperature of 590-615 degreeC. A method of heating by brazing for 6 minutes, wherein the recrystallization temperature in the temperature raising process during brazing is 450 ° C. or less, and the temperature raising rate in the temperature range of 300 to 580 ° C. is 60 to 160 ° C./min. The manufacturing method of the heat exchanger characterized by these.
JP2016171327A 2015-09-19 2016-09-01 Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material Pending JP2017057497A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/760,857 US20200239989A1 (en) 2015-09-19 2016-09-09 Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same
PCT/JP2016/076579 WO2017047514A1 (en) 2015-09-19 2016-09-09 Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same
CN201680044902.2A CN107849649A (en) 2015-09-19 2016-09-09 Heat exchanger aluminum alloy fin material and its manufacture method and the heat exchanger and its manufacture method using the aluminum alloy fin material
EP16846385.9A EP3351648A4 (en) 2015-09-19 2016-09-09 Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015186109 2015-09-19
JP2015186109 2015-09-19
JP2015186110 2015-09-19
JP2015186110 2015-09-19

Publications (1)

Publication Number Publication Date
JP2017057497A true JP2017057497A (en) 2017-03-23

Family

ID=58391145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171327A Pending JP2017057497A (en) 2015-09-19 2016-09-01 Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material

Country Status (4)

Country Link
US (1) US20200239989A1 (en)
EP (1) EP3351648A4 (en)
JP (1) JP2017057497A (en)
CN (1) CN107849649A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829627B2 (en) 2017-03-01 2021-02-10 株式会社Uacj Aluminum alloy fin material for heat exchanger
CN111172415B (en) * 2019-12-30 2021-07-30 苏州利达铸造有限公司 Preparation method of high-strength navigator shell
CN116891964A (en) * 2023-09-11 2023-10-17 山东三源铝业有限公司 Composite layer-free self-brazing aluminum alloy material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170202B2 (en) * 1996-06-27 2001-05-28 住友軽金属工業株式会社 Aluminum alloy clad fin material and method of manufacturing the same
CN102676884A (en) * 2012-05-24 2012-09-19 长沙众兴新材料科技有限公司 High-sag-resistance brazing composite aluminum alloy foil for heat exchanger
JP5854954B2 (en) * 2012-08-30 2016-02-09 株式会社デンソー High-strength aluminum alloy fin material and manufacturing method thereof
JP6307331B2 (en) * 2014-04-17 2018-04-04 株式会社Uacj Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same

Also Published As

Publication number Publication date
US20200239989A1 (en) 2020-07-30
EP3351648A4 (en) 2019-01-30
EP3351648A1 (en) 2018-07-25
CN107849649A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5893450B2 (en) Aluminum alloy brazing sheet for header of heat exchanger, method for producing the same, and method for producing heat exchanger
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2011162823A (en) Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP5985973B2 (en) Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet
JP6047304B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
WO2013024732A1 (en) Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
JP2017066494A (en) Aluminum alloy material for heat exchanger and manufacturing method therefor
JP2017057497A (en) Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material
JP2017020108A (en) Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP2018145447A (en) Aluminum alloy-made fin material for heat exchanger
JP2011012327A (en) Brazing sheet having excellent brazability, and method for producing the brazing sheet
WO2017047514A1 (en) Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP2014062296A (en) Aluminum alloy brazing sheet excellent in corrosion resistance
JP5431046B2 (en) Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability
JP2018145446A (en) Aluminum alloy-made fin material for heat exchanger