JP2007023357A - Copper alloy plate to be electrically connected through wire - Google Patents

Copper alloy plate to be electrically connected through wire Download PDF

Info

Publication number
JP2007023357A
JP2007023357A JP2005209259A JP2005209259A JP2007023357A JP 2007023357 A JP2007023357 A JP 2007023357A JP 2005209259 A JP2005209259 A JP 2005209259A JP 2005209259 A JP2005209259 A JP 2005209259A JP 2007023357 A JP2007023357 A JP 2007023357A
Authority
JP
Japan
Prior art keywords
tin
copper alloy
less
copper
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005209259A
Other languages
Japanese (ja)
Other versions
JP4566082B2 (en
Inventor
Yukiya Nomura
幸矢 野村
Akira Kiyama
明 木山
Hiroya Inaoka
宏弥 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP2005209259A priority Critical patent/JP4566082B2/en
Publication of JP2007023357A publication Critical patent/JP2007023357A/en
Application granted granted Critical
Publication of JP4566082B2 publication Critical patent/JP4566082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy plate to be electrically connected through a wire, which has a tin or tin alloy plated film on the outermost layer, and inhibits a copper component from eluting due to contact-potential difference between dissimilar metals to inhibit the copper component from electrochemically migrating. <P>SOLUTION: The copper alloy plate includes: employing a copper alloy plate as a base material, which comprises 1.7-2.3% Fe, 0.02-0.2% Si, less than 0.1% Sn, less than 0.01% P, 0.03% or less Ni, 0.03% or less Mn, 1-4% Zn, 0.01-0.4% Mg and the balance Cu with unavoidable impurities; and forming a plated layer of tin or a tin alloy on the outermost surface layer of a rolled copper alloy plate, into a thickness of 0.5 μm or more when the cross section is observed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば自動車の電気配線接続箱(Junction Box、Junction Block、あるいは略称JB、リレーボックス、あるいは略称RB)用バスバーなどの電気配線接続用銅合金板、特に導電率、耐力に優れ、電気化学マイグレーションに対する抑制効果を有する電気配線接続用銅合金板に関する。   The present invention is a copper alloy plate for electrical wiring connection such as a bus bar for an electrical wiring connection box (Junction Box, Junction Block, or abbreviation JB, relay box, or abbreviation RB) of an automobile. The present invention relates to a copper alloy plate for electrical wiring connection that has an effect of suppressing chemical migration.

この種の電気配線接続箱は、水分介在による電気化学マイグレーション防止が求められている。具体的にはJBあるいはRBにおいて、平面上に配置されたバスバーと称する通電用銅合金板の絶縁性低下防止である。
これらの銅合金板は、耐食性向上及び電気接点部の低接触抵抗維持のために、すずあるいはすず合金めっきなどの表面被覆が行われている(例えば下記特許文献1参照)。これらの表面被覆において、主に生産性向上による低コスト化のため、先めっきが多用されている。
This type of electrical wiring junction box is required to prevent electrochemical migration due to moisture. Specifically, in JB or RB, it is prevention of a decrease in insulating property of a copper alloy plate for energization called a bus bar arranged on a plane.
These copper alloy plates are subjected to surface coating such as tin or tin alloy plating in order to improve the corrosion resistance and maintain the low contact resistance of the electrical contact portion (see, for example, Patent Document 1 below). In these surface coatings, pre-plating is often used mainly for cost reduction by improving productivity.

このような電気配線接続箱では、正負両極の電位を持ったバスバーが隣り合う回路配置を取らざるを得ない。近年は特に小型化要請によりバスバー間隔を狭める傾向にあり、さらには使用電圧の高電圧化検討(14Vから42Vへの昇圧)が行われていることから、バスバー素材そのものの電気化学的マイグレーション抑制が特に重要である。   In such an electrical wiring junction box, it is necessary to take a circuit arrangement in which bus bars having both positive and negative potentials are adjacent to each other. In recent years, there is a tendency to reduce the interval between bus bars due to a demand for miniaturization in particular, and further studies have been made to increase the operating voltage (boost from 14V to 42V), so that the electrochemical migration of the bus bar material itself can be suppressed. Of particular importance.

通常、平面配置されたバスバー間には、リブと称するバスバー板厚よりも高さがわずかに高いナイロン等樹脂性の絶縁隔壁が設けられているが、電気化学的マイグレーション現象は、この絶縁隔壁の有無に関係なく発生する。これがいわゆる絶縁隔壁の絶縁抵抗低下を引き起こすトラッキング現象とは異なる点である。絶縁隔壁の有無に関わらず、隣り合ったバスバー間に表面張力などで水滴が付着すると、そこを通して電気化学的マイグレーション現象が発生し、高電位側バスバーからバスバー金属成分が溶出する。   Usually, between the bus bars arranged in a plane, there is provided a resinous insulating partition such as nylon that is slightly higher than the thickness of the bus bar called a rib, but the electrochemical migration phenomenon is caused by this insulating partition. Occurs with or without presence. This is different from a tracking phenomenon that causes a decrease in insulation resistance of a so-called insulating partition. Regardless of the presence or absence of an insulating partition wall, when a water droplet adheres between adjacent bus bars due to surface tension or the like, an electrochemical migration phenomenon occurs therethrough, and the bus bar metal component is eluted from the high potential side bus bar.

バスバー金属成分の溶出は特に上述の最外層にすず又はすず合金めっきを施したバスバーで顕著である。なぜなら、先めっき銅合金板からプレス打ち抜きされたバスバーの切断面は、素材(母材)が剥き出しで、すずめっきと銅合金の間に大きな接触電位差が生じている状態であり、高電位側バスバーにおいてはめっきを施さない状態よりもさらに溶出が進行しやすいからである。従って、バスバー用母材においては、すずめっきが施されても金属成分が溶出しにくい性質と、すずめっき自体の長期信頼性を保証する性能が必要とされている。ここで、すずめっきの長期信頼性とは、すずめっきが合金化しにくく接触信頼性が低下しにくいことを意味する。
なお、電気配線接続箱のバスバー用銅合金板に関し、従来の技術としては下記特許文献2がある。ただし、特許文献2は、すずめっきなどの表面被覆が施されていないバスバー間に絶縁隔壁を持つ構成での絶縁抵抗低下、すなわち耐トラッキング性を向上させた銅合金を開示したもので、すずめっきを施したバスバーの電気化学的マイグレーションの抑制やすずめっきの長期信頼性については開示していない。
The elution of the bus bar metal component is particularly remarkable in the bus bar in which the above-mentioned outermost layer is plated with tin or tin alloy. This is because the cut surface of the bus bar press-punched from the pre-plated copper alloy plate is a state in which the material (base material) is exposed and a large contact potential difference is generated between the tin plating and the copper alloy. This is because elution is more likely to proceed in the case of no plating. Therefore, the bus bar base material is required to have a property that the metal component does not easily elute even if tin plating is performed and a performance that guarantees long-term reliability of the tin plating itself. Here, the long-term reliability of tin plating means that tin plating is difficult to alloy and contact reliability is unlikely to decrease.
In addition, regarding the copper alloy plate for bus bars of an electrical wiring connection box, there is the following Patent Document 2 as a conventional technique. However, Patent Document 2 discloses a copper alloy with improved insulation resistance reduction, that is, improved tracking resistance, in a structure having an insulating partition between bus bars that are not subjected to surface coating such as tin plating. It does not disclose the long-term reliability of the tin plating and the suppression of electrochemical migration of the busbar subjected to the above.

特開2004−68026号公報JP 2004-68026 A 特開2003−321720号公報JP 2003-321720 A

従って、本発明は、最外層にすず又はすず合金めっきを施した電気配線接続用銅合金板において、異種金属接触電位差による銅成分の溶出を抑制し、電気化学的マイグレーション発生に対する抑制効果の高い銅合金板を得ることを目的とする。また同時に、すずめっきの長期信頼性と、バスパー等の電気配線接続用銅合金板として求められる高い導電率及び耐力を有する銅合金板を得ることを目的とする。   Therefore, the present invention is a copper alloy plate for electric wiring connection in which tin or tin alloy plating is applied to the outermost layer, suppressing elution of copper components due to different metal contact potential differences, and copper having a high suppression effect on the occurrence of electrochemical migration The object is to obtain an alloy plate. At the same time, it is an object of the present invention to obtain a copper alloy plate having high electrical conductivity and proof strength required for long-term reliability of tin plating and a copper alloy plate for electrical wiring connection such as a bus bar.

本発明に係る電気配線接続用銅合金板は、Fe:1.7〜2.3%、Si:0.02〜0.2%、Sn:0.1%未満、P:0.01%未満、Ni:0.03%以下、Mn:0.03%以下、Zn:1〜4%及びMg:0.01〜0.4%、さらに残部がCu及び不可避不純物からなる銅合金の圧延を受けた面の最外層に、断面から観察した厚さが0.5μm以上の厚さのすず又はすず合金めっき層を有する。
前記銅合金は、必要に応じて、さらにPb:0.0005〜0.015%又は/及びAl:1%以下を含有する。また、望ましくは、Bi、As、Sb及びSがそれぞれ個部に0.003%以下、かつこれらの合計が0.005%以下、O含有量が10ppm以下、H含有量が20ppm以下に制限される。
The copper alloy plate for electrical wiring connection according to the present invention is Fe: 1.7-2.3%, Si: 0.02-0.2%, Sn: less than 0.1%, P: less than 0.01% , Ni: 0.03% or less, Mn: 0.03% or less, Zn: 1-4% and Mg: 0.01-0.4%, and the balance is subjected to rolling of a copper alloy composed of Cu and inevitable impurities. The outermost layer of the surface has a tin or tin alloy plating layer having a thickness of 0.5 μm or more as observed from the cross section.
The copper alloy further contains Pb: 0.0005 to 0.015% or / and Al: 1% or less as required. Desirably, Bi, As, Sb, and S are each limited to 0.003% or less, and the total of these is limited to 0.005% or less, O content is 10 ppm or less, and H content is 20 ppm or less. The

本発明に係る電気配線接続用銅合金板は、電気化学的マイグレーションを抑制できる。また、すずめっきの長期信頼性、高い導電率及び強度(耐力)など、JBバスバー材、特に従来よりも高電圧化されたJB用のバスバー材として必要とされる特性を兼ね備え、自動車用等の電気配線接続用銅合金板として好適である。
さらに、本発明に係る電気配線接続用銅合金は、すず又はすず合金による全面めっきを必要とせず、従来通りの先すずめっき工程をそのまま用いることができる利点があり、低コストで生産性よくJBバスバーを製造できる利点がある。
The copper alloy plate for electrical wiring connection according to the present invention can suppress electrochemical migration. It also has the characteristics required for JB busbar materials, especially JB busbar materials with higher voltage than conventional ones, such as long-term reliability of tin plating, high electrical conductivity and strength (strength), etc. It is suitable as a copper alloy plate for electrical wiring connection.
Furthermore, the copper alloy for electrical wiring connection according to the present invention does not require the entire surface plating with tin or a tin alloy, and has the advantage that the conventional tip plating process can be used as it is. There is an advantage that a bus bar can be manufactured.

本発明に係る銅合金は電気化学的マイグレーションによる銅成分溶出を起こしにくい合金である。以下、銅合金の組成限定理由を説明する。
Fe;
Feは微細に析出して合金表面においては母材の銅と局部電池を成し、この合金の銅成分溶出を抑制する。しかし、2.3%を越えて含有すると粗大なFe粒子が晶出又は析出し、合金表面全面に均一に生じていた局部電池バランスが崩れ局所的な電位集中による銅溶出加速が生じる。一方、1.7%を下回ると鋳造時の鋳塊組織が微細化せず、粗大な粒界に熱間圧延時の外部せん断応力が集中し、容易に熱延割れが発生してしまう。従って、Fe添加量は1.7〜2.3%とする。望ましくは1.8〜2.2%で、この範囲では安定して微細鋳造組織が得られ、電気化学的マイグレーションによる銅溶出が抑制される。
The copper alloy according to the present invention is an alloy that hardly causes elution of a copper component due to electrochemical migration. Hereinafter, the reasons for limiting the composition of the copper alloy will be described.
Fe;
Fe precipitates finely and forms a local battery with the base material copper on the surface of the alloy, thereby suppressing elution of the copper component of the alloy. However, if the content exceeds 2.3%, coarse Fe particles are crystallized or precipitated, and the local battery balance that has been uniformly formed on the entire surface of the alloy is lost, and copper elution is accelerated due to local potential concentration. On the other hand, if it is less than 1.7%, the ingot structure at the time of casting is not refined, and external shear stress at the time of hot rolling is concentrated on the coarse grain boundary, so that hot rolling cracks are easily generated. Therefore, the Fe addition amount is set to 1.7 to 2.3%. Desirably, it is 1.8 to 2.2%, and in this range, a finely cast structure can be obtained stably, and copper elution due to electrochemical migration is suppressed.

Si、P;
Siは脱酸材として添加する。脱酸材としてはPが用いられることが多いが、本合金系を0.01%を越えるPが残留するようにP脱酸すると、微細なFe−P析出物が発生して焼鈍時の再結晶を抑制する。均一な再結晶組織が得られないと銅合金の局部電池集中が局所的に起こり、銅の溶出量が増加する。そのためP残留量は0.01%未満にする必要があり、Siで追加脱酸する。Siは再結晶を抑制するFe化合物を形成しない。追加脱酸のためには、Siが0.02%以上残留するまで添加する必要がある。しかしながら、0.2%を越えて残留するようになると、導電率が50%IACSを下回るようになり、通電電流容量の制約が大きくなる。従って、Si残留量は0.02〜0.2%とする。望ましくは0.03〜0.1%で、この範囲で適正脱酸及び均一再結晶組織が得られる。
Si, P;
Si is added as a deoxidizing material. P is often used as a deoxidizing material, but if this alloy system is P deoxidized so that more than 0.01% P remains, fine Fe-P precipitates are generated and regenerated during annealing. Inhibits crystals. If a uniform recrystallized structure cannot be obtained, local battery concentration of the copper alloy occurs locally and the amount of copper elution increases. Therefore, the residual amount of P needs to be less than 0.01%, and additional deoxidation is performed with Si. Si does not form an Fe compound that suppresses recrystallization. For additional deoxidation, it is necessary to add Si until 0.02% or more remains. However, if the residual amount exceeds 0.2%, the conductivity becomes lower than 50% IACS, and the current carrying capacity becomes more limited. Therefore, the Si residual amount is set to 0.02 to 0.2%. Desirably, it is 0.03 to 0.1%, and a proper deoxidation and uniform recrystallization structure can be obtained in this range.

Zn、Mg;
銅合金中に添加された固溶Znは銅よりも電気化学的に卑な電位にあるため、銅成分の溶出防止に効果がある。一方、同じくMgに関しても同様な効果がある。しかしながら、十分なFe添加で銅溶出が抑制された本合金では、Zn及びMgをそれぞれ単独で添加しても、Fe添加で得られた効果を越える抑制効果は発揮できない。しかしながら、Fe、Mg、Znを同時に添加すると、銅成分溶出抑制に相乗の効果を発揮する。このうち、Znの適正添加量は1〜4%である。1%を下回るとFe、Mgを共添してあっても十分な銅溶出抑制効果が得られず、4%を越えて添加されると導電率が50%IACSを下回り、通電電流許容量に制約を生じる。望ましくはZn:2〜3%である。Mgの適正添加量は0.01〜0.4%である。0.01%を下回るとFe、Znを共添してあっても十分な銅溶出抑制効果が得られず、0.4%を越えて添加されると導電率が50%IACSを下回り、通電電流許容量に制約を生じる。望ましくはZn:0.1〜0.3%である。本合金系に対してはMgとZnは前述の添加量範囲で必ず共添しなければならない。
Zn, Mg;
Since the solid solution Zn added in the copper alloy is at an electrochemically lower potential than copper, it is effective in preventing elution of the copper component. On the other hand, Mg has the same effect. However, in this alloy in which copper elution is suppressed by sufficient Fe addition, even if Zn and Mg are added alone, the suppression effect exceeding the effect obtained by Fe addition cannot be exhibited. However, when Fe, Mg, and Zn are added simultaneously, a synergistic effect is exhibited in suppressing copper component elution. Among these, the appropriate addition amount of Zn is 1 to 4%. If less than 1%, even if Fe and Mg are co-added, sufficient copper elution suppression effect cannot be obtained, and if added over 4%, the conductivity is less than 50% IACS, and the current carrying capacity is allowed. Create constraints. Desirably, it is Zn: 2-3%. The appropriate amount of Mg is 0.01 to 0.4%. If less than 0.01%, even if Fe and Zn are co-added, a sufficient copper elution suppression effect cannot be obtained, and if added over 0.4%, the conductivity falls below 50% IACS, and current is applied. This limits the current capacity. Desirably, Zn: 0.1 to 0.3%. For this alloy system, Mg and Zn must be co-added within the above-mentioned addition amount range.

Sn;
本合金はFe析出やMg、Znの固溶元素により、強度を確保する合金系であるが、Snの追加添加によりさらに強度(耐力)を向上させることができる。これはバスバーの回路幅低減、つまり小型化と使用材料削減に効果がある。しかしながら、Snが0.1%を越えて添加されると導電率が50%IACSを下回る。従って、Sn添加量は0.1%未満とする。この範囲で導電率50%IACS以上を保ってかつ強度向上に効果がある。
Ni;
Niは不可避不純物として混入し、あるいは上記銅合金において粒界を強化し熱間圧延時の割れを防止する効果があるため、必要に応じて添加される。しかし、0.03%を越えると効果が飽和し導電率の低下を引き起こす。従って、含有量は0.03%以下(0%含む)とする。
Sn;
This alloy is an alloy system that secures strength by Fe precipitation or solid solution elements of Mg and Zn, but the strength (yield strength) can be further improved by the addition of Sn. This is effective in reducing the circuit width of the bus bar, that is, downsizing and reducing the materials used. However, if Sn is added in excess of 0.1%, the conductivity is below 50% IACS. Therefore, the Sn addition amount is less than 0.1%. Within this range, the conductivity is maintained at 50% IACS or more, and the strength is improved.
Ni;
Ni is mixed as an inevitable impurity, or has an effect of strengthening grain boundaries and preventing cracking during hot rolling in the copper alloy, and is added as necessary. However, if it exceeds 0.03%, the effect is saturated and the conductivity is lowered. Therefore, the content is 0.03% or less (including 0%).

Mn;
Mnは不可避不純物として混入し、あるいは上記銅合金において粒界を強化し熱間圧延時の割れを防止する効果があるため、必要に応じて添加される。しかし、0.03%を越えると効果が飽和し導電率の低下を引き起こす。従って、含有量は0.03%以下(0%含む)とする。
Pb;
Pbは不可避不純物として混入し、あるいは切削性及びプレス打ち抜き性向上のために必要に応じて添加される。Pbは最終製品板の各特性に影響を与えないが、0.015%を越えて添加されると、粒界に偏析して熱間圧延時に割れが発生する。一方、0.0005%未満では上記作用が得られない。従って、Pbの含有量は0.015%以下(0%含む)とし、上記作用を必要とする場合は0.0005%以上含有させる。
Mn;
Mn is mixed as an inevitable impurity, or has an effect of strengthening grain boundaries and preventing cracking during hot rolling in the copper alloy, and is added as necessary. However, if it exceeds 0.03%, the effect is saturated and the conductivity is lowered. Therefore, the content is 0.03% or less (including 0%).
Pb;
Pb is mixed as an unavoidable impurity, or is added as necessary to improve machinability and press punchability. Pb does not affect the properties of the final product plate, but if added over 0.015%, it segregates at the grain boundaries and cracks occur during hot rolling. On the other hand, if it is less than 0.0005%, the above-mentioned action cannot be obtained. Therefore, the Pb content is 0.015% or less (including 0%), and 0.0005% or more is contained when the above action is required.

Al;
Alは本合金系の銅溶出抑制に最も効果のある元素であり、追加添加することによって、さらに銅溶出抑制効果を強化できる。しかしながら、導電率低下に与える影響が大きく、さらにはSnめっき剥離も引き起こす可能性があるために、その添加量上限は1%である。1%を越えると導電率が50%IACSを下回り、かつすずめっきの剥離を生じる。従って、総量1%以下に規制する。望ましくは0.6%以下である。
Bi〜H;
これらの元素は不可避不純物として混入する。Bi、As、Sb及びSは粒界に偏析し熱間圧延時に割れを発生させるため、それぞれ個別に0.003%以下、合計で0.005%以下に制限することが望ましい。一方、O、Hが多いと鋳塊にブローホールが発生し、またOが多いと溶湯中に酸化物が大量に発生して湯流れを阻害するため、O含有量は10ppm以下、H含有量は20ppm以下に制限することが望ましい。
Al;
Al is an element that is most effective in suppressing copper elution in the present alloy system, and the copper elution suppressing effect can be further strengthened by addition of Al. However, since it has a great influence on the decrease in conductivity and may cause Sn plating peeling, the upper limit of the addition amount is 1%. If it exceeds 1%, the conductivity is less than 50% IACS, and tin plating is peeled off. Therefore, the total amount is restricted to 1% or less. Desirably, it is 0.6% or less.
Bi to H;
These elements are mixed as inevitable impurities. Bi, As, Sb, and S segregate at the grain boundaries and generate cracks during hot rolling, so it is desirable to limit each individually to 0.003% or less, and to a total of 0.005% or less. On the other hand, if O and H are large, blowholes are generated in the ingot, and if O is large, a large amount of oxide is generated in the molten metal and hinders the flow of the molten metal, so the O content is 10 ppm or less and the H content. Is preferably limited to 20 ppm or less.

続いて、本発明に係る電気配線接続用銅合金板のすず又はすず合金めっきについて説明する。
すず又はすず合金めっきめっきは低コストで電気接点の低接触抵抗維持を可能にする唯一のめっきである。また、高電圧が印可されるバスバーの場合、表面を被覆するすずめっきがなければ、高電位側バスバーにおいて銅成分の溶出が全面で発生し始めるために、短絡状態へと転移しやすくなる。従って、本銅合金板にすず又はすず合金めっきは必須である。
Subsequently, tin or tin alloy plating of the copper alloy plate for electrical wiring connection according to the present invention will be described.
Tin or tin alloy plating is the only plating that enables low contact resistance maintenance of electrical contacts at low cost. Further, in the case of a bus bar to which a high voltage is applied, if there is no tin plating covering the surface, the elution of the copper component starts to occur on the entire surface of the high potential side bus bar, so that it is easy to transition to a short circuit state. Therefore, tin or tin alloy plating is essential for the present copper alloy plate.

一方、銅合金板の全面がすずめっきで覆われていれば、銅成分の溶出は抑制されるが、バスバーは低コスト化の面から先めっき材をプレス打ち抜きして作製されるのが通常であり、プレス切断面は素材が剥き出しになる。ここはすず層と素材が異種金属接触を起こす部分で最も溶出が進行しやすく、さらには最も電極間が狭く溶出銅の再析出による短絡が生じやすい。そのため、通常のJBに多用される黄銅(C2600)ですら、溶出・再析出した水酸化銅化合物がバスバー間を短絡し発煙状態に至る場合がある。
従って、短絡(リーク)現象を抑制するには、電気化学的マイグレーションによる銅成分溶出を起こしにくい銅合金(本発明に係る銅合金)と、すず又はすず合金めっきを組み合わせる必要がある。また、接点の低接触抵抗を維持しかつバスバー全面での銅成分の溶出を防止するには、すず又はすず合金めっきは断面から測定して0.5μm以上の厚さが必要である。なお、すず合金めっきとしては、すず−銀合金めっき、すず−銅合金めっきなどを用いることができる。
On the other hand, if the entire surface of the copper alloy plate is covered with tin plating, elution of the copper component is suppressed, but the bus bar is usually made by stamping a pre-plated material from the viewpoint of cost reduction. Yes, the material of the press cut surface is exposed. Here, elution is most likely to proceed at a portion where the tin layer and the material are in contact with different metals, and the shortest electrode is most likely to be short-circuited due to reprecipitation of the eluted copper. For this reason, even with brass (C2600) frequently used in ordinary JB, the eluted and re-deposited copper hydroxide compound may short circuit between the bus bars, resulting in a smoke generation state.
Therefore, in order to suppress the short circuit (leak) phenomenon, it is necessary to combine a copper alloy (a copper alloy according to the present invention) that hardly causes elution of a copper component due to electrochemical migration and tin or tin alloy plating. Further, in order to maintain the low contact resistance of the contact and prevent the elution of the copper component on the entire surface of the bus bar, the tin or tin alloy plating needs to have a thickness of 0.5 μm or more as measured from the cross section. In addition, as tin alloy plating, tin-silver alloy plating, tin-copper alloy plating, etc. can be used.

また、本発明に係る銅合金板は、バスパー等の電気配線接続用銅合金板として求められる高い導電率、すずめっきの長期信頼性及び耐力を有している。以下、これらの特性について説明する。
導電率;
導電率は、通電電流許容値の指標である。通電経路として使用されるバスバー用銅合金にはある程度以上の導電性が必要である。JBとして多用される黄銅(C2600)は導電率27%IACSであるが、JBの小型化要請に応えるためにはC2600に対し、約2倍の導電率50%IACSが必要であることがわかっている。
すずめっきの長期信頼性;
母材の銅の拡散により最外層のすずめっきが全面、硬質で脆い銅−すず合金層に変化してしまう場合がある。表面の軟質なすずが消失すると接触抵抗が増大して接触信頼性が低下する。そのため、組成を適正化して、すずめっきの銅−すず合金化を抑制する必要がある。Mg、Zn、Alなどは銅溶出防止に効果のある元素であるが、同時に下地めっきを施さずに直接母材にすず又はすず合金めっきを施した場合は、すずめっき中への銅拡散を促進する効果を有している。これらの元素以外の固溶元素、Sn、Si、Ni、Mnなども合金化を促進する元素である。導電率50%IACSを下回るまでこれら元素の固溶量を増大させるとすずめっきが合金化してしまい、低接触抵抗を維持するすずめっきの長期信頼性が確保できない。
なお、すず又はすず合金めっき層の下地に、必要に応じてニッケルめっき下地又は銅めっき下地を施すこともできる。これにより最外層のすず又はすず合金めっきが合金化しにくく、さらに接触信頼性が向上する。
In addition, the copper alloy plate according to the present invention has high electrical conductivity, long-term reliability of tin plating, and proof strength required for electrical wiring connecting copper alloy plates such as buspers. Hereinafter, these characteristics will be described.
conductivity;
The conductivity is an index of an allowable energization current value. The copper alloy for bus bars used as the energizing path needs to have a certain level of conductivity. Brass (C2600), which is frequently used as JB, has an electrical conductivity of 27% IACS, but in order to meet JB's demand for miniaturization, it has been found that about 50% of the electrical conductivity is required twice that of C2600. Yes.
Long-term reliability of tin plating;
Due to the diffusion of copper as a base material, tin plating of the outermost layer may change to a hard and brittle copper-tin alloy layer on the entire surface. When soft tin on the surface disappears, contact resistance increases and contact reliability decreases. Therefore, it is necessary to optimize the composition and suppress the copper-tin alloying of tin plating. Mg, Zn, Al, etc. are elements that are effective in preventing copper elution, but at the same time, when tin or tin alloy plating is applied directly to the base material without applying base plating, copper diffusion into tin plating is promoted. Has the effect of Solid solution elements other than these elements, such as Sn, Si, Ni, and Mn are also elements that promote alloying. Increasing the solid solution amount of these elements until the conductivity falls below 50% IACS results in alloying of the tin plating, and the long-term reliability of the tin plating that maintains the low contact resistance cannot be ensured.
In addition, a nickel plating base or a copper plating base can be applied to the base of the tin or tin alloy plating layer as necessary. Thereby, tin or tin alloy plating of the outermost layer is difficult to be alloyed, and contact reliability is further improved.

耐力;
耐力は、メス端子接続用のバスバーオスタブ立ち上げ部の首部強度の指標である。バスバーの本来の目的は通電経路であり、フラットな形状を維持できる最低限の強度だけあれば良いことになるが、実際には外部接続のため、回路端部を平面配置したバスバーに対し垂直に立ち上げ、オス型端子タブとして使用する。このタブは板厚が代表的なもので0.64あるいは0.8mmであり、表面には低接触抵抗確保用の軟質なすずめっきが施してあるために、メス型端子を挿入する際、大きな抵抗力を受ける。またメスコネクタを嵌合する際に組み立て作業者がこじって挿入する場合もあり、いずれも耐力350N/mm以上はないと、オスタブ首部折れが生じる可能性がある。耐力350N/mm以上でこのような変形に対する十分な耐性が確保できることがわかっている。
Proof stress;
The yield strength is an index of the neck strength of the rising portion of the bus bar male stub for connecting the female terminal. The bus bar's original purpose is the current-carrying path, which requires only the minimum strength that can maintain a flat shape. Start up and use as male terminal tab. This tab has a typical thickness of 0.64 or 0.8 mm, and the surface is coated with soft tin plating for ensuring low contact resistance. Receive resistance. Further, when the female connector is fitted, an assembly operator may carefully insert the female connector, and if neither of them has a proof stress of 350 N / mm 2 or more, the male tab neck may be broken. It has been found that sufficient resistance to such deformation can be secured at a proof stress of 350 N / mm 2 or more.

表1〜4に示した組成の銅合金をクリプトル炉において、大気中で木炭被覆下に溶解、鋳造した。ここで鋳造可否を判断した。
次いで鋳塊を800〜970℃で30分保持後、加工率60%の熱間圧延を施し、厚さ18mmの板材を作製した。ここで熱間圧延で割れが発生していないか目視及び蛍光探傷法で判定した。なお、蛍光探傷法は、これら試験材全面にマークテック株式会社製浸透探傷用蛍光染料スーパーグローDN−2800IIを塗布、水洗・乾燥し、同じく現像剤のスーパーグローDN−600Sをスプレーして、現像後、この試験材に紫外線光を照射することによって行った。
Copper alloys having the compositions shown in Tables 1 to 4 were melted and cast under the charcoal coating in the atmosphere in a kryptor furnace. Here, it was judged whether casting was possible.
Next, the ingot was held at 800 to 970 ° C. for 30 minutes, and then subjected to hot rolling at a processing rate of 60% to produce a plate material having a thickness of 18 mm. Here, whether or not cracking occurred during hot rolling was determined by visual inspection and a fluorescent flaw detection method. In the fluorescent flaw detection method, a fluorescent dye Super Glow DN-2800II for penetrant flaw detection manufactured by Marktec Co., Ltd. was applied to the entire surface of these test materials, washed and dried, and developed by spraying Super Glow DN-600S as a developer. Thereafter, this test material was irradiated with ultraviolet light.

Figure 2007023357
Figure 2007023357

Figure 2007023357
Figure 2007023357

Figure 2007023357
Figure 2007023357

Figure 2007023357
Figure 2007023357

次いで、この熱延材を次工程の面削機に導入し、この面削機のフライス刃の焼き付き有無を判断した。このときのフライス刃は台金をクロモリ系鋼とし、フライス刃の部分はタングステンカーバイトの超硬チップを銀ロウにて台金にロウ付けしてあり、刃の周速は6m/秒、切削量は1.5mm/一面である。切削油は用いず冷却用エタノールを滴下した。幅200mm×厚さ18mm×長さ180mmの寸法の熱延材を各合金毎に20個準備し、それらが全て厚さ15mmになるまで両面面削後、フライス刃の表面をSEM観察し、表面の焼き付き状況を調査した。刃表面に切り屑の溶着痕跡があれば、焼き付きがあったものと判断した。   Next, this hot-rolled material was introduced into the next-step chamfering machine, and whether or not the milling blade of this chamfering machine was seized was determined. At this time, the milling blade was made of chromoly steel, and the milling blade was brazed with a tungsten carbide carbide chip to the base metal with silver brazing. The peripheral speed of the blade was 6 m / sec. The amount is 1.5 mm / side. Cooling ethanol was added dropwise without using cutting oil. Prepare 20 hot-rolled materials with dimensions of 200mm width x 18mm thickness x 180mm length for each alloy, and after double-side chamfering until they all have a thickness of 15mm, observe the surface of the milling blade by SEM, The state of seizure was investigated. If there was a chip welding trace on the blade surface, it was judged that there was seizure.

以上の判断基準から本発明の製造可否を確認した。その結果を表5に示す。
No.24は鋳造可能であったが、Fe添加量が不足しており、鋳造組織の微細化効果が発揮されず、熱間圧延で割れが発生した。
No.36は鋳造可能であったが、Pb含有量が過剰で、低融点Pbが鋳造組織の粒界に偏析したため、熱間圧延で割れが発生した。
No.37は鋳造及び熱間圧延が可能であったが、Pb添加量が不足しており、熱延材面削時にフライス刃の焼き付きが発生したため、その後の工程を断念した。
No.38、39、40、41はそれぞれ個別にBi、As、Sb、Sが過剰であり、またNo.42はこれら不純物の総量が過剰であったために、鋳造は可能であったが、熱間圧延で割れが発生した。
No.26はSi添加量不足による脱酸不足で、No.43はO含有量が過剰で、溶湯中の各種添加元素の酸化物が多くなり、溶湯流動性が劣化、鋳造を断念した。
No.44は鋳造は可能であったが、H含有量が過剰で、鋳塊内部にブローホールを生じたため、熱間圧延以後の工程を断念した。
これに対し、本発明に規定する組成の範囲内のNo.1〜22と、範囲外のNo.23〜48のうちNo.23,25,27〜35,45〜48は、鋳塊健全性、熱延性が良好で容易に熱間圧延材が得られ、また、フライス刃の焼き付きが発生せず、その寿命延長が可能である。
Whether or not the present invention can be manufactured was confirmed from the above criteria. The results are shown in Table 5.
No. Although No. 24 was castable, the Fe addition amount was insufficient, the effect of refinement of the cast structure was not exhibited, and cracking occurred during hot rolling.
No. Although 36 was castable, cracks occurred during hot rolling because the Pb content was excessive and the low melting point Pb segregated at the grain boundaries of the cast structure.
No. No. 37 could be cast and hot-rolled, but the amount of Pb added was insufficient, and seizure of the milling blade occurred during face milling of the hot-rolled material, so the subsequent process was abandoned.
No. Nos. 38, 39, 40, and 41 each have an excessive amount of Bi, As, Sb, and S. No. 42 was capable of casting because the total amount of these impurities was excessive, but cracking occurred during hot rolling.
No. No. 26 is a shortage of deoxidation due to shortage of Si addition. No. 43 had an excessive O content, increased oxides of various additive elements in the molten metal, deteriorated the fluidity of the molten metal, and gave up casting.
No. No. 44 could be cast, but the H content was excessive and blowholes were formed inside the ingot, so the process after hot rolling was abandoned.
On the other hand, No. in the range of the composition prescribed | regulated to this invention. 1 to 22 and No. out of range. 23-48. Nos. 23, 25, 27 to 35, and 45 to 48 have good ingot soundness and hot ductility, and can easily obtain a hot-rolled material, and do not cause seizure of a milling blade and can extend its life. is there.

Figure 2007023357
Figure 2007023357

続いて、No.1〜22及びNo.23,25,27〜34、45〜48の熱延板を板厚1.28mmまで冷間圧延し、木炭シールで包んだ圧延材を電気炉中で540℃×2時間の条件で中間焼鈍した。次いでこの板材の酸化スケールを除去後、最終圧延で製品板厚0.64mmにした。さらに400℃の歪み取り焼鈍(仕上げ焼鈍)を硝石炉中浸漬20秒にて実施した。最後に付着した硝石及び酸化スケールを除去して最終製品とした。なお、いずれの板材も冷間圧延性は良好で最終製品板厚まで容易に作製できた。   Subsequently, no. 1-22 and No.1. 23, 25, 27-34, 45-48 hot-rolled sheets were cold-rolled to a thickness of 1.28 mm, and the rolled material wrapped with a charcoal seal was subjected to intermediate annealing in an electric furnace at 540 ° C. for 2 hours. . Next, after removing the oxide scale of the plate material, the product plate thickness was 0.64 mm by final rolling. Further, 400 ° C. strain relief annealing (finish annealing) was performed in a glass stone furnace for 20 seconds. Finally, the adhering glass stone and oxide scale were removed to obtain a final product. All the plate materials had good cold rollability and could be easily manufactured to the final product plate thickness.

上記の最終板厚0.64mmtのサンプルについて、電気すずめっきを施した。具体的には、硫酸第一錫40g/lit、硫酸100g/lit、クレゾールスルフォン酸30g/lit、ホルマリン5mlit/lit、分散剤20g/lit、光沢剤10mlit/litからなる錫めっき浴(20℃)で、電流密度2.5A/dmにてすずめっきを施した。めっき後サンプルを切り出し、断面をミクロトームで切断し、SEM撮影することによって断面から見たすずめっき厚さを測定した。各サンプルのすずめっき厚さを表6に示す。
続いて、各サンプルについて、下記要領にて、引張強度、耐力、導電率を測定し、銅溶出抑制効果、電気化学マイグレーション現象による短絡発生の有無、及びすずめっきの長期信頼性の検証を行った。その結果を表6に示す。
The sample with the final thickness of 0.64 mmt was subjected to electrotin plating. Specifically, a tin plating bath (20 ° C.) comprising stannous sulfate 40 g / lit, sulfuric acid 100 g / lit, cresol sulfonic acid 30 g / lit, formalin 5 ml / lit, dispersant 20 g / lit, brightener 10 ml / lit Then, tin plating was performed at a current density of 2.5 A / dm 2 . After plating, the sample was cut out, the cross section was cut with a microtome, and the tin plating thickness viewed from the cross section was measured by SEM imaging. Table 6 shows the tin plating thickness of each sample.
Subsequently, for each sample, the tensile strength, proof stress, and conductivity were measured in the following manner, and the copper elution suppression effect, the presence or absence of a short circuit due to the electrochemical migration phenomenon, and the long-term reliability of tin plating were verified. . The results are shown in Table 6.

Figure 2007023357
Figure 2007023357

[引張強さ、耐力]
JIS5号引張試験片を機械加工にて作製し、島津製作所製万能試験機UH−10Bで引張試験を実施して測定した。ここで耐力とはJIS Z2241で規定されている永久伸び0.2%に相当する引張強さである。
No.1〜22はいずれも耐力350N/mm以上が確保されている。
[Tensile strength, yield strength]
A JIS No. 5 tensile test piece was produced by machining, and a tensile test was carried out using a universal testing machine UH-10B manufactured by Shimadzu Corporation. Here, the proof stress is a tensile strength corresponding to a permanent elongation of 0.2% defined in JIS Z2241.
No. 1 to 22 has a proof stress of 350 N / mm 2 or more.

[導電率]
JIS H0505に規定されている非鉄金属導電率測定方法に準拠して、横川電機製ダブルブリッジ5752を用いた四端子法で行った。
No.1〜No.22はいずれも導電率50%IACS以上が確保されているが、No.25はSi添加量が過剰なため、No.27はZn添加量が過剰なため、No.29はMg添加量が過剰なため、No.31はSn添加量が過剰なため、No.34はNi添加量が過剰なため、No.35はMn添加量が過剰なため、No.45はAl添加量が過剰なため、導電率が50%IACSに達していない。
[conductivity]
In accordance with the non-ferrous metal conductivity measuring method specified in JIS H0505, a four-terminal method using a double bridge 5752 manufactured by Yokogawa Electric was used.
No. 1-No. No. 22 has a conductivity of 50% IACS or more. No. 25 has an excessive amount of Si added. No. 27 has an excessive Zn addition amount. No. 29 has an excessive amount of added Mg. No. 31 has an excessive amount of Sn addition, so No. 34 has an excessive amount of Ni added. No. 35 has an excessive amount of Mn added. No. 45 has an excess amount of Al added, so the conductivity does not reach 50% IACS.

[銅溶出抑制効果]
バスバー用銅合金の圧延された面は両面ともすず又はすず合金めっきで被覆されプレス切断面は銅合金が剥き出しになっている状態では、めっき層と銅合金の間に異種金属接触電位差が生じている。正負両電位がかかっている二本のバスバー間に水分が介在し、この電位差を助長する方向に電流が流れた場合、高電位側のめっき−銅合金接触面から銅合金溶出が始まる。このような状態で介在水分の濃縮が起こるような状態(たとえば絶縁抵抗低下による自己発熱や高温環境による乾燥)になると、介在水分の電気伝導度が急速に上昇するとともに溶出金属が再析出し、ついには絶縁されていたバスバー間に短絡電流(リーク電流)が流れ始める。従って、水中浸漬した際のバスバーのめっき−銅合金接触面からどれだけ銅合金が消失したかを測定すれば、銅溶出抑制効果の検証が可能である。
[Copper elution suppression effect]
When the rolled surface of the copper alloy for busbars is coated with tin or tin alloy plating on both sides and the pressed surface is exposed, the difference in contact potential between dissimilar metals occurs between the plating layer and the copper alloy. Yes. When moisture intervenes between two bus bars to which both positive and negative potentials are applied, and current flows in a direction that promotes this potential difference, elution of the copper alloy starts from the plating-copper alloy contact surface on the high potential side. In such a state where the concentration of interstitial moisture occurs (for example, self-heating due to a decrease in insulation resistance or drying due to high temperature environment), the electrical conductivity of the interstitial moisture rapidly increases and the eluted metal reprecipitates, Eventually a short-circuit current (leakage current) begins to flow between the insulated bus bars. Therefore, it is possible to verify the copper elution suppression effect by measuring how much the copper alloy has disappeared from the plating-copper alloy contact surface of the bus bar when immersed in water.

具体的には、各サンプルから切断して得た厚さ0.64mm、幅6.0mm、長さ120mmの試験片(バスバー相当)2本を、プレス切断面が1.2mmの距離を隔てて平行に向かい合う様に同一平面上(MCナイロン樹脂板上)に配置する。2本の試験片間中央に1mm幅、高さ0.66mm、長さ100mmの棒状Mcナイロンを配置し、2本の試験片との間隔がそれぞれ0.1mm空くように設置する。試験片2本の両端とMCナイロン樹脂板両端を幅10mmのテフロン(登録商標)テープを巻き付けることによって固定する。2本の試験片に定電圧電源(菊水PAD55−35L)を接続し、2本の試験片間に直流42ボルトを印可する。この状態でMCナイロン樹脂板付き試験片を1リットルビーカーに貯めた50ppmNaCl水溶液中に浸漬する。5分間浸漬後、引き上げて大気中で5分間放置する。この5分浸漬・5分引き上げ乾燥を1サイクルとして10サイクル繰り返したのち、定電圧電源プラス側に接続した試験片を取り外し、6mm幅×0.64mm厚の面が観察面になるように樹脂埋め込みし鏡面研磨し、すずめっき層と母材の界面に発生したえぐれの深さを測定した。その結果を表6にあわせて示す。えぐれの深さが0.2mmを越える場合、銅溶出の抑制効果がないものとした。   Specifically, two test pieces (corresponding to a bus bar) having a thickness of 0.64 mm, a width of 6.0 mm, and a length of 120 mm obtained by cutting from each sample are separated by a press cut surface of 1.2 mm. It arrange | positions on the same plane (on MC nylon resin board) so that it may face in parallel. A rod-shaped Mc nylon having a width of 1 mm, a height of 0.66 mm, and a length of 100 mm is arranged in the center between the two test pieces, and is installed so that the distance between the two test pieces is 0.1 mm. The two ends of the two test pieces and both ends of the MC nylon resin plate are fixed by winding a Teflon (registered trademark) tape having a width of 10 mm. A constant voltage power source (Kikusui PAD55-35L) is connected to the two test pieces, and a DC voltage of 42 volts is applied between the two test pieces. In this state, the test piece with MC nylon resin plate is immersed in a 50 ppm NaCl aqueous solution stored in a 1 liter beaker. After being immersed for 5 minutes, it is lifted and left in the atmosphere for 5 minutes. After 10 cycles of this 5-minute immersion and 5-minute pull-up drying, the test piece connected to the constant voltage power supply plus side is removed, and the resin is embedded so that the 6 mm wide × 0.64 mm thick surface becomes the observation surface. The surface was mirror-polished, and the depth of burrs generated at the interface between the tin plating layer and the base material was measured. The results are also shown in Table 6. When the depth of punching exceeds 0.2 mm, there is no effect of suppressing copper elution.

表6に示すように、No.1〜No.22はいずれもえぐれ深さが0.2mm以下であった。これに対し、No.23はFe添加量が過剰なため、粗大なFe析出物・晶出物が発生し、不均一で局所的な銅溶出が促進され、母材断面は深くえぐれた。No.30はMg添加量不足、No.33はZn添加量不足で、銅溶出が抑制できなかった。No.46は再結晶が阻害され、不均一で局所的な銅溶出が促進され母材断面は深くえぐれた。   As shown in Table 6, no. 1-No. No. 22 had a depth of 0.2 mm or less. In contrast, no. In No. 23, an excessive amount of Fe was added, so that coarse Fe precipitates and crystallized substances were generated, uneven and local copper elution was promoted, and the base material cross section was deeply swollen. No. 30 is insufficient Mg addition amount. No. 33 was insufficient Zn addition amount and copper elution could not be suppressed. No. In 46, recrystallization was inhibited, and uneven and local copper elution was promoted, so that the cross-section of the base metal was deepened.

[電気化学マイグレーション現象による短絡発生の有無]
隣り合って配置されたバスバーに正負電位が印可され、そのバスバー間に水分が介在した場合は、上述のようにアノード側から主に銅成分が溶出し、介在水分が蒸発し濃縮する機会に再析出する。この銅、銅水酸化物及び銅酸化物の再析出物の架橋により、バスバー間に短絡電流(リーク電流)が流れ始める。従って、結露などを想定した介在水を与え、さらに乾燥させるサイクルを繰り返したとき、バスバー間にリーク電流が流れるか確認すれば、電気化学的マイグレーションによる短絡発生の有無が検証できる。
[Presence or absence of short circuit due to electrochemical migration phenomenon]
When positive and negative potentials are applied to adjacent bus bars and moisture intervenes between the bus bars, the copper component elutes mainly from the anode side as described above, and the intervening moisture evaporates and concentrates again. Precipitate. Short-circuit current (leakage current) starts to flow between the bus bars due to cross-linking of the copper, copper hydroxide, and copper oxide reprecipitate. Therefore, if it is confirmed whether leakage current flows between the bus bars when the cycle of drying by supplying intervening water assuming dew condensation and the like is repeated, whether or not a short circuit occurs due to electrochemical migration can be verified.

具体的には、各サンプルから切断して得た厚さ0.64mm、幅6.0mm、長さ140mmの試験片(バスバー相当)2本を一方の端部から20mmのところでR=0.3mmの90度曲げを行い、「く」の字型に加工する。この2本の試験片を折り曲げた20mmの部分が飛び出すように長さ100mmのMCナイロン樹脂板に固定する。固定する際には2本の試験片の長さ100mmの辺の部分が平行に1.2mmの間隔を開けて向かい合うように固定する。2本の試験片間中央に1mm幅、高さ0.66mm、長さ100mmの棒状Mcナイロンを配置し、2本の試験片との間隔がそれぞれ0.1mm空くように設置する。2本の試験片を固定したMCナイロン樹脂板両端に幅10mmのテフロン(登録商標)テープを巻き付けることによって固定する。2本の試験片に定電圧電源(菊水PAD55−35L)を接続し、2本の試験片間に直流42ボルトを印可する。この状態で飛び出した折り曲げ20mm長さの部分が水平になるように保持し、MCナイロン樹脂板付き試験片を1リットルビーカーに貯めた50ppmNaCl水溶液中に垂直に浸漬する。1秒間浸漬後、引き上げて大気中で5分間放置する。この1秒浸漬・5分引き上げ乾燥を1サイクルとして20サイクル繰り返し、この20サイクル中で試験片間に流れるリーク電流をペンレコーダで連続的に記録した。そのリーク電流(最大リーク電流値)を表6にあわせて示す。20サイクル中、リーク電流(最大リーク電流値)が0.5Aを越えると、電気化学的マイグレーションによるリーク電流を抑制する効果がないことがわかっている。   Specifically, two test pieces (corresponding to a bus bar) having a thickness of 0.64 mm, a width of 6.0 mm, and a length of 140 mm obtained by cutting from each sample are R = 0.3 mm at 20 mm from one end. Is bent to 90 degrees and processed into a "<" shape. The two test pieces are fixed to an MC nylon resin plate having a length of 100 mm so that a 20 mm portion where the two test pieces are bent out. When the two test pieces are fixed, the side portions of 100 mm in length are fixed in parallel so as to face each other with an interval of 1.2 mm. A rod-shaped Mc nylon having a width of 1 mm, a height of 0.66 mm, and a length of 100 mm is arranged in the center between the two test pieces, and is installed so that the distance between the two test pieces is 0.1 mm. The test piece is fixed by winding a Teflon (registered trademark) tape having a width of 10 mm around both ends of the MC nylon resin plate to which two test pieces are fixed. A constant voltage power source (Kikusui PAD55-35L) is connected to the two test pieces, and a DC voltage of 42 volts is applied between the two test pieces. In this state, the bent 20 mm long portion that protrudes is held horizontally, and the test piece with MC nylon resin plate is immersed vertically in a 50 ppm NaCl aqueous solution stored in a 1 liter beaker. After being immersed for 1 second, it is lifted and left in the atmosphere for 5 minutes. This 1-second soaking, 5 minute pull-up and drying were repeated 20 cycles, and the leakage current flowing between the test pieces in the 20 cycles was continuously recorded with a pen recorder. The leakage current (maximum leakage current value) is also shown in Table 6. It has been found that if the leakage current (maximum leakage current value) exceeds 0.5 A during 20 cycles, there is no effect of suppressing leakage current due to electrochemical migration.

表6に示すように、No.1〜22はいずれも最大リーク電流値が0.5A以下であった。一方、No.28はZn添加量が不足しているため、銅溶出、最大リーク電流値とも規定値を満たすことはできなかった。同じくNo.30はMg添加量が不足しているため、銅溶出、最大リーク電流値とも規定値を満たすことはできなかった。No.32はMgが添加されていないため、Znの大量固溶により銅溶出は抑制されているが、最大リーク電流値は規定値を超えた。
また、No.47は銅合金は本発明の規定範囲内であるが、すずめっき厚さが薄いため、銅溶出のバリアとしての働きが弱く、異種金属接触面の銅母材えぐれ、すなわち断面における銅溶出量は抑制されているが、圧延面からの溶出を止められず、最大リーク電流値が高くなり不適であった。No.48はめっきを施さない場合であるが、やはり銅溶出は抑制できず、結果的にバスバー間の短絡現象を引き起こし、最大リーク電流値が大きくなった。
As shown in Table 6, no. 1 to 22 each had a maximum leakage current value of 0.5 A or less. On the other hand, no. In No. 28, the amount of Zn added was insufficient, so that the copper elution and the maximum leakage current value could not satisfy the specified values. Similarly, no. Since the amount of Mg added was insufficient, the copper elution and the maximum leakage current value could not satisfy the specified values. No. Since Mg was not added to 32, elution of copper was suppressed by a large amount of solid solution of Zn, but the maximum leakage current value exceeded the specified value.
No. 47 is a copper alloy within the specified range of the present invention, but since the tin plating thickness is thin, the function as a copper elution barrier is weak, and the copper base material on the contact surface of different metals, that is, the copper elution amount in the cross section is Although suppressed, elution from the rolled surface could not be stopped, and the maximum leakage current value was high, which was inappropriate. No. No. 48 is a case where plating is not performed, but copper elution cannot be suppressed. As a result, a short circuit phenomenon between bus bars is caused, and the maximum leakage current value is increased.

[すずめっきの長期信頼性]
バスバーオスタブなどの接点部の接触信頼性を長期にわたって確保するためには、その使用環境温度や自己発熱、自動車であればさらにエンジン・排気系発熱等にさらされても最外層のすず成分が合金化せず、純すず成分が最表面に残存していなくてはならない。これを再現する加熱促進試験を行った結果、どの程度純すず成分が最表面に残存しているか、定量化すればすず又はすず合金めっきの長期信頼性が評価できる。
具体的には、各サンプルから切断して得た厚さ0.64mm、幅100mm、長さ100mmの試験片を150℃の大気循環オーブンに500時間さらし、拡散を促進させる。これらの試験片表面を低倍率SEM(倍率50倍)で組成像撮影する。銅−すず合金層部分は組成像撮影でより黒く撮影され、白色に撮影される純すず成分とは明瞭に区別される。撮影区画20mm×20mmに対し、黒い部分(銅−すず合金層)が占める割合が50%を超えた場合は、合金層が最表面まで成長してきて接触抵抗が確保できない状態であることが分かっている。実施例に対し、黒色部分面積が50%を越えない場合を○(合格)、50%を越えた場合を×(不合格)として、すずめっきの長期信頼性を判定した。
[Long-term reliability of tin plating]
In order to ensure the contact reliability of bus bar male tabs and other parts for a long period of time, the outermost tin component will remain even if exposed to engine / exhaust system heat, etc. The pure tin component must remain on the outermost surface without alloying. As a result of a heating acceleration test that reproduces this, the long-term reliability of tin or tin alloy plating can be evaluated by quantifying how much pure tin component remains on the outermost surface.
Specifically, a test piece having a thickness of 0.64 mm, a width of 100 mm, and a length of 100 mm obtained by cutting from each sample is exposed to an air circulation oven at 150 ° C. for 500 hours to promote diffusion. A composition image of these test piece surfaces is taken with a low-magnification SEM (magnification 50 times). The copper-tin alloy layer portion is photographed in black by composition image photographing, and is clearly distinguished from a pure tin component photographed in white. When the proportion of the black portion (copper-tin alloy layer) exceeds 50% with respect to the shooting section 20 mm × 20 mm, it is known that the alloy layer has grown to the outermost surface and contact resistance cannot be ensured. Yes. The long-term reliability of tin plating was determined by setting the case where the black partial area did not exceed 50% to ○ (pass) and the case where it exceeded 50% as × (fail).

表6に示すように、No.1〜22はいずれも○で、すずめっきの長期信頼性が確保できる。一方、No.25,27,29,31,33,35,45はそれぞれSi、Zn、Mg、Sn、Ni、Mn、Alが過剰で導電率も50%IACSを下回り、すずめっきの長期信頼性が確保できない。   As shown in Table 6, no. 1 to 22 are all ◯, and long-term reliability of tin plating can be secured. On the other hand, no. Nos. 25, 27, 29, 31, 33, 35, and 45 contain excessive amounts of Si, Zn, Mg, Sn, Ni, Mn, and Al, respectively, and the electrical conductivity is less than 50% IACS, so that long-term reliability of tin plating cannot be ensured.

Claims (4)

Fe:1.7〜2.3%(質量%、以下同じ)、Si:0.02〜0.2%、Sn:0.1%未満、P:0.01%未満、Ni:0.03%以下、Mn:0.03%以下、Zn:1〜4%及びMg:0.01〜0.4%、さらに残部がCu及び不可避不純物からなる銅合金の圧延を受けた面の最外層に、断面から観察した厚さが0.5μm以上の厚さのすず又はすず合金めっき層を有する電気配線接続用銅合金板。 Fe: 1.7 to 2.3% (mass%, the same applies hereinafter), Si: 0.02 to 0.2%, Sn: less than 0.1%, P: less than 0.01%, Ni: 0.03 % Or less, Mn: 0.03% or less, Zn: 1-4% and Mg: 0.01-0.4%, and the outermost layer on the surface subjected to rolling of a copper alloy composed of Cu and inevitable impurities. The copper alloy plate for electrical wiring connection which has the tin or tin alloy plating layer whose thickness observed from the cross section is 0.5 micrometer or more. 前記銅合金は、さらにPb:0.0005〜0.015%を含有することを特徴とする請求項1に記載された電気配線接続用銅合金板。 The said copper alloy contains Pb: 0.0005-0.015% further, The copper alloy board for an electrical wiring connection described in Claim 1 characterized by the above-mentioned. 前記銅合金は、さらにAlを1%以下含有することを特徴とする請求項1又は2に記載された電気配線接続用銅合金板。 The said copper alloy contains Al 1% or less further, The copper alloy plate for an electrical wiring connection described in Claim 1 or 2 characterized by the above-mentioned. 前記銅合金は、Bi、As、Sb及びSがそれぞれ個部に0.003%以下、かつこれらの合計が0.005%以下であり、O含有量が10ppm以下、かつH含有量が20ppm以下であることを特徴とする請求項1〜3のいずれかに記載された電気配線接続用銅合金板。 In the copper alloy, Bi, As, Sb, and S are 0.003% or less in individual parts, and the total of these is 0.005% or less, the O content is 10 ppm or less, and the H content is 20 ppm or less. The copper alloy plate for electrical wiring connection according to any one of claims 1 to 3, wherein
JP2005209259A 2005-07-19 2005-07-19 Copper alloy plate for pre-plated electrical wiring connection Expired - Fee Related JP4566082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209259A JP4566082B2 (en) 2005-07-19 2005-07-19 Copper alloy plate for pre-plated electrical wiring connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209259A JP4566082B2 (en) 2005-07-19 2005-07-19 Copper alloy plate for pre-plated electrical wiring connection

Publications (2)

Publication Number Publication Date
JP2007023357A true JP2007023357A (en) 2007-02-01
JP4566082B2 JP4566082B2 (en) 2010-10-20

Family

ID=37784523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209259A Expired - Fee Related JP4566082B2 (en) 2005-07-19 2005-07-19 Copper alloy plate for pre-plated electrical wiring connection

Country Status (1)

Country Link
JP (1) JP4566082B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093496A (en) * 2017-03-24 2017-08-25 合肥羿振电力设备有限公司 The bus and its production method of a kind of bus duct
CN113316655A (en) * 2018-12-26 2021-08-27 三菱综合材料株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149899A (en) * 1985-09-17 1987-07-03 Kobe Steel Ltd Production of terminal and connector made of tinned copper alloy
JPH02129323A (en) * 1988-11-08 1990-05-17 Nippon Mining Co Ltd Electrical conductivity material
JP2003105463A (en) * 2001-10-02 2003-04-09 Kobe Steel Ltd Electrical connection parts
JP2003171725A (en) * 2001-12-04 2003-06-20 Kobe Steel Ltd Electrical connection parts
JP2003219537A (en) * 2002-01-22 2003-07-31 Yazaki Corp Heat radiating structure for electrical junction box, heat radiating device thereof, and heat radiating method thereof
JP2003321720A (en) * 2002-04-30 2003-11-14 Kobe Steel Ltd Copper alloy for connection of wiring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149899A (en) * 1985-09-17 1987-07-03 Kobe Steel Ltd Production of terminal and connector made of tinned copper alloy
JPH02129323A (en) * 1988-11-08 1990-05-17 Nippon Mining Co Ltd Electrical conductivity material
JP2003105463A (en) * 2001-10-02 2003-04-09 Kobe Steel Ltd Electrical connection parts
JP2003171725A (en) * 2001-12-04 2003-06-20 Kobe Steel Ltd Electrical connection parts
JP2003219537A (en) * 2002-01-22 2003-07-31 Yazaki Corp Heat radiating structure for electrical junction box, heat radiating device thereof, and heat radiating method thereof
JP2003321720A (en) * 2002-04-30 2003-11-14 Kobe Steel Ltd Copper alloy for connection of wiring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093496A (en) * 2017-03-24 2017-08-25 合肥羿振电力设备有限公司 The bus and its production method of a kind of bus duct
CN113316655A (en) * 2018-12-26 2021-08-27 三菱综合材料株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same

Also Published As

Publication number Publication date
JP4566082B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP3926355B2 (en) Conductive material for connecting parts and method for manufacturing the same
US20180301838A1 (en) Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
US20100266863A1 (en) Sn-PLATED MATERIALS FOR ELECTRONIC COMPONENTS
US7972709B2 (en) Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof
JP2007100220A (en) Conducting material for connection parts and manufacturing method therefor
JP5311860B2 (en) Copper alloy plate with Sn plating for PCB male terminals with excellent Pb-free solderability
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP3413864B2 (en) Connector for electrical and electronic equipment made of Cu alloy
JP4090483B2 (en) Conductive connection parts
JP4699252B2 (en) Titanium copper
JP4566082B2 (en) Copper alloy plate for pre-plated electrical wiring connection
JP4090488B2 (en) Conductive material plate for connecting part forming process and manufacturing method thereof
JP6219553B2 (en) Plating material excellent in heat resistance and method for producing the same
JP3772975B2 (en) Copper alloy for wiring connection
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP3837140B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP4798942B2 (en) Copper alloy for electrical and electronic parts
JPH04231433A (en) Electrifying material
JP5748019B1 (en) Pin terminals and terminal materials
JP2008202144A (en) Rolled sheet material
JP3729749B2 (en) Copper alloy sheet or strip with excellent arc resistance
JPH04231444A (en) Production of electrifying material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees