JP2007033612A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2007033612A
JP2007033612A JP2005214008A JP2005214008A JP2007033612A JP 2007033612 A JP2007033612 A JP 2007033612A JP 2005214008 A JP2005214008 A JP 2005214008A JP 2005214008 A JP2005214008 A JP 2005214008A JP 2007033612 A JP2007033612 A JP 2007033612A
Authority
JP
Japan
Prior art keywords
luminance level
luminance
video signal
value
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005214008A
Other languages
English (en)
Other versions
JP4955950B2 (ja
Inventor
Jun Kamiyamaguchi
潤 上山口
Masahiro Suzuki
雅博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2005214008A priority Critical patent/JP4955950B2/ja
Publication of JP2007033612A publication Critical patent/JP2007033612A/ja
Application granted granted Critical
Publication of JP4955950B2 publication Critical patent/JP4955950B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

【課題】表示輝度のリニアリティを向上させることができる表示装置を提供することを目的とする。
【解決手段】1フレーム毎の累積輝度レベル頻度に基づいて互いに隣接するサブフィールド各々が担う輝度レベルの区切値を生成し、区切値に応じた変換特性に従って入力映像信号の輝度レベルを変換するにあたり、互いに隣接する区切値間においてγ乗の曲線変換特性を有する変換特性を採用する。
【選択図】 図2

Description

本発明は、サブフィールド法を採用して中間調の輝度を表現する表示装置に関する。
現在、薄型平面の表示パネルとしてプラズマディスプレイパネル(以下、PDPと称する)、あるいはエレクトロルミネセントディスプレイパネル(以下、ELDPと称する)を搭載した表示装置が知られている。これらPDP及びELDPにおいて各画素を担う発光素子は「発光」及び「非発光」の2状態しかもたない。そこで、入力された映像信号に対応した中間調の輝度を得るべく、サブフィールド法を用いてPDP及びELDPの如き表示パネルを階調駆動するようにしている。
サブフィールド法では、入力された映像信号を各画素毎にNビットの画素データに変換し、このNビットのビット桁各々に対応させて、1フィールドの表示期間をN個のサブフィールドに分割する。各サブフィールドには、上記画素データのビット桁各々に対応した発光回数が夫々割り当ててあり、上記Nビット中の1つのビット桁の論理レベルが例えば「1」である場合には、そのビット桁に対応したサブフィールドにおいて、上述の如く割り当てられた回数分だけ発光を実行する。一方、上記1つのビット桁の論理レベルが「0」である場合には、そのビット桁に対応したサブフィールドでは発光を行わない。かかる駆動方法によれば、1フィールド表示期間内における全てのサブフィールドで実行された発光回数の合計により入力映像信号に対応した中間調の輝度が表現されるのである。 更に、近年、入力映像信号における1画面分毎の各輝度レベル毎の頻度に基づいて、夫々異なる輝度区分領域各々の発光を担当するサブフィールドの数を変更するようにした駆動方法が提案された(例えば特許文献1参照)。かかる駆動方法により、頻度が大なる輝度を含む輝度区分領域ほどその輝度区分領域に割り当てるべきサブフィールドの数を多くすれば、人間の視覚特性に応じた良好な階調表現が為されるようになる。
特開2004−240103号公報
本発明は、上記の如きサブフィールド法に基づく階調駆動を実施する際に、表示輝度のリニアリティを向上させることができる表示装置を提供することを目的とする。
請求項1記載による表示装置は、入力映像信号の1フレームの表示期間を夫々に発光期間が割り当てられている複数のサブフィールドで構成し、表示パネルの各画素を担う画素セル各々を、前記サブフィールド毎に発光せしめることにより階調表示を行う表示装置であって、前記入力映像信号によって示される1フレーム毎の各輝度レベルの現出頻度を示す輝度レベル頻度を求める輝度レベル頻度生成手段と、前記輝度レベル頻度を輝度レベルの大小順に沿って順に加算することにより各輝度レベルに対応する累積輝度レベル頻度を求める累積輝度レベル頻度生成手段と、前記累積輝度レベル頻度に基づいて互いに隣接する前記サブフィールド各々が担う輝度レベルの区切値を生成し、前記区切値に基づいて夫々異なる輝度区分領域の各々に割り当てるべきサブフィールドの数を設定する制御手段と、前記区切値に応じた変換特性に従って前記入力映像信号によって示される輝度レベルを変換する輝度レベル変換手段と、を備え、前記変換特性は、互いに隣接する前記区切値間においてγ乗(γ>1)の曲線変換特性を有する。
本発明による表示装置は、1フレーム毎の累積輝度レベル頻度に基づいて互いに隣接するサブフィールド各々が担う輝度レベルの区切値を生成し、区切値に応じた変換特性に従って入力映像信号の輝度レベルを変換するにあたり、互いに隣接する区切値間においてγ乗の曲線変換特性を有する変換特性を採用する。これにより、かかる輝度レベル変換後の映像信号に多階調化処理を施してビット圧縮する際における映像信号中の切り捨て用下位ビット群にて示される輝度レベルと、上位ビット群にて示される輝度レベルとの境界を滑らかに連結させて、表示輝度のリニアリティを向上させる。
更に、本発明による表示装置は、入力映像信号における1フレーム毎の平均輝度レベルに応じて1フレーム内において発光させるべき画素セルの総発光回数を求める。そして、累積輝度レベル頻度に基づいて求めた上記区切値をγ乗した値をかかる総発光回数によって正規化することにより各サブフィールド毎の画素セルの発光回数を設定する。これにより、1フレームの画像中において頻度の低い輝度を担当するサブフィールドの数を少なくし、その分だけ頻度の高い輝度を担当するサブフィールドの数を多くできるので、人間の視覚特性に応じた良好な階調表現が為されるようになる。
図1は、本発明による表示装置としてのプラズマディスプレイ装置の構成を示す図である。
図1において、プラズマディスプレイパネルとしてのPDP100は、表示面を担う透明な前面基板(図示せぬ)と、前面基板と対向した位置に配置されている背面基板(図示せぬ)とを備える。前面基板及び背面基板間には放電ガスが封入された放電空間が存在する。前面基板上には、夫々表示面の水平方向(横方向)に伸長している行電極X1〜Xn及び行電極Y1〜Ynが形成されている。背面基板上には、上記行電極各々に交叉して配置されている列電極D1〜Dmが形成されている。尚、行電極X1〜Xn及びY1〜Ynは、一対の行電極X及びYにてPDP100の第1表示ライン〜第n表示ラインを担う構造となっており、各行電極対と列電極との交叉部(放電空間を含む)に画素を担う放電セル(画素セル)Gが形成されている。
画素データ変換回路1は、入力映像信号を各画素毎の輝度レベルを表す10ビットの画素データPDに変換し、これを輝度レベル変換回路2、輝度累積頻度演算回路3及び平均輝度測定回路20に供給する。尚、かかる入力映像信号とは、表示すべき映像に対応した源映像信号にγ補正が施された信号である。
輝度レベル変換回路2は、10ビットで「0」〜「1023」なる輝度レベルを表す画素データPDを、駆動制御回路10から供給された変換特性信号CHにて示される図2に示す如き変換特性に従って変換して得られた10ビットの画素データPD1を多階調化処理回路4に供給する。
多階調化処理回路4は、上記画素データPD1に対して誤差拡散処理及びディザ処理を施す。例えば、上記誤差拡散処理では、先ず、画素データPD1の上位8ビット分を表示データ、残りの下位2ビット分を誤差データと捉える。そして、周辺画素各々に対応した上記画素データPD1の各誤差データを重み付け加算したものを、上記表示データに反映させる。かかる動作により、原画素における下位2ビット分の輝度が上記周辺画素によって擬似的に表現され、それ故に10ビットよりも少ない8ビット分の表示データにて、10ビット分の画素データと同等の輝度階調表現が可能になる。そして、この誤差拡散処理によって得られた8ビットの誤差拡散処理画素データに対してディザ処理を施す。ディザ処理では、互いに隣接する複数の画素を1画素単位とし、この1画素単位内の各画素に対応した上記誤差拡散処理画素データに夫々、互いに異なる係数値からなるディザ係数を夫々割り当てて加算してディザ加算画素データを得る。かかるディザ係数の加算によれば、上記1画素単位で眺めた場合には、上記ディザ加算画素データの上位4ビット分だけでも10ビットに相当する輝度を表現することが可能となる。そこで、多階調化処理回路4は、上記ディザ加算画素データの上位4ビット分を多階調化画素データMDとして駆動データ変換回路5に供給する。すなわち、多階調化処理回路4は、上述した如き誤差拡散及び/又はディザ処理により、画素データPDの上位4ビット分を表示用の画素データとし、残りの6ビット分を切り捨てる6ビット圧縮を行うのである。
駆動データ変換回路5は、4ビットの多階調化画素データMDを、図4に示す如きデータ変換テーブルに従って15ビットの画素駆動データGDに変換してこれをメモリ6に供給する。
メモリ6は、15ビットの画素駆動データGDを順次取り込んで記憶する。そして、1画像フレーム(n行×m列)分の画素駆動データGD1,1〜GDn,mの書き込みが終了する度に、メモリ6は、画素駆動データGD1,1〜GDn,m各々を各ビット桁(第1〜第15ビット)毎に分離し、夫々、後述するサブフィールドSF1〜SF15に対応させて1表示ライン分ずつ読み出す。メモリ6は、読み出した1表示ライン分(m個)の画素駆動データビットを画素駆動データビットDB1〜DB(m)として列電極駆動回路7に供給する。例えば、先ず、サブフィールドSF1において、メモリ6は、画素駆動データGD1,1〜GDn,m各々の第1ビットのみを1表示ライン分ずつ読み出し、これらを画素駆動データビットDB1〜DB(m)として列電極駆動回路7に供給する。次に、サブフィールドSF2において、メモリ6は、画素駆動データGD1,1〜GDn,m各々の第2ビットのみを1表示ライン分ずつ読み出し、これらを画素駆動データビットDB1〜DB(m)として列電極駆動回路7に供給するのである。
輝度累積頻度演算回路3は、輝度レベル頻度データ生成回路31及び累積演算回路32からなる。
輝度レベル頻度データ生成回路31は、上記画素データPDにて表現可能な輝度レベルの範囲である「0」〜「1023」各々に対応付けされた1024個の記憶領域を備えている。かかる1024個の記憶領域の各々には、その輝度レベルを表す画素データPDが供給された延べ回数、つまり頻度が記憶される。例えば、輝度レベル頻度データ生成回路31は、上記画素データ変換回路1から画素データPDが供給される度に、その画素データPDによって表される輝度レベルに対応した記憶領域に記憶されている頻度を「1」だけインクリメントするのである。そして、輝度レベル頻度データ生成回路31は、入力映像信号の1フレーム分(又は1フィールド分)毎に、1フレーム分(又は1フィールド分)の画素データPDによって生成された各輝度レベル「0」〜「1023」毎の頻度を表す輝度レベル頻度DF0〜DF1023を累積演算回路32に供給する。
累積演算回路32は、上記輝度レベル頻度DF0〜DF1023各々を低輝度に対応したものから(又は高輝度に対応したものから)順次加算して行き、各加算結果を、輝度レベル「0」〜「1023」各々に対応した累積輝度レベル頻度AC0〜AC1023として求める。すなわち、累積演算回路32は、
AC0=DF0
AC1=DF0+DF1
AC2=DF0+DF1+DF2



AC1023=DF0+DF1+DF2+DF3+・・・+DF1023
なる演算により、各輝度レベル「0」〜「1023」に対応した輝度の累積頻度を示す累積輝度レベル頻度AC0〜AC1023を算出するのである。図4は、累積輝度レベル頻度AC0〜AC1023による系列SQを示す図である。累積演算回路32は、累積輝度レベル頻度AC0〜AC1023をSF(サブフィールド)区切値生成回路8に供給する。
SF区切値生成回路8は、先ず、最大の累積輝度レベル頻度AC1023から「0」までの累積頻度の範囲を図4に示す如く15等分する閾値R1〜R14(R1<R2<R3<R4<R5<R6<R7<R8<R9<R10<R11<R12<R13<R14)を求める。次に、SF区切値生成回路8は、累積輝度レベル頻度AC0〜AC1023なる順に、閾値R1〜R14各々との大小判定を行う。この際、SF区切値生成回路8は、図4に示す如く、最初に閾値R1よりも大なる累積頻度であると判定された累積輝度レベル頻度ACに対応した輝度レベルを、サブフィールドSF1及びSF2間の輝度レベルの境界値を示すSF区切値S1とする。更に、SF区切値生成回路8は、最初に閾値R2よりも大なる累積頻度であると判定された累積輝度レベル頻度ACに対応した輝度レベルを、サブフィールドSF2及びSF3間の輝度レベルの境界値を示すSF区切値S2とする。更に、SF区切値生成回路8は、最初に閾値R3よりも大なる累積頻度であると判定された累積輝度レベル頻度ACに対応した輝度レベルを、サブフィールドSF3及びSF4間の輝度レベルの境界値を示すSF区切値S3とする。以下、同様にして、SF区切値生成回路8は、図4に示すように、サブフィールドSF4〜SF15において、互いに隣接するサブフィールド間の輝度レベルの境界値を示すSF区切値S4〜S14を求める。更に、SF区切値生成回路8は、画素データPDによって示される最大の輝度レベル「1023」をSF区切値S15とする。そして、SF区切値生成回路8は、これらSF区切値S1〜S15を平均化回路9に供給する。
平均化回路9は、SF区切値S1〜S15を、夫々個別に平均化して得られた平均SF区切値CS1〜CS15の各々を駆動制御回路10に供給する。つまり、平均化回路9は、現フレームの映像信号に基づいて生成されたSF区切値S1と1フレーム前の映像信号に基づいて生成されたSF区切値S1に対して巡回低域通過フィルタリング処理を施し、その出力値を平均SF区切値CS1として駆動制御回路10に供給する。又、平均化回路9は、現フレームの映像信号に基づいて生成されたSF区切値S2と1フレーム前の映像信号に基づいて生成されたSF区切値S2に対して巡回低域通過フィルタリング処理を施し、その出力値を平均SF区切値CS2として駆動制御回路10に供給する。同様にして、平均化回路9は、SF区切値S3〜S15の各々に対して夫々個別に上述した如き巡回低域通過フィルタリング処理を施して得られた平均SF区切値CS3〜CS15を駆動制御回路10に供給する。
平均輝度測定回路20は、1フレーム分の画素データPDに基づき入力映像信号の平均輝度レベルを測定し、この平均輝度レベルを示す平均輝度信号APLを駆動制御回路10に供給する。
駆動制御回路10は、サブフィールド法に基づく図5に示されるが如き発光駆動シーケンスに従って上記PDP100を階調駆動させるべき各種タイミング信号を、列電極駆動回路7、行電極Y駆動回路11及び行電極X駆動回路12の各々に供給する。
図5に示す発光駆動シーケンスにおいては、1フレーム(又は1フィールド)の表示期間がサブフィールドSF1〜SF15にて構成される。各サブフィールドでは、アドレス行程W及びサスティン行程Iが順次実行される。尚、先頭のサブフィールドSF1に限り上記アドレス行程Wに先立ちリセット行程Rが実行される。
先ず、先頭のサブフィールドSF1のリセット行程Rでは、行電極Y駆動回路11及び行電極X駆動回路12が全ての行電極X及びYにリセットパルスを印加する。かかるリセットパルスに応じて全ての放電セルG内においてリセット放電が生起され、各放電セルG内には所定量の壁電荷が形成される。これにより、全ての放電セルGは、後述するサスティン行程Iにてサスティン放電発光が可能な状態である点灯モードに設定される。
次に、各サブフィールドのアドレス行程Wでは、行電極Y駆動回路11が走査パルスをPDP100の行電極Y1〜Yn各々に順次印加して行く。この間、列電極駆動回路7は、メモリ6から読み出された画素駆動データビットDB1〜DB(m)に対応した1表示ライン分のm個の画素データパルスを上記走査パルスのタイミングに同期して列電極D1〜Dm各々に印加する。ここで、上記走査パルスと共に高電圧の画素データパルスが印加された放電セルにのみ消去アドレス放電が生起される。かかる消去アドレス放電により放電セル内に形成されていた壁電荷が消滅し、この放電セルは、後述するサスティン行程Iにてサスティン放電発光が為されない状態である消灯モードに設定される。一方、上記走査パルスが印加されたものの低電圧の画素データパルスが印加された放電セルには上述のような消去アドレス放電は生起されず、その直前までの状態(点灯モード又は消灯モード)が維持される。
次に、各サブフィールドのサスティン行程Iでは、行電極Y駆動回路11及び行電極X駆動回路12各々が、駆動制御回路10にて割り当てられた発光回数K(後述する)の分だけ繰り返しサスティンパルスを発生して、全ての行電極X及びYに交互に印加する。この際、点灯モードに設定されている放電セルGのみが、上記サスティンパルスが印加される度にサスティン放電発光する。
この際、図5に示す駆動によれば、サブフィールドSF1〜SF15の内で、放電セルを消灯モードから点灯モードに推移させることが可能な機会は、サブフィールドSF1のリセット行程Rだけである。つまり、サブフィールドSF1〜SF15の内の1のサブフィールドで消去アドレス放電(図3の黒丸にて示す)が生起され、一旦、放電セルGが消灯モードに設定されると、それ以降のサブフィールドでは放電セルGが点灯モードに復帰することはない。従って、図3に示す如き画素駆動データGDに基づく駆動によれば、先頭のサブフィールドSF1から表現すべき輝度レベルに対応した数だけ連続したサブフィールド各々において放電セルGが点灯モードに設定され、サスティン放電発光(白丸に示す)が為される。すなわち、最低輝度レベル「0」を表現する場合には、サブフィールドSF1〜SF15のいずれにおいてもサスティン放電発光が為されない図6に示す如き第1階調に基づく駆動が実施される。又、かかる第1階調よりも1段階だけ高輝度を表現する場合には、図6に示す如くサブフィールドSF1のみでサスティン放電発光が為される第2階調に基づく駆動が実施される。又、かかる第2階調よりも1段階だけ高輝度を表現する場合には、図6に示す如くサブフィールドSF1及びSF2のみでサスティン放電発光が為される第3階調に基づく駆動が実施される。同様にして、表現すべき輝度階調に応じた数だけSF1から連続したサブフィールド各々においてサスティン放電発光が為される第4〜第16階調駆動が実施されるのである。かかる第1〜第16階調駆動により、輝度レベル「0」〜「1023」なる輝度範囲を16段階にて表現する。
ここで、駆動制御回路10は、上記平均SF区切値CS1〜CS15及び平均輝度レベルAPLに基づいて、サブフィールドSF1〜SF15各々で生起させるべきサスティン放電発光の回数K1〜K15を算出する。
先ず、駆動制御回路10は、平均輝度レベルAPLに基づいて、1フレーム(又は1フィールド)表示期間内において印加すべきサスティンパルスの総数SUSを求める。例えば、駆動制御回路10は、図7に示すように、平均輝度レベルAPLが所定レベルよりも低い場合には一律にサスティンパルス総数SUSを所定の最大数とし、平均輝度レベルAPLが所定レベルよりも高くなるほどその総数を少なくする。次に、駆動制御回路10は、平均SF区切値CS1〜CS15の各々をγ乗(γ:1より大なる実数)することにより、図6に示す如き第2階調〜第16階調各々に対する輝度重み値を以下の如く求める。
第2階調の輝度重み値:CS1γ
第3階調の輝度重み値:CS2γ
第4階調の輝度重み値:CS3γ



第15階調の輝度重み値:CS14γ
第16階調の輝度重み値:CS15γ
次に、駆動制御回路10は、これら各階調毎の輝度重み値を上記サスティンパルス総数SUSにて以下の如く正規化することにより、各階調毎に、1フレーム(又は1フィールド)表示期間内の各サブフィールドにおいて生起させるべきサスティン放電発光の回数Qを求める。
すなわち、駆動制御回路10は、
第2階調での回数Q2=(CS1γ/CS15γ)・SUS
第3階調での回数Q3=(CS2γ/CS15γ)・SUS
第4階調での回数Q4=(CS3γ/CS15γ)・SUS
第5階調での回数Q5=(CS4γ/CS15γ)・SUS



第15階調での回数Q15=(CS14γ/CS15γ)・SUS
第16階調での回数Q16=(CS15γ/CS15γ)・SUS
なる回数Q2〜Q16を夫々求める。
次に、駆動制御回路10は、上記回数Q2〜Q16に基づき、サブフィールドSF1〜SF15各々のサスティン行程Iにおいて印加すべきサスティンパルスの数、つまり発光回数K1〜K15の各々を以下の如く求める。
先ず、図6に示す如く、第2階調ではサブフィールドSF1のサスティン行程Iのみでサスティン放電発光が為されるので、駆動制御回路10は、上記回数Q2を、そのままサブフィールドSF1に割り当てるべき発光回数K1とする。又、第3階調駆動では、サブフィールドSF1及びSF2各々のサスティン行程Iのみでサスティン放電発光が為されるので、駆動制御回路10は、上記回数Q3から回数Q2を減算したものをサブフィールドSF2に割り当てるべき発光回数K2とする。同様にして、駆動制御回路10は、上記回数Q3〜Q16に基づき、以下の如くサブフィールドSF3〜SF15各々に割り当てるべき発光回数K3〜K15を求める。
K3=Q4−Q3
K4=Q5−Q4
K5=Q6−Q5
K6=Q7−Q6



K14=Q15−Q14
K15=Q16−Q15
このように、図1に示されるプラズマディスプレイ装置においては、1フレーム(1フィールド)毎の映像信号における各輝度レベル毎の頻度を輝度レベルの小なる(又は大なる)順に順次加算して得られた累積輝度レベル頻度に基づき、各サブフィールドのサスティン行程に割り当てるべき発光回数を調整している。すなわち、低輝度レベルの頻度が高輝度レベルの頻度に比して大なる場合には、低輝度発光を担うサブフィールド各々に割り当てるべき発光回数を少なくし、その分だけ高輝度発光を担うサブフィールド各々に割り当てるべき発光回数を多くするのである。これにより、輝度レベル「0」〜「1023」なる全輝度範囲を夫々輝度範囲の異なる複数の輝度区分領域に分割した際に、低輝度な区分領域の発光を担当するサブフィールドの数を多くし、その分だけ高輝度区分領域の発光を担当するサブフィールドの数を少なくするのである。一方、高輝度レベルの頻度が低輝度レベルの頻度に比して大なる場合には、高輝度発光を担うサブフィールド各々に割り当てるべき発光回数を少なくし、その分だけ低輝度発光を担うサブフィールド各々に割り当てるべき発光回数を多くするのである。これにより、低輝度区分領域の発光を担当するサブフィールドの数を少なくし、その分だけ高輝度区分領域の発光を担当するサブフィールドの数を多くするのである。
例えば、低輝度レベルの頻度が大なる場合には、図8(a)に示す如く、低輝度区分領域aの発光を担当するサブフィールドの数はSF1〜SF11の11個となり、高輝度区分領域bの発光を担当するサブフィールドの数はSF12〜SF15の4個となる。一方、低輝度レベルの頻度が小なる場合には、図8(b)に示す如く、低輝度区分領域aの発光を担当するサブフィールドの数はSF1〜SF10の10個であり、高輝度区分領域bの発光を担当するサブフィールドの数はSF11〜SF15の5個となる。
かかる駆動によれば、1フレームの画像中において頻度の低い輝度を担当するサブフィールドの数を少なくし、その分だけ頻度の高い輝度を担当するサブフィールドの数を多くできるので、人間の視覚特性に応じた良好な階調表現が為されるようになる。
ここで、更に、駆動制御回路10は、上述した如く算出した発光回数K1〜K15各々を以下の如く(1/γ)乗することにより修正SF区切値X1〜X15を求める。
X1=K1(1/γ)
X2=K2(1/γ)
X3=K3(1/γ)
X4=K4(1/γ)



X14=K14(1/γ)
X15=K15(1/γ)
すなわち、これら修正SF区切値X1〜X15にて示される輝度レベルが、図6に示す如き、互いに隣接するサブフィールドSF同士の境界での輝度レベルとなる。
次に、駆動制御回路10は、上記修正SF区切値X1〜X15に基づき、図2に示す如き変換関数Y1〜Y15を以下の如く求める。
Y1:PD1=[(PDγ−0γ)・(64−0)/(X1γ−0)]+0
Y2:PD1=[(PDγ−X1γ)・(128−64)/(X2γ−X1γ)]+64
Y3:PD1=[(PDγ−X2γ)・(192−128)/(X3γ−X2γ)]+128
Y4:PD1=[(PDγ−X3γ)・(256−192)/(X4γ−X3γ)]+192
Y5:PD1=[(PDγ−X4γ)・(320−256)/(X5γ−X4γ)]+256
Y6:PD1=[(PDγ−X5γ)・(384−320)/(X6γ−X5γ)]+320
Y7:PD1=[(PDγ−X6γ)・(448−384)/(X7γ−X6γ)]+384
Y8:PD1=[(PDγ−X7γ)・(512−448)/(X8γ−X7γ)]+448
Y9:PD1=[(PDγ−X8γ)・(576−512)/(X9γ−X8γ)]+512
Y10:PD1=[(PDγ−X9γ)・(640−576)/(X10γ−X9γ)]+576
Y11:PD1=[(PDγ−X10γ)・(704−640)/(X11γ−X10γ)]+640
Y12:PD1=[(PDγ−X11γ)・(768−704)/(X12γ−X11γ)]+704
Y13:PD1=[(PDγ−X12γ)・(832−768)/(X13γ−X12γ)]+768
Y14:PD1=[(PDγ−X13γ)・(896−832)/(X14γ−X13γ)]+832
Y15:PD1=[(PDγ−X14γ)・(960−896)/(X15γ−X14γ)]+896
そして、駆動制御回路10は、画素データPDによって示される輝度レベルが、
0〜X1なる範囲内にある場合には変換関数Y1、
X1〜X2なる範囲内にある場合には変換関数Y2、
X2〜X3なる範囲内にある場合には変換関数Y3、
X3〜X4なる範囲内にある場合には変換関数Y4、
X4〜X5なる範囲内にある場合には変換関数Y5、
X5〜X6なる範囲内にある場合には変換関数Y6、
X6〜X7なる範囲内にある場合には変換関数Y7、
X7〜X8なる範囲内にある場合には変換関数Y8、
X8〜X9なる範囲内にある場合には変換関数Y9、
X9〜X10なる範囲内にある場合には変換関数Y10、
X10〜X11なる範囲内にある場合には変換関数Y11、
X11〜X12なる範囲内にある場合には変換関数Y12、
X12〜X13なる範囲内にある場合には変換関数Y13、
X13〜X14なる範囲内にある場合には変換関数Y14、
X14〜X15なる範囲内にある場合には変換関数Y15、
に従って輝度レベルの変換を実施させるべき変換特性信号CHを生成し、これを輝度レベル変換回路2に供給する。
輝度レベル変換回路2は、互いに隣接する修正SF区切値X間の各々を上記変換関数Y1〜Y15にてγ乗に曲線補間する図2に示す如き変換特性に従って、画素データPDを変換して得られた画素データPD1を多階調化処理回路4に供給するのである。すなわち、修正SF区切値X間において、画素データPDによって示される輝度レベルをγ乗の曲線特性にて変換することにより、多階調化処理回路4にて切り捨てられた下位6ビットにて示される輝度レベルと、残りの上位4ビットにて示される輝度レベルとの境界を滑らかに連結させるのである。
よって、かかる輝度レベル変換によれば、表示輝度のリニアリティを更に向上させた良好な階調表現が為されるようになる。
尚、上記SF区切値生成回路8においては、累積輝度レベル頻度AC0〜AC1023に基づいてSF区切値S1〜S15を逐次求めるようにしているが、AC0〜AC1023からなる各種系列毎にその系列に対応したSF区切値S1〜S15が対応づけして記憶されているメモリを搭載するようにしても良い。すなわち、SF区切値生成回路8は、累積演算回路32から累積輝度レベル頻度AC0〜AC1023が供給される度に、これらAC0〜AC1023からなる系列に対応したSF区切値S1〜S15を上記メモリから読み出して平均化回路9に供給するのである。
本発明による表示装置としてのプラズマディスプレイ装置の概略構成を示す図である。 図1に示される輝度レベル変換回路2における変換特性の一例を示す図である。 図1に示される駆動データ変換回路5におけるデータ変換テーブル、及び発光駆動パターンを示す図である。 累積輝度レベル頻度AC0〜AC1023の一例を示す図である。 図1に示されるPDP100を駆動する際の発光駆動シーケンスの一例を示す図である。 各階調毎の発光パターン及び修正SF区切値X1〜X15を示す図である。 平均輝度レベルAPLをサスティンパルス総数SUSに変換する際の変換特性の一例を示す図である。 低輝度区分領域a及び高輝度区分領域bに対するサブフィールドSF1〜SF15の割り当ての一例を示す図である。
主要部分の符号の説明
2 輝度レベル変換回路
8 SF区切値生成回路
10 駆動制御回路
31 輝度レベル頻度データ生成回路
32 累積演算回路
100 PDP

Claims (5)

  1. 入力映像信号の1フレームの表示期間を夫々に発光期間が割り当てられている複数のサブフィールドで構成し、表示パネルの各画素を担う画素セル各々を、前記サブフィールド毎に発光せしめることにより階調表示を行う表示装置であって、
    前記入力映像信号によって示される1フレーム毎の各輝度レベルの現出頻度を示す輝度レベル頻度を求める輝度レベル頻度生成手段と、
    前記輝度レベル頻度を輝度レベルの大小順に沿って順に加算することにより各輝度レベルに対応する累積輝度レベル頻度を求める累積輝度レベル頻度生成手段と、
    前記累積輝度レベル頻度に基づいて互いに隣接する前記サブフィールド各々が担う輝度レベルの区切値を生成し、前記区切値に基づいて夫々異なる輝度区分領域の各々に割り当てるべきサブフィールドの数を設定する制御手段と、
    前記区切値に応じた変換特性に従って前記入力映像信号によって示される輝度レベルを変換する輝度レベル変換手段と、を備え、
    前記変換特性は、互いに隣接する前記区切値間においてγ乗(γ>1)の曲線変換特性を有することを特徴とする表示装置。
  2. 前記入力映像信号は、表示すべき画像を示す源映像信号にγ補正処理が施された信号であることを特徴とする請求項1記載の表示装置。
  3. 前記入力映像信号における1フレーム毎の平均輝度レベルを測定する平均輝度測定手段を更に備え、
    前記制御手段は、前記平均輝度レベルに応じて1フレーム内において発光させるべき前記画素セルの総発光回数を求めると共に、前記区切値をγ乗した値を前記総発光回数によって正規化することにより前記サブフィールド毎の前記画素セルの発光回数を設定することを特徴とする請求項1記載の表示装置。
  4. 前記制御手段は、前記累積輝度レベル頻度に対応づけして前記区切値を示す情報が予め記憶されているメモリを含み、前記累積輝度レベル頻度生成手段によって求められた前記累積輝度レベル頻度に対応した前記区切値を前記メモリから読み出すことにより前記サブフィールド各々が担う輝度レベルの区切値を取得することを特徴とする請求項1記載の表示装置。
  5. 前記輝度レベル変換手段にて変換されたnビットの映像信号に対して多階調化処理を施すことによりmビット(n>m)に圧縮する多階調化処理手段を更に備えたことを特徴とする請求項1記載の表示装置。
JP2005214008A 2005-07-25 2005-07-25 表示装置 Expired - Fee Related JP4955950B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214008A JP4955950B2 (ja) 2005-07-25 2005-07-25 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214008A JP4955950B2 (ja) 2005-07-25 2005-07-25 表示装置

Publications (2)

Publication Number Publication Date
JP2007033612A true JP2007033612A (ja) 2007-02-08
JP4955950B2 JP4955950B2 (ja) 2012-06-20

Family

ID=37792987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214008A Expired - Fee Related JP4955950B2 (ja) 2005-07-25 2005-07-25 表示装置

Country Status (1)

Country Link
JP (1) JP4955950B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161589A (ja) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd 平面表示装置の駆動方法
JP2000035774A (ja) * 1998-07-17 2000-02-02 Fujitsu Ltd 表示装置
JP2000242210A (ja) * 1998-12-24 2000-09-08 Fujitsu Ltd 表示装置
JP2001306019A (ja) * 2000-04-18 2001-11-02 Pioneer Electronic Corp ディスプレイパネルの駆動方法
JP2001306020A (ja) * 2000-04-18 2001-11-02 Pioneer Electronic Corp ディスプレイパネルの駆動方法
JP2003029688A (ja) * 2001-07-11 2003-01-31 Pioneer Electronic Corp 表示パネルの駆動方法
JP2003255886A (ja) * 2002-03-01 2003-09-10 Lg Electronics Inc 表示装置及び階調表示方法
JP2004240103A (ja) * 2003-02-05 2004-08-26 Pioneer Electronic Corp 表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161589A (ja) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd 平面表示装置の駆動方法
JP2000035774A (ja) * 1998-07-17 2000-02-02 Fujitsu Ltd 表示装置
JP2000242210A (ja) * 1998-12-24 2000-09-08 Fujitsu Ltd 表示装置
JP2001306019A (ja) * 2000-04-18 2001-11-02 Pioneer Electronic Corp ディスプレイパネルの駆動方法
JP2001306020A (ja) * 2000-04-18 2001-11-02 Pioneer Electronic Corp ディスプレイパネルの駆動方法
JP2003029688A (ja) * 2001-07-11 2003-01-31 Pioneer Electronic Corp 表示パネルの駆動方法
JP2003255886A (ja) * 2002-03-01 2003-09-10 Lg Electronics Inc 表示装置及び階調表示方法
JP2004240103A (ja) * 2003-02-05 2004-08-26 Pioneer Electronic Corp 表示装置

Also Published As

Publication number Publication date
JP4955950B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP2006285281A (ja) プラズマディスプレーパネルのグレイスケール表現方法
JP4851663B2 (ja) 表示パネルの輝度制御方法
JPH11344950A (ja) 動的プログラミングコ―ディングを用いたデジタルディプレイ装置に対する動画素の歪み低減
KR100721045B1 (ko) 표시 패널의 구동 방법 및 구동 장치
JP3961171B2 (ja) ディスプレイ装置の多階調処理回路
JP2001312244A (ja) プラズマディスプレイパネルの駆動方法
JP2005321442A (ja) ディスプレイ装置のディザ処理回路
JP2000259121A (ja) ディスプレイパネルの駆動方法
KR100674661B1 (ko) 표시 패널의 구동 방법
JP2001056665A (ja) プラズマディスプレイパネルの駆動方法
JP3591623B2 (ja) プラズマディスプレイパネルの駆動方法
JP4703892B2 (ja) ディスプレイパネルの駆動方法
JP3734244B2 (ja) ディスプレイパネルの駆動方法
KR100599746B1 (ko) 플라즈마 디스플레이 패널의 구동 장치 및 그 계조 표현방법
JP2006163283A (ja) プラズマディスプレイ装置及びその制御方法
JP3578322B2 (ja) プラズマディスプレイパネルの駆動方法
JP4165108B2 (ja) プラズマディスプレイ装置
JP2004240103A (ja) 表示装置
JP4955950B2 (ja) 表示装置
JP4731738B2 (ja) 表示装置
JP2006343377A (ja) 表示装置
KR100551047B1 (ko) 플라즈마 디스플레이 패널 구동 장치 및 그 계조 구현 방법
KR100739047B1 (ko) 플라즈마 디스플레이 패널의 구동 장치, 플라즈마디스플레이 패널의 계조 표현 방법 및 플라즈마디스플레이 패널
JP4731841B2 (ja) 表示パネルの駆動装置及び駆動方法
KR20050100450A (ko) 듀얼 서브필드 코딩에 의한 방전 표시 패널의 구동장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees