JP4677194B2 - Method for converting lower hydrocarbons using catalysts - Google Patents

Method for converting lower hydrocarbons using catalysts Download PDF

Info

Publication number
JP4677194B2
JP4677194B2 JP2004068439A JP2004068439A JP4677194B2 JP 4677194 B2 JP4677194 B2 JP 4677194B2 JP 2004068439 A JP2004068439 A JP 2004068439A JP 2004068439 A JP2004068439 A JP 2004068439A JP 4677194 B2 JP4677194 B2 JP 4677194B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
gas
molybdenum
lower hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068439A
Other languages
Japanese (ja)
Other versions
JP2005255605A (en
Inventor
勝 市川
綾一 小島
政道 倉元
康之 溝渕
裕治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2004068439A priority Critical patent/JP4677194B2/en
Publication of JP2005255605A publication Critical patent/JP2005255605A/en
Application granted granted Critical
Publication of JP4677194B2 publication Critical patent/JP4677194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はメタンを主成分とする天然ガスやバイオガス、メタンハイドレートの高度利用に関するものである。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane.

天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギーと考えられ、その利用技術に関心が高まっている。メタン資源はそのクリーン性を活かして、次世代の新しい有機資源、燃料電池用の水素資源として着目されているが、本発明はメタンからプラスチック類などの化学製品の原料であるベンゼンおよびナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造しうる触媒化学変換技術に関するものである。   Natural gas, biogas, and methane hydrate are considered to be the most effective energy as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Taking advantage of its cleanliness, methane resources are attracting attention as new next-generation organic resources and hydrogen resources for fuel cells, but the present invention uses benzene and naphthalene, which are raw materials for chemical products such as plastics from methane. The present invention relates to a catalytic chemical conversion technology capable of efficiently producing an aromatic compound as a main component and high-purity hydrogen gas.

低級炭化水素とりわけメタンからベンゼン等の芳香族化合物と水素と併産する方法としては、触媒の存在下、酸素または酸化剤の非存在下でメタンを反応させる方法が知られている。前記触媒としては例えば非特許文献1(JOURNAL OF CATALYSIS(1997))によるとZSM−5にモリブデンを担持したものが有効とされている。しかしながら、これらの触媒を使用した場合でも、炭素析出が多いことやメタンの転化率が低いという問題を有している。   As a method of co-producing an aromatic compound such as benzene and hydrogen from lower hydrocarbons, particularly methane, a method of reacting methane in the presence of a catalyst and in the absence of oxygen or an oxidizing agent is known. For example, according to Non-Patent Document 1 (JOURNAL OF CATALYSIS (1997)), a catalyst in which molybdenum is supported on ZSM-5 is effective as the catalyst. However, even when these catalysts are used, there are problems that carbon deposition is large and methane conversion is low.

そこで、モリブデン等を多孔質のメタロシリケートに担持してなる触媒が提案されている(例えば特許文献1(特開平10−272366号公報)及び特許文献2(特開平11−60514号公報))。これらの公報によると、担体として7オーグストロングの細孔経を有する多孔質のメタロシリケートを採用し、これに触媒材料を担持している。この触媒を用いた実験によると、低級炭化水素が効率良く芳香族化され、これに付随して高純度の水素が得られることが確認されている。特に特許文献2においては、モリブデンのみばかりではなく第二成分としてモリブデン以外の金属類を添加することで前記触媒の特性を向上させたことが記載されている。
JOURNAL OF CATALYSIS,1997年,pp.165,pp.150−161 特開平10−272366号公報(段落番号(0008)〜(0013)及び(0019)) 特開平11−60514号公報(段落番号(0007)〜(0011)及び(0020))
Therefore, a catalyst in which molybdenum or the like is supported on a porous metallosilicate has been proposed (for example, Patent Document 1 (Japanese Patent Laid-Open No. 10-272366) and Patent Document 2 (Japanese Patent Laid-Open No. 11-60514)). According to these publications, a porous metallosilicate having a 7 Å strong pore diameter is adopted as a carrier, and a catalyst material is supported on the porous metallosilicate. According to experiments using this catalyst, it has been confirmed that lower hydrocarbons are efficiently aromatized, and accompanying this, high-purity hydrogen can be obtained. In particular, Patent Document 2 describes that the characteristics of the catalyst are improved by adding not only molybdenum but also metals other than molybdenum as the second component.
JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161 JP-A-10-272366 (paragraph numbers (0008) to (0013) and (0019)) JP 11-60514 A (paragraph numbers (0007) to (0011) and (0020))

しかしながら、今日においても、芳香族化合物及び水素の製造効率をさらに高めるために、なお一層優れた触媒の開発が望まれている。特に、前記先行技術においては水素と芳香族化合物の生成速度が安定しないのが現状である。   However, even today, in order to further increase the production efficiency of aromatic compounds and hydrogen, it is desired to develop even better catalysts. In particular, in the prior art, the production rate of hydrogen and aromatic compounds is not stable at present.

本発明は、かかる事情に鑑みなされたもので、その目的は、低級炭化水素を改質及び芳香族化する際に水素と芳香族化合物の生成速度を安定さらには向上させることができる触媒を用いた低級炭化水素の転化方法の提供にある。   The present invention has been made in view of such circumstances, and an object of the present invention is to use a catalyst that can stably and further improve the production rate of hydrogen and aromatic compounds when reforming and aromatizing lower hydrocarbons. The present invention provides a method for converting lower hydrocarbons.

本発明の低級炭化水素の転化方法は、メタン、エタン、エチレン、プロパン、プロプレン、n‐ブタン、イソブタン、n−ブテン及びイソブテンのいずれかの低級炭化水素を含んだガスを、メタロシリケートにモリブデンとルテニウムを担持した低級炭化水素直接改質触媒、またはメタロシリケートにモリブデンとロジウムを担持した低級炭化水素直接改質触媒と反応させて前記低級炭化水素を芳香族化合物と水素に転化する低級炭化水素の転化方法であって、前記ガスを前記低級炭化水素直接改質触媒と反応させる際、前記ガス中に水素を添加している。水素は前記供給ガスにおいて一定濃度例えば6%となるように注入するとよい。 The lower hydrocarbon conversion method of the present invention comprises a gas containing a lower hydrocarbon of any one of methane, ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene and isobutene, and metallosilicate with molybdenum. lower hydrocarbon conversion lower hydrocarbon direct reforming catalyst supporting ruthenium, or the lower hydrocarbon is reacted with lower hydrocarbons directly reforming catalyst supporting molybdenum and rhodium metallosilicate the aromatic compound and hydrogen In the conversion method, when the gas is reacted with the lower hydrocarbon direct reforming catalyst, hydrogen is added to the gas. Hydrogen is preferably injected so as to have a constant concentration in the supply gas, for example, 6%.

本発明の低級炭化水素の転化方法によれば、低級炭化水素含有ガスを低級炭化水素直接改質触媒と接触反応させるにあたり前記ガスに水素を添加すると、水素を添加しない従来の転化方法と比較して、安定した芳香族化合物と水素の生成が可能となることが見出されている。   According to the lower hydrocarbon conversion method of the present invention, when hydrogen is added to the gas in the catalytic reaction of the lower hydrocarbon-containing gas with the lower hydrocarbon direct reforming catalyst, compared with the conventional conversion method in which no hydrogen is added. Thus, it has been found that stable aromatic compounds and hydrogen can be produced.

前記低級炭化水素直接改質触媒は、モリブデンに加えてルテニウムまたはロジウムを担持したメタロシリケートを、前記低級炭化水素と水素とを含んだガス、水素ガスまたはアンモニアガスのいずれか供給のもと炭化処理することで生成される。前記モリブデン、ルテニウム、ロジウム等の金属元素を担持する方法としては含浸方法、イオン交換方法、または昇華性の化合物を用いて担体に蒸着担持する方法等が挙げられる。また、前記メタロシリケートを炭化処理に供するにあたり、これらの金属元素若しくは他の金属元素例えば鉄族元素成分を適宜組み合わせて担持させてもよい。 The lower hydrocarbon direct reforming catalyst is obtained by carbonizing a metallosilicate supporting ruthenium or rhodium in addition to molybdenum by supplying either a gas containing the lower hydrocarbon and hydrogen, hydrogen gas, or ammonia gas. To be generated . Examples of the method for supporting the metal element such as molybdenum, ruthenium, and rhodium include an impregnation method, an ion exchange method, and a method for depositing and supporting on a carrier using a sublimable compound. In addition, when the metallosilicate is subjected to carbonization, these metal elements or other metal elements such as iron group element components may be supported in appropriate combination .

また、前記メタロシリケートとしては、例えばアルミノシリケートの場合、シリカおよびアルミナから成る4.5〜6.5オングストローム径の細孔を有する多孔質体であり、モレキュラーシーブ5A,フォジャサイト(NaYおよびNaX),ZSM−5,MCM−22等が例示される。さらに、リン酸を主成分とするALPO−5,VPI−5等の6〜13オングストロームのミクロ細孔からなる多孔質体、チャンネルからなるゼオライト担体、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜1000オングストローム)の筒状細孔(チャンネル)を有するFSM−16やMCM−41等のメゾ細孔多孔質担体なども例示される。また、前記アルミナシリケートの他に、シリカおよびチタニアからなるメタロシリケート等も挙げられる。   Further, as the metallosilicate, for example, in the case of aluminosilicate, it is a porous body having pores of 4.5 to 6.5 angstrom diameter made of silica and alumina, and includes molecular sieve 5A, faujasite (NaY and NaX). ), ZSM-5, MCM-22, and the like. Furthermore, a porous body composed of 6 to 13 angstrom micropores such as ALPO-5, VPI-5, etc. mainly composed of phosphoric acid, a zeolite carrier composed of channels, silica and a part of alumina as a component. Examples thereof include mesoporous porous carriers such as FSM-16 and MCM-41 having cylindrical pores (channels) having mesopores (10 to 1000 angstroms). In addition to the alumina silicate, a metallosilicate composed of silica and titania may be used.

本発明に供される低級炭化水素直接改質触媒は、粉末状または棒状の他、中空円柱状、ペレット状、ハニカム状、リング形状若しくはその他の形状の形態で使用される。尚、メタロシリケートを前記形状に加工するために、例えば粘土等の無機バインダーやガラス繊維等の無機フィラーをメタロシリケートに対して配合してもよい。   The lower hydrocarbon direct reforming catalyst to be used in the present invention is used in the form of a hollow cylinder, pellet, honeycomb, ring or other shapes in addition to powder or rod. In order to process the metallosilicate into the shape, an inorganic binder such as clay or an inorganic filler such as glass fiber may be added to the metallosilicate.

本発明の低級炭化水素の転化方法によれば、経時的な触媒劣化等による効率低下が少ないので、より一層、安定且つ効率良く芳香族化合物と水素の製造が可能となる。したがって、モリブデンを担持した改質触媒を採用した水素及び芳香族化合物の製造方法において、水素及び芳香族化合物の量産性を制御するシステムの構築化にも大いに寄与する。   According to the method for converting lower hydrocarbons of the present invention, since there is little reduction in efficiency due to deterioration of the catalyst over time, the aromatic compound and hydrogen can be produced more stably and efficiently. Therefore, in the method for producing hydrogen and aromatic compounds using the reforming catalyst supporting molybdenum, it greatly contributes to the construction of a system for controlling the mass productivity of hydrogen and aromatic compounds.

以下、本発明の低級炭化水素の転化方法する実施する形態について図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out a method for converting a lower hydrocarbon of the present invention will be described with reference to the drawings.

本実施形態に供される低級炭化水素直接改質触媒(以下、触媒と称する)は、メタロシリケートを他の無機フィラーと配合させた無機成分を有機バインダー及び水分と共に配合して成形し、これを乾燥及び焼成して焼成体を得て、この焼成体にモリブデン成分に第二の金属成分として白金族元素を適宜担持した後に、還元性ガスを混合して炭化処理することで得られる。白金族元素としてはルテニウムやロジウム等がある。   The lower hydrocarbon direct reforming catalyst (hereinafter referred to as catalyst) provided in the present embodiment is formed by blending an inorganic component obtained by blending a metallosilicate with another inorganic filler together with an organic binder and moisture, It is obtained by drying and firing to obtain a fired body, and appropriately carrying a platinum group element as a second metal component on the molybdenum component on this fired body, followed by carbonization treatment by mixing a reducing gas. Examples of platinum group elements include ruthenium and rhodium.

前記メタロシリケートとしては、例えばアルミノシリケートの場合、シリカおよびアルミナから成る4.5〜6.5オングストローム径の細孔を有する多孔質体であり、モレキュラーシーブ5A、フォジャサイト(NaYおよびNaX)、ZSM−5、MCM−22等が例示される。さらに、リン酸を主成分とするALPO−5、VPI−5等の6〜13オングストロームのミクロ細孔からなる多孔質体、チャンネルからなるゼオライト担体、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜1000オングストローム)の筒状細孔(チャンネル)を有するFSM−16やMCM−41等のメゾ細孔多孔質担体なども例示される。また、前記アルミナシリケートの他に、シリカおよびチタニアからなるメタロシリケート等も挙げられる。   As the metallosilicate, for example, in the case of aluminosilicate, it is a porous body having pores having a diameter of 4.5 to 6.5 angstrom made of silica and alumina, molecular sieve 5A, faujasite (NaY and NaX), Examples include ZSM-5 and MCM-22. Furthermore, a porous body composed of 6 to 13 angstrom micropores such as ALPO-5 and VPI-5 mainly composed of phosphoric acid, a zeolite carrier composed of a channel, silica and a part of alumina as a component. Examples thereof include mesoporous porous carriers such as FSM-16 and MCM-41 having cylindrical pores (channels) having mesopores (10 to 1000 angstroms). In addition to the alumina silicate, a metallosilicate composed of silica and titania may be used.

前記無機フィラーは粘土等の無機バインダーやガラス繊維等の補強用無機材料が挙げられ、触媒の全無機成分に対して15〜25重量%配合される。また、前記有機バインダーは水分と共に前記メタロシリケート及び無機フィラーとを混錬して成形できるものであれば既知のものでよい。   Examples of the inorganic filler include inorganic binders such as clay and reinforcing inorganic materials such as glass fibers, and are blended in an amount of 15 to 25% by weight based on the total inorganic components of the catalyst. The organic binder may be a known one as long as it can be molded by kneading the metallosilicate and the inorganic filler together with moisture.

そして、上記材料を配合してからの成形にあたっては高圧成形法を採用している。炭化水素を改質するための触媒担体は数μmから数百μmの粒径の粒子を用いて流動床触媒の形態で使用することが通常である。かかる触媒は触媒担体を有機バインダー、無機バインダー及び水と混合してスラリー状としてスプレードライヤーで造粒成形した後に焼成するのが常套の手段である。この場合、成形圧力が小さいため、焼成強度を確保するために焼成助材として加える粘土の添加量は40〜60重量%程度必要になる。本発明の触媒の製造過程における成形工程では高圧成形法を採用することで、粘土等の無機バインダーの添加量を触媒において15〜25重量%までに低減、すなわち触媒におけるメタロシリケート成分を75〜85重量%までに高めることができ、スプレードライヤーで造粒成形して得た触媒よりも、実質的な触媒活性が高くなる。高圧成形法の具体的な手段として例えば真空押し出し成形機等がある。また、このときの押し出し圧力は70〜100kg/cm2の範囲で設定するとよい。尚、成形体の形状は、触媒の使用形態に応じて、粉末状または棒状の他、中空円柱状、ペレット状、ハニカム状、リング形状若しくはその他の形状に形成される。 A high-pressure molding method is employed for molding after blending the above materials. The catalyst support for reforming hydrocarbons is usually used in the form of a fluidized bed catalyst using particles having a particle size of several μm to several hundred μm. Conventionally, such a catalyst is obtained by mixing a catalyst carrier with an organic binder, an inorganic binder, and water to form a slurry and granulating it with a spray dryer, followed by firing. In this case, since the molding pressure is small, it is necessary to add about 40 to 60% by weight of clay added as a firing aid to ensure firing strength. In the molding process in the production process of the catalyst of the present invention, by using a high pressure molding method, the amount of inorganic binder such as clay is reduced to 15 to 25% by weight in the catalyst, that is, the metallosilicate component in the catalyst is 75 to 85%. The catalyst activity can be increased up to% by weight, and the substantial catalytic activity is higher than that of the catalyst obtained by granulation with a spray dryer. Specific examples of the high pressure molding method include a vacuum extrusion molding machine. Moreover, it is good to set the extrusion pressure at this time in the range of 70-100 kg / cm < 2 >. In addition, the shape of the molded body is formed into a hollow cylindrical shape, a pellet shape, a honeycomb shape, a ring shape, or other shapes in addition to a powder shape or a rod shape according to the usage form of the catalyst.

得られた成形体は成形時に添加した水分を除去できる程度に適温一定時間乾燥させればよい。また、焼成は昇温及び降温速度ともに30〜50℃/時としている。このとき、250〜450℃の温度範囲の中に2〜5時間程度の温度キープを2回実施するとよい。昇温及び降温速度が前記速度以上であり、バインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼し、焼成体の強度が低下するためである。焼成温度は725〜800℃の範囲とすればよい。700℃以下では担体の強度低下、800℃以上では特性の低下が起こるためである。   What is necessary is just to dry the obtained molded object for a suitable temperature fixed time so that the water | moisture content added at the time of shaping | molding can be removed. In addition, the firing is performed at 30 to 50 ° C./hour for both temperature increase and temperature decrease rates. At this time, it is advisable to carry out temperature keeping for about 2 to 5 hours twice in a temperature range of 250 to 450 ° C. This is because when the temperature raising and lowering speed is equal to or higher than the above speed and the keep time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body is reduced. The firing temperature may be in the range of 725 to 800 ° C. This is because the strength of the carrier is lowered at 700 ° C. or lower, and the characteristics are lowered at 800 ° C. or higher.

次に、前記得られた焼成体に金属成分を担持するにあたり、発明者らはモリブデンの担持方法の検討も行なっており、これに関する発明について特願2002−260706にて出願している。この出願に係る発明ではモリブデンを含浸する場合にはモリブデン酸アンモニウム水溶液を使用しているが、前記白金族元素をモリブデンと共に担持する場合には含浸時にモリブデン酸アンモニウム水溶液にそれぞれ前記白金族元素の塩化物、硝酸塩及びアンモニウム塩等を用いるとよい。このとき、モリブデン担持量は例えば前記担体に対して6重量%とすればよい。また共に含浸させる白金族元素の金属成分はモル比で例えば前記白金族元素:モリブデン=0.2:1の比率とするとよい。前記モリブデン担持量及び前記白金族成分とモリブデンとのモル比率はこれに限定されることなく適宜調整されるものとする。このように、メタロシリケートにモリブデンのみならず、白金族金属元素を第二成分として同時に担持することにより触媒による水素と芳香族化合物の生成速度の安定性が向上する。尚、焼成体に含浸されたモリブデン及び前記金属成分は一定の温度及び時間で酸化処理することで酸化物としてこの焼成体に担持される。   Next, in carrying the metal component on the obtained fired body, the inventors have also studied a method for carrying molybdenum, and filed an application relating to this in Japanese Patent Application No. 2002-260706. In the invention according to this application, an ammonium molybdate aqueous solution is used when impregnating molybdenum, but when the platinum group element is supported together with molybdenum, the ammonium molybdate aqueous solution is chlorinated in the ammonium molybdate aqueous solution at the time of impregnation. Products, nitrates, ammonium salts and the like may be used. At this time, the molybdenum loading may be, for example, 6% by weight with respect to the carrier. Moreover, the metal component of the platinum group element to be impregnated together may be a molar ratio of, for example, the above-described platinum group element: molybdenum = 0.2: 1. The molybdenum loading and the molar ratio of the platinum group component and molybdenum are not limited to this, and are adjusted as appropriate. Thus, the stability of the production rate of hydrogen and aromatic compounds by the catalyst is improved by simultaneously supporting not only molybdenum but also the platinum group metal element as the second component on the metallosilicate. The molybdenum and the metal component impregnated in the fired body are supported on the fired body as oxides by oxidation treatment at a constant temperature and time.

前記含浸処理された焼成体の酸化処理によって得た触媒前駆体を炭化処理するにあたっては、従来の炭化処理に基づくメタンガス及びアルゴンガスの雰囲気ではなく、還元性ガスを混合して350〜750℃の温度のもと2〜24時間加熱処理している。還元性ガスとしては、メタンと水素とを含んだガス、水素ガスまたはアンモニアガス等が例示される。例示された還元ガスは適宜組み合わせて用いてもよい。さらには、前記従来の炭化処理法に供されるメタンガスとアルゴンガスとを組み合わせてもよい。   In the carbonization treatment of the catalyst precursor obtained by the oxidation treatment of the impregnated fired body, a reducing gas is mixed instead of the atmosphere of methane gas and argon gas based on the conventional carbonization treatment, and the temperature is 350 to 750 ° C. Heat treatment is performed at a temperature for 2 to 24 hours. Examples of the reducing gas include a gas containing methane and hydrogen, hydrogen gas, or ammonia gas. The illustrated reducing gases may be used in appropriate combination. Furthermore, you may combine the methane gas and argon gas which are provided to the said conventional carbonization processing method.

以上のようにして製造された触媒は前述のように加圧成形法が採用されているので有形物となっており主に固定床式の反応装置に充填される。そして、この反応装置に低級炭化水素を含んだガスを供して一定の温度、圧力、空間速度及び滞留時間のもとで前記触媒と接触反応させている。このとき、前記低級炭化水素を含んだガスには水素を添加することで、安定した生成速度での芳香族化合物と水素の製造を実現している。水素は前記供給ガスにおいて一定濃度例えば6%となるように注入される。尚、前記低級炭化水素としてはメタンの他、エタン、エチレン、プロパン、プロプレン、n‐ブタン、イソブタン、n−ブテン及びイソブテン等が例示される。   The catalyst produced as described above is tangible because the pressure molding method is adopted as described above, and is mainly packed in a fixed bed type reactor. Then, a gas containing lower hydrocarbon is supplied to the reaction apparatus to cause a catalytic reaction with the catalyst under a certain temperature, pressure, space velocity and residence time. At this time, by adding hydrogen to the gas containing the lower hydrocarbon, an aromatic compound and hydrogen can be produced at a stable production rate. Hydrogen is injected in the supply gas so as to have a constant concentration, for example, 6%. Examples of the lower hydrocarbon include methane, ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene, and isobutene.

本発明を以下の実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.

(比較例1)
比較例1では、低級炭化水素を含んだガスに水素を添加しないで、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてルテニウムを担持している。
(Comparative Example 1)
In Comparative Example 1, hydrogen is not added to a gas containing lower hydrocarbons, but this gas is reacted with a lower hydrocarbon direct reforming catalyst to convert lower hydrocarbons. The lower hydrocarbon direct reforming catalyst carries ruthenium as a platinum group element component in addition to molybdenum.

1.低級炭化水素改質触媒の製造
触媒の主成分であるメタロシリケートにはアンモニウム型ZSM−5(SiO2/Al23=25〜60)を採用し、これを他の無機成分と有機バインダーと共に混練して成形し乾燥さらに焼成し、その後、金属成分を含浸させてから酸化及び炭化処理に供して低級炭化水素直接改質触媒(以下、触媒と称する)得た。以下に比較例及び実施例に係る触媒の製造の各工程について説明する。
1. Production of lower hydrocarbon reforming catalyst Ammonium type ZSM-5 (SiO 2 / Al 2 O 3 = 25-60) is adopted for the metallosilicate which is the main component of the catalyst, together with other inorganic components and organic binders. After kneading, shaping, drying, and further firing, the metal component was impregnated and then subjected to oxidation and carbonization treatment to obtain a lower hydrocarbon direct reforming catalyst (hereinafter referred to as catalyst). Below, each process of manufacture of the catalyst which concerns on a comparative example and an Example is demonstrated.

1)触媒構成成分の配合
触媒の構成成分とその配合比率(重量%)以下に示した。
1) Compounding of catalyst component The components of the catalyst and the compounding ratio (wt%) are shown below.

無機成分:有機バインダー:水分=65.4:13.6:21.0
また、無機成分の構成成分とその配合比率(重量%)以下に示した。
Inorganic component: Organic binder: Moisture = 65.4: 13.6: 21.0
Moreover, it showed below the component of an inorganic component, and its mixture ratio (weight%).

ZSM−5:粘土:ガラス繊維=82.5:10.5:7.0
2)成形 無機成分と有機バインダーと水分とを前記比率で配合し、ニーダ等の混練手段によって混練した。次いで、この混合体を真空押し出し成型機によって棒状(径5mm)に成形した。このときの成形圧力は70〜100kg/cm2とした。そして、この押し出し成型で得られた径5mmの棒状担体を長さ6mmに切断して成形体を得た。
ZSM-5: Clay: Glass fiber = 82.5: 10.5: 7.0
2) Molding An inorganic component, an organic binder, and moisture were blended in the above ratio and kneaded by a kneading means such as a kneader. Next, this mixture was formed into a rod shape (diameter 5 mm) by a vacuum extrusion molding machine. The molding pressure at this time was set to 70 to 100 kg / cm 2 . Then, a rod-shaped carrier having a diameter of 5 mm obtained by this extrusion molding was cut into a length of 6 mm to obtain a molded body.

3)乾燥・焼成 成形時に添加した水分を除去するために、前記成形体を100℃のもとで約5時間乾燥させた後に焼成した。焼成温度は725〜800℃の範囲とした。昇温及び降温速度はともに30〜50℃/時とした。尚、焼成の際、有機バインダーが瞬時に燃焼しないように、温度範囲250〜450℃のもとでの2〜5時間程度の温度キープを2回実施することでバインダー成分を除去した。   3) Drying and calcination In order to remove moisture added during molding, the molded body was dried at 100 ° C. for about 5 hours and then baked. The firing temperature was in the range of 725 to 800 ° C. The temperature increase and temperature decrease rates were both 30 to 50 ° C./hour. In order to prevent the organic binder from burning instantaneously during firing, the binder component was removed by carrying out a temperature keep of about 2 to 5 hours under a temperature range of 250 to 450 ° C. twice.

4)含浸 前記得られた焼成体をルテニウム酸アンモニウムが添加されたモリブデン酸アンモニウム水溶液に浸して、この焼結体にモリブデン成分を含浸させた。モリブデン担持量は焼結体重量に対して6重量%、ルテニウム担持量はモル比でルテニウム:モリブデン=0.2:1とした。   4) Impregnation The obtained fired body was immersed in an aqueous ammonium molybdate solution to which ammonium ruthenate was added, and this sintered body was impregnated with a molybdenum component. The amount of molybdenum supported was 6% by weight with respect to the weight of the sintered body, and the amount of ruthenium supported was ruthenium: molybdenum = 0.2: 1 in molar ratio.

5)酸化処理 前記焼結体に含浸させた金属塩を分解、酸化して酸化モリブデンにするために550℃のもと10時間焼成して触媒前駆体を得た。   5) Oxidation treatment In order to decompose and oxidize the metal salt impregnated in the sintered body to form molybdenum oxide, it was calcined at 550 ° C. for 10 hours to obtain a catalyst precursor.

6)炭化処理1 従来の触媒前駆体の炭化処理法に基づく。モリブデンのみを含浸させ酸化処理した触媒前駆体を空気雰囲気のもと550℃まで昇温し、この状態を1時間維持させた後、雰囲気を9CH4+Arの反応ガスに切り替え、650℃まで昇温し、この状態を1時間維持した。その後、750℃まで昇温した。このようにしてモリブデンのみを担持した比較例1に係る触媒を得た。 6) Carbonization treatment 1 Based on the conventional carbonization treatment method of the catalyst precursor. The catalyst precursor impregnated with only molybdenum and oxidized was heated to 550 ° C. under an air atmosphere. After maintaining this state for 1 hour, the atmosphere was switched to a reaction gas of 9CH 4 + Ar and the temperature was raised to 650 ° C. This state was maintained for 1 hour. Then, it heated up to 750 degreeC. Thus, a catalyst according to Comparative Example 1 carrying only molybdenum was obtained.

2.低級炭化水素の転化
固定床流通式反応装置のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、これにメタンを含んだ混合ガス(メタン+10%アルゴン)を供給して、反応空間速度3000ml/g−MFI/h(CH4gas flow base)、反応温度750℃、反応時間10時間、反応圧力0.3MPaの条件で、触媒と混合ガスとを反応させた。この際、水素と芳香族化合物(ベンゼン)が生成する速度を経時的に調べた。
2. Conversion of lower hydrocarbons Inconel 800H gas contact part calorizing treatment reaction tube (inner diameter: 18 mm) of a fixed bed flow reactor was charged with 14 g of the catalyst to be evaluated (zeolite ratio 82.50%). Then, a mixed gas containing methane (methane + 10% argon) was supplied thereto, and the reaction space velocity was 3000 ml / g-MFI / h (CH 4 gas flow base), the reaction temperature was 750 ° C., the reaction time was 10 hours, The catalyst and the mixed gas were reacted under a pressure of 0.3 MPa. At this time, the rate of formation of hydrogen and an aromatic compound (benzene) was examined over time.

(比較例2)
比較例2では、低級炭化水素を含んだガスに水素を添加しないで、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてロジウムを担持している。低級炭化水素の転化は比較例1と同じ方法で行なった。
(Comparative Example 2)
In Comparative Example 2, hydrogen is not added to the gas containing the lower hydrocarbon, but this gas is reacted with the lower hydrocarbon direct reforming catalyst to convert the lower hydrocarbon. The lower hydrocarbon direct reforming catalyst carries rhodium as a platinum group element component in addition to molybdenum. The conversion of the lower hydrocarbon was carried out in the same manner as in Comparative Example 1.

尚、前記低級炭化水素直接改質触媒の製造にあたり含浸工程以外は、実施例1に係る触媒の製造工程と同じ方法で製造した。すなわち、含浸工程では、ロジウム酸アンモニウムが添加されたモリブデン酸アンモニウム水溶液に前記1)〜3)の工程で得られた焼成体を浸して、この焼結体にモリブデン成分と鉄成分を含浸させた。モリブデン担持量は焼結体重量に対して6重量%、コバルト担持量はモル比でロジウム:モリブデン=0.2:1とした。そして、この含浸処理した焼成体を前述の炭化処理1に供してモリブデンとロジウムとを担持した比較例2に係る触媒を得た。
(実施例1)
実施例1では、低級炭化水素を含んだガスに水素を添加しながら、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてルテニウムを担持している。本実施例に係る触媒は、比較例1に係る触媒の製造工程と同じ方法で製造した。
In addition, it manufactured by the same method as the manufacturing process of the catalyst which concerns on Example 1 except the impregnation process in manufacture of the said lower hydrocarbon direct reforming catalyst. That is, in the impregnation step, the sintered body obtained in steps 1) to 3) was immersed in an ammonium molybdate aqueous solution to which ammonium rhodate was added, and the sintered body was impregnated with a molybdenum component and an iron component. . The molybdenum loading was 6% by weight with respect to the weight of the sintered body, and the cobalt loading was rhodium: molybdenum = 0.2: 1 in molar ratio. The impregnated fired body was subjected to the carbonization treatment 1 to obtain a catalyst according to Comparative Example 2 carrying molybdenum and rhodium.
Example 1
In Example 1, while adding hydrogen to a gas containing lower hydrocarbons, this gas is reacted with a lower hydrocarbon direct reforming catalyst to convert lower hydrocarbons. The lower hydrocarbon direct reforming catalyst carries ruthenium as a platinum group element component in addition to molybdenum. The catalyst according to this example was manufactured by the same method as the manufacturing process of the catalyst according to Comparative Example 1.

本実施例における低級炭化水素の転化方法について説明する。   The method for converting lower hydrocarbons in this example will be described.

固定床流通式反応装置のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、これにメタンと水素とを含んだ混合ガス(メタン+10%アルゴン+6%水素)を供給して、反応空間速度3000ml/g−MFI/h(CH4gas flow base)、反応温度750℃、反応時間10時間、反応圧力0.3MPaの条件で、触媒と混合ガスとを反応させた。この際、水素と芳香族化合物(ベンゼン)が生成する速度を経時的に調べた。 Inconel 800H gas contact part calorizing treatment reaction tube (inner diameter 18 mm) of a fixed bed flow type reactor was filled with 14 g of the catalyst to be evaluated (zeolite ratio 82.50%). Then, a mixed gas containing methane and hydrogen (methane + 10% argon + 6% hydrogen) is supplied thereto, and the reaction space velocity is 3000 ml / g-MFI / h (CH 4 gas flow base), the reaction temperature is 750 ° C., The catalyst and the mixed gas were reacted under the conditions of a reaction time of 10 hours and a reaction pressure of 0.3 MPa. At this time, the rate of formation of hydrogen and an aromatic compound (benzene) was examined over time.

(実施例2)
実施例2では、低級炭化水素を含んだガスに水素を添加しながら、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてルテニウムを担持している。本実施例に係る触媒は、以下の炭化処理2からなる工程以外は実施例1に係る触媒の製造工程と同じ方法で製造した。
(Example 2)
In Example 2, while adding hydrogen to a gas containing lower hydrocarbons, this gas is reacted with a lower hydrocarbon direct reforming catalyst to convert lower hydrocarbons. The lower hydrocarbon direct reforming catalyst carries ruthenium as a platinum group element component in addition to molybdenum. The catalyst according to the present example was manufactured by the same method as the catalyst manufacturing process according to Example 1, except for the following carbonization treatment 2.

炭化処理2 モリブデンを含浸させ酸化処理した触媒前駆体をC410+11H2混合ガスの雰囲気及び350℃のもと24時間処理、その後550℃に昇温した段階で雰囲気を9CH4+Ar反応ガスに切り替え、750℃まで昇温し、この状態を10分間維持した。このようにしてモリブデンとルテニウムとを担持した実施例1に係る触媒を得た。 Carbonization treatment 2 The catalyst precursor impregnated with molybdenum and oxidized is treated for 24 hours under an atmosphere of C 4 H 10 + 11H 2 mixed gas and 350 ° C., and then heated to 550 ° C., and the atmosphere is changed to 9CH 4 + Ar reaction gas. The temperature was raised to 750 ° C., and this state was maintained for 10 minutes. In this way, a catalyst according to Example 1 carrying molybdenum and ruthenium was obtained.

本実施例における低級炭化水素の転化は実施例1における転化方法と同じ方法で行なった。   The conversion of lower hydrocarbons in this example was performed in the same manner as the conversion method in Example 1.

(実施例3)
実施例3では、低級炭化水素を含んだガスに水素を添加しながら、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてロジウムを担持している。本実施例に係る触媒は、比較例1に係る触媒の製造工程と同じ方法で製造した。
(Example 3)
In Example 3, while adding hydrogen to a gas containing lower hydrocarbons, this gas is reacted with a lower hydrocarbon direct reforming catalyst to convert lower hydrocarbons. The lower hydrocarbon direct reforming catalyst carries rhodium as a platinum group element component in addition to molybdenum. The catalyst according to this example was manufactured by the same method as the manufacturing process of the catalyst according to Comparative Example 1.

本実施例における低級炭化水素の転化は実施例1における転化方法と同じ方法で行なった。   The conversion of lower hydrocarbons in this example was performed in the same manner as the conversion method in Example 1.

(実施例4)
実施例3では、低級炭化水素を含んだガスに水素を添加しながら、このガスを低級炭化水素直接改質触媒と反応させて低級炭化水素を転化している。前記低級炭化水素直接改質触媒は、モリブデンの他に白金族元素成分としてロジウムを担持している。本実施例に係る触媒は、含浸工程が比較例2における含浸工程と、炭化処理工程が実施例2における炭化処理2と同じ方法であること以外は、比較例1に係る触媒の製造工程と同じ方法で製造した。
Example 4
In Example 3, while adding hydrogen to a gas containing lower hydrocarbons, this gas is reacted with a lower hydrocarbon direct reforming catalyst to convert lower hydrocarbons. The lower hydrocarbon direct reforming catalyst carries rhodium as a platinum group element component in addition to molybdenum. The catalyst according to this example is the same as the catalyst production process according to Comparative Example 1 except that the impregnation process is the same as the impregnation process in Comparative Example 2 and the carbonization process is the same method as the carbonization process 2 in Example 2. Produced by the method.

本実施例における低級炭化水素の転化は実施例1における転化方法と同じ方法で行なった。   The conversion of lower hydrocarbons in this example was performed in the same manner as the conversion method in Example 1.

図1は、比較例1、比較例2、実施例1、実施例2、実施例3及び実施例4に係る触媒を用いた場合の24時間の改質時間における水素の生成速度の経時的変化を示したものである。   FIG. 1 shows the change over time in the hydrogen production rate during the 24-hour reforming time when the catalysts according to Comparative Example 1, Comparative Example 2, Example 1, Example 2, Example 3, and Example 4 were used. Is shown.

図2は、比較例1、比較例2、実施例1、実施例2、実施例3及び実施例4に係る触媒を用いた場合の24時間の改質時間におけるベンゼンの生成速度の経時的変化を示したものである。   FIG. 2 shows the change over time in the production rate of benzene during the reforming time of 24 hours when the catalysts according to Comparative Example 1, Comparative Example 2, Example 1, Example 2, Example 3, and Example 4 were used. Is shown.

図1及び図2に示された水素とベンゼンと生成速度の経時的変化から明らかなように、実施例1〜4に係る触媒を用いた場合、比較例1及び比較例2に係る触媒よりも、水素,ベンゼンの生成速度の安定性が向上していることが確認できる。   As is clear from the time-dependent changes in hydrogen, benzene, and production rate shown in FIGS. 1 and 2, when the catalysts according to Examples 1 to 4 are used, the catalysts according to Comparative Examples 1 and 2 are used. It can be confirmed that the stability of hydrogen and benzene production rates is improved.

以上の実施例に基づき本発明の低級炭化水素直接改質触媒について詳細に説明したが、この実施例が本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the lower hydrocarbon direct reforming catalyst of the present invention has been described in detail on the basis of the above-described examples, it will be understood by those skilled in the art that this example can be variously modified and modified within the scope of the technical idea of the present invention. Obviously, such variations and modifications should fall within the scope of the appended claims.

例えば、本実施例の触媒は主な担持金属としてモリブデンを採用されているが、既に低級炭化水素改質触媒としての効果が確認され、前記実施の形態で紹介した文献で紹介されている各種触媒金属のうちレニウムやタングステンさらにはこれら(モリブデンを含む)の化合物を単独または組み合わせて用いた場合においても、同様の作用効果が得られることが確認されている。   For example, although the catalyst of this example employs molybdenum as the main supported metal, the effects as a lower hydrocarbon reforming catalyst have already been confirmed, and various catalysts introduced in the literature introduced in the above embodiment. It has been confirmed that similar effects can be obtained even when rhenium, tungsten, or a compound of these (including molybdenum) is used alone or in combination.

また、本実施例では含浸方法により触媒金属が担持された担持体の乾燥方法についてのみ示したが、イオン交換方法により触媒金属が担持された担持体に適用した場合や、昇華性の化合物を用いて担体に蒸着担持した場合においても、同様の作用効果が得られることが確認されている。   Further, in this example, only the drying method of the support on which the catalyst metal is supported by the impregnation method is shown. However, when applied to the support on which the catalyst metal is supported by the ion exchange method, a sublimable compound is used. Thus, it has been confirmed that similar effects can be obtained even when vapor deposition is carried on a carrier.

さらに、実施例に係る触媒は棒状に形成されたものであるが、中空円柱状、ハニカム形状、粉末状,ペレット状,リング形状の形成した場合においても、同様の作用効果が得られることが確認されている。   Furthermore, although the catalyst according to the example is formed in a rod shape, it is confirmed that the same effect can be obtained even in the case of forming a hollow cylindrical shape, honeycomb shape, powder shape, pellet shape, ring shape. Has been.

比較例1、比較例2、実施例1、実施例2、実施例3及び実施例4に係る触媒を用いた場合の24時間の改質時間における水素の生成速度の経時的変化。Changes over time in the hydrogen production rate during the 24-hour reforming time when the catalysts according to Comparative Example 1, Comparative Example 2, Example 1, Example 2, Example 3, and Example 4 were used. 比較例1、比較例2、実施例1、実施例2、実施例3及び実施例4に係る触媒を用いた場合の24時間の改質時間におけるベンゼンの生成速度の経時的変化。The time-dependent change of the production | generation rate of benzene in the reforming time of 24 hours at the time of using the catalyst which concerns on Comparative Example 1, Comparative Example 2, Example 1, Example 2, Example 3, and Example 4. FIG.

Claims (2)

メタン、エタン、エチレン、プロパン、プロプレン、n‐ブタン、イソブタン、n−ブテン及びイソブテンのいずれかの低級炭化水素を含んだガスを、メタロシリケートにモリブデンとルテニウムを担持した低級炭化水素直接改質触媒、またはメタロシリケートにモリブデンとロジウムを担持した低級炭化水素直接改質触媒と反応させて前記低級炭化水素を芳香族化合物と水素に転化する低級炭化水素の転化方法であって、前記ガスを前記低級炭化水素直接改質触媒と反応させる際、前記ガス中に水素を添加すること
を特徴とする触媒を用いた低級炭化水素の転化方法。
Lower hydrocarbon direct reforming catalyst in which molybdenum and ruthenium are supported on metallosilicate from gas containing lower hydrocarbon of any of methane, ethane, ethylene, propane, proprene, n-butane, isobutane, n-butene and isobutene or a process for the conversion lower hydrocarbon to convert the molybdenum and rhodium metallosilicate the lower hydrocarbon is reacted with loaded with lower hydrocarbons directly reforming catalyst to aromatic compound and hydrogen, the gas lower the A method for converting a lower hydrocarbon using a catalyst, wherein hydrogen is added to the gas when reacting with a hydrocarbon direct reforming catalyst.
前記低級炭化水素直接改質触媒は、モリブデンに加えてルテニウムまたはロジウムを担持したメタロシリケートを、前記低級炭化水素と水素とを含んだガス、水素ガスまたはアンモニアガスのいずれか供給のもと炭化処理することで生成したものであること
を特徴とする請求項1に記載の触媒を用いた低級炭化水素の転化方法。
The lower hydrocarbon direct reforming catalyst is obtained by carbonizing a metallosilicate supporting ruthenium or rhodium in addition to molybdenum by supplying either a gas containing the lower hydrocarbon and hydrogen, hydrogen gas, or ammonia gas. The method for converting lower hydrocarbons using the catalyst according to claim 1, wherein the lower hydrocarbons are produced.
JP2004068439A 2004-03-11 2004-03-11 Method for converting lower hydrocarbons using catalysts Expired - Lifetime JP4677194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068439A JP4677194B2 (en) 2004-03-11 2004-03-11 Method for converting lower hydrocarbons using catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068439A JP4677194B2 (en) 2004-03-11 2004-03-11 Method for converting lower hydrocarbons using catalysts

Publications (2)

Publication Number Publication Date
JP2005255605A JP2005255605A (en) 2005-09-22
JP4677194B2 true JP4677194B2 (en) 2011-04-27

Family

ID=35081690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068439A Expired - Lifetime JP4677194B2 (en) 2004-03-11 2004-03-11 Method for converting lower hydrocarbons using catalysts

Country Status (1)

Country Link
JP (1) JP4677194B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943671B2 (en) * 2004-07-08 2012-05-30 ズードケミー触媒株式会社 Lower hydrocarbon aromatization catalyst and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using the same
US8148590B2 (en) 2004-07-28 2012-04-03 Meidensha Corporation Process for producing aromatic hydrocarbon and hydrogen
KR101019518B1 (en) 2005-09-30 2011-03-07 마사루 이치카와 Process for production of aromatic compound
JP5540462B2 (en) 2007-06-07 2014-07-02 株式会社明電舎 Regeneration method for lower hydrocarbon aromatization catalyst
US20100185034A1 (en) 2007-08-03 2010-07-22 Mitsui Chemicals , Inc Process for producing aromatic hydrocarbon
US8951929B2 (en) 2008-01-16 2015-02-10 Agency For Science, Technology And Research Catalyst preparation and methods of using such catalysts
JP5736633B2 (en) 2008-04-18 2015-06-17 株式会社明電舎 Catalyst and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008949A1 (en) * 1997-09-30 2001-07-19 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
JP2003026613A (en) * 2001-07-12 2003-01-29 National Institute Of Advanced Industrial & Technology Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon
JP2004269398A (en) * 2003-03-07 2004-09-30 Masaru Ichikawa Method and apparatus for catalytically reacting lower hydrocarbon into aromatic compound, and method for producing aromatic compound and hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008949A1 (en) * 1997-09-30 2001-07-19 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
JP2003026613A (en) * 2001-07-12 2003-01-29 National Institute Of Advanced Industrial & Technology Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon
JP2004269398A (en) * 2003-03-07 2004-09-30 Masaru Ichikawa Method and apparatus for catalytically reacting lower hydrocarbon into aromatic compound, and method for producing aromatic compound and hydrogen

Also Published As

Publication number Publication date
JP2005255605A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4945242B2 (en) Process for producing aromatic hydrocarbons and hydrogen
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
JP5481996B2 (en) Aromatic hydrocarbon production method
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP5402354B2 (en) Aromatic compound production method
JP4235731B2 (en) Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP2009028710A (en) Catalyst for aromatization of lower hydrocarbon
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP2005254120A (en) Lower hydrocarbon direct-reforming catalyst and its manufacturing method
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP2005254121A (en) Manufacturing method of lower hydrocarbon direct-reforming catalyst
JP5564769B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP2006263683A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly and catalyst for reforming lower hydrocarbon directly
JP2008132490A (en) Method for manufacturing aromatization catalyst of lower hydrocarbon
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
WO2011118279A1 (en) Method of manufacture for aromatic compound
JP2008093663A (en) Manufacturing method of aromatization catalyst of lower hydrocarbon
JP5315698B2 (en) Method for producing aromatic compound
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5568833B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
WO2010061683A1 (en) Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4677194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term