JP2007014894A - Lower hydrocarbon aromatization catalyst and production method of the same - Google Patents

Lower hydrocarbon aromatization catalyst and production method of the same Download PDF

Info

Publication number
JP2007014894A
JP2007014894A JP2005200022A JP2005200022A JP2007014894A JP 2007014894 A JP2007014894 A JP 2007014894A JP 2005200022 A JP2005200022 A JP 2005200022A JP 2005200022 A JP2005200022 A JP 2005200022A JP 2007014894 A JP2007014894 A JP 2007014894A
Authority
JP
Japan
Prior art keywords
zeolite
aptes
aromatization catalyst
weight
lower hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005200022A
Other languages
Japanese (ja)
Other versions
JP4972294B2 (en
Inventor
Masaru Ichikawa
勝 市川
Ayaichi Kojima
綾一 小島
Satoshi Kikuchi
聡 菊池
Masamichi Kuramoto
政道 倉元
Yuji Ogawa
裕治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005200022A priority Critical patent/JP4972294B2/en
Publication of JP2007014894A publication Critical patent/JP2007014894A/en
Application granted granted Critical
Publication of JP4972294B2 publication Critical patent/JP4972294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the production ratio of a specified aromatic compound. <P>SOLUTION: The lower hydrocarbon aromatization catalyst is obtained by treating a zeolite containing metallosilicate with a silane compound having a molecular diameter larger than the fine pore diameter of the zeolite and containing amino group and straight chain hydrocarbon group selectively reactive on the Bronsted acid point of the zeolite and successively depositing molybdenum. The zeolite may be HZSM-5 type zeolite. The silane compound may be APTES (3-aminopropyl-triethoxysilane). The addition amount of APTES to the zeolite is less than 2.5% by weight, for example 0.1 to 1.0% by weight, preferably 0.25 to 1.0% by weight, further preferably 0.5 to 1.0% by weight and practically set to be 0.5% by weight. (this silane compound is APTES (3-aminopropyl-triethoxysilane)). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、天然ガス等の低級炭化水素含有ガスを主成分とするガスを水素または水素含有ガスとから芳香族炭化水素を主成分とする芳香族化合物を製造する技術に関する。   The present invention relates to a technique for producing an aromatic compound containing aromatic hydrocarbon as a main component from hydrogen or a hydrogen-containing gas as a main component containing a lower hydrocarbon-containing gas such as natural gas.

メタン等の低級炭化水素からベンゼン等の芳香族化合物と水素と併産する方法としては、触媒の存在下、酸素または酸化剤の非存在下でメタンを反応させる方法が知られている。触媒としては例えば非特許文献1(JOURNAL OF CATALYSIS(1997))によるとZSM−5型のゼオライトにモリブデンを担持したものが有効とされている。   As a method of co-producing an aromatic compound such as benzene and hydrogen from a lower hydrocarbon such as methane, a method of reacting methane in the presence of a catalyst and in the absence of oxygen or an oxidizing agent is known. For example, according to Non-Patent Document 1 (JOURNAL OF CATALYSIS (1997)), a catalyst in which molybdenum is supported on ZSM-5 type zeolite is effective.

しかしながら、これらの触媒を使用した場合でも、炭素析出が多いことやメタンの転化率が低いという問題を有している。   However, even when these catalysts are used, there are problems that carbon deposition is large and methane conversion is low.

そこで、低級炭化水素を主成分とするガスに対して、水素ガスを混合することで、炭素析出を大幅に削減できるとともに、反応生成物から特段の物質の分離を必要としない合理的な方法等も検討されている。この方法の一例として特許文献1(特開2005−87984)に示された芳香族化合物の製造方法が知られている。
JOURNAL OF CATALYSIS,1997年,pp.165,pp.150−161 特開2005−87984
Therefore, by mixing hydrogen gas with gas mainly composed of lower hydrocarbons, carbon deposition can be greatly reduced, and a rational method that does not require separation of special substances from the reaction product, etc. Has also been considered. As an example of this method, a method for producing an aromatic compound disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2005-87984) is known.
JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161 JP-A-2005-87984

しかしながら、今日においても、芳香族化合物及び水素の製造効率をさらに高めるために、なお一層優れた触媒の開発が望まれている。前記先行技術においても、ベンゼンとトルエンの選択率(反応ガス中のベンゼンとトルエンの合計割合)等の更なる性能向上が求められているのが現状である。   However, even today, in order to further increase the production efficiency of aromatic compounds and hydrogen, it is desired to develop even better catalysts. Also in the prior art, further improvement in performance such as selectivity of benzene and toluene (total ratio of benzene and toluene in the reaction gas) is required.

本発明の目的は、かかる事情に鑑みなされたもので、その目的は特定の芳香族化合物の生成割合いを高めることができる低級炭化水素の芳香族化触媒とその製造方法の提供にある。   The object of the present invention has been made in view of such circumstances, and the object is to provide a lower hydrocarbon aromatization catalyst capable of increasing the production rate of a specific aromatic compound and a method for producing the same.

そこで、請求項1記載の低級炭化水素の芳香族化触媒は、メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンを担持してなることを特徴とする。   Accordingly, the lower hydrocarbon aromatization catalyst according to claim 1 is a method of selectively reacting a zeolite composed of a metallosilicate with a molecular diameter larger than the pore diameter of the zeolite and the Bronsted acid point of the zeolite. It is characterized in that molybdenum is supported after treatment with a silane compound having an amino group and a linear hydrocarbon group.

請求項2記載の低級炭化水素の芳香族化触媒は、請求項1記載の低級炭化水素の芳香族化触媒において、前記メタロシリケートからなるゼオライトはHZSM−5型のゼオライトであることを特徴とする。   The lower hydrocarbon aromatization catalyst according to claim 2 is the lower hydrocarbon aromatization catalyst according to claim 1, wherein the zeolite comprising the metallosilicate is an HZSM-5 type zeolite. .

請求項3記載の低級炭化水素の芳香族化触媒は、請求項2記載の低級炭化水素の芳香族化触媒において、前記シラン化合物はAPTES(3−Aminopropyl−triethoxysilane)であることを特徴とする。   The lower hydrocarbon aromatization catalyst according to claim 3 is characterized in that in the lower hydrocarbon aromatization catalyst according to claim 2, the silane compound is APTES (3-Aminopropyl-triethoxysilane).

請求項4記載の低級炭化水素の芳香族化触媒は、請求項3記載の低級炭化水素の芳香族化触媒において、前記ゼオライトに対するAPTESの添加量は、2.5重量%未満であることを特徴とする。   5. The lower hydrocarbon aromatization catalyst according to claim 4, wherein the amount of APTES added to the zeolite is less than 2.5% by weight. And

請求項5記載の低級炭化水素の芳香族化触媒は、請求項4記載の低級炭化水素の芳香族化触媒において、前記ゼオライトに対するAPTESの添加量は0.5重量%であることを特徴とする。   The lower hydrocarbon aromatization catalyst according to claim 5 is the lower hydrocarbon aromatization catalyst according to claim 4, wherein the amount of APTES added to the zeolite is 0.5 wt%. .

また、本発明に係る低級炭化水素の芳香族化触媒の製造方法は、請求項6に記載の通り、メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンを担持することを特徴とする。   Further, according to the method for producing a lower hydrocarbon aromatization catalyst according to the present invention, the zeolite comprising a metallosilicate has a molecular diameter larger than the pore diameter of the zeolite and the zeolite. It is characterized in that molybdenum is supported after treatment with a silane compound having an amino group and a linear hydrocarbon group that selectively react with the Bronsted acid point.

請求項1〜5記載の低級炭化水素の芳香族化触媒と、請求項6記載の芳香族化触媒の製造方法に製造された芳香族化触媒とによれば、メタロシリケートからなるゼオライトが前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理されたことにより、前記ブレーンステッド酸点がシラン化合物との反応によって不活性化された状態となっているので、特定の芳香族化合物の生成割合いを高めることができる。尚、前記ゼオライトとしては請求項2に記載された低級炭化水素の芳香族化触媒のようなHZSM−5型のゼオライトを採用するよい。   According to the aromatization catalyst for lower hydrocarbons according to claims 1 to 5 and the aromatization catalyst produced by the method for producing an aromatization catalyst according to claim 6, the zeolite comprising a metallosilicate is the zeolite. And having a molecular diameter larger than that of the pore diameter of the zeolite and selectively reacting with the zeolite's brainsted acid point, it is treated with a silane compound having an amino group and a linear hydrocarbon group, so that the brainsted acid point is Since it is in an inactivated state due to the reaction with the silane compound, the production rate of the specific aromatic compound can be increased. The zeolite may be HZSM-5 type zeolite such as the lower hydrocarbon aromatization catalyst described in claim 2.

また、請求項3に記載された低級炭化水素の芳香族化触媒のように、前記シラン化合物にAPTES(3−Aminopropyl−triethoxysilane)を用いれば、特定の芳香族化合物であるベンゼンとトルエンの生成速度を安定維持させることができると共に、副生成物質であるナフタレンの割合いを低減させることができる。   Moreover, if APTES (3-Aminopropyl-trioxysilane) is used for the silane compound as in the lower hydrocarbon aromatization catalyst according to claim 3, the production rate of benzene and toluene which are specific aromatic compounds Can be stably maintained, and the proportion of naphthalene as a by-product substance can be reduced.

さらに、請求項4に記載された低級炭化水素の芳香族化触媒のように、前記APTESの添加量を2.5重量%未満にすると、ベンゼンとトルエンの生成速度を安定させると共に副生成物質であるナフタレンの割合いを低減させることができる。前記ゼオライトに対するAPTESの添加量としては0.1〜1.0重量%、好ましくは0.25〜1.0重量%、さらに好ましくは0.5〜1.0重量%に設定するとよい。   Further, as in the lower hydrocarbon aromatization catalyst according to claim 4, when the amount of the APTES added is less than 2.5% by weight, the production rate of benzene and toluene is stabilized and the by-product substance is used. The proportion of certain naphthalene can be reduced. The amount of APTES added to the zeolite is 0.1 to 1.0% by weight, preferably 0.25 to 1.0% by weight, and more preferably 0.5 to 1.0% by weight.

そして、請求項5に記載された低級炭化水素の芳香族化触媒のように、前記APTESの添加量を0.5重量%にすると、副生成物質であるナフタレンの割合いを低減させると共にベンゼンの生成速度を長時間安定させることができる。   As in the lower hydrocarbon aromatization catalyst described in claim 5, when the amount of the APTES added is 0.5% by weight, the proportion of naphthalene as a by-product is reduced and The generation speed can be stabilized for a long time.

本発明に係る請求項1〜5記載の低級炭化水素の芳香族化触媒と、請求項6記載の芳香族化触媒の製造方法とによれば、ゼオライトのブレーンステッド酸点がシラン化合物によって不活性化しているので、特定の芳香族化合物の生成割合いを高めることができる芳香族化触媒を提供できる。   According to the lower hydrocarbon aromatization catalyst according to claims 1 to 5 and the method for producing an aromatization catalyst according to claim 6 according to the present invention, the Bronsted acid point of the zeolite is inactive by the silane compound. Therefore, an aromatization catalyst that can increase the production rate of a specific aromatic compound can be provided.

特に、請求項3及び4記載の低級炭化水素の芳香族化触媒によれば、副生成物質であるナフタレンの割合いを低減させながら、ベンゼンやトルエンの芳香族化合物の生成速度を安定性させることができる。   In particular, according to the lower hydrocarbon aromatization catalyst according to claims 3 and 4, the rate of formation of aromatic compounds such as benzene and toluene is stabilized while the proportion of naphthalene as a by-product is reduced. Can do.

また、請求項5記載の低級炭化水素の芳香族化触媒によれば、副生成物質であるナフタレンの割合いを低減させると共にベンゼンの生成速度を長時間安定させることができる。   Further, according to the aromatization catalyst for lower hydrocarbon according to claim 5, it is possible to reduce the proportion of naphthalene as a by-product and to stabilize the production rate of benzene for a long time.

炭化水素の芳香族化に伴うHZSM−5型ゼオライト等のメタロシリケートからなるゼオライトの触媒性能低下の原因として、前記芳香族化の過程で副生成したナフタレン等が前記ゼオライトの外表面のブレーンステッド酸点に吸着、凝集することによる前記ゼオライトの細孔閉塞が考えられる。   As a cause of a decrease in the catalytic performance of a zeolite composed of a metallosilicate such as HZSM-5 type zeolite due to the aromatization of hydrocarbon, naphthalene or the like by-produced in the aromatization process is caused by a Bronsted acid on the outer surface of the zeolite. It is conceivable that the zeolite is blocked by adsorbing and agglomerating at the spots.

本発明は、前記ゼオライト外表面のブレーンステッド酸点を除去することができれば細孔閉塞が防止され、性能向上が図れることを考慮し、種々の実験を試みた結果に基づき想到されたものである。   The present invention has been conceived based on the results of various experiments in consideration of the fact that pore blockage can be prevented and performance can be improved if the bransted acid sites on the outer surface of the zeolite can be removed. .

HZSM−5型ゼオライトのブレーンステッド酸点を除去する方法として、表面処理(不活性化処理)の方法として知られるシラン処理法を試みた。   A silane treatment method known as a surface treatment (inactivation treatment) method was tried as a method for removing the Bronsted acid sites of the HZSM-5 type zeolite.

前記シラン処理法に用いられるシラン化合物としては、代表的な3種、APTES(3−Aminopropyl triethoxysilane)、TPSA(Triphenylsilylamine)、PTES(N−Propyl−triethoxysilane)が選ばれた。そして、各々のシラン化合物によってシラン処理されたHZSM−5型のゼオライトにモリブデンを担持させたものについて触媒性能を調べた。   As representative silane compounds used in the silane treatment method, three typical types, APTES (3-Aminopropyltriethylsilane), TPSA (Triphenylsilylamine), and PTES (N-Propyl-triethylsilane) were selected. Then, the catalytic performance of the HZSM-5 type zeolite that was silanized with each silane compound was supported on molybdenum.

具体的なシラン処理法について説明する。先ずシラン化合物を溶解させたエタノールにHZSM−5型ゼオライトを含浸させた。次いで、これを乾燥(液相成分の蒸発)させた後に550℃のもとで16時間焼成して前記シラン化化合物でシラン処理したHZSM−5型ゼオライト(0.5重量% as SiO2)得た。そして、このゼオライトをモリブデン水溶液((NH46Mo724水溶液)に含浸させてから乾燥させた後、550℃のもとで8時間焼成してシラン処理したモリブデン担持のHZSM−5型ゼオライトを得た。 A specific silane treatment method will be described. First, ethanol in which a silane compound was dissolved was impregnated with HZSM-5 type zeolite. Next, this was dried (evaporation of liquid phase components) and then calcined at 550 ° C. for 16 hours to obtain HZSM-5 type zeolite (0.5 wt% as SiO 2 ) treated with the silanized compound. It was. The molybdenum solution the zeolite was dried after impregnated into ((NH 4) 6 Mo 7 O 24 aqueous solution), and then calcined for 8 hours under 550 ° C. silanized HZSM-5 type molybdenum supported Zeolite was obtained.

次に、低級炭化水素としてメタンを含む共に6%の水素を含んだ原料ガスを、温度1023K、圧力0.3MPa、原料ガス流量2700ml・h-1・g-1の条件で、被検試料である前記シラン処理及びモリブデン担持させたゼオライトと反応させてベンゼンを生成させ(MTB反応)、その安定性を調べた。ここではベンゼンの生成速度の経時的変化を調べて比較した。尚、シラン未処理のモリブデン担持のHZSM−5型ゼオライトを用いた場合のベンゼン生成速度の経時的変化も調べて比較した。 Next, a raw material gas containing methane as a lower hydrocarbon and containing 6% hydrogen is measured on a test sample under the conditions of a temperature of 1023 K, a pressure of 0.3 MPa, and a raw material gas flow rate of 2700 ml · h −1 · g −1. Benzene was produced by reacting with a certain silane treatment and molybdenum-supported zeolite (MTB reaction), and the stability was examined. Here, changes over time in the production rate of benzene were examined and compared. In addition, the time-dependent change of the benzene production | generation rate at the time of using the HZSM-5 type zeolite carrying the silane untreated molybdenum was also examined and compared.

図1は各種のシラン化合物によってシラン処理したHZSM−5型ゼオライトを低級炭化水素の芳香族化に用いた場合のベンゼン生成速度(nmol・s-1・g-1)の経時的変化を示したものである。 FIG. 1 shows the change over time in the benzene production rate (nmol · s −1 · g −1 ) when HZSM-5 type zeolite silane-treated with various silane compounds is used for aromatization of lower hydrocarbons. Is.

図1に示されたベンゼン生成速度の経時的変化から明らかなように、TPSAでシラン処理したゼオライトとPTESでシラン処理したゼオライトとについては、反応開始当初こそ高いベンゼン生成率(ベンゼン生成速度)を示すものの、反応時間が約8時間を経過した頃より反応率が著しく低下し、結果的にシラン処理を行っていないモリブデン担持のゼオライトよりかえって不安定なものとなることが確認された。尚、シラン処理を行っていないモリブデン担持のゼオライト(図1にはMo/HZSM−5と表記)によるベンゼン生成率(ベンゼン生成速度)は反応時間約27時間まで安定したが、その後はコーク生成等による被毒により経時的に低下してしまい結果的に不安定なものとなることが確認された。   As is clear from the time-dependent change in the benzene production rate shown in FIG. 1, for the zeolite treated with TPSA and the zeolite treated with PTES, a high benzene production rate (benzene production rate) was obtained at the beginning of the reaction. Although shown, the reaction rate was remarkably reduced from about 8 hours after the reaction time, and as a result, it was confirmed that the reaction was more unstable than the molybdenum-supported zeolite not subjected to silane treatment. Incidentally, the benzene production rate (benzene production rate) by the molybdenum-supported zeolite not treated with silane (shown as Mo / HZSM-5 in FIG. 1) was stable until the reaction time was about 27 hours. It was confirmed that it deteriorated over time due to poisoning due to, resulting in instability.

一方、APTESでシラン処理したゼオライトは、反応時間45時間を経過しても一定のベンゼン生成率(ベンゼン生成速度)を維持し、触媒性能の安定性が向上することが確認された。   On the other hand, it was confirmed that the zeolite silane-treated with APTES maintains a constant benzene production rate (benzene production rate) even after a reaction time of 45 hours and improves the stability of the catalyst performance.

以上の結果から、HZSM−5型のゼオライト等のメタロシリケートからなるゼオライトをシラン処理することによって触媒の反応性に変化を与えられること、シラン化合物の種類によって安定性が向上することもあるが退歩することもあること、安定性を向上させたシラン化合物(APTES)はその分子径がHZSM−5型ゼオライトの細孔口径よりも大きなサイズである(ゼオライト外表面のみを処理するものである)ことが確認された。また、前記ゼオライトのブレーンステッド酸点を不活性化させるシラン化合物としては、ブレーンステッド酸点に選択的に反応する官能基を有するすなわちアミノ基及び直鎖炭化水素基を有するシラン化合物であることが望ましいことが確認された。   From the above results, it is possible to change the reactivity of the catalyst by treating the zeolite made of metallosilicate such as HZSM-5 type zeolite with silane, and the stability may be improved depending on the type of silane compound. The silane compound (APTES) with improved stability has a molecular size larger than the pore diameter of the HZSM-5 type zeolite (only the outer surface of the zeolite is treated). Was confirmed. The silane compound that inactivates the Bronsted acid point of the zeolite is a silane compound having a functional group that selectively reacts with the Bronsted acid point, that is, an amino group and a linear hydrocarbon group. Desirable.

今回の実験に使用したシラン化合物のAPTESは、化学式1の構造式で示すことができる市販のシランカップリング剤である。   APTES of the silane compound used in this experiment is a commercially available silane coupling agent that can be represented by the structural formula of Chemical Formula 1.

Figure 2007014894
Figure 2007014894

[構造式中 R1=CH3(CH2)、R2=CH3(CH2)(CH2)、R3、R4=Hを有した、第1級アミンを有するトリエトキシシラン]
ここで、化学式1の構造式に適合し、本発明のシラン処理に使用できる主なシラン化合物について説明する。R1としては、シラン処理の焼成過程においてSiO2の生成が促進されるOCH3、OCH2CH3、OCH2(CH32等のアルコシキル基を有するものが望ましいが、このうち一部又は全てがCH3、CH2CH3などの低級炭化水素基であっても焼成時に十分な酸素分圧が確保できればなんら問題なく使用することが出来る。R2にあっては、CH2、(CH22、(CH23等と列挙できるが、シラン処理の方法に関する説明において後述するように、均一な状態で混合される物性が適しているという観点から、R2基が長鎖である場合、溶媒に容易に溶けにくい固体となるため、R2基は1以上18以下の範囲が望ましく、さらにはゼオライトの細孔に入る大きさとして特にC6以下のものが望ましい。R3、R4に関しては、R3=R4=Hである場合、これは、第1級アミンとなるが、R3ないしはR4の一方がH、もう一方が、炭化水素基である第2級アミンでもよい。またR3とR4が同一または異なる炭化水素基を有する場合、第3級アミンであってもその塩基性は有していることから本処理法におけるシラン処理剤として使用することがきる。この場合もやはりC2乃至C18程度の直鎖炭化水素基が上げられるほか、フェニル基など芳香族環状基であってもよいが、先のR2基において述べた理由によって、特にはC6以下のものが望ましい。そして、この部分に更にアミノエチル基、アミノフェニル基など塩基性アミノ基を持ったものであっても、その塩基性は強く発現することから、分子サイズとして適当なものを選択すれば今回のシラン処理剤として用いることが出来る。
[Triethoxysilane with primary amine having R 1 = CH 3 (CH 2 ), R 2 = CH 3 (CH 2 ) (CH 2 ), R 3 , R 4 = H in the structural formula]
Here, main silane compounds that conform to the structural formula of Chemical Formula 1 and can be used for the silane treatment of the present invention will be described. R 1 preferably has an alkoxy group such as OCH 3 , OCH 2 CH 3 , OCH 2 (CH 3 ) 2, etc., which promotes the generation of SiO 2 during the silane treatment firing process, Even if all of them are lower hydrocarbon groups such as CH 3 and CH 2 CH 3 , they can be used without any problem if a sufficient oxygen partial pressure can be secured during firing. In R 2 , it can be enumerated as CH 2 , (CH 2 ) 2 , (CH 2 ) 3, etc., but as will be described later in the description of the silane treatment method, the physical properties mixed in a uniform state are suitable. In view of the fact that the R 2 group is a long chain, it becomes a solid that is not easily dissolved in the solvent. Therefore, the R 2 group is preferably in the range of 1 to 18 and further has a size that fits into the pores of the zeolite. Particularly, C6 or less is desirable. With respect to R 3 and R 4 , when R 3 = R 4 = H, this is a primary amine, but one of R 3 or R 4 is H and the other is a hydrocarbon group. A secondary amine may be used. When R 3 and R 4 have the same or different hydrocarbon groups, even tertiary amines have basicity and can be used as silane treating agents in this treatment method. In addition to this case also again raised straight-chain hydrocarbon group having about C2 to C18, may be an aromatic cyclic group such as a phenyl group, but for the reasons mentioned in the previous R 2 groups, particularly those of C6 or less Is desirable. And even if it has a basic amino group such as aminoethyl group or aminophenyl group in this part, its basicity is strongly expressed, so if an appropriate molecular size is selected, this silane It can be used as a treating agent.

これらR1〜R4の条件を満たし、市販されている第1級乃至第3級アミンを有するシラン化合物としては、例えばN−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン(信越化学工業株式会社製シランカップリング剤:KBM−602)、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製シランカップリング剤:KBM−603)、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン(信越化学工業株式会社製シランカップリング剤:KBE−603)、3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製シランカップリング剤:KBM−903)、3−アミノプロピルトリエトキシシラン(信越化学工業株式会社製シランカップリング剤:KBE−903)、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン(信越化学工業株式会社製シランカップリング剤:KBE−9103)、N−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製シランカップリング剤:KBM−573)等を上げることが出来、いずれのシラン化合物も今回のシラン処理剤として使用することができる。 Examples of silane compounds having primary to tertiary amines that satisfy these R 1 to R 4 conditions and are commercially available include N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd.). Company silane coupling agent: KBM-602), N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBM-603), N-2 (aminoethyl) 3-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBE-603), 3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBM-903), 3- Aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBE-9 3), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBE-9103), N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. silane coupling agent: KBM-573) can be raised, and any silane compound can be used as the silane treatment agent of this time.

なお、以上で列挙した市販以外でも、R1〜R4について述べてきた基質のうちから任意の組み合わせを選択したシラン化合物を用いても、アミノ基を有するものであればシラン処理剤として用いることが出来る。 Even outside commercial enumerated above, by using a silane compound selected any combination from among the substrates has been described R 1 to R 4, be used as a silane treatment agent so long as it has an amino group I can do it.

また、今回のシラン処理は浸漬担持法によって行ったが、CVD法等の他の方法であっても、シラン処理剤と処理されるゼオライトとが均一な状態で混合される方法であれば良い。そのため、シラン処理に適した物性としては、浸漬担持法では、常温にて液体、または、メタノール、エタノール等の有機溶剤等に溶解しやすいものが望ましく、CVD法にあっても液体または有機溶剤に溶解しやすいものが望ましく、蒸気圧が低く、揮発しやすければなお望ましい。   In addition, the silane treatment this time was performed by the immersion support method, but other methods such as a CVD method may be used as long as the silane treatment agent and the zeolite to be treated are mixed in a uniform state. Therefore, as physical properties suitable for silane treatment, it is desirable that the immersion support method is liquid at room temperature or is easily soluble in organic solvents such as methanol and ethanol. It is desirable that it is easy to dissolve, and it is more desirable if it has a low vapor pressure and is easily volatilized.

次に、前記ゼオライトに対するAPTESの添加量の効果を調べた。ここではゼオライトに対してAPTESを0.1、0.25、0.5、0.75、1.0、2.5重量%の各量添加して被検試料であるシラン処理及びモリブデン担持させたHZSM−5型ゼオライトを生成した。各ゼオライトの作製は図1に係る試験に準じた。   Next, the effect of the amount of APTES added to the zeolite was examined. Here, APTES is added to zeolite in amounts of 0.1, 0.25, 0.5, 0.75, 1.0, and 2.5% by weight to carry the silane treatment and molybdenum as test samples. HZSM-5 type zeolite was produced. Each zeolite was produced in accordance with the test shown in FIG.

そして、低級炭化水素としてメタンを含む共に6%の水素を含んだ原料ガスを、温度1023K、圧力0.3MPa、原料ガス流量2700ml・h-1・g-1の条件で、被検試料である各種ゼオライトと反応させた(MTB反応)。そして、この反応中にメタンの反応率%、ベンゼンとトルエンの選択率(%,反応ガス中のベンゼンとトルエンの割合いの合計)、生成ガス中の副生成物(ナフタレン)の割合い%をガスクロマトグラフィで分析した。 A source gas containing methane as a lower hydrocarbon and containing 6% hydrogen is a test sample under the conditions of a temperature of 1023 K, a pressure of 0.3 MPa, and a source gas flow rate of 2700 ml · h −1 · g −1. Reaction with various zeolites (MTB reaction). During this reaction, the reaction rate of methane, the selectivity of benzene and toluene (%, the sum of the proportions of benzene and toluene in the reaction gas), and the proportion of by-products (naphthalene) in the product gas are Analyzed by gas chromatography.

図2は、この分析によって得られた特性図であり、ゼオライトに対するシラン化合物の添加量(重量%)と、メタンの反応率%と、ベンゼンとトルエンの選択率(%)と、生成ガス中副生成物(ナフタレン)の割合い%との関係を示す。   FIG. 2 is a characteristic diagram obtained by this analysis. The amount of silane compound added to the zeolite (% by weight), the reaction rate of methane, the selectivity of benzene and toluene (%), and the secondary gas in the product gas. The relationship with the percentage of the product (naphthalene) is shown.

この特性図から明らかなように、APTESを0.1重量%以上添加することで、触媒性能低下の要因と考えられるナフタレンの生成割合が低減することが確認された。特に、0.25重量%以上添加することでその値は添加しない場合に比べて著しく低下し、さらに0.5重量%以上添加した場合にほとんど生成しないことが確認された。   As is clear from this characteristic diagram, it was confirmed that the addition rate of APTES of 0.1 wt% or more reduces the production rate of naphthalene, which is considered to be a factor of catalyst performance deterioration. In particular, it was confirmed that by adding 0.25% by weight or more, the value was remarkably reduced as compared with the case where it was not added, and when 0.5% by weight or more was added, it was hardly formed.

また、ベンゼンとトルエンの選択率についても、APTESを0.1重量%添加することで前記選択率の向上が確認された。特に0.25重量%以上添加することで前記選択率は90%程度と高い選択性を維持することが確認された。   Further, the selectivity of benzene and toluene was confirmed to be improved by adding 0.1 wt% of APTES. In particular, it was confirmed that by adding 0.25 wt% or more, the selectivity is maintained at a high selectivity of about 90%.

次に、APTESの添加量(0.1重量%、0.25重量%、0.5重量%、0.75重量%、1.0重量%、2.5重量%)とベンゼンの生成速度変化の関係を調べた結果を図3に示した(図3にはAPTES 0.1wt%、APTES 0.25wt%、APTES 0.5wt%、APTES 0.75wt%、APTES 1.0wt%、APTES 2.5wt%と表記)。図示された結果から明らかなように、APTESを添加しない場合(図3にはMo/HZSM−5と表記)に対し、0.1〜1.0重量%添加したものは何れも生成速度の向上が確認された。一方、2.5重量%添加した場合には、APTESを添加しない場合より生成速度が低下することが確認された。   Next, the amount of addition of APTES (0.1 wt%, 0.25 wt%, 0.5 wt%, 0.75 wt%, 1.0 wt%, 2.5 wt%) and change in the production rate of benzene The results of examining the relationship are shown in FIG. 3 (FIG. 3 shows APTES 0.1 wt%, APTES 0.25 wt%, APTES 0.5 wt%, APTES 0.75 wt%, APTES 1.0 wt%, and APTES 2. 5 wt%). As is clear from the results shown in the figure, when APTES is not added (indicated as Mo / HZSM-5 in FIG. 3), the addition of 0.1 to 1.0% by weight improves the production rate. Was confirmed. On the other hand, when 2.5 wt% was added, it was confirmed that the production rate was lower than when APTES was not added.

また、図4はAPTESの添加量に対するベンゼンの生成速度の経時的変化を示した特性図である。この特性図はAPTESの添加量を0.5重量%とした場合とAPTESを添加しない場合のベンゼン生成速度の経時的変化を示すもので図1から抜粋したものである。この特性図から明らかなように、APTESを添加しない場合には約30時間を経過するとベンゼンの生成速度が著しく低下しているのに対して、0.5重量%添加したものでは、約50時間経過してもベンゼン生成速度がほとんど変化せず、安定性においても向上することが確認できる。   FIG. 4 is a characteristic diagram showing the change over time in the production rate of benzene with respect to the amount of APTES added. This characteristic diagram shows changes over time in the benzene formation rate when the amount of APTES added is 0.5 wt% and when no APTES is added, and is extracted from FIG. As is apparent from this characteristic diagram, when no APTES is added, the production rate of benzene is remarkably lowered after about 30 hours, whereas when 0.5 wt% is added, about 50 hours. It can be confirmed that the benzene production rate hardly changes even after the lapse of time and the stability is improved.

以上のようにHZSM−5型ゼオライトをシラン処理する共にモリブデンを担持してなる芳香族化触媒によれば、低級炭化水素を芳香族化化合物化する触媒性能が向上することが示された。また、触媒性能低下の要因となるナフタレンの生成割合が低減すると共に、ベンゼンとトルエンの選択率が向上することが示された。そして、特に、前記ゼオライトに対してAPTESを0.5重量%添加することで、長時間(約50時間)にわたってベンゼン生成速度の安定性が確保されることが示された。   As described above, according to the aromatization catalyst obtained by silane-treating the HZSM-5 type zeolite and supporting molybdenum, it has been shown that the catalyst performance for converting the lower hydrocarbon into an aromatized compound is improved. In addition, it was shown that the production rate of naphthalene, which causes a decrease in catalyst performance, was reduced and the selectivity of benzene and toluene was improved. In particular, it was shown that by adding 0.5 wt% of APTES to the zeolite, the stability of the benzene production rate is ensured over a long period (about 50 hours).

尚、以上の実施例に基づき説明された本発明は特許請求の範囲に記載された発明の範囲内で様々な変更が可能であり、これらも本発明の技術範囲に属することは言うまでもない。   The present invention described based on the above embodiments can be variously modified within the scope of the invention described in the claims, and it goes without saying that these also belong to the technical scope of the present invention.

各種のシラン化合物によってシラン処理したHZSM−5型ゼオライトを低級炭化水素の芳香族化に用いた場合のベンゼン生成速度の経時的変化。Changes in benzene production rate over time when HZSM-5 type zeolite silane-treated with various silane compounds is used for aromatization of lower hydrocarbons. ゼオライトに対するシラン化合物の添加量(重量%)と、メタンの反応率%と、ベンゼンとトルエンの選択率(%)と、生成ガス中副生成物(ナフタレン)の割合い%との関係を示した特性図。The relationship between the amount of silane compound added to the zeolite (% by weight), the reaction rate of methane, the selectivity of benzene and toluene (%), and the percentage of by-product (naphthalene) in the product gas was shown. Characteristic diagram. APTESの添加量とベンゼンの生成速度変化の関係を示した特性図。The characteristic view which showed the relationship between the addition amount of APTES and the production rate change of benzene. APTESの添加量に対するベンゼンの生成速度の経時的変化、特にAPTESの添加量を0.5重量%とした場合とAPTESを添加しない場合のベンゼン生成速度の経時的変化を示した特性図。The characteristic view which showed the time-dependent change of the production | generation rate of benzene with respect to the addition amount of APTES, especially the time-dependent change of the benzene formation rate when the addition amount of APTES is 0.5 weight%, and when not adding APTES.

Claims (6)

メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンを担持してなることを特徴とする低級炭化水素の芳香族化触媒。   After treating a zeolite comprising a metallosilicate with a silane compound having an amino group and a linear hydrocarbon group, which has a molecular diameter larger than the pore diameter of the zeolite and selectively reacts with the zeolite's Bronsted acid point A lower hydrocarbon aromatization catalyst characterized by supporting molybdenum. 前記メタロシリケートからなるゼオライトはHZSM−5型のゼオライトであることを特徴とする請求項1記載の低級炭化水素の芳香族化触媒。   2. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the metallosilicate zeolite is HZSM-5 type zeolite. 前記シラン化合物はAPTES(3−Aminopropyl−triethoxysilane)であることを特徴とする請求項2記載の低級炭化水素の芳香族化触媒。   3. The lower hydrocarbon aromatization catalyst according to claim 2, wherein the silane compound is APTES (3-aminopropyl-trioxysilane). 前記ゼオライトに対するAPTESの添加量は2.5重量%未満であることを特徴とする請求項3記載の低級炭化水素の芳香族化触媒。   4. The lower hydrocarbon aromatization catalyst according to claim 3, wherein the amount of APTES added to the zeolite is less than 2.5% by weight. 前記ゼオライトに対するAPTESの添加量は0.5重量%であることを特徴とする請求項4記載の低級炭化水素の芳香族化触媒。   5. The lower hydrocarbon aromatization catalyst according to claim 4, wherein the amount of APTES added to the zeolite is 0.5% by weight. メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンを担持することを特徴とする低級炭化水素の芳香族化触媒の製造方法。
After treating a zeolite comprising a metallosilicate with a silane compound having an amino group and a linear hydrocarbon group, which has a molecular diameter larger than the pore diameter of the zeolite and selectively reacts with the zeolite's Bronsted acid point A process for producing a lower hydrocarbon aromatization catalyst comprising supporting molybdenum.
JP2005200022A 2005-07-08 2005-07-08 Lower hydrocarbon aromatization catalyst and process for producing the same Active JP4972294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200022A JP4972294B2 (en) 2005-07-08 2005-07-08 Lower hydrocarbon aromatization catalyst and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200022A JP4972294B2 (en) 2005-07-08 2005-07-08 Lower hydrocarbon aromatization catalyst and process for producing the same

Publications (2)

Publication Number Publication Date
JP2007014894A true JP2007014894A (en) 2007-01-25
JP4972294B2 JP4972294B2 (en) 2012-07-11

Family

ID=37752501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200022A Active JP4972294B2 (en) 2005-07-08 2005-07-08 Lower hydrocarbon aromatization catalyst and process for producing the same

Country Status (1)

Country Link
JP (1) JP4972294B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114550A1 (en) 2007-03-20 2008-09-25 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP2008229519A (en) * 2007-03-20 2008-10-02 Meidensha Corp Method for manufacturing catalyst for reforming lower hydrocarbon
JP2008260006A (en) * 2007-03-20 2008-10-30 Meidensha Corp Atalyst for aromatization of lower hydrocarbon, and method for preparing aromatic compound
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
WO2009004843A1 (en) 2007-06-29 2009-01-08 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP2009029771A (en) * 2007-06-29 2009-02-12 Meidensha Corp Method for producing aromatic compound
JP2009119319A (en) * 2007-11-12 2009-06-04 Meidensha Corp Catalyst for aromatizing lower hydrocarbon and method for preparing aromatic compounds
WO2010061683A1 (en) * 2008-11-25 2010-06-03 株式会社明電舎 Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
WO2011018966A1 (en) * 2009-08-12 2011-02-17 三井化学株式会社 Method for manufacturing an aromatic hydrocarbon, and transition-metal-containing crystalline metallosilicate catalyst used in said manufacturing method
JP2011509827A (en) * 2008-01-28 2011-03-31 エクソンモービル・ケミカル・パテンツ・インク Production of aromatic compounds from methane.
CN110882721A (en) * 2018-09-10 2020-03-17 国家能源投资集团有限责任公司 Aromatization catalyst and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286815B2 (en) * 2008-02-20 2013-09-11 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253810A (en) * 1997-12-08 1999-09-21 Inst Fr Petrole Regenerating method of catalyst and adsorbent
JP2001501588A (en) * 1996-05-29 2001-02-06 エクソン・ケミカル・パテンツ・インク Method for producing aromatic compound from aliphatic compound
JP2005087984A (en) * 2003-09-18 2005-04-07 Electric Power Dev Co Ltd Hybrid production method for aromatic compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501588A (en) * 1996-05-29 2001-02-06 エクソン・ケミカル・パテンツ・インク Method for producing aromatic compound from aliphatic compound
JPH11253810A (en) * 1997-12-08 1999-09-21 Inst Fr Petrole Regenerating method of catalyst and adsorbent
JP2005087984A (en) * 2003-09-18 2005-04-07 Electric Power Dev Co Ltd Hybrid production method for aromatic compound

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278237B2 (en) 2007-03-20 2012-10-02 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP2008229519A (en) * 2007-03-20 2008-10-02 Meidensha Corp Method for manufacturing catalyst for reforming lower hydrocarbon
JP2008260006A (en) * 2007-03-20 2008-10-30 Meidensha Corp Atalyst for aromatization of lower hydrocarbon, and method for preparing aromatic compound
WO2008114550A1 (en) 2007-03-20 2008-09-25 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
US8735310B2 (en) 2007-06-07 2014-05-27 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
US8558045B2 (en) 2007-06-29 2013-10-15 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP2009029771A (en) * 2007-06-29 2009-02-12 Meidensha Corp Method for producing aromatic compound
WO2009004843A1 (en) 2007-06-29 2009-01-08 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP2009119319A (en) * 2007-11-12 2009-06-04 Meidensha Corp Catalyst for aromatizing lower hydrocarbon and method for preparing aromatic compounds
JP2011509827A (en) * 2008-01-28 2011-03-31 エクソンモービル・ケミカル・パテンツ・インク Production of aromatic compounds from methane.
WO2010061683A1 (en) * 2008-11-25 2010-06-03 株式会社明電舎 Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
JP2010125342A (en) * 2008-11-25 2010-06-10 Meidensha Corp Method of producing catalyst for aromatizing lower hydrocarbon, and catalyst for aromatizing lower hydrocarbon
US8642493B2 (en) 2008-11-25 2014-02-04 Meidensha Corporation Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
WO2011018966A1 (en) * 2009-08-12 2011-02-17 三井化学株式会社 Method for manufacturing an aromatic hydrocarbon, and transition-metal-containing crystalline metallosilicate catalyst used in said manufacturing method
JP5536778B2 (en) * 2009-08-12 2014-07-02 三井化学株式会社 Process for producing aromatic hydrocarbon and transition metal-containing crystalline metallosilicate catalyst used in the process
CN110882721A (en) * 2018-09-10 2020-03-17 国家能源投资集团有限责任公司 Aromatization catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP4972294B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4972294B2 (en) Lower hydrocarbon aromatization catalyst and process for producing the same
US8278237B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
Bjørgen et al. Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta
US8558045B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
KR101070554B1 (en) Process for production of aromatic hydrocarbon
He et al. Investigation of the isolated Cr (VI) species in Cr/MCM‐41 catalysts and its effect on catalytic activity for dehydrogenation of propane
US8097763B2 (en) Process for production of aromatic compound
WO2006011568A1 (en) Process for producing aromatic hydrocarbon and hydrogen
RU2009113538A (en) RENIUM CONTAINING TRANSALKYLATION CATALYSTS, METHOD FOR PRODUCING THEM AND METHOD FOR PRODUCING XYLENE
Kikuchi et al. Study on Mo/HZSM-5 catalysts modified by bulky aminoalkyl-substituted silyl compounds for the selective methane-to-benzene (MTB) reaction
NO20080370L (en) Process for Preparation of Fischer-Tropsch Catalysts with High Mechanical, Thermal and Chemical Stability
Lim et al. Characteristics of Mn/H-ZSM-5 catalysts for methane dehydroaromatization
JP4565277B2 (en) Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method
CN111514926A (en) Molecular sieve catalyst, and preparation method and application thereof
Hegedüs et al. Microwave-assisted conversion of oximes into nitriles in the presence of a zeolite
Zhang et al. Catalytic oxidation of tricholoethylene over Cr/ZSM‐5/PSSF zeolite membrane catalysts prepared by chemical vapor deposition
Yu et al. Hydrodeoxygenation of o-Cresol Over Mo2C Modified by O2 Plasma
Min et al. Rational Design of Pomegranate-like Base–Acid Bifunctional β Zeolite by Steam-Assisted Crystallization for the Tandem Deacetalization–Knoevenagel Condensation
Muntasar et al. “Petroleum Gas Oil− Ethanol” Blends Used as Feeds: Increased Production of Ethylene and Propylene over Catalytic Steam-Cracking (CSC) Hybrid Catalysts. Different Behavior of Methanol in Blends with Petroleum Gas Oil
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5018161B2 (en) Method for producing lower hydrocarbon reforming catalyst
JP7220447B2 (en) Catalyst for producing hydrocarbons from oxygen-containing organic compounds and method for producing hydrocarbons using said catalyst
JP6730544B1 (en) Hydrocarbon production method, purification method, and purification apparatus
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150