JP5286815B2 - Lower hydrocarbon aromatization catalyst and method for producing aromatic compound - Google Patents

Lower hydrocarbon aromatization catalyst and method for producing aromatic compound Download PDF

Info

Publication number
JP5286815B2
JP5286815B2 JP2008038304A JP2008038304A JP5286815B2 JP 5286815 B2 JP5286815 B2 JP 5286815B2 JP 2008038304 A JP2008038304 A JP 2008038304A JP 2008038304 A JP2008038304 A JP 2008038304A JP 5286815 B2 JP5286815 B2 JP 5286815B2
Authority
JP
Japan
Prior art keywords
catalyst
lower hydrocarbon
molybdenum
silver
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038304A
Other languages
Japanese (ja)
Other versions
JP2009195784A (en
Inventor
琢弥 畑岸
知弘 山田
陽 山本
芳男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008038304A priority Critical patent/JP5286815B2/en
Priority to CN2008800174010A priority patent/CN101678340B/en
Priority to EP08739235A priority patent/EP2140938A4/en
Priority to PCT/JP2008/056117 priority patent/WO2009004843A1/en
Priority to US12/595,924 priority patent/US8558045B2/en
Publication of JP2009195784A publication Critical patent/JP2009195784A/en
Application granted granted Critical
Publication of JP5286815B2 publication Critical patent/JP5286815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明はメタンを主成分とする天然ガス、バイオガス、メタンハイドレートの高度利用に関する。天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギー資源と考えられ、その利用技術に関心が高まっている。メタン資源はそのままクリーン性を活かして次世代の新しい有機資源、燃料電池用の水素資源として注目されている。特に本発明はメタンからプラスチック類などの化学製品原料であるベンゼン及びナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造するための触媒化学変換技術及びその触媒製造方法に関する。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane. Natural gas, biogas, and methane hydrate are considered to be the most effective energy resources as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Methane resources are attracting attention as the next generation of new organic resources and hydrogen resources for fuel cells, taking advantage of cleanliness. In particular, the present invention relates to a catalytic chemical conversion technique for efficiently producing aromatic compounds mainly composed of benzene and naphthalene, which are raw materials for chemical products such as plastics, and high-purity hydrogen gas from methane, and a method for producing the catalyst. About.

メタンからベンゼン等の芳香族化合物と水素とを製造する方法としては触媒の存在下にメタンを反応させる方法が知られている。この際の触媒としてはZSM−5系のゼオライトに担持されたモリブデンが有効とされている(非特許文献1)。しかしながら、これらの触媒を使用した場合でも、炭素の析出が多いことやメタンの転換率が低いという問題を有している。   As a method of producing an aromatic compound such as benzene and hydrogen from methane, a method of reacting methane in the presence of a catalyst is known. As the catalyst at this time, molybdenum supported on ZSM-5-based zeolite is effective (Non-patent Document 1). However, even when these catalysts are used, there are problems that carbon deposition is large and methane conversion is low.

この問題を解決するために例えば特許文献1〜特許文献3に開示されたようなMo(モリブデン)等の触媒材料を多孔質のメタロシロケートに担持した触媒が提案されている。特許文献1〜特許文献3では担体である7オングストロームの細孔径を有する多孔質のメタロシリケートに金属成分が担持された触媒を用いることで低級炭化水素が効率的に芳香族化合物化され、これに付随して高純度の水素が得られることが確認されている。前記特許文献によると担体には前記金属成分としてモリブデン、コバルト、鉄等が担持されている。また、特許文献4にはメタロシリケートからなるゼオライトをシラン化合物で処理した後にモリブデンを担持してなる低級炭化水素の芳香族化触媒が開示されている。この芳香族化触媒によればベンゼンやトルエンの特定の芳香族化合物の生成速度を安定性させることができる。
JOURNAL OF CATALYSIS,1997,pp.165,pp.150−161 特開平10−272366号公報 特開平11−60514号公報 特開2004−269398号公報 特開2007−14894号公報
In order to solve this problem, for example, a catalyst in which a catalyst material such as Mo (molybdenum) disclosed in Patent Documents 1 to 3 is supported on a porous metallosilicate has been proposed. In Patent Documents 1 to 3, lower hydrocarbons are efficiently converted into aromatic compounds by using a catalyst in which a metal component is supported on a porous metallosilicate having a 7 angstrom pore diameter as a carrier. Accompanyingly, it has been confirmed that high purity hydrogen can be obtained. According to the patent document, molybdenum, cobalt, iron or the like is supported on the carrier as the metal component. Patent Document 4 discloses a lower hydrocarbon aromatization catalyst obtained by treating a zeolite made of metallosilicate with a silane compound and then supporting molybdenum. According to this aromatization catalyst, the production rate of specific aromatic compounds such as benzene and toluene can be stabilized.
JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161 JP 10-272366 A Japanese Patent Laid-Open No. 11-60514 JP 2004-269398 A JP 2007-14894 A

メタンからベンゼン等の芳香族化合物と水素を製造する方法としては触媒の存在下にメタンを反応させる方法としてZSM−5にモリブデンを担持した触媒が有効とされている。   As a method for producing an aromatic compound such as benzene and hydrogen from methane, a catalyst in which molybdenum is supported on ZSM-5 is effective as a method for reacting methane in the presence of a catalyst.

しかし、この触媒が用いられた場合でも炭素の析出が多い。炭素の析出により触媒性能が短時間に劣化する。メタン転換率(芳香族化合物と水素の生成に利用されるメタンの利用率)が低い。特許文献1〜特許文献3のような触媒ではこの問題の改善が十分でないので芳香族化合物の製造効率をさらに高めるために一層優れた触媒の開発が望まれている。   However, even when this catalyst is used, carbon is often deposited. The catalyst performance deteriorates in a short time due to the deposition of carbon. Methane conversion rate (utilization rate of methane used for producing aromatic compounds and hydrogen) is low. Since the catalysts such as Patent Document 1 to Patent Document 3 do not sufficiently improve this problem, development of a more excellent catalyst is desired in order to further increase the production efficiency of the aromatic compound.

メタンをベンゼンに改質する触媒の活用にはメタンの転換率の向上は必須であるが、メタンの転換率を上げるにはメタンガス投入時の反応温度を上げる必要がある。特許文献1〜特許文献3のような触媒では原料ガスとの反応温度を上げると触媒の活性寿命が大幅に低下する。   In order to utilize a catalyst for reforming methane to benzene, it is essential to improve the conversion rate of methane, but in order to increase the conversion rate of methane, it is necessary to increase the reaction temperature when methane gas is introduced. In a catalyst such as Patent Document 1 to Patent Document 3, when the reaction temperature with the raw material gas is increased, the active life of the catalyst is significantly reduced.

また、特許文献4の芳香族化触媒によると芳香族化合物の生成速度を安定性させることができるが、芳香族化合物の量産性の観点から、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性のさらなる向上が望まれる。   Moreover, according to the aromatization catalyst of patent document 4, although the production | generation rate of an aromatic compound can be stabilized, from a viewpoint of mass productivity of an aromatic compound, a methane conversion rate, a benzene production rate, a naphthalene production rate, and BTX Further improvement of the active life stability of the production rate (total production rate of benzene, toluene and xylene) is desired.

そこで、前記課題を解決するための低級炭化水素芳香族化触媒は低級炭化水素及び炭酸ガスと反応して芳香族化合物を生成させる触媒であって、メタロシリケートからなるゼオライトを前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銀を担持してなる。   Accordingly, a lower hydrocarbon aromatization catalyst for solving the above problems is a catalyst that reacts with a lower hydrocarbon and carbon dioxide gas to produce an aromatic compound, and a zeolite comprising a metallosilicate is converted into a pore diameter of the zeolite. It is supported by molybdenum and silver after being treated with a silane compound having an amino group and a linear hydrocarbon group which have a larger molecular diameter and which selectively react with the Bronsted acid point of the zeolite.

また、前記課題を解決するための芳香族化合物の製造方法は、メタロシリケートからなるゼオライトを前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銀を担持してなる触媒に低級炭化水素と炭酸ガスとを含む反応ガスを反応させて芳香族化合物を生成する。   In addition, a method for producing an aromatic compound for solving the above-described problem is to selectively react a zeolite composed of a metallosilicate with a molecular diameter larger than the pore diameter of the zeolite and to the Bronsted acid point of the zeolite. After the treatment with a silane compound having an amino group and a straight chain hydrocarbon group, a reaction gas containing lower hydrocarbon and carbon dioxide is reacted with a catalyst supporting molybdenum and silver to produce an aromatic compound.

前記低級炭化水素芳香族化触媒によればメタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。前記触媒と反応させる炭酸ガスは一酸化炭素ガスに代えてもよい。   According to the lower hydrocarbon aromatization catalyst, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved. Carbon dioxide gas to be reacted with the catalyst may be replaced with carbon monoxide gas.

前記メタロシリケートとしては4.5〜6.5オングストローム径の細孔を有する多孔質メタロシリケートであるZSM−5、MCM−22が例示列挙される。   Examples of the metallosilicate include ZSM-5 and MCM-22, which are porous metallosilicates having pores having a diameter of 4.5 to 6.5 angstroms.

前記シラン化合物としてはAPTES(3−Aminoproxyl−triethoxysilane)が例示される。前記シラン化合物は前記焼成後のシラン化合物の添加量が触媒全体量に対して2.5重量%未満例えば0.5重量%となるように前記シラン処理に供するとよい。メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が確実に向上する。   Examples of the silane compound include APTES (3-Aminoproxy-trioxysilane). The silane compound may be subjected to the silane treatment so that the added amount of the silane compound after the calcination is less than 2.5% by weight, for example, 0.5% by weight with respect to the total amount of the catalyst. The active lifetime stability of the methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate is reliably improved.

前記モリブデンはその担持量が焼成後の触媒全体量に対して2〜12重量%となると共に前記銀はモリブデンとのモル比Ag:Mo=X:1の比率が0.01〜0.8となるように担持するとよい。メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が確実に向上する。   The molybdenum has a supported amount of 2 to 12% by weight based on the total amount of the catalyst after calcination, and the silver has a molar ratio Ag: Mo = X: 1 with the molybdenum of 0.01 to 0.8. It is good to carry so that it may become. The active lifetime stability of the methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate is reliably improved.

前記メタロシリケートにモリブデンと銀を担持した後の焼成時の焼成温度は550〜800℃であるとよい。   The firing temperature during firing after supporting molybdenum and silver on the metallosilicate is preferably 550 to 800 ° C.

前記芳香族化合物の製造方法において、前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であるとよい。確実にメタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が向上する。炭酸ガスが過不足(0.5%未満)であると析出するコークの酸化作用が低くなり活性寿命安定性が低下し、逆に過剰(6%以上)であるとメタンガスの直接酸化反応により水素及び一酸化炭素が過剰に生成し、反応に必要なメタンガス濃度が低下するので、ベンゼンの生成量が低下する。そこで、前記発明に係る芳香族化合物の製造方法においては、反応ガス全体に対して炭酸ガスの添加量を0.5〜6%の範囲とすることでメタン転換率、ベンゼン生成速度、ナフタレン生成速度、BTX生成速度を効率よく安定させることができる。   In the method for producing an aromatic compound, the amount of carbon dioxide added is preferably in the range of 0.5 to 6% with respect to the entire reaction gas. The active life stability of the methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate is reliably improved. If the carbon dioxide gas is excessive or insufficient (less than 0.5%), the oxidizing action of the deposited coke is lowered and the active life stability is lowered. Conversely, if it is excessive (6% or more), hydrogen is oxidized by the direct oxidation reaction of methane gas. And carbon monoxide is produced excessively, and the methane gas concentration required for the reaction is lowered, so that the amount of benzene produced is lowered. Therefore, in the method for producing an aromatic compound according to the invention, the methane conversion rate, the benzene production rate, the naphthalene production rate can be achieved by adjusting the amount of carbon dioxide added to the reaction gas in the range of 0.5 to 6%. , BTX generation rate can be stabilized efficiently.

以上の発明によればメタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。したがって、ベンゼン、トルエン等の有用な芳香族化合物の生成量が増大する。   According to the above invention, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved. Therefore, the production amount of useful aromatic compounds such as benzene and toluene increases.

発明に係る低級炭化水素芳香族化触媒はモリブデン及びその化合物から選ばれた少なくとも一種以上を触媒材料として含有する。芳香族化合物を製造する際には前記低級炭化水素芳香族化触媒は低級炭化水素の他に二酸化炭素と反応させる。   The lower hydrocarbon aromatization catalyst according to the invention contains at least one selected from molybdenum and a compound thereof as a catalyst material. In producing the aromatic compound, the lower hydrocarbon aromatization catalyst is reacted with carbon dioxide in addition to the lower hydrocarbon.

この低級炭化水素芳香族化触媒はメタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銀を担持してなる。   This lower hydrocarbon aromatization catalyst is composed of a metallosilicate zeolite having a molecular diameter larger than the pore diameter of the zeolite and an amino group and a linear hydrocarbon that selectively reacts with the Bronsted acid point of the zeolite. After treatment with a silane compound having a group, molybdenum and silver are supported.

前記金属成分を担持する担体は実質的に4.5〜6.5オングストローム径の細孔を有する多孔質メタロシリケートを含んでいる。前記モリブデン成分及び銀成分は硝酸銀または酢酸銀とモリブデン酸アンモニウムとで調整した含浸水溶液にシラン処理されたメタロシリケートを添加してモリブデン成分と銀成分とをメタロシリケートに含浸させた後に乾燥及び焼成に供すれば前記メタロシリケートに担持される。前記シラン処理に供されるシラン化合物としては例えばAPTES(3−Aminoproxyl−triethoxysilane)が挙げられる。APTESは前記焼成後のシラン化合物の添加量が触媒全体量に対して例えば2.5重量%未満、より具体的な例として0.5重量%となるように前記シラン処理に供される。   The carrier carrying the metal component substantially includes a porous metallosilicate having pores with a diameter of 4.5 to 6.5 angstroms. The molybdenum component and the silver component are dried and fired after adding a metallosilicate treated with silane to an impregnation aqueous solution prepared with silver nitrate or silver acetate and ammonium molybdate to impregnate the metallosilicate with the molybdenum component and the silver component. If provided, it is supported on the metallosilicate. Examples of the silane compound subjected to the silane treatment include APTES (3-Aminopropyl-triethoxysilane). APTES is subjected to the silane treatment so that the amount of the silane compound added after the calcination is less than 2.5% by weight, for example, 0.5% by weight relative to the total amount of the catalyst.

前記低級炭化水素芳香族化触媒のようにシラン化合物でシラン処理したメタロシリケートにモリブデン成分と銀成分とを担持することにより触媒の安定性が得られる。特に、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。   The stability of the catalyst can be obtained by supporting a molybdenum component and a silver component on a metallosilicate that is silane-treated with a silane compound like the lower hydrocarbon aromatization catalyst. In particular, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved.

芳香族化合物の製造方法を製造するにあたり、前記低級炭化水素芳香族化触媒に低級炭化水素と炭酸ガスとを含む反応ガスを反応させる。前記炭酸ガスの添加量は例えば反応ガス全体に対して0.5〜6%の範囲に設定される。   In producing the method for producing an aromatic compound, the lower hydrocarbon aromatization catalyst is reacted with a reaction gas containing a lower hydrocarbon and carbon dioxide. The amount of carbon dioxide added is set, for example, in the range of 0.5 to 6% with respect to the entire reaction gas.

以下の実施例に基づき本発明の低級炭化水素芳香族化触媒について説明する。   The lower hydrocarbon aromatization catalyst of the present invention will be described based on the following examples.

1.低級炭化水素芳香族化触媒(以下、触媒と略称する)の製造
(比較例1)
比較例1の触媒はメタロシリケートとしてアンモニウム型ZSM−5(SiO2/Al23=25〜70)が採用され、これにモリブデンと銀が担持されたものである。
1. Production of lower hydrocarbon aromatization catalyst (hereinafter abbreviated as catalyst) (Comparative Example 1)
The catalyst of Comparative Example 1 employs ammonium-type ZSM-5 (SiO 2 / Al 2 O 3 = 25 to 70) as a metallosilicate, and supports molybdenum and silver.

(1)配合
無機成分の配合:ZSM−5(82.5重量%)、粘土(12.5重量%)、ガラス繊維(5重量%)
全体配合:前記無機成分(76.5重量%)、有機バインダー(17.3重量%)、水分(24.3重量%)
(2)成型
前記配合比率で前記無機成分と有機バインダーと水分とを配合し混練手段(ニーダ)によって混合、混練した。次に、この混合体を真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。このときの成型時の押し出し圧力は2〜8MPaに設定した。
(1) Blending Blending of inorganic components: ZSM-5 (82.5 wt%), clay (12.5 wt%), glass fiber (5 wt%)
Total formulation: inorganic component (76.5 wt%), organic binder (17.3 wt%), moisture (24.3 wt%)
(2) Molding The inorganic component, organic binder, and moisture were blended at the blending ratio, and mixed and kneaded by a kneading means (kneader). Next, this mixture was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine. The extrusion pressure at the time of molding at this time was set to 2 to 8 MPa.

通常炭化水素を改質するために使用する触媒担体は数μmから数百μmの粒径の粒子を用いて流動床触媒として使用している。この場合の触媒担体の製造方法は触媒の担体材料と有機バインダー、無機バインダー(通常は粘土を使用)と水を混合しスラリー状としてスプレードライヤーで造粒成型(成型圧力はない)した後に焼成する。この場合、成型圧力がないため、焼成速度を確保するために焼成助材として加える粘土の添加量が40〜60重量%程度であった。ここでは触媒の成型を真空押出成型機を用いて高圧成型することにより焼成助材として加える粘土等の添加材の添加量を15〜25重量%に低減することができる。そのため触媒活性も向上させることができる。   Usually, the catalyst support used for reforming hydrocarbons is used as a fluidized bed catalyst using particles having a particle size of several μm to several hundred μm. In this case, the catalyst carrier is produced by mixing a catalyst carrier material, an organic binder, an inorganic binder (usually using clay) and water, forming a slurry and granulating it with a spray dryer (no molding pressure), followed by firing. . In this case, since there was no molding pressure, the amount of clay added as a firing aid to ensure the firing rate was about 40 to 60% by weight. Here, the amount of the additive such as clay added as a firing aid can be reduced to 15 to 25% by weight by molding the catalyst at a high pressure using a vacuum extrusion molding machine. Therefore, the catalytic activity can also be improved.

(3)モリブデンと銀の含浸
酢酸銀とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌させた状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加してモリブデン成分と銀成分とを前記成型体に含浸させた後、以下の乾燥及び焼成の工程に供した。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.3:1.0となるように設定した。
(3) Impregnation of molybdenum and silver An impregnated aqueous solution prepared with silver acetate and ammonium molybdate is stirred, and a molded product containing ZSM-5 which has undergone the molding step is added to the stirred impregnated aqueous solution to form molybdenum. After impregnating the molded body with a component and a silver component, they were subjected to the following drying and firing steps. In preparation of the aqueous impregnation solution, the supported amount of silver was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of silver was silver: molybdenum = 0.3: It was set to 1.0.

(4)乾燥、焼成
乾燥工程では成型工程時に添加した水分を除去するために70℃で約12時間行なった。焼成工程では空気中で550℃、5時間焼成した。焼成工程での焼成温度は550〜800℃の範囲とした。550℃以下では担体の強度低下、800℃以上では特性(活性)の低下が起こるためである。焼成工程における昇温速度及び降温速度は90〜100℃/時に設定した。このとき、成型時に添加した有機バインダーが瞬時に燃焼しないように250〜500℃の温度範囲の中に2〜6時間程度の温度キープを2回実施してバインダーを除去した。昇温速度及び降温速度が前記速度以上であってバインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼して焼成体の強度が低下するためである。
(4) Drying and calcination The drying process was performed at 70 ° C. for about 12 hours in order to remove moisture added during the molding process. In the firing step, firing was performed in air at 550 ° C. for 5 hours. The firing temperature in the firing step was in the range of 550 to 800 ° C. This is because the strength of the carrier is lowered at 550 ° C. or lower, and the property (activity) is lowered at 800 ° C. or higher. The temperature increase rate and temperature decrease rate in the firing step were set to 90 to 100 ° C./hour. At this time, in order to prevent the organic binder added at the time of molding from burning instantaneously, the binder was removed by performing temperature keeping for about 2 to 6 hours twice in a temperature range of 250 to 500 ° C. This is because when the temperature increase rate and the temperature decrease rate are equal to or higher than the above rate and the keeping time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body decreases.

(5)炭化処理
前記焼成体をCH4とH2の混合ガス(メタン/水素=1/4の混合モル比)を流通下で700℃まで2時間で昇温させ、この状態を3時間維持させた後にこの雰囲気をCH4の反応ガスに切り替え、780℃まで昇温した。
(5) Carbonization treatment The fired body is heated to 700 ° C. in 2 hours under a flow of a mixed gas of CH 4 and H 2 (mixed molar ratio of methane / hydrogen = 1/4), and this state is maintained for 3 hours. Then, the atmosphere was switched to a reaction gas of CH 4 and the temperature was raised to 780 ° C.

(実施例1)
実施例1の触媒はZSM−5を含む成型体をシラン化合物でシラン処理した後に銀:モリブデン=0.3:1.0のモル比で銀とモリブデンを担持したこと以外は比較例1の触媒の配合及び製造工程と同じ方法で製造した。
Example 1
The catalyst of Example 1 was the same as that of Comparative Example 1 except that the molded body containing ZSM-5 was silane-treated with a silane compound and then silver and molybdenum were supported at a molar ratio of silver: molybdenum = 0.3: 1.0. It was manufactured by the same method as the blending and manufacturing process.

シラン処理工程ではシラン化合物としてAPTESを添加量が焼成後の触媒全体量に対して0.5重量%となるように溶解させたエタノールに比較例1に係る成型工程を経たZSM−5を含む成型体を所定時間含浸させて、これを乾燥させた後に550℃で6時間焼成して前記シラン化合物でシラン処理した。   In the silane treatment step, a molding containing ZSM-5 that has undergone the molding step according to Comparative Example 1 in ethanol in which APTES as the silane compound is dissolved in an amount of 0.5% by weight based on the total amount of the catalyst after calcination. The body was impregnated for a predetermined time, dried, and then calcined at 550 ° C. for 6 hours and treated with the silane compound.

含浸工程では酢酸銀とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記シラン処理工程を経た成型体を添加して、モリブデン成分と銀成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銀とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with silver acetate and ammonium molybdate is stirred, and the molded product that has undergone the silane treatment step is added to the stirred impregnated aqueous solution, so that the molybdenum component and the silver component are molded. The body was impregnated. Then, after drying this, it baked in the air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and silver. In preparation of the aqueous impregnation solution, the supported amount of silver was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of silver was silver: molybdenum = 0.3: It was set to 1.0.

2.比較例及び実施例の触媒の評価
比較例及び実施例の触媒の評価法について述べる。
2. Evaluation of Catalysts of Comparative Examples and Examples Evaluation methods of the catalysts of Comparative Examples and Examples will be described.

図5に示した固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、表1に示した反応条件に基づき固定床流通式反応装置1に対して反応ガスとして炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)を供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間24時間、反応圧力0.3MPaの条件で、触媒と反応ガスとを反応させた。この際、生成物の分析を行い、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度を経時的に調べた。前記生成物の分析はTCD−GC、FID−GCを用いて行った。 The Inconel 800H gas contact part calorizing treatment reaction tube (inner diameter 18 mm) of the fixed bed flow reactor 1 shown in FIG. 5 was filled with 14 g of the catalyst to be evaluated (zeolite ratio 82.50%). And based on the reaction conditions shown in Table 1, carbon dioxide mixed methane gas as a reaction gas for the fixed bed flow type reactor 1 (molar ratio of methane and carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) To react the catalyst with the reaction gas under the conditions of reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction temperature 780 ° C., reaction time 24 hours, reaction pressure 0.3 MPa. I let you. At this time, the product was analyzed, and the methane conversion rate, benzene production rate, naphthalene production rate, and BTX production rate were examined over time. The product was analyzed using TCD-GC and FID-GC.

メタン転換率、ベンゼン生成速度,ナフタレン生成速度及びBTX生成速度は次の通り定義される。   Methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate are defined as follows.

「メタン転換率(%)」=〔(「原料メタン流速」−「未反応のメタン流速」)/「原料メタン流速」〕×100
「ベンゼン生成速度」=「触媒1gあたり、1秒間に生成したベンゼンのnmol数」。
“Methane conversion rate (%)” = [(“Raw material methane flow rate” − “Unreacted methane flow rate”) / “Raw material methane flow rate”] × 100
“Benzene production rate” = “nmol number of benzene produced per second per 1 g of catalyst”.

「ナフタレン生成速度」=「触媒1gあたり、1秒間に生成したナフタレンのnmol数」。   “Naphthalene production rate” = “nmol number of naphthalene produced per second per 1 g of catalyst”.

「BTX生成速度」=「触媒1gあたり、1秒間に生成したベンゼン、トルエン及びキシレンの合計nmol数」。   “BTX production rate” = “total number of nmols of benzene, toluene and xylene produced per second per gram of catalyst”.

Figure 0005286815
Figure 0005286815

図1は比較例1、実施例1の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のメタン転換率の経時的変化を示す。実施例1の触媒を反応させた場合と比較例1の触媒を反応させた場合のメタン転換率の経時的変化の比較から明らかなように、実施例1のようにシラン処理を行うと、シラン処理を行わない比較例1の触媒と比べてメタン転換率の活性寿命安定性が向上することがわかる。   FIG. 1 shows the change over time of the methane conversion rate when each catalyst of Comparative Example 1 and Example 1 is reacted with the carbon dioxide mixed methane gas. As is clear from the comparison of the change over time in the methane conversion rate when the catalyst of Example 1 is reacted and when the catalyst of Comparative Example 1 is reacted, when silane treatment is performed as in Example 1, It can be seen that the active life stability of the methane conversion rate is improved as compared with the catalyst of Comparative Example 1 where no treatment is performed.

図2は比較例1、実施例1の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のベンゼン生成速度の経時的変化を示す。この特性図から明らかなように、実施例1のようにシラン処理を行うと、シラン処理を行わない比較例1の触媒と比べて、ベンゼン生成速度の活性寿命安定性が向上することがわかる。   FIG. 2 shows changes over time in the benzene production rate when the catalysts of Comparative Examples 1 and 1 were reacted with the carbon dioxide mixed methane gas. As is clear from this characteristic diagram, it can be seen that when the silane treatment is performed as in Example 1, the active lifetime stability of the benzene production rate is improved as compared with the catalyst of Comparative Example 1 in which the silane treatment is not performed.

図3は比較例1、実施例1の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のナフタレン生成速度の経時的変化を示す。この特性図から明らかなように、実施例1のようにシラン処理を行うと、シラン処理を行わない比較例1の触媒と比べて、ナタレン生成速度の活性寿命安定性が向上することがわかる。   FIG. 3 shows changes over time in the naphthalene production rate when each catalyst of Comparative Example 1 and Example 1 is reacted with the carbon dioxide mixed methane gas. As is clear from this characteristic diagram, it can be seen that when the silane treatment is performed as in Example 1, the active lifetime stability of the natalene production rate is improved as compared with the catalyst of Comparative Example 1 in which the silane treatment is not performed.

図4は比較例1、実施例1の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のBTX生成速度の経時的変化を示す。この特性図から明らかなように、実施例1のようにシラン処理を行うと、シラン処理を行わない比較例1の触媒と比べて、BTX生成速度の活性寿命安定性が向上することがわかる。   FIG. 4 shows changes with time in the BTX generation rate when the catalysts of Comparative Example 1 and Example 1 were reacted with the carbon dioxide mixed methane gas. As is apparent from this characteristic diagram, it can be seen that when the silane treatment is performed as in Example 1, the active life stability of the BTX generation rate is improved as compared with the catalyst of Comparative Example 1 in which the silane treatment is not performed.

以上のようにメタロシリケートをシラン処理した後にモリブデンと銀を担持してなる発明に係る触媒によればメタン転換率の活性寿命安定性を向上させ、ベンゼン生成速度、ナフタレン生成速度やベンゼン、トルエン等の有用成分であるBTX生成速度を安定して得ることができる。特に、シラン化合物を0.5重量%添加した後に、銀のモリブデンに対するモル比が0.3となるように銀とモリブデンを同時に担持した場合、メタン転換率の活性安定性が向上し、ベンゼン、トルエン等の有効成分であるBTX生成速度を安定して得ることができる。前記前記モル比は0.3に限定されるものではなく、0.3以下でも有効であり、例えば前記モル比が0.01〜0.8であっても前述の実施例と同様な効果を奏することが実験的に確認されている。   As described above, the catalyst according to the invention in which molybdenum and silver are supported after silane treatment of the metallosilicate improves the active life stability of the methane conversion rate, benzene formation rate, naphthalene formation rate, benzene, toluene, etc. BTX production rate which is a useful component of can be stably obtained. In particular, when silver and molybdenum are simultaneously supported so that the molar ratio of silver to molybdenum becomes 0.3 after adding 0.5% by weight of a silane compound, the activity stability of methane conversion is improved, benzene, A BTX production rate that is an active ingredient such as toluene can be stably obtained. The molar ratio is not limited to 0.3, and is effective even if it is 0.3 or less. For example, even if the molar ratio is 0.01 to 0.8, the same effect as in the above-described embodiment can be obtained. Playing has been confirmed experimentally.

また、上述の実施例は金属成分が担持されるメタロシリケートにZSM−5が採用されているが、MCM−22が適用されても前述の実施例と同様な効果を奏する。さらに、前記実施例ではモリブデンの担持量が焼成後の触媒全体量に対して6重量%となっているが、その担持量が触媒全体量に対して2〜12重量%の範囲で前述の実施例と同様な効果を奏する。また、前記実施例ではシラン化合物は添加量が焼成後の触媒全体量に対して0.5重量%となるように添加されているが、その添加量が2.5重量%未満であれば前述の実施例と同様な効果を奏する。さらに、前記実施例はその評価法において芳香族化合物を生成するにあたりメタンと炭酸ガスのモル比がメタン:炭酸ガス(二酸化炭素)=100:3である反応ガスと反応させているが、前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であっても前述の実施例と同様な効果を奏する。   In the above-described embodiment, ZSM-5 is adopted for the metallosilicate on which the metal component is supported. However, even if MCM-22 is applied, the same effect as the above-described embodiment is obtained. Further, in the above examples, the supported amount of molybdenum is 6% by weight with respect to the total amount of the catalyst after calcination. The effect is similar to the example. Moreover, in the said Example, although the silane compound is added so that the addition amount may be 0.5 weight% with respect to the catalyst whole quantity after baking, if the addition amount is less than 2.5 weight%, it is the above-mentioned. The same effects as those of the embodiment are obtained. Further, in the above example, the aromatic compound is produced in the evaluation method by reacting with a reaction gas in which the molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3. Even if the amount of the gas added is in the range of 0.5 to 6% with respect to the entire reaction gas, the same effect as in the above-described embodiment is obtained.

比較例1、実施例1の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のメタン転換率の経時的変化。Time course of methane conversion rate when each catalyst of Comparative Example 1 and Example 1 was reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3). change. 比較例1、実施例1の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のベンゼン生成速度の経時的変化。Time course of benzene formation rate when each catalyst of Comparative Example 1 and Example 1 was reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3). change. 比較例1、実施例1の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のナフタレン生成速度の経時的変化。Time course of naphthalene production rate when each catalyst of Comparative Example 1 and Example 1 was reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3). change. 比較例1、実施例1の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のBTX生成速度の経時的変化。BTX production rate over time when each catalyst of Comparative Example 1 and Example 1 was reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3). change. 低級炭化水素の芳香族化反応に用いた固定床流通式反応装置の概略図。The schematic of the fixed bed flow-type reaction apparatus used for the aromatization reaction of a lower hydrocarbon.

Claims (9)

低級炭化水素及び炭酸ガスと反応して芳香族化合物を生成させる触媒であって、
メタロシリケートからなるゼオライトを前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銀を担持してなること
を特徴とする低級炭化水素芳香族化触媒。
A catalyst that reacts with lower hydrocarbons and carbon dioxide to produce an aromatic compound,
Molybdenum after treating a zeolite composed of a metallosilicate with a silane compound having an amino group and a linear hydrocarbon group that has a molecular diameter larger than the pore diameter of the zeolite and selectively reacts with the Bronsted acid point of the zeolite. And a lower hydrocarbon aromatization catalyst characterized by supporting silver.
前記モリブデンはその担持量が焼成後の触媒全体量に対して2〜12重量%となると共に前記銀はモリブデンとのモル比Ag:Mo=X:1の比率が0.01〜0.8となるように担持することを特徴とする請求項1に記載の低級炭化水素芳香族化触媒。   The molybdenum has a supported amount of 2 to 12% by weight based on the total amount of the catalyst after calcination, and the silver has a molar ratio Ag: Mo = X: 1 with the molybdenum of 0.01 to 0.8. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the lower hydrocarbon aromatization catalyst is supported as follows. 前記メタロシリケートにモリブデンと銀を担持した後の焼成時の焼成温度は550〜800℃であることを特徴とする請求項1または2に記載の低級炭化水素芳香族化触媒。   The lower hydrocarbon aromatization catalyst according to claim 1 or 2, wherein the firing temperature after firing molybdenum and silver on the metallosilicate is 550 to 800 ° C. 前記メタロシリケートはZSM−5、MCM−22のいずれかであることを特徴とする請求項1から3のいずれか1項に記載の低級炭化水素芳香族化触媒。   4. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the metallosilicate is ZSM-5 or MCM-22. 5. 前記シラン化合物はAPTES(3−Aminoproxyl−triethoxysilane)であることを特徴とする請求項1から4のいずれか1項に記載の低級炭化水素芳香族化触媒。   5. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the silane compound is APTES (3-Aminopropyl-triethoxysilane). 前記APTESはその添加量が焼成後の触媒全体量に対して2.5重量%未満となるようにシラン処理に供することを特徴とする請求項5に記載の低級炭化水素芳香族化触媒。   6. The lower hydrocarbon aromatization catalyst according to claim 5, wherein the APTES is subjected to a silane treatment such that the addition amount thereof is less than 2.5 wt% with respect to the total amount of the catalyst after calcination. 前記APTESはその添加量が焼成後の触媒全体量に対して0.5重量%となるようにシラン処理に供することを特徴とする請求項6に記載の低級炭化水素芳香族化触媒。   The lower hydrocarbon aromatization catalyst according to claim 6, wherein the APTES is subjected to silane treatment so that the amount of the APTES added is 0.5 wt% with respect to the total amount of the catalyst after calcination. メタロシリケートからなるゼオライトを前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銀を担持してなる触媒に低級炭化水素と炭酸ガスとを含む反応ガスを反応させて芳香族化合物を生成すること
を特徴とする芳香族化合物の製造方法。
Molybdenum after treating a zeolite composed of a metallosilicate with a silane compound having an amino group and a linear hydrocarbon group that has a molecular diameter larger than the pore diameter of the zeolite and selectively reacts with the Bronsted acid point of the zeolite. A method for producing an aromatic compound, comprising reacting a reaction gas containing lower hydrocarbon and carbon dioxide gas with a catalyst supporting silver and silver to produce an aromatic compound.
前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であることを特徴とする請求項8に記載の芳香族化合物の製造方法。   The method for producing an aromatic compound according to claim 8, wherein the amount of carbon dioxide added is in the range of 0.5 to 6% with respect to the total reaction gas.
JP2008038304A 2007-06-29 2008-02-20 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound Expired - Fee Related JP5286815B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008038304A JP5286815B2 (en) 2008-02-20 2008-02-20 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
CN2008800174010A CN101678340B (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
EP08739235A EP2140938A4 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
PCT/JP2008/056117 WO2009004843A1 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
US12/595,924 US8558045B2 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038304A JP5286815B2 (en) 2008-02-20 2008-02-20 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Publications (2)

Publication Number Publication Date
JP2009195784A JP2009195784A (en) 2009-09-03
JP5286815B2 true JP5286815B2 (en) 2013-09-11

Family

ID=41139928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038304A Expired - Fee Related JP5286815B2 (en) 2007-06-29 2008-02-20 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Country Status (1)

Country Link
JP (1) JP5286815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927718B2 (en) 2009-08-26 2015-01-06 Takeda Pharmaceutical Company Limited Fused heterocyclic ring derivative and use thereof
US11084764B2 (en) * 2016-12-28 2021-08-10 Sabic Global Technologies B.V. Process for catalyst activation for lower alkane dehydroaromatization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745885B2 (en) * 1997-08-21 2006-02-15 市川 勝 Method for producing aromatic compound using methane as raw material
JP4972294B2 (en) * 2005-07-08 2012-07-11 勝 市川 Lower hydrocarbon aromatization catalyst and process for producing the same

Also Published As

Publication number Publication date
JP2009195784A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US8558045B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
US8278237B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP4945242B2 (en) Process for producing aromatic hydrocarbons and hydrogen
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
JP5402354B2 (en) Aromatic compound production method
JP2009028710A (en) Catalyst for aromatization of lower hydrocarbon
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP2012012340A (en) Method for producing aromatic hydrocarbon
KR20140132893A (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
JP5568833B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP5315698B2 (en) Method for producing aromatic compound
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP4399790B2 (en) Propylene production method
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP5577587B2 (en) Process for producing lower hydrocarbon aromatization catalyst and lower hydrocarbon aromatization catalyst
JP5018161B2 (en) Method for producing lower hydrocarbon reforming catalyst
JP2005254121A (en) Manufacturing method of lower hydrocarbon direct-reforming catalyst
JP2008093663A (en) Manufacturing method of aromatization catalyst of lower hydrocarbon
JP2010137173A (en) Lower hydrocarbon aromatizing catalyst and method of manufacturing the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

LAPS Cancellation because of no payment of annual fees