JP2007032501A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2007032501A
JP2007032501A JP2005220317A JP2005220317A JP2007032501A JP 2007032501 A JP2007032501 A JP 2007032501A JP 2005220317 A JP2005220317 A JP 2005220317A JP 2005220317 A JP2005220317 A JP 2005220317A JP 2007032501 A JP2007032501 A JP 2007032501A
Authority
JP
Japan
Prior art keywords
temperature
fuel
internal combustion
combustion engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005220317A
Other languages
English (en)
Inventor
Takeo Kinoshita
剛生 木下
Masato Hayasaka
全人 早坂
Masashi Komaki
正志 古牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005220317A priority Critical patent/JP2007032501A/ja
Publication of JP2007032501A publication Critical patent/JP2007032501A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】 この発明は、ポート噴射弁と筒内噴射弁とを共に備える内燃機関の燃料噴射制御装置に関し、燃料の気化が促進されるように噴射割合を設定することを目的とする。
【解決手段】 ポート噴射弁30と筒内噴射弁32とを備える。ポート噴射された燃料が主として付着する吸気弁18の温度、及び筒内に噴射された燃料が主として付着するピストン33の温度に関連するパラメータを取得する。内燃機関10の停止時間を計測する。内燃機関10の停止時におけるパラメータの値と、始動時までに要した停止時間とに基づいて、内燃機関の始動時における吸気ポート及び筒内に対する燃料の噴射割合を設定する。
【選択図】 図1

Description

この発明は、内燃機関の燃料噴射制御装置に係り、特に、吸気ポートに燃料を噴射するためのポート噴射弁と、筒内に燃料を噴射するための筒内噴射弁とを共に備える内燃機関を制御するための燃料噴射制御装置に関する。
従来、例えば特開2001−336439号公報に開示されているように、吸気ポートに燃料を噴射するためのポート噴射弁と、筒内に燃料を噴射するための筒内噴射弁とを共に備える内燃機関が知られている。このような内燃機関においては、良好な運転状態が得られるように、吸気ポートと筒内に対する燃料の噴射割合を適切に定めることが必要である。
上述した従来の内燃機関は、内燃機関の始動時に、燃料ポンプによって昇圧される燃料圧力が、どの程度の値に達しているかを考慮して、上記の噴射割合を決めることとしている。すなわち、筒内噴射を適正に行うためには、筒内噴射用の噴射弁に対して十分な燃料圧力が供給されている必要がある。そして、この燃料圧力が不十分な状態で筒内噴射が実行されると、適正な燃料気化が得られず、良好な始動性が得られない。
上記従来の内燃機関は、始動要求が発生した後、燃料圧力が十分に上昇するまでは、吸気ポートへの燃料噴射を優先して、十分に気化しない燃料が筒内に多量に供給されるのを防ぐこととしている。このため、このシステムによれば、内燃機関に対して良好な始動性を付与することができる。
特開2001−336439号公報 特開平5−231221号公報
ところで、吸気ポートに噴射された燃料は、吸気弁の周辺など、吸気ポート内の特定箇所に付着し易い。一方、筒内に噴射された燃料は、ピストンやシリンダ壁面など、筒内の特定箇所に付着し易い。そして、それらの箇所の温度は、内燃機関の状態に応じて変化するのが通常である。
噴射された燃料は、付着箇所が高温であるほど気化し易い。このため、燃料を良好に気化させるためには、付着箇所の温度を考慮して、吸気ポートと筒内への燃料の付着率を決定することが望ましい。より具体的には、吸気ポート内の温度が筒内の温度より高い場合には、ポート噴射の割合を大きくし、他方、その逆の場合には、筒内噴射の割合を大きくすることが望ましい。
この発明は、上述のような課題を解決するためになされたもので、吸気ポートに噴射された燃料の付着箇所の温度と、筒内に噴射された燃料の付着箇所とを考慮して、燃料を気化させるうえで有利な噴射割合を設定する内燃機関の燃料噴射制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の燃料噴射制御装置であって、
内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、
内燃機関の筒内に燃料を噴射する筒内噴射弁と、
前記ポート噴射弁により噴射された燃料が付着するポート燃料付着部の温度、及び前記筒内噴射弁により噴射された燃料が付着する筒内燃料付着部の温度に関するパラメータを取得するパラメータ取得手段と、
内燃機関の停止時間を計測する停止時間計測手段と、
内燃機関の停止時における前記パラメータの値と、前記停止時間とに基づいて、内燃機関の始動時における、前記吸気ポート及び前記筒内に対する燃料の噴射割合を設定する噴射割合設定手段と、
を含むことを特徴とする。
また、第2の発明は、第1の発明において、
前記パラメータは、前記噴射割合を含み、
前記噴射割合設定手段は、
内燃機関の運転中において、前記ポート燃料付着部の温度、及び前記筒内燃料付着部の温度は、それぞれに対する噴射割合が大きいほど低温となり、
内燃機関の停止後に、前記ポート燃料付着部の温度、及び前記筒内燃料付着部の温度は、それぞれ所定の規則で減衰するものとして、
内燃機関の始動時に、前記筒内燃料付着部の温度に対する前記ポート燃料付着部の相対的温度が高いほど、前記吸気ポートへの噴射割合を大きくすることを特徴とする。
また、第3の発明は、第1又は第2の発明において、前記噴射割合設定手段は、内燃機関の運転中における噴射割合に基づいて、内燃機関の停止時に、前記ポート燃料付着部の温度より前記筒内燃料付着部の温度が高いと予測される場合は、停止時間が第1設定時間を超える場合を除いて、筒内への噴射割合をポートへの噴射割合より大きく設定することを特徴とする。
また、第4の発明は、第1乃至第3の発明において、前記噴射割合設定手段は、内燃機関の運転中における噴射割合に基づいて、内燃機関の停止時に、前記ポート燃料付着部の温度が前記筒内燃料付着部の温度より高いと予測される場合は、停止時間が、第1設定時間より短い第2設定時間以下である状況下では、ポートへの噴射割合を筒内への噴射割合より大きく設定し、一方、停止時間が前記第2設定時間を超える状況下では、その停止時間が前記第1設定時間を超える場合を除いて、筒内への噴射割合をポートへの噴射割合より大きく設定することを特徴とする。
また、第5の発明は、第1乃至第4の発明において、前記噴射割合設定手段は、内燃機関の停止時前、所定期間に渡る前記パラメータの平滑値に基づいて始動時における前記噴射割合を設定することを特徴とする。
また、第6の発明は、内燃機関の燃料噴射制御装置第であって、
内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、
内燃機関の筒内に燃料を噴射する筒内噴射弁と、
前記ポート噴射弁により噴射された燃料が付着するポート燃料付着部の温度を取得するポート燃料付着部温度取得手段と、
前記筒内噴射弁により噴射された燃料が付着する筒内燃料付着部の温度を取得する筒内燃料付着部温度取得手段と、
前記ポート燃料付着部の温度と、前記筒内燃料付着部の温度とに基づいて、前記吸気ポート及び前記筒内に対する燃料の噴射割合を設定する噴射割合設定手段と、
を含むことを特徴とする。
また、第7の発明は、第6の発明において、
前記ポート燃料付着部温度取得手段は、内燃機関の始動時における前記ポート燃料付着部の温度を取得する手段を含み、
前記筒内燃料付着部温度手段は、内燃機関の始動時における前記筒内燃料付着部の温度を取得する手段を含み、
前記噴射割合設定手段は、内燃機関の始動時における、前記ポート燃料付着部の温度及び前記筒内燃料付着部の温度に基づいて、始動時に用いる噴射割合を設定する手段を含むことを特徴とする。
また、第8の発明は、第6又は第7の発明において、前記噴射割合設定手段は、前記筒内燃料付着部の温度に対する前記ポート燃料付着部の相対的温度が高いほど、前記吸気ポートへの噴射割合を大きくすることを特徴とする。
第1の発明によれば、内燃機関の停止時におけるパラメータの値と、内燃機関の停止時間とに基づいて、内燃機関の始動時における噴射割合を設定することができる。内燃機関の停止時におけるパラメータの値は、停止時における、ポート燃料付着部の温度及び筒内燃料付着部の温度に対応している。また、内燃機関の停止時間は、内燃機関の停止後におけるそれらの温度の変化と相関を有している。このため、本発明によれば、内燃機関の始動時に、その時点におけるポート燃料付着部及び筒内燃料付着部の温度に応じた、適切な噴射割合を設定することができる。
第2の発明によれば、運転中における吸気ポートへの噴射割合が大きいほど、停止時におけるポート燃料付着部の温度が低温であるものとして、また、運転中における筒内への噴射割合が大きいほど、停止時における筒内燃料付着部の温度が低温であるものとして噴射割合を設定することができる。ポート燃料付着部の温度、及び筒内燃料付着部の温度は、それぞれ噴射される燃料が多いほど、その燃料により冷却されて低温となる。このため、本発明によれば、停止時における実状に整合するように噴射割合を設定することができる。また、本発明によれば、停止時間の経過に伴って、ポート燃料付着部及び筒内燃料付着部にそれぞれ生ずる温度変化を正しく考慮したうえで、始動時の噴射割合を設定することができる。このため、本発明によれば、始動時の温度環境に適合した適正な噴射割合を設定することができる。
第3の発明によれば、内燃機関の停止時に、ポート燃料付着部の温度より筒内燃料付着部の温度が高いと予測される場合は、少なくとも停止時間が第1設定時間を超えるまでは筒内への噴射割合をポートへの噴射割合より大きく設定することができる。筒内燃料付着部は、ポート燃料付着部より熱容量が大きいため、停止時に筒内燃料付着部の方が高温であった場合、両者の温度が同じ温度に収束するまで、その関係が維持される。本発明によれば、その関係が維持されている間中、筒内への噴射割合を大きく設定することで、始動時において、燃料を効率的に気化させることができる。
第4の発明によれば、内燃機関の停止時に、ポート燃料付着部の温度が筒内燃料付着部の温度より高いと予測される場合は、停止時間が第2設定時間に達するまで、ポートへの噴射割合を筒内への噴射割合より大きくし、その後、少なくとも停止時間が第1設定時間を超えるまでは筒内への噴射割合をポートへの噴射割合より大きく設定することができる。内燃機関の停止時にポート燃料付着部が筒内燃料付着部より高温であった場合、しばらくの間はその状態が維持されるが、熱容量の差に起因して、第2設定時間の経過と共にその関係が反転し、その後、最終的には両者がほぼ同じ温度に収束する。本発明によれば、常に温度の高い方への噴射割合を大きくすることができ、内燃機関の始動時に燃料を効率的に気化させることができる。
第5の発明によれば、内燃機関の停止時前、所定期間に渡るパラメータの平滑値に基づいて始動時における噴射割合を設定することができる。停止時におけるポート燃料付着部及び筒内燃料付着部の温度は、停止前所定期間に渡る状態の影響を受ける。このため、本発明によれば、パラメータの平滑値を用いることにより、停止時の状態を正しく推定することができ、その結果、始動時の噴射割合を適正に設定することができる。
第6の発明によれば、ポート燃料付着部の温度と、筒内燃料付着部の温度とをそれぞれ取得したうえで、それらの温度に基づいて、燃料の噴射割合を設定することができる。このため、本発明によれば、内燃機関の運転中、常に、燃料の気化に有利な状況を作り出すことができる。
第7の発明によれば、始動時における、ポート燃料付着部及び筒内燃料付着部の温度を取得したうえで、それらの温度に基づいて、始動時における燃料の噴射割合を設定することができる。このため、本発明によれば、良好な始動性を実現することができる。
第8の発明によれば、ポート燃料付着部の温度が高いほど、吸気ポートへの噴射割合を大きくし、一方、筒内燃料付着部の温度が高いほど、筒内への噴射割合を大きくすることができる。このため、本発明によれば、燃料を効率的に気化させることができる。
実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1の構成を説明するための図である。図1に示すように、本発明の実施の形態1のシステムは、内燃機関10を備えている。内燃機関10は、ハイブリッド車両や、エコラン車両に搭載され、車両システムの稼働中においてもその停止と始動が頻繁に繰り返されるものとする。
内燃機関10には、吸気ポート12を介して吸気通路が連通していると共に、排気ポート14を介して排気通路が連通している。吸気ポート12には、内燃機関10の筒内16と吸気通路との導通状態を制御するための吸気弁18が配置されている。吸気弁18は、可変動弁機構20と連結されている。可変動弁機構20は、カムの回転と同期を取って吸気弁18を開閉させると共に、吸気弁18の開弁特性、つまり、開閉タイミングInVT(開閉時期及び作用角)、並びに最大リフト量InVLを変化させることができる。
排気ポート14には、筒内16と排気通路との導通状態を制御するための排気弁22が配置されている。排気弁22は、可変動弁機構24と連結されている。可変動弁機構24は、カムの回転と同期を取って排気弁22を開閉させると共に、排気弁22の開弁特性、つまり、開閉タイミングExVT(開閉時期及び作用角)、並びにリフト量ExVLを変化させることができる。
内燃機関10の吸気通路には、吸入空気量Gaを検出するためのエアフロメータ26が配置されている。エアフロメータ26の下流には、スロットルバルブ28が配置されている。また、スロットルバルブ28の更に下流には、吸気ポート12の内部に燃料を噴射するためのポート噴射弁30が配置されている。
ポート噴射弁30には、図示しない燃料通路を介して燃料が供給されている。ポート噴射弁30は、その先端に設けられた弁体を開弁させることにより、吸気弁18に向けて燃料を噴射する。このようにして噴射された燃料は、吸気弁18及びその周辺に当たった後、適当に気化して筒内16に吸入される。
内燃機関10は、上述したポート噴射弁30と共に、筒内に燃料を噴射するための筒内噴射弁32を備えている。筒内噴射弁32には、図示しない燃料通路を介して高圧の燃料が供給されている。筒内噴射弁32は、その先端に設けられた弁体を開弁させることにより、筒内に向けて、より具体的には、ピストン33の上面に向けて、高圧燃料を噴射する。このようにして噴射された燃料は、ピストン33の上面に当たった後、適当に気化して燃焼に付される。
内燃機関10には、機関回転数NEを検出するための回転角センサ34や、冷却水温THWを検出するための水温センサ36が装着されている。本実施形態のシステムは、ECU(Electronic Control Unit)40を備えている。ECU40には、エアフロメータ26や回転角センサ34などを含む各種センサの出力が供給されている。また、ECU40は、可変動弁機構20、24に内蔵されているセンサの出力に基づいて、吸気弁18の開閉タイミングInVT及び最大リフト量InVL、並びに排気弁22の開閉タイミングExVT及び最大リフト量ExVLを検出することができる。ECU40は、それらのセンサ出力に基づいて、ポート噴射弁30や筒内噴射弁32などの各種アクチュエータを制御することができる。
[実施の形態1の特徴]
内燃機関10において、ポート噴射弁30から噴射された燃料が付着する部分の温度、つまり吸気弁18及びその周辺の温度(以下、「吸気弁温度Tv」と称す)、並びに、筒内噴射弁32によって噴射された燃料が付着する部分の温度、つまり、ピストン33の上面温度(以下、「ピストン温度Tp」と称す)は、内燃機関10の運転状態に応じて変化する。特に、それらの温度Tv、Tpは、燃料の噴射割合αに大きく影響を受ける。
すなわち、ポート噴射弁30から噴射される燃料は、吸気弁18の冷却剤として機能する。同様に、筒内噴射弁32から噴射される燃料は、ピストン33の冷却剤として機能する。従って、吸気弁温度Tvは、吸気ポート12への噴射割合αが高いほど低温になり易い。一方、ピストン温度Tpは、筒内への噴射割合(1−α)が高いほど低温になり易い。換言すると、内燃機関10の運転中は、吸気ポート12への噴射割合αが高いほど、吸気弁温度Tvがピストン温度Tpより低くなり易く、他方、その噴射割合αが低いほど、吸気弁温度Tvがピストン温度Tpより高くなり易い。
図2(A)及び図2(B)は、内燃機関10の停止後における吸気弁温度Tv、並びにピストン温度Tpの変化を示す図である。より具体的には、図2(A)は、内燃機関10の停止時t0に、ピストン温度Tpが吸気弁温度Tvより高かった場合の変化を示し、一方、図2(B)は、その停止時t0に、吸気弁温度Tvがピストン温度Tpより高かった場合の変化を示している。
内燃機関10の運転中に、ポート噴射の噴射割合αが高かったような場合は、図2(A)に示すように、停止時t0の時点で、ピストン温度Tpが吸気弁温度Tvより高くなる事態が生ずる。ピストン33の熱容量は、吸気弁18の熱容量より十分に大きいため、ピストン温度Tpは、吸気弁温度Tvに比して低下し難い。このため、内燃機関10の停止時にTp>Tvの関係が成立していると、その関係は、両者が共に大気温度に収束するまで維持される。以下、図2(A)に示すように、内燃機関10の停止後、Tp及びTvが共に大気温度に収束するまでの時間を「第1判定時間t1」とする。
内燃機関10の運転中に、筒内噴射の噴射割合(1−α)が高かったような場合は、図2(B)に示すように、停止時t0の時点で、吸気弁温度Tvがピストン温度Tpより高くなる事態が生ずる。この場合、熱容量の違いから、停止時t0の後、吸気弁温度Tvはピストン温度Tpに比して急激に低下する。その結果、図2(B)に示すように、第2判定時間t2が経過した時点で、Tv>Tpの関係が反転し、以後、両者が大気温度に収束するまで(第1判定時間t1が経過するまで)、ピストン温度Tpが吸気弁温度Tvより高い状態が継続する。
図2(A)及び図2(B)を参照して説明した通り、内燃機関10の停止後における吸気弁温度Tvとピストン温度Tpとの関係は、停止時t0にどちらの温度が高かったか、また、内燃機関10の停止後にどれだけの停止時間が経過しているかによって決定される。従って、停止時t0におけるピストン温度Tp及び吸気弁温度Tvと、内燃機関10の停止時間Tstopとが判れば、停止中の任意の時点において、吸気弁温度Tvとピストン温度Tpの何れが高温であるかを推定することが可能である。
また、停止時t0におけるピストン温度Tp及び吸気弁温度Tvは、停止時t0以前の内燃機関10の運転状態によって決定される。より具体的には、それらの温度Tp、Tvは、停止時t0以前の燃料の噴射率α、機関回転数NE、負荷率KL、冷却水温THWなどとの関係で決まる値である。従って、それらのパラメータを監視しておけば、停止時t0におけるピストン温度Tpおよび吸気弁温度Tvは、推定することが可能である。このため、本実施形態のシステムにおいては、内燃機関10の運転中にそれらのパラメータを監視しておき、かつ、内燃機関10の停止後に停止時間Tstopを計数することにより、内燃機関10の始動が要求された時点で、ピストン温度Tp及び吸気弁温度Tvが、それぞれどのような温度であるのか、或いは、それらの何れが高温であるのかを推定することができる。
吸気ポート12に噴射された燃料は、吸気弁温度Tvが高いほど良好な気化性を示す。また、筒内16に吹かれた燃料は、ピストン温度Tpが高いほど良好な気化性を示す。内燃機関10の始動時は、暖機の終了後に比してそれらの温度Tv、Tpが低いため、暖機後に比して燃料が気化し難い状態にある。このような状況下で燃料の気化を促進するためには、吸気ポート12と筒内16のうち、温度の高い方に優先的に燃料を噴射することが望ましい。つまり、吸気弁温度Tvがピストン温度Tpより高い場合には、吸気ポート12への噴射割合αを高め、その逆の場合には、筒内への噴射割合(1−α)を高めることが望ましい。そこで、本実施形態では、内燃機関10の始動時に、上述したパラメータや停止時間Tstopに基づいて、その時点におけるTvとTpの関係に適合するように、燃料の噴射割合αrestartを設定することとした。
[実施の形態1における具体的処理]
図3は、上記の機能を実現するために、ECU40が、内燃機関10の停止に備えて実行するルーチンのフローチャートである。図3に示すルーチンは、内燃機関10の停止中に繰り返し起動されるものとする。
図3に示すルーチンでは、先ず、内燃機関10が始動したか否かが判別される(ステップ100)。ここでは、例えば、機関回転数NEがアイドル回転数を超えた場合に内燃機関10の始動が判定される。内燃機関10の始動が判定されなかった場合は、そのまま処理が終了される。
一方、内燃機関10の始動が判定された場合は、吸気弁温度Tv及びピストン温度Tpに影響を与える内燃機関10のパラメータが取得される(ステップ102)。具体的には、燃料の噴射割合α、機関回転数NE、負荷率KL、冷却水温THW、吸気弁18の開閉タイミングInVT及び最大リフト量InVL、並びに、排気弁22の開閉タイミングExVT及び最大リフト量ExVLが取得される。
次に、取得した上記のパラメータのそれぞれにつき、平滑値が算出される(ステップ104)。吸気弁温度Tvやピストン温度Tpは、噴射割合α等の上記パラメータの影響を受けて特定の温度に収束する。そして、それらの収束値Tv、Tpは、上述したパラメータそれぞれの所定期間に渡る平滑値との間に大きな相関を有している。本ステップ104では、パラメータのそれぞれにつき、Tv、Tpの収束値との間に大きな相関が認められる平滑値が算出される。
図3に示すルーチンでは、次に、内燃機関10が停止したか否かが判別される(ステップ106)。その結果、内燃機関10の停止が認められない場合は、再びステップ102の処理が実行される。一方、内燃機関10の停止が認められた場合は、その時点で算出されていた各種パラメータの平滑値が、停止時の値として記憶される(ステップ108)。以上の処理によれば、内燃機関10が停止した時点で、その時点の吸気弁温度Tv及びピストン温度Tpを決定する基礎となるパラメータの平滑値をECU40に記憶させることができる。
図4は、ECU40が、内燃機関10の始動時に用いる噴射割合αrestartを算出するために実行するルーチンのフローチャートである。図4に示すルーチンでは、先ず、内燃機関10が停止中であるかが判別される(ステップ110)。内燃機関10が停止中でないと判別された場合は、そのまま今回の処理が終了される。
運転中であった内燃機関10が停止すると、ステップ110において、内燃機関10が停止中であるとの判断がなされる。この場合、先ず、停止時間Tstopが計数される(ステップ112)。次に、内燃機関10の始動要求が生じたかが判別される。本実施形態では、車両のIGスイッチがOFFからONとされたときの他、ハイブリッド車両やエコラン車両において、IGが既にONとされている状況下で内燃機関10の始動が要求された場合にも、始動要求が生じたと判断される。
上記ステップ114において、始動要求が生じていないと判別された場合は、停止時間Tstopの計数を続けるべく、再びステップ112の処理が実行される。一方、始動要求の発生が認められた場合は、次に、始動に用いる噴射割合αrestartが設定される(ステップ116)。
ECU40は、上述したパラメータα、NE、KL、THW、InVT、InVL、ExVT、ExVL等の平滑値、及び停止時間Tstopとの関係で、始動用噴射割合αrestartを定めたマップを記憶している。上記ステップ116では、内燃機関10の停止時に記憶していおいたそれらのパラメータ平滑値が先ず読み出される。次いで、それらの平滑値と、現時点で計数されている停止時間Tstopとに基づいて、上記のマップに従って、始動用噴射割合αrestartが設定される。
上記のマップは、以下の規則に従うように設定されている。
(1)停止時における吸気弁温度Tv及びピストン温度Tpは、停止時に得られたα、NE、KL、THW、InVT、InVL、ExVT、ExVL等のパラメータの平滑値に対応した値となる。
(2)特に、吸気ポート12への噴射割合αの平滑値が大きいほど、吸気弁温度Tvは低くなり、他方、ピストン温度Tpは高くなる。
(3)内燃機関10の停止後に、ピストン温度Tp及び吸気弁温度Tvは、それぞれ所定の規則で減衰する。
(4)始動用噴射割合αrestartは、内燃機関10の始動が要求された時点で、ピストン温度Tpに対する吸気弁温度Tvの相対的な値が高いほど、吸気ポート12への噴射割合αを大きくする。
より具体的には、上記(4)の規則は、以下の要求が満たされるように定められている。
(4−1)内燃機関10の停止時t0に、ピストン温度Tpが吸気弁温度Tvより高いと推定される場合は、両者の温度が大気温度に収束するまで、つまり、停止時間Tstopが第1設定時間t1に達するまで、常に、筒内への噴射割合(1−α)を吸気ポート12への噴射割合αより大きく設定する(図2(A)参照)。
(4−2)内燃機関10の停止時に、吸気弁温度Tvがピストン温度Tpより高いと推定される場合は、両者の関係が反転するまで、つまり、停止時間Tstopが第2設定時間t2に達するまでは吸気ポート12への噴射割合αを筒内への噴射割合(1−α)より大きく設定する。その後、停止時間が第1設定時間t1に達するまでは筒内への噴射割合(1−α)を吸気ポート12への噴射割合αより大きく設定する(図2(B)参照)。
上述したステップ116の処理によれば、吸気ポート12と筒内16のうち、内燃機関10の始動時に温度が高い方に優先的に燃料が噴射されるように、始動時噴射割合αrestartを設定することができる。図4に示すルーチンでは、次に、このようにして設定された始動時噴射割合αrestartで内燃機関10を始動するための始動制御が実行される(ステップ118)。
以上の処理によれば、内燃機関10の始動時に、吸気弁温度Tvがピストン温度Tpより高い場合には、吸気ポート12に対して優先的に燃料を噴射して、燃料の気化を促進することができる。また、その逆の場合には、筒内16への燃料噴射を優先して、燃料の気化を促進することができる。このため、本実施形態のシステムによれば、内燃機関10に対して優れた始動性を付与することができる。
尚、上述した実施の形態1においては、ECU40が、上記ステップ102の処理を実行することにより前記第1の発明における「パラメータ取得手段」が、上記ステップ112の処理を実行することにより前記第1の発明における「停止時間計測手段」が、上記ステップ116の処理を実行することにより前記第1の発明における「噴射割合設定手段」が、それぞれ実現されている。
実施の形態2.
次に、図5乃至図12を参照して、本発明の実施の形態2について説明する。本実施形態のシステムは、図1に示すハードウェアに対して、燃料温度センサ、油温センサ、吸気温センサ、吸気圧センサ、及び筒内圧センサを加えると共に、ECU40に、後述する図6、図8、及び図10乃至図12に示すルーチンを実行させることにより実現することができる。
上述した実施の形態1のシステムは、吸気弁温度Tv及びピストン温度Tpに関わるパラメータの値と、内燃機関10の停止時間Tstopとに基づいて、始動時噴射割合αrestartをマップから読み出すこととしている。これに対して、本実施形態のシステムは、吸気弁温度Tv及びピストン温度Tpをそれぞれ推定したうえで、それらの推定値に基づいて最適な噴射割合αを決定しようとするものである。
[吸気弁温度Tvの推定モデル]
図5(A)および図5(B)は、本実施形態のシステムが吸気弁温度Tvを推定するために用いるモデルを説明するための図である。より具体的には、図5(A)は、閉弁中における吸気弁18の熱環境を説明するための図である。また、図5(B)は、開弁中における吸気弁18の熱環境を説明するための図である。
図5(A)中に示す符号Qb、QsおよびQfは、それぞれ、燃焼ガス受熱量、接触面受熱量、および燃料気化熱量を示している。燃焼ガス受熱量Qbは、筒内16の燃焼ガスから吸気弁18に与えられる熱量である。接触面受熱量Qsは、弁座との機械的な接触面から吸気弁18に伝達される熱量である。また、燃料気化熱量Qfは、吸気弁18に付着した燃料が気化する際に持ち去られる熱量である。図5(A)に示すように、吸気弁18の閉弁中には、主として上述した3種類の熱量が吸気弁18とその周囲との間で授受される。
図5(B)中に示す符号QginおよびQgbackは、それぞれ、吸気弁18の開弁に伴って生ずる吸入ガス受熱量、および吹き返し受熱量を示している。吸入ガス受熱量Qginは、吸気ポート12から筒内16へ流入する新気と吸気弁18との間で授受される熱量である。一方、吹き返し受熱量Qgbackは、吸気弁18の開弁中に筒内16から吸気ポート12に逆流する吹き返しガスに起因して生ずる受熱量である。図5(B)に示すように、吸気弁18の開弁中は、主として、それら2種類の熱量が吸気弁18とその周囲との間で授受される。以下、それらの受熱量を総称して、「流動ガス受熱量」と称す。
吸気弁18の温度は、周囲の環境から熱を吸収することにより上昇し、周囲の環境に熱を放出することにより下降する。このため、吸気弁18の初期温度が判れば、その後の総受熱量を検知することにより吸気弁18の温度を推定することが可能である。そして、その推定を精度良く行うためには、上述した5種類の熱量を精度良く検知することが有効である。特に、図5(B)に示す流動ガス受熱量Qgin,Qgbackは、内燃機関10の運転状態に応じて大きく変化するため、吸気弁温度Tvを高い精度で推定するためには、その値を正確に求めることが重要である。
そこで、本実施形態では、内燃機関10の運転状態に基づいて、図5(A)に示す3種類の受熱量Qb,Qs,Qfと、図5(B)に示す流動ガス受熱量Qgin,Qgbackとを、それぞれ別個独立に推定し、それらを統合することにより吸気弁18が受ける総受熱量を精度良く算出することとした。そして、このようにして算出された総受熱量に基づいて、吸気弁温度Tvを精度良く推定することとした。
[運転中の吸気弁温度Tvを推定するための具体的処理]
図6は、内燃機関10の運転中に吸気弁温度Tvを算出するためにECU40が実行するルーチンのフローチャートである。図6に示すルーチンは、内燃機関10の始動と共に起動されるものとする。ここでは、先ず、その時点における吸気弁温度Tvが、運転中における吸気弁温度Tvの初期値として設定される(ステップ120)。
本実施形態のシステムは、内燃機関10の停止中は、後述する図8に示すルーチンに従って吸気弁温度Tvの推定を継続する。上記ステップ120では、そのルーチンに従って推定されていた温度が、運転中における吸気弁温度Tvの初期値として取り込まれる。但し、この初期値は、必ずしも図8に示すルーチンで推定される温度に限定されるものではない。内燃機関10の停止時間Tstopが十分に長く、吸気弁温度Tvが冷却水温THWに収束していると見なせる状況下では、始動時の冷却水温THWを吸気弁温度Tvの初期値としてもよい。
次に、現在の内燃機関10の状態を表す各種のパラメータが計測される(ステップ122)。ここでは、具体的には、吸入空気量Gaや機関回転数NEに加えて、可変動弁機構26の状態、つまり、吸気弁18の開閉タイミングInVT、最大リフト量InVL、及び作用角InVθなどが検知される。
次に、吸気弁18の開弁に伴って生ずる吹き返し量が判定値βより多いか否かが判別される(ステップ124)。吹き返し量は、内燃機関10の状態に基づいて、具体的には、例えば、内燃機関10の負荷率KL、バルブオーバーラップ量VOL、および機関回転数NE等に基づいて推定することが可能である。
図7(A)〜図7(C)は、負荷率KL、バルブオーバーラップ量VOL及び機関回転数NEと、吹き返し量との関係をそれぞれ示した図である。本実施形態において、ECU40には、これらの関係に対応するマップが記憶されている。上記ステップ124では、それらのマップを参照することにより、現在の状況下で生ずると予測される吹き返し量が推定され、更に、その推定値が既定の判定値βより大きいかが判別される。
判定値βは、流動ガス受熱量を求めるうえで、吹き返し受熱量Qgbackを考慮する必要があるか否かを判断するための値である。つまり、吹き返し受熱量Qgbackを考慮する必要がある程度に多量の吹き返しが発生しているかを判断するための値である。従って、吹き返し量>βが成立しない場合は、流動ガス受熱量を推定するにあたり、吹き返しの影響を考慮する必要がないと判断できる。この場合は、吸入ガス受熱量Qginを算出したうえで、その値がそのまま流動ガス受熱量とされる(ステップ126)。以下、ここで得られる流動ガス受熱量を、符号「Qg」を付して表すこととする。
一方、上記ステップ124において、吹き返し量>βの成立が認められた場合は、流動ガス受熱量を求める際に、吹き返しの影響を考慮する必要があると判断できる。この場合は、吸入ガス受熱量Qginと、吹き返し受熱量Qgbackとをそれぞれ算出したうえで、それらの和が流動ガス受熱量とされる(ステップ128)。以下、ここで得られる流動ガス流熱量については、符号「Qg'」を付して表すこととする。
(吸入ガス受熱量Qginの算出手法の例)
上述した吸入ガス受熱量Qginは、例えば、以下に示す演算式により算出することが可能である。
Qgin=hgin・(Tin−Tv)・dtin
hgin=0.0404・(kg/Dv)・Revin0.868・(Dv/liftv)0.275
Revin=(ρg・Ug・Dv)/μg ・・・(1)
但し、上段の式中、hginは熱伝達率であり、中段の式により求めることができる。また、Tinは吸入ガスの温度であり、Tvは吸気弁温度であり、dtinは吸気弁18の周囲を吸入ガスが流通している時間である。Tinは吸気温度で代用することが可能である。Tvは、現時点での吸気弁温度の推定値を用いることができる。また、dtinは、機関回転数NEに基づいて求めるものとする。
中段の式において、kgは吸入ガスの熱伝達率であり、Dvは吸気弁18の径である。これらは何れも既知の値である。また、liftvは吸気弁18のリフト量であり、本実施形態では、吸気弁18の最大リフト量InVL及びクランク角から算出することができる。そして、Revinは、下段の式により定義される値である。
下段の式において、ρgは吸気ポート12のガス密度であり、Ugは吸気ポート12のガス流量である。ρgおよびUgは、冷却水温THWで代用される吸気ポート12の温度、吸入空気量Ga、吸気圧PMなどに基づいて公知の手法で算出することができる。また、μgは吸入ガスの粘性係数であり、既知の値である。このため、吸入ガス受熱量Qginは、上記(1)式を用いることにより、演算により求めることが可能である。
(吹き返し受熱量Qgbackの算出手法の例)
吹き返し受熱量Qgbackは、例えば、以下に示す演算式により算出することが可能である。
Qgback=hgback・(Tback−Tv)・dtback
hgback=1.2・(kg/liftv)・Revback0.38・(2・liftv/Dv)0.62
Revback=(ρg・Ug・liftv)/μg ・・・(2)
但し、上段の式中、hgbackは熱伝達率であり、中段の式により求めることができる。また、Tbackは吹き返しガスの温度であり、dtbackは吸気弁18の周囲に吹き返しが生じている時間である。Tbackは、公知の手法(センサによる実測、或いは内燃機関10の運転状態に基づく推定等)で検知可能な筒内ガスの温度Tgで代用することが可能である。また、dtは、機関回転数NEに基づいて求めるものとする。
中段の式において、kgは吹き返しガスの熱伝達率であり、Dvは吸気弁18の径である。これらは何れも既知の値である。また、liftvは吸気弁18のリフト量であり、本実施形態では、吸気弁18の最大リフト量InVL及びクランク角から検知することができる。そして、Revbackは、下段の式により定義される値である。
下段の式において、ρgは吸気ポート12のガス密度であり、Ugは吸気ポート12のガス流量である。ρgおよびUgは、吸気ポート12の温度、吸入空気量Ga、吸気管圧力PMなどに基づいて公知の手法で算出することができる。また、μgは吸入ガスの粘性係数であり、既知の値である。このため、吹き返し受熱量Qgbackは、上記(2)式を用いることにより、演算により求めることが可能である。
上記ステップ126において求めるべき流動ガス受熱量Qgは、上記(1)式を用いることにより算出することできる。また、上記ステップ128において求めるべき流動ガス受熱量Qg'は、上記(1)式の算出結果と上記(2)式の算出結果とを加算することにより求めることが可能である。このように、流動ガス受熱量は、吹き返しの影響を考慮しない場合(Qg)も、その影響を考慮する場合(Qg')も演算により算出することが可能である。
(接触面受熱量Qsの算出)
図6に示すルーチンでは、次に、接触面受熱量Qsが算出される(ステップ130)。接触面受熱量Qsは、例えば、以下に示す演算式により算出することが可能である。
Qs=hs・(Tvs−Tv)・dts
hs=4130・(Pm/50000)0.6 ・・・(3)
但し、上段の式中、hsは熱伝達率であり、下段の式により求めることができる。Tvsは弁座の温度であり、冷却水温THWで代用することができる。また、dtsは吸気弁18が弁座に着座している時間であり、ここでは、機関回転数NEに基づいて算出することができる。そして、下段の式におけるPmは、吸気管圧力である。
接触面受熱量Qsは、上記(3)式を用いることにより、内燃機関10の状態をパラメータとして演算により求めることが可能である。このため、上記ステップ130では、接触面受熱量Qsを正確に求めることができる。
(燃料気化熱量Qfの算出)
図6に示すルーチンでは、次に、燃料気化熱量Qfが算出される(ステップ132)。燃料気化熱量Qfは、例えば、以下に示す演算式により算出することが可能である。
Qf=mf・{(Tv−Tf)・Cpf+Hf}・dtf ・・・(4)
上記(4)式中、mfは燃料蒸発量である。燃料蒸発量mfは、吸気弁18に向かって噴射される燃料の量、吸気弁温度Tv、更には吸気管圧力Pm等に基づいて求めることができる。Tfは燃料温度であり、本実施形態では燃料温度センサにより実測することができる。また、Cpfは燃料比熱、Hfは燃料気化潜熱である。これらは何れも既定値として扱うことができる。そして、dtfは、燃料の気化期間として考慮すべき時間であり、ここでは、機関回転数NEの関数として設定することができる。
燃料気化熱量Qfは、上記(4)式を用いることにより、内燃機関10の状態をパラメータとして演算により求めることが可能である。このため、上記ステップ132では、燃料気化熱量Qfを正確に求めることができる。
(燃焼ガス受熱量Qbの算出)
図6に示すルーチンでは、次に、燃焼ガス受熱量Qbが算出される(ステップ134)。燃焼ガス受熱量Qbは、例えば、以下に示す演算式により算出することが可能である。
Qb=hb・(Tg−Tv)・dtb
hb=0.013・Dc−0.2・Pc0.8・Uc0.8・Tg−0.53 ・・・(5)
但し、上段の式中、hbは熱伝達率であり、下段の式により求めることができる。Tgは筒内16のガス温度であり、上記の如く、公知の手法により推定することができる。また、dtbは、燃焼ガスの温度が吸気弁18に作用する時間であり、ここでは、機関回転数NEに基づいて算出することができる。
下段の式において、Dcはシリンダ径であり、既定の値として取り扱うことができる。Pcは筒内圧力であり、例えば、筒内圧センサにより実測することができる。また、Ucは、筒内16のガス流速であり、内燃機関10の運転状態に基づいて公知の手法で推定することができる。
燃焼ガス受熱量Qbは、上記(5)式を用いることにより、内燃機関10の状態をパラメータとして演算により求めることが可能である。このため、上記ステップ134では、燃焼ガス受熱量Qbを正確に求めることができる。
(吸気弁温度Tvの更新)
上記の処理が終わると、次に、吸気弁温度Tvの更新処理が行われる(ステップ136)。ここでは、具体的には、先ず、今回の処理サイクルで得られた全ての受熱量に基づいて吸気弁18の総受熱量(Qg+Qs−Qf+Qb、又はQg'+Qs−Qf+Qb)が算出される。次に、総受熱量を吸気弁18の比熱(既知であるものとする)で除することにより、今回の処理サイクルの間に生じた温度変化分ΔTvが算出される。最後に、現時点の吸気弁温度TvにΔTvを加えることにより、吸気弁温度Tvが最新値に更新される。
以上説明した通り、図6に示すルーチンによれば、流動ガス受熱量QgまたはQg'、接触面受熱量Qs、燃料気化熱量Qf、および燃焼ガス受熱量Qbを統合することにより、内燃機関10の運転中における吸気弁温度Tvを高い精度で推定することができる。
[停止中の吸気弁温度Tvを推定するための具体的処理]
内燃機関10の停止中は、吸気弁18の周囲にガスが流通しないため、流動ガス受熱量Qg、Qg’が発生しない。また、燃料噴射も行われないため、燃料気化熱量Qfもゼロとなる。更に、筒内16で燃焼が生じないため、燃焼ガス受熱量Qbもゼロとなる。このため、内燃機関10の停止中は、接触面受熱量Qsのみを考慮することにより、吸気弁温度Tvを推定することができる。
図8は、内燃機関10の停止中における吸気弁温度Tvを推定するためにECU40が実行するルーチンのフローチャートである。図8に示すルーチンは、内燃機関10の停止と共に起動されるものとする。ここでは、先ず、その時点における吸気弁温度Tvが、停止中の吸気弁温度Tvの初期値として設定される(ステップ140)。
次に、接触面受熱量Qsを算出するために必要なパラメータが取り込まれる(ステップ142)。具体的には、ここでは、冷却水温THWと吸気管圧力Pmとが取得される。
次に、接触面受熱量Qsが算出される(ステップ144)。接触面受熱量Qsは、上記の(3)式に従って、以下の通り算出される。但し、弁座の温度Tvsは冷却水温THWで代用し、着座時間dtsは、本ルーチンの実行周期とする。
Qs=hs・(Tvs−Tv)・dts
hs=4130・(Pm/50000)0.6
図8に示すルーチンでは、次に、吸気弁温度Tvの更新処理が行われる(ステップ146)。ここでは、具体的には、先ず、今回の処理サイクルで得られた接触面受熱量Qsを吸気弁18の比熱(既知であるものとする)で除することにより、温度変化分ΔTvが算出される。次いで、現時点の吸気弁温度TvにΔTvを加えることにより、吸気弁温度Tvが最新値に更新される。
以上の処理によれば、内燃機関10の停止中における吸気弁温度Tvを制度良く推定することができる。このように、本実施形態のシステムは、図6及び図8に示すルーチンを選択的に実行することにより、内燃機関10の運転中及び停止中の双方において、吸気弁温度Tvを制度良く推定し続けることができる。
[ピストン温度Tpの推定モデル]
(内燃機関10の運転中)
図9は、本実施形態のシステムが、内燃機関10の運転中におけるピストン温度Tpを推定するために用いるモデルを説明するための図である。図9において、Tgは筒内の燃焼ガス温度、Tfは燃料温度、Tcはシリンダの壁面温度、Toはオイル温度、Tpはピストン温度を表している。ピストン33は、燃焼ガスから熱を受け、燃料、シリンダ、及びオイルに熱を放出する。この収支は、次式のように表すことができる。
mp’(dTp/dt)=Cg(Tg-Tp)-Cc(Tp-Tc)-Co(Tp-To)-Cf(Tp-Tf) ・・・(6)
但し、mp’はピストン33の熱容量、Cgは燃焼ガスとピストン33の間の熱伝達係数、Ccはシリンダとピストン33の間の熱伝達係数、Coはオイルとピストン33の間の熱伝達係数、Cfは燃料とピストン33の間の熱伝達係数である。
上記(6)式は、以下のように変形することができる。
mp’(dTp/dt)=CgTg+CcTc+CoTo+CfTf-(Cg+Cc+Co+Cf)Tp
(mp’/Cg)(dTp/dt)={Tg+(Cc/Cg)Tc+(Co/Cg)To+(Cf/Cg)Tf}-(1+Cc/Cg+Co/Cg+Cf/Cg)Tp
・・・(7)
mp’/Cg=mp、Cc/Cg=C1、Co/Cg=C2、Cf/Cg=C3とすると、上記(7)式は、更に以下のように変形することができる。
mp(dTp/dt)=(Tg+C1Tc+C2To+C3Tf)-(1+C1+C2+C3)Tp
dTp/dt=(1/mp)(Tg+C1Tc+C2To+C3Tf)-(1+C1+C2+C3)Tp
=(1/mp)(1+C1+C2+C3)*{(Tg+C1Tc+C2To+C3Tf)/(1+C1+C2+C3)-Tp}
=[1/{mp/(1+C1+C2+C3)}]*{(Tg+C1Tc+C2To+C3Tf)/(1+C1+C2+C3)-Tp}
・・・(8)
(8)式は、ピストン温度Tpの変化に関する演算式である。この式をECU40に実行させるためには、演算周期をΔtとして、上記(8)式を離散化させる必要がある。ところで、上記(8)式は、Tpを「y」、mp/(1+C1+C2+C3)を「τ」、(Tg+C1Tc+C2To+C3Tf)/(1+C1+C2+C3)を「Y」に置き換えると、以下に示す(9)式となる。
dy/dt=(1/τ)(Y-y) ・・・(9)
上記(9)式の微分方程式は、次式のように離散化することができる。
y(k+1)=y(k)+{1-e(-Δt/τ)}{Y-y(k)} ・・・(10)
上記(9)式と(10)式の関係を、上記(8)式に当てはめると、(8)式は、以下のように離散化することができる。
Tp(k+1)= Tp(k)+[1-exp{-(1+C1+C2+C3)/mp}Δt]*
{(Tg(k)+C1Tc(k)+C2To(k)+C3Tf(k))/(1+C1+C2+C3)-Tp(k)} ・・・(11)
上記(11)式中、C1、C2、C3及びmpは固定値として取り扱うことができる。従って、時刻kにおけるピストン温度Tp(k)と共に、燃焼ガス温度Tg(k)、シリンダの壁面温度Tc(k)、オイル温度To(k)、及び燃料温度Tf(k)が判れば、ECU40は、時刻k+1におけるピストン温度Tp(k+1)を算出することができる。
ピストン温度Tpは、十分に長い停止時間の後に内燃機関10が始動される際には、冷却水温THWと等しいとみなすことができる。このため、その時点でTp(k)は特定することができる。また、燃焼ガス温度Tg(k)は、上述したように、内燃機関10の運転状態等に基づいて公知の手法で検知することができる。更に、本実施形態のシステムは、油温センサによりオイル温度To(k)を計測し、燃料温度センサにより燃料温度Tf(k)を計測することができる。そして、このシステムは、以下に説明する方法により、シリンダ壁面温度Tc(k)を算出することができる。
(シリンダ壁面温度Tcの算出)
内燃機関10の運転中において、シリンダの壁面は、燃焼ガスTgから熱を受け、冷却水に熱を放出する。従って、シリンダ壁面についての熱の収支は、次式のように表すことができる。
mc’(dTc/dt)=Cin(Tg-Tc)-Cout(Tc-THW) ・・・(12)
但し、mc’はシリンダ壁面の熱容量、Cinは燃焼ガスとシリンダ壁面の間の熱伝達係数、Coutはシリンダ壁面と冷却水の間の熱伝達係数である。
上記(6)式に施したのと同様の変形を施すことにより、上記(12)式は、以下に示すよう離散化することができる。
Tc(k+1)= Tc(k)+[1-exp{-(1+C)/mc}Δt]*
{(Tg(k)+CTHW(k))/(1+C)-Tc(k)} ・・・(13)
上記(13)式中、mcとCは定数として取り扱うことができる。このため、ECU40は、時刻kにおけるシリンダ温度Tc(k)と共に、燃焼ガス温度Tg(k)、並びに冷却水温度THW(k)が判れば、時刻k+1におけるシリンダ温度Tc(k+1)を算出することができる。
シリンダ壁面温度Tcは、十分に長い停止時間の後に内燃機関10が始動される際には、冷却水温THWと等しいとみなすことができる。このため、その時点でTc(k)は特定することができる。また、燃焼ガス温度Tg(k)は、上述したように、内燃機関10の運転状態等に基づいて公知の手法で検知することができる。更に、冷却水温THW(k)は水温センサ36により実測することができる。従って、ECU40は、上記(13)式の関係を用いることにより、内燃機関10の運転中において、シリンダ壁面温度Tc(k+1)を算出することができる。
以上説明した通り、本実施形態のシステムは、上記(11)式の右辺に含まれる全てのパラメータを実測或いは算出することができる。このため、このシステムは、(11)式の関係を用いることにより、内燃機関10の運転中において、ピストン温度Tpを常に精度良く求めることができる。
(内燃機関10の停止中)
内燃機関10の停止中は、燃料噴射が行われないことからピストン33から燃料への放熱がゼロとなる。また、燃焼ガスが発生しないことから、燃焼ガスからピストン33への熱の供給もゼロとなる。このため、上記(6)式において、Cf及びCgをゼロとすることにより、停止中におけるピストン33周りの熱の収支は、次式のように表すことができる。
mp’(dTp/dt)=-Cc(Tp-Tc)-Co(Tp-To)
=CcTc+CoTo-(Cc+Co)Tp ・・・(14)
上記(14)式は、上記(6)式に施したのと同様の変形を施すことにより、以下に示すよう離散化することができる。
Tp(k+1)= Tp(k)+[1-exp{-(Cc+Co)/mp’}Δt]*
{(CcTc(k)+CoTo(k))/(Cc+Co)-Tp(k)} ・・・(15)
上記(15)式中、Cc、Co及びmp’は定数として取り扱うことができる。このため、ECU40は、時刻kにおけるピストン温度Tp(k)と共に、シリンダ壁面温度Tc(k)、並びにオイル温度To(k)が判れば、時刻k+1におけるピストン温度Tp(k+1)を算出することができる。
内燃機関10の運転中においてピストン温度Tpは演算されているから、内燃機関10の停止時に、Tp(k)は特定することができる。また、オイル温度To(k)は、油温センサにより計測することができる。そして、シリンダ壁面温度Tc(k)は、以下に説明する手法により算出することができる。
すなわち、内燃機関10の停止中において、シリンダ壁面における熱の収支は、上記(12)式において、Cinをゼロとすることにより、以下のように表すことができる。
mc’(dTc/dt)=-Cout(Tc-THW) ・・・(16)
そして、上記(16)式は、以下のように離散化された式に変換することができる。
Tc(k+1)= Tc(k)+{1-exp(-Cout/mc’)Δt}*{THW(k)-Tc(k)} ・・・(17)
内燃機関10の運転中においてシリンダ壁面温度Tcは演算されているから、内燃機関10の停止時に、Tc(k)を特定することができる。また、THW(k)は温度センサにより計測することができる。このため、ECU40は、内燃機関10の停止中も、シリンダ壁面温度Tc(k+1)を継続的に算出することができる。
以上説明した通り、本実施形態のシステムは、上記(15)式の右辺に含まれる全てのパラメータを実測或いは算出することができる。このため、このシステムは、(15)式の関係を用いることにより、内燃機関10の停止中においても、ピストン温度Tpを常に精度良く求めることができる。
[運転中のピストン温度Tpを推定するための具体的処理]
図10は、内燃機関10の運転中にピストン温度Tpを算出するためにECU40が実行するルーチンのフローチャートである。図10に示すルーチンは、内燃機関10の始動と共に起動されるものとする。このルーチンでは、先ず、その時点におけるピストン温度Tpが、運転中におけるピストン温度Tpの初期値として設定される(ステップ150)。
本実施形態のシステムは、内燃機関10の停止中は、後述する図11に示すルーチンに従ってピストン温度Tpを推定する。上記ステップ150では、そのルーチンによって推定されていた温度が、運転中におけるピストン温度Tpの初期値として取り込まれる。但し、この初期値は、必ずしも図11に示すルーチンで推定される温度に限定されるものではない。内燃機関10の停止時間Tstopが十分に長く、ピストン温度Tpが冷却水温THWに収束していると見なせる状況下では、始動時の冷却水温THWをピストン温度Tpの初期値としてもよい。
次に、その時点におけるシリンダ壁面温度Tcが、運転中におけるシリンダ壁面温度Tcの初期値として設定される(ステップ152)。後述する図11に示すルーチンでは、停止中におけるシリンダ壁面温度Tcも推定される。ここでは、そのルーチンにより推定されていた温度が、運転中におけるシリンダ壁面温度Tcの初期値として読み込まれる。但し、停止時間Tstopが十分に長い場合は、冷却水温THWをシリンダ壁面温度Tcの初期値としてもよい。
次に、運転中のピストン温度Tpを算出するために必要なパラメータが取り込まれる(ステップ154)。具体的には、冷却水温THW、燃焼ガス温度Tg、オイル温度To、及び燃料温度Tfが取り込まれる。
次に、上記(13)式に基づいてシリンダ壁面温度Tc(k+1)が算出される(ステップ156)。ここで、Tc(k)には、現時点で記憶されているTcが代入される。また、Tg(k)及びTHW(k)には、それぞれ上記ステップ154で取り込んだTg及びTHWが代入される。
更に、上記(11)式に基づいて、運転中のピストン温度Tp(k+1)が算出される。ここで、Tp(k) には、現時点で記憶されているTpが代入される。また、Tg(k)、To(k) 、Tf(k)には、上記ステップ154で取り込んだTg、To、Tfが代入される。そして、Tc(k)には、上記ステップ156で算出された値が代入される。
内燃機関10の運転が継続される間は、ステップ158の処理に続いて、実行周期Δt毎にステップ154以降の処理が実行される。その結果、図10に示すルーチンによれば、内燃機関10の運転中、常に、実行周期Δtの間隔でピストン温度Tpを算出することができる。
[停止中のピストン温度Tpを推定するための具体的処理]
図11は、内燃機関10の停止中にピストン温度Tpを算出するためにECU40が実行するルーチンのフローチャートである。図11に示すルーチンは、内燃機関10が停止するのと同時に起動されるものとする。このルーチンでは、先ず、その時点で算出されていたピストン温度Tpが、停止中におけるピストン温度Tpの初期値として設定される(ステップ160)。
次に、その時点で算出されていたシリンダ壁面温度Tcが、停止中におけるシリンダ壁面温度Tcの初期値として設定される(ステップ162)。
次いで、停止中のピストン温度Tpを算出するために必要なパラメータが取り込まれる(ステップ164)。ここでは、具体的には、冷却水温THWとオイル温度Toとが、それぞれ水温センサ及び油温センサにより実測される。
次に、上記(17)式に基づいてシリンダ壁面温度Tc(k+1)が算出される(ステップ166)。ここで、Tc(k)には、現時点で記憶されているTcが代入される。また、THW(k)には、上記ステップ164で取り込んだTHWが代入される。
更に、上記(15)式に基づいて、停止中のピストン温度Tp(k+1)が算出される。ここで、Tp(k) には、現時点で記憶されているTpが代入される。また、To(k)には、上記ステップ154で取り込んだToが代入される。そして、Tc(k)には、上記ステップ166で算出された値が代入される。
内燃機関10が停止状態を維持する間は、ステップ168の処理に続いて、実行周期Δt毎にステップ164以降の処理が実行される。その結果、図11に示すルーチンによれば、内燃機関10の停止中、常に、実行周期Δtの間隔でピストン温度Tpを算出することができる。
[始動制御のための具体的処理]
本実施形態のシステムは、内燃機関10の始動が要求された際に、上記の手法で推定している吸気弁温度Tvとピストン温度Tpとを比較する。そして、このシステムは、温度の高い方への噴射割合を大きくして始動噴射を行うことにより、良好な始動性を実現する。
図12は、上記の機能を実現するためにECU40が実行するルーチンのフローチャートである。このルーチンは、内燃機関10の始動が要求されるのと同時に起動されるものとする。このルーチンが起動されると、先ず、吸気弁温度Tvが読み込まれる(ステップ170)。始動要求は、内燃機関10の停止中に生ずる。従って、ここでは、図8に示すルーチンにより推定されている最新の吸気弁温度Tvが、現時点でのTvとして読み込まれる。
次に、ピストン温度Tpが読み込まれる(ステップ172)。具体的には、ここでは、図11に示すルーチンにより推定されている最新のピストン温度Tpが、現時点でのTpとして読み込まれる。
次に、吸気弁温度Tvがピストン温度Tpより高いか否かが判別される(ステップ174)。その結果、Tv>Tpの成立が認められた場合は、吸気弁18に付着した燃料の方がピストン33に付着した燃料より気化し易い状況が形成されていると判断できる。この場合、吸気ポート12への噴射割合αが、筒内への噴射割合(1−α)より大きくなるように始動時噴射割合αrestartが設定される(ステップ176)。
これに対して、Tv>Tpが成立しないと判別された場合は、吸気ポート12に燃料を噴射するより、筒内16に燃料を噴射する方が燃料の気化を促進するうえで有利であると判断できる。この場合、筒内への噴射割合(1−α)が吸気ポート12への噴射割合αより大きくなるように始動時噴射割合αrestartが設定される(ステップ178)。
上記の処理が終わると、設定された始動時噴射割合αrestartで、吸気ポート12への燃料噴射量、及び筒内16への燃料噴射量が演算される。そして、このようにして演算された量の燃料が、所定のクランク角において、ポート噴射弁30、及び筒内噴射弁32からそれぞれ噴射される(ステップ180)。
以上の処理によれば、内燃機関10の始動時に、吸気ポート12と筒内16のうち、燃料を気化させ易い環境にある方への噴射割合を大きくして燃料噴射を実行することができる。このため、本実施形態のシステムによれば、実施の形態1の場合と同様に、内燃機関10に対して良好な始動性を付与することができる。
ところで、上述した実施の形態2においては、吸気ポート12への噴射割合αを優先するか、筒内16への噴射割合を優先するかを、Tv>Tpの成否に基づいて決定することとしているが、その決定の手法はこれに限定されるものではない。すなわち、ピストン33の熱容量は、吸気弁18の熱容量に比して十分に大きいため、内燃機関10の型式によっては、ピストン温度Tpが吸気弁温度Tvより低くても、筒内16への噴射割合を優先した方が、燃料を気化させるうえで有利であることがある。このような事態が生ずる場合は、Tv>Tpの成否に変えて、Tv>Tp-k(kは適合値)の成否に基づいて、何れの噴射割合を優先するかを決定することとしてもよい。
また、上述した実施の形態2においては、Tv>Tpの成否に基づいて、吸気ポート12への噴射割合αと、筒内16への噴射割合(1−α)の何れかを優先することとしているが、より具体的には、Tv>Tpの成立時にはα=1とし、その不成立時にはα=0とすることとしてもよい。更には、TvとTpの関係に基づいて、αをより細かく設定することとし、例えば、αrestartを、TvとTpを変数とするマップにより設定することとしてもよい。
また、上述した実施の形態2においては、ピストン温度Tp及び吸気弁温度Tvを、何れもモデルを用いて推定することとしているが、本発明はこれに限定されるものではない。すなわち、ピストン温度Tp及び吸気弁温度Tvは、実測により取得することとしてもよい。
また、上述した実施の形態2においては、オイル温度Toを油温センサにより実測することとしているが、本発明はこれに限定されるものではない。すなわち、オイル温度Toは、例えば、特開2004−138468号公報に開示されているような方法で推定することとしてもよい。
また、上述した実施の形態2においては、燃料温度Tfを燃料温度センサにより実測することとしているが、本発明はこれに限定されるものではない。すなわち、オイル温度Toは、例えば、特開2005−48659号公報に開示されているような方法で推定することとしてもよい。
また、上述した実施の形態2においては、ピストン温度Tpと吸気弁温度Tvの比較を、始動時噴射割合αrestartのみに反映させることとしているが、本発明はこれに限定されるものではない。すなわち、上記の比較の結果は、例えば、内燃機関10の暖機過程においても、噴射割合αに反映させてもよい。
また、上述した実施の形態2においては、ポート噴射弁30から噴射された燃料が主として吸気弁18に付着し、筒内噴射弁32から噴射された燃料が主としてピストン33に付着することから、吸気弁温度Tvとピストン温度Tpに着目して噴射割合αを決めることとしているが、本発明はこれに限定されるものではない。すなわち、噴射割合αは、ポート噴射弁30から噴射された燃料の付着部位の温度と、筒内噴射弁32から噴射された燃料の付着部位の温度との関係に基づいて決定すべきものである。従って、燃料の主たる付着部位が吸気弁18やピストン33でない場合は、その主たる付着部位の温度に基づいて噴射割合αを決定すればよい。
本発明の実施の形態1の構成を説明するための図である。 内燃機関の停止後における吸気弁温度Tv及びピストン温度Tpの変化を示す図である。 実施の形態1において、内燃機関の停止時におけるパラメータ平滑値を記憶するための実行されるルーチンのフローチャートである。 実施の形態1において、内燃機関の始動制御のために実行されるルーチンのフローチャートである。 本発明の実施の形態2において、吸気弁温度Tvを推定するために用いられるモデルを説明するための図である。 実施の形態2において、内燃機関の運転中における吸気弁温度Tvを算出するために実行されるルーチンのフローチャートである。 負荷率KL、バルブオーバーラップ量VOL及び機関回転数NEと、吹き返し量との関係を示した図である。 実施の形態2において、内燃機関の停止中における吸気弁温度Tvを算出するために実行されるルーチンのフローチャートである。 実施の形態2において、内燃機関10の運転中におけるピストン温度Tpを推定するために用いられるモデルを説明するための図である。 実施の形態2において、内燃機関の運転中におけるピストン温度Tpを算出するために実行されるルーチンのフローチャートである。 実施の形態2において、内燃機関の停止中におけるピストン温度Tpを算出するために実行されるルーチンのフローチャートである。 実施の形態2において、内燃機関の始動制御のために実行されるルーチンのフローチャートである。
符号の説明
10 内燃機関
12 吸気ポート
16 筒内
18 吸気弁
30 ポート噴射弁
32 筒内噴射弁
33 ピストン
40 ECU(Electronic Control Unit)
Tv 吸気弁温度
Tp ピストン温度
Tc シリンダ壁面温度
To オイル温度
Tf 燃料温度
t1 第1設定時間
t2 第2設定時間
α (吸気ポートへの)噴射割合
αrestart 始動時噴射割合
NE 機関回転数
KL 負荷率
THW 冷却水温
InVT 吸気弁の開閉タイミング
InVL 吸気弁の最大リフト量
ExVT 排気弁の開閉タイミング
ExVL 排気弁の最大リフト量
Tstop 停止時間

Claims (8)

  1. 内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、
    内燃機関の筒内に燃料を噴射する筒内噴射弁と、
    前記ポート噴射弁により噴射された燃料が付着するポート燃料付着部の温度、及び前記筒内噴射弁により噴射された燃料が付着する筒内燃料付着部の温度に関するパラメータを取得するパラメータ取得手段と、
    内燃機関の停止時間を計測する停止時間計測手段と、
    内燃機関の停止時における前記パラメータの値と、前記停止時間とに基づいて、内燃機関の始動時における、前記吸気ポート及び前記筒内に対する燃料の噴射割合を設定する噴射割合設定手段と、
    を含むことを特徴とする内燃機関の燃料噴射制御装置。
  2. 前記パラメータは、前記噴射割合を含み、
    前記噴射割合設定手段は、
    内燃機関の運転中において、前記ポート燃料付着部の温度、及び前記筒内燃料付着部の温度は、それぞれに対する噴射割合が大きいほど低温となり、
    内燃機関の停止後に、前記ポート燃料付着部の温度、及び前記筒内燃料付着部の温度は、それぞれ所定の規則で減衰するものとして、
    内燃機関の始動時に、前記筒内燃料付着部の温度に対する前記ポート燃料付着部の相対的温度が高いほど、前記吸気ポートへの噴射割合を大きくすることを特徴とする請求項1記載の内燃機関の燃料噴射制御装置。
  3. 前記噴射割合設定手段は、内燃機関の運転中における噴射割合に基づいて、内燃機関の停止時に、前記ポート燃料付着部の温度より前記筒内燃料付着部の温度が高いと予測される場合は、停止時間が第1設定時間を超える場合を除いて、筒内への噴射割合をポートへの噴射割合より大きく設定することを特徴とする請求項1又は2記載の内燃機関の燃料噴射制御装置。
  4. 前記噴射割合設定手段は、内燃機関の運転中における噴射割合に基づいて、内燃機関の停止時に、前記ポート燃料付着部の温度が前記筒内燃料付着部の温度より高いと予測される場合は、停止時間が、第1設定時間より短い第2設定時間以下である状況下では、ポートへの噴射割合を筒内への噴射割合より大きく設定し、一方、停止時間が前記第2設定時間を超える状況下では、その停止時間が前記第1設定時間を超える場合を除いて、筒内への噴射割合をポートへの噴射割合より大きく設定することを特徴とする請求項1乃至3の何れか1項記載の内燃機関の燃料噴射制御装置。
  5. 前記噴射割合設定手段は、内燃機関の停止時前、所定期間に渡る前記パラメータの平滑値に基づいて始動時における前記噴射割合を設定することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の燃料噴射制御装置。
  6. 内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、
    内燃機関の筒内に燃料を噴射する筒内噴射弁と、
    前記ポート噴射弁により噴射された燃料が付着するポート燃料付着部の温度を取得するポート燃料付着部温度取得手段と、
    前記筒内噴射弁により噴射された燃料が付着する筒内燃料付着部の温度を取得する筒内燃料付着部温度取得手段と、
    前記ポート燃料付着部の温度と、前記筒内燃料付着部の温度とに基づいて、前記吸気ポート及び前記筒内に対する燃料の噴射割合を設定する噴射割合設定手段と、
    を含むことを特徴とする内燃機関の燃料噴射制御装置。
  7. 前記ポート燃料付着部温度取得手段は、内燃機関の始動時における前記ポート燃料付着部の温度を取得する手段を含み、
    前記筒内燃料付着部温度手段は、内燃機関の始動時における前記筒内燃料付着部の温度を取得する手段を含み、
    前記噴射割合設定手段は、内燃機関の始動時における、前記ポート燃料付着部の温度及び前記筒内燃料付着部の温度に基づいて、始動時に用いる噴射割合を設定する手段を含むことを特徴とする請求項6記載の内燃機関の燃料噴射制御装置。
  8. 前記噴射割合設定手段は、前記筒内燃料付着部の温度に対する前記ポート燃料付着部の相対的温度が高いほど、前記吸気ポートへの噴射割合を大きくすることを特徴とする請求項6又は7記載の内燃機関の燃料噴射制御装置。
JP2005220317A 2005-07-29 2005-07-29 内燃機関の燃料噴射制御装置 Withdrawn JP2007032501A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220317A JP2007032501A (ja) 2005-07-29 2005-07-29 内燃機関の燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220317A JP2007032501A (ja) 2005-07-29 2005-07-29 内燃機関の燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2007032501A true JP2007032501A (ja) 2007-02-08

Family

ID=37792023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220317A Withdrawn JP2007032501A (ja) 2005-07-29 2005-07-29 内燃機関の燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP2007032501A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197705A (ja) * 2008-02-22 2009-09-03 Toyota Motor Corp 燃料噴射制御装置
JP2010116868A (ja) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp 内燃機関の燃料噴射制御方法
CN104863736A (zh) * 2014-02-25 2015-08-26 福特环球技术公司 燃料喷射控制的方法
WO2016084187A1 (ja) * 2014-11-27 2016-06-02 日産自動車株式会社 内燃機関の燃料噴射制御装置および燃料噴射制御方法
WO2023017148A3 (en) * 2021-08-12 2023-03-23 Brp-Rotax Gmbh & Co. Kg Engine assembly for a vehicle and method for determining piston temperature in an engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197705A (ja) * 2008-02-22 2009-09-03 Toyota Motor Corp 燃料噴射制御装置
JP2010116868A (ja) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp 内燃機関の燃料噴射制御方法
CN104863736A (zh) * 2014-02-25 2015-08-26 福特环球技术公司 燃料喷射控制的方法
CN104863736B (zh) * 2014-02-25 2020-01-17 福特环球技术公司 燃料喷射控制的方法
US10760520B2 (en) 2014-02-25 2020-09-01 Ford Global Technologies, Llc Method for fuel injection control
WO2016084187A1 (ja) * 2014-11-27 2016-06-02 日産自動車株式会社 内燃機関の燃料噴射制御装置および燃料噴射制御方法
JPWO2016084187A1 (ja) * 2014-11-27 2017-04-27 日産自動車株式会社 内燃機関の燃料噴射制御装置および燃料噴射制御方法
WO2023017148A3 (en) * 2021-08-12 2023-03-23 Brp-Rotax Gmbh & Co. Kg Engine assembly for a vehicle and method for determining piston temperature in an engine

Similar Documents

Publication Publication Date Title
US7200486B2 (en) Apparatus for estimating quantity of intake air for internal combustion engine
US6799560B2 (en) Fuel injection amount control apparatus and method of internal combustion engine
JP2007032501A (ja) 内燃機関の燃料噴射制御装置
JP2007263047A (ja) 内燃機関の始動時燃料噴射量制御装置
JP4438750B2 (ja) 内燃機関の空燃比制御装置
JP2007278137A (ja) 内燃機関の燃料噴射割合制御装置
JP2007040266A (ja) 内燃機関の吸入空気量推定装置
JP2007278096A (ja) 内燃機関の吸気弁温度推定装置及びシリンダ温度推定装置
JP4544110B2 (ja) 内燃機関の筒内吸入新気量推定装置
JP4655983B2 (ja) 内燃機関の制御装置
JP2007002737A (ja) 内燃機関の制御装置
JP5480048B2 (ja) 内燃機関の制御装置
RU2626905C1 (ru) Устройство управления для двигателя внутреннего сгорания
JP4274064B2 (ja) 内燃機関の筒内吸入新気量推定装置
JP3901068B2 (ja) 内燃機関の筒内吸入空気量推定装置
JP2005330833A (ja) 内燃機関の燃料噴射制御装置
JP2006348867A (ja) 内燃機関の燃料噴射量制御装置
JP4099159B2 (ja) 内燃機関の吸入空気量推定装置
JP4337686B2 (ja) 内燃機関の吸気弁温度推定装置
JP3928717B2 (ja) 内燃機関の燃料噴射量制御装置
JP4508120B2 (ja) 内燃機関の空燃比制御装置
JP4186891B2 (ja) 内燃機関の筒内吸入新気量推定装置
JP4892460B2 (ja) 内燃機関の空気量推定装置
JP4323838B2 (ja) 内燃機関のシリンダ内に吸入された空気へ同シリンダから伝達される熱の流量を推定する伝達熱流量推定装置、及び内燃機関の吸入空気量推定装置
JP4000972B2 (ja) 内燃機関の筒内ガス状態取得装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007