JP4235731B2 - Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon - Google Patents

Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon Download PDF

Info

Publication number
JP4235731B2
JP4235731B2 JP2003386927A JP2003386927A JP4235731B2 JP 4235731 B2 JP4235731 B2 JP 4235731B2 JP 2003386927 A JP2003386927 A JP 2003386927A JP 2003386927 A JP2003386927 A JP 2003386927A JP 4235731 B2 JP4235731 B2 JP 4235731B2
Authority
JP
Japan
Prior art keywords
catalyst
metallosilicate
binder
supported
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003386927A
Other languages
Japanese (ja)
Other versions
JP2005144360A (en
Inventor
一規 本田
戦国 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003386927A priority Critical patent/JP4235731B2/en
Publication of JP2005144360A publication Critical patent/JP2005144360A/en
Application granted granted Critical
Publication of JP4235731B2 publication Critical patent/JP4235731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、メタン等の低級炭化水素から各種化学製品の基礎原料となるベンゼンやナフタレンを主成分とする芳香族化合物と、高純度水素ガスとを効率的に製造するための触媒成型体の製造方法に関するものである。 The present invention provides a catalyst molded body for efficiently producing aromatic compounds mainly composed of benzene and naphthalene, which are basic raw materials for various chemical products, and high-purity hydrogen gas from lower hydrocarbons such as methane. It is about the method.

従来から、触媒を用いて低級炭化水素を高付加価値な芳香族炭化水素へ直接転換する試みがなされている。低級炭化水素中の炭素数が2個以上の炭化水素を原料として転換反応を行なう場合、触媒としては、Ga担持H型ZSM−5あるいはZn担持H型ZSM−5等が高活性であることが知られている[例えば、「Catalyst Review Science and Engineering」34 (3)、179−226(1992)]。しかしながらメタンを原料とした場合、これらの触媒では活性が低く、GaZSM−5にPtを担持して改善を試みた例が見られるものの[例えば、「Zeolites: Facts, Figures, Future」1183−1192(1989)]、その活性は十分とは言えず、さらには炭素析出により急速に活性の低下が起こるという問題を有していた。   Conventionally, attempts have been made to directly convert lower hydrocarbons to high-value-added aromatic hydrocarbons using a catalyst. When the conversion reaction is performed using a hydrocarbon having 2 or more carbon atoms in the lower hydrocarbon as a raw material, Ga-supported H-type ZSM-5 or Zn-supported H-type ZSM-5 may be highly active as a catalyst. [For example, “Catalyst Review Science and Engineering” 34 (3), 179-226 (1992)]. However, when methane is used as a raw material, the activity of these catalysts is low, and there are examples of attempts to improve by loading Pt on GaZSM-5 [for example, “Zeolites: Facts, Figures, Future” 1183-1192 ( 1989)], the activity is not sufficient, and there is a problem that the activity is rapidly reduced by carbon deposition.

一方、例えば特開平10−272366公報や特開2001−334151公報に示されるように、ZSM−5に代表されるメタロシリケート上にモリブデン、タングステン、レニウム等を担持した触媒がメタンの脱水素芳香族化反応に有効であることが知られている。これらの触媒は、上記Pt担持GaZSM−5と比較して高活性であり、また炭素析出も少ないため長寿命であるという点で優れている。   On the other hand, as shown in, for example, JP-A-10-272366 and JP-A-2001-334151, a catalyst in which molybdenum, tungsten, rhenium or the like is supported on a metallosilicate represented by ZSM-5 is a dehydrogenated aromatic of methane. It is known to be effective for the chemical reaction. These catalysts are superior in that they are highly active as compared to the Pt-supported GaZSM-5 and have a long life because of less carbon deposition.

これらの触媒におけるメタンの脱水素芳香族化反応のメカニズムとしては、二つの異なる活性点上で逐次的に進行するメカニズムが一般的に提案されている[例えば、「Natural Gas Conversion V」403−410(1998)]。すなわち、メタンはまずモリブデン、タングステン、レニウム等の触媒活性金属成分上で活性化され、ついでZSM−5の酸点上で重合・環化される。また、ZSM−5の細孔内に触媒活性金属成分が担持されることによって芳香族化反応も主に細孔内で起こることになり、その結果細孔の立体的制限により炭素の析出が抑制されることもこの触媒の重要な特徴の一つである。   As a mechanism of the dehydroaromatization reaction of methane in these catalysts, a mechanism that sequentially proceeds on two different active sites has been generally proposed [for example, “Natural Gas Conversion V” 403-410. (1998)]. That is, methane is first activated on a catalytically active metal component such as molybdenum, tungsten, rhenium, and then polymerized and cyclized on the acid sites of ZSM-5. In addition, since the catalytically active metal component is supported in the pores of ZSM-5, the aromatization reaction also occurs mainly in the pores, and as a result, carbon deposition is suppressed by the steric restriction of the pores. This is one of the important features of this catalyst.

ZSM−5等のメタロシリケート上にモリブデン、タングステン、レニウム等の触媒活性金属成分を担持した触媒の製造方法としては、これら触媒活性金属成分を含有した塩類を前駆体として主にこれらの水溶液にメタロシリケートを含浸させ、その後、乾燥・焼成等の後処理を行なういわゆる含浸法やイオン交換法[例えば、特開平10−272366公報]、あるいは上記触媒活性金属成分を含有した化合物を昇華あるいは蒸発させることにより、メタロシリケート上に析出させる方法[特開2002−336704公報]がとられている。   As a method for producing a catalyst in which a catalytically active metal component such as molybdenum, tungsten, or rhenium is supported on a metallosilicate such as ZSM-5, a salt containing these catalytically active metal components is mainly used as a precursor in these aqueous solutions. A so-called impregnation method or ion exchange method in which silicate is impregnated and then post-treatment such as drying / calcination [for example, JP-A-10-272366], or a compound containing the above catalytically active metal component is sublimated or evaporated. Thus, a method of precipitating on a metallosilicate [JP 2002-336704 A] is employed.

上記の通り、従来技術のメタンの脱水素芳香族化反応用触媒は、何れもが担持した触媒活性金属成分とメタロシリケートの組み合わせのみに限定されるものであるが、メタロシリケートを含有している触媒は実際の工業プロセスにおいて使用されるほとんどの場合において、実用的な強度および耐摩耗性を得る目的で、また、触媒成型体を製造する際の成型性を改善する目的で、バインダーを添加して製造されている。   As described above, the prior art methane dehydroaromatization reaction catalysts are limited to combinations of catalytically active metal components and metallosilicates supported by each, but contain metallosilicates. In most cases where a catalyst is used in an actual industrial process, a binder is added for the purpose of obtaining practical strength and wear resistance, and for the purpose of improving the moldability when producing a catalyst molded body. Manufactured.

実用的なメタロシリケート含有触媒成型体の製造方法の一例としては、以下の方法が例示される。まず水熱合成法によってメタロシリケート粉体を合成後、バインダー及び、必要に応じて増粘剤あるいは分散剤をメタロシリケートに添加し、水中でこれらの原料を混練する。次に押し出し成型あるいは打錠成型等の方法によって成型を行った後に、乾燥、焼成する。触媒活性金属成分をメタロシリケート上に担持する場合は、完成した成型体に含浸法等の方法を用いて行なう。バインダーの種類としては、シリカ、アルミナ、粘土鉱物等の無機化合物の単独あるいは組み合わせが使用され、成型後の成型体の重量に対して10〜50重量%程度添加される場合が多い。   The following method is illustrated as an example of the manufacturing method of a practical metallosilicate containing catalyst molding. First, after synthesizing a metallosilicate powder by a hydrothermal synthesis method, a binder and, if necessary, a thickener or a dispersant are added to the metallosilicate, and these raw materials are kneaded in water. Next, after molding by a method such as extrusion molding or tableting, it is dried and fired. When the catalytically active metal component is supported on the metallosilicate, it is carried out by using a method such as an impregnation method on the finished molded body. As the kind of binder, an inorganic compound such as silica, alumina, clay mineral or the like is used alone or in combination, and it is often added in an amount of about 10 to 50% by weight based on the weight of the molded body after molding.

しかしながら、バインダーを含有したメタロシリケート触媒成型体にモリブデン、タングステン、レニウム等の触媒活性金属成分を担持した場合、これらの触媒活性金属成分はメタロシリケート上だけでなく、バインダー上にも担持されることになる。上記の通り、触媒活性金属成分がメタロシリケートの細孔内に存在することによって炭素析出が抑制され、脱水素芳香族化反応が選択的に進行しているが、バインダー上に担持された触媒活性金属成分上では炭素析出が抑制されずに多量の炭素を生成してしまうことから、これらバインダー上に担持された触媒活性金属成分は脱水素芳香族化反応にはほとんど寄与していないと考えられる。さらには、炭素の生成と同時に多量の水素が生成することから、この水素が脱水素芳香族化反応の進行を抑制し、変換性能を低下させてしまう問題、及び、炭素の蓄積による失活の問題も生じる。   However, when a catalytically active metal component such as molybdenum, tungsten or rhenium is supported on a metallosilicate catalyst molded body containing a binder, these catalytically active metal components are supported not only on the metallosilicate but also on the binder. become. As described above, the presence of the catalytically active metal component in the pores of the metallosilicate suppresses carbon deposition and the dehydroaromatization reaction proceeds selectively, but the catalytic activity supported on the binder. Since a large amount of carbon is generated without suppressing carbon deposition on the metal component, it is considered that the catalytically active metal component supported on these binders hardly contributes to the dehydroaromatization reaction. . Furthermore, since a large amount of hydrogen is generated at the same time as the generation of carbon, this hydrogen suppresses the progress of the dehydroaromatization reaction and degrades the conversion performance, and the deactivation due to the accumulation of carbon. Problems also arise.

これらのことから、高価な触媒活性金属成分は、これを選択的にメタロシリケート成分上にのみ担持することが望ましい。   From these facts, it is desirable that the expensive catalytically active metal component is selectively supported only on the metallosilicate component.

本発明は、高活性でかつ活性低下の防止された低級炭化水素の脱水素芳香族化反応用触媒成型体の製造方法を提供することをその課題とする。 An object of the present invention is to provide a method for producing a molded catalyst for a dehydroaromatization reaction of a lower hydrocarbon that is highly active and whose activity is prevented from decreasing.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、メタロシリケート上に触媒活性金属成分を担持後、該触媒活性金属成分がその後の触媒成型体製造工程でバインダー上に移動しないように製造することで、触媒性能の低下の防止された高活性の触媒成型体が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have supported a catalytically active metal component on a metallosilicate, and then the catalytically active metal component moves onto a binder in the subsequent catalyst molded body manufacturing process. It has been found that a highly active catalyst molded body in which a decrease in catalyst performance is prevented can be obtained by producing so as not to cause the present invention, and the present invention has been completed.

即ち、本発明によれば、以下に示す低級炭化水素の脱水素芳香族化反応用の触媒成型体の製造方法が提供される。 That is, according to the present invention, a method for producing a molded catalyst for the dehydroaromatization reaction of lower hydrocarbons shown below is provided.

触媒活性金属成分としてのモリブデンを含む前駆体の水溶液またはアルコール溶液をメタロシリケートに含浸し、焼成処理してメタロシリケートの表面に酸化モリブデンを担持させ、カーバイド化処理した後に、バインダー成分と混合して成型することを特徴とする低級炭化水素の脱水素芳香族化反応用触媒成型体の製造方法。After impregnating the metallosilicate with an aqueous solution or alcohol solution of a precursor containing molybdenum as a catalytically active metal component, firing the molybdenum oxide on the surface of the metallosilicate and carrying out the carbide treatment, and then mixing with the binder component A method for producing a molded catalyst for a dehydroaromatization reaction of a lower hydrocarbon, characterized by molding.

本発明の製造方法によって製造された触媒成型体によれば、バインダー表面には触媒活性金属成分が担持されていないために、該バインダー上の副反応を効果的に制御することができる。その結果、バインダーを添加しない触媒活性金属成分担持メタロシリケート触媒と同等の炭化水素変換性能が発現される。 According to the molded catalyst body produced by the production method of the present invention, since no catalytically active metal component is supported on the binder surface, side reactions on the binder can be effectively controlled. As a result, the hydrocarbon conversion performance equivalent to that of the catalytically active metal component-supported metallosilicate catalyst without adding a binder is exhibited.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

本発明で用いるメタロシリケートの種類には特に制限は無いが、効率よく芳香族化反応を行なうのに最適な細孔径を有するZSM−5、ZSM−11、MCM−22、ZRP−1の中から選択することが好ましい。また、上記メタロシリケートの組み合わせ、または上記メタロシリケートと上記以外のメタロシリケートとの組み合わせでも構わない。メタロシリケートの結晶骨格を構成する金属成分としては、アルミニウムやガリウム、亜鉛等が例示される。また、状況に応じて実質的にケイ素のみからなるメタロシリケートが使用される場合も考えられる。メタロシリケートは基本的にプロトン型(H型)として使用されることが好ましいが、プロトンの一部を他のイオンによって置換したものを使用してもよい。   There are no particular restrictions on the type of metallosilicate used in the present invention, but among ZSM-5, ZSM-11, MCM-22, and ZRP-1 having the optimum pore diameter for efficient aromatization reaction. It is preferable to select. Further, a combination of the above metallosilicates, or a combination of the above metallosilicate and a metallosilicate other than the above may be used. Examples of the metal component constituting the crystal skeleton of the metallosilicate include aluminum, gallium, and zinc. Moreover, the case where the metallosilicate which consists only of silicons according to a condition is used is also considered. Although it is preferable that the metallosilicate is basically used as a proton type (H type), it is also possible to use one obtained by substituting a part of the proton with another ion.

メタロシリケートは、粉末状で用いられるが、その平均粒径は0.1〜50μm、好ましくは0.1〜20μmである。   The metallosilicate is used in a powder form, and the average particle size thereof is 0.1 to 50 μm, preferably 0.1 to 20 μm.

また、本発明で用いる触媒活性金属成分としては、モリブデンが選択される。上記メタロシリケート上への触媒活性金属成分の担持には触媒活性金属成分を含んだ前駆体を使用する。前駆体の例としては、硝酸塩、酸化物、塩化物、縮合酸塩等が例示できる。 Further, molybdenum is selected as the catalytically active metal component used in the present invention . A precursor containing a catalytically active metal component is used for supporting the catalytically active metal component on the metallosilicate. Examples of the precursor include nitrates, oxides, chlorides, condensed acid salts and the like.

メタロシリケート上への触媒活性金属成分の担持方法としては、従来公知の方法、例えば、上記前駆体の水溶液やアルコール溶液へのメタロシリケートの含浸による方法や、前述[特開2002−336704公報]に見られる気相蒸着法等が例示されるが、これら以外の方法、例えば含浸法と類似のincipient wetness法やイオン交換法等の方法によって担持しても問題ない。触媒活性金属成分の担持量は、特に制限はないが、メタロシリケートに対して0.1〜50重量%、好ましくは0.1〜20重量%の範囲が良好である。   As a method for supporting the catalytically active metal component on the metallosilicate, a conventionally known method, for example, a method of impregnating a metallosilicate into an aqueous solution or an alcohol solution of the above-described precursor, or the above-mentioned [JP 2002-336704 A] is described. Examples of the vapor-phase deposition method that can be seen are exemplified, but there is no problem even if it is supported by a method other than these, for example, an incipient wetness method or an ion exchange method similar to the impregnation method. The amount of the catalytically active metal component supported is not particularly limited, but is 0.1 to 50% by weight, preferably 0.1 to 20% by weight, based on the metallosilicate.

本発明の最も重要な特徴は、触媒活性金属成分とメタロシリケートとバインダーとからなる実用的な低級炭化水素の脱水素芳香族化反応用触媒成型体の製造にあたり、あらかじめ触媒活性金属成分をメタロシリケート上に担持し、さらに該触媒活性金属成分をメタロシリケート上に固定化して、その後の触媒成型体製造工程でバインダー上に移動しないようにすることにある。   The most important feature of the present invention is that in the production of a practical catalyst molded product for a dehydroaromatization reaction of a lower hydrocarbon comprising a catalytically active metal component, a metallosilicate, and a binder, the catalytically active metal component is previously converted to a metallosilicate. Further, the catalyst active metal component is immobilized on the metallosilicate so as not to move onto the binder in the subsequent catalyst molded body production process.

メタロシリケート上に担持した触媒活性金属成分が触媒成型体製造工程でバインダー上に移動しない製造方法としては以下の方法がある。   As a production method in which the catalytically active metal component supported on the metallosilicate does not move onto the binder in the catalyst molded body production process, there are the following methods.

触媒活性金属成分の前駆体を担持したメタロシリケートをあらかじめ高温焼成し、さらにカーバイド化処理を行ない、その後に水中もしくは有機溶媒中でバインダーとの混合操作を行なう方法である。カーバイド化処理剤としてはメタンを含有しているガスが好ましいが、他の炭化水素を含むガスを使用しても構わない。このカーバイド化処理により、触媒活性金属成分は金属カーバイドに変換される。カーバイド化処理剤の濃度は0.1〜100体積%、好ましくは1〜100体積%の範囲である。 The precursor of the catalytically active metal component metallosilicate Oa et al was beforehand high temperature firing carrying, further performs mosquito Baido process in a method for subsequently performing mixing operation of a binder in water or an organic solvent. Although gas containing methane is preferably a mosquito Baido treatment agents, it may be used a gas containing other hydrocarbons. By this carbide treatment, the catalytically active metal component is converted into metal carbide . The concentration of Ca Baido treatment agent is 0.1 to 100% by volume, preferably from 1 to 100% by volume.

なお、前記カーバイド化処理は従来公知のものであり、従来公知の方法に従って容易に実施することができる。 Incidentally, before hear Baido process are those conventionally known, can be easily performed according to known methods.

これらの処理を行なった触媒活性金属成分担持メタロシリケートは、これを水中もしくは有機溶媒中でバインダーとともに混練混合される。バインダー成分としては、従来公知のもの、例えば、粘土鉱物、シリカ、アルミナ、シリカ・アルミナ、チタニア、ジルコニアおよびこれらの組み合わせが好ましく用いられる。該バインダーは粉末状で用いられ、その平均粒径は0.1〜300μm、好ましくは0.1〜100μmである。バインダーの使用量としては触媒成型体中10〜50重量%の範囲が好ましいが、この範囲を超えるものも製造可能である。また、必要に応じて増粘剤あるいは分散剤を添加しても構わない。得られた混合物は常法により、成型、乾燥される。乾燥工程に関しては酸素が存在する雰囲気下、500℃より高い温度で乾燥すると触媒活性金属成分のバインダーへの移動が起こることから避けなければならない。該乾燥工程は、酸素濃度が20体積%以下、好ましくは実質的にゼロ%の条件下で、80〜500℃、好ましくは130〜450℃で行うのがよい。   The catalytically active metal component-supported metallosilicate subjected to these treatments is kneaded and mixed with a binder in water or an organic solvent. As the binder component, conventionally known ones such as clay mineral, silica, alumina, silica / alumina, titania, zirconia and combinations thereof are preferably used. The binder is used in the form of powder, and the average particle size thereof is 0.1 to 300 μm, preferably 0.1 to 100 μm. The amount of the binder used is preferably in the range of 10 to 50% by weight in the catalyst molded body, but those exceeding this range can also be produced. Moreover, you may add a thickener or a dispersing agent as needed. The obtained mixture is molded and dried by a conventional method. The drying process must be avoided because the catalytically active metal component migrates to the binder when it is dried at a temperature higher than 500 ° C. in the presence of oxygen. The drying step is performed at 80 to 500 ° C., preferably 130 to 450 ° C. under a condition where the oxygen concentration is 20% by volume or less, preferably substantially 0%.

このような方法で製造された本発明による触媒成型体は低級炭化水素の脱水素芳香族化反応に使用することが出来る。この場合の低級炭化水素において、その炭素数は1〜4、特に1〜3である。   The molded catalyst according to the present invention produced by such a method can be used for the dehydroaromatization reaction of lower hydrocarbons. In this case, the lower hydrocarbon has 1 to 4 carbon atoms, particularly 1 to 3 carbon atoms.

該触媒成型体において、その形状は、粒状、ペレット状、柱状、円筒状等の各種の形状であることができる。   In the catalyst molded body, the shape can be various shapes such as a granular shape, a pellet shape, a column shape, and a cylindrical shape.

下記の実施例と比較例により本発明をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、下記の実施例、比較例、参考例における触媒反応は石英ガラス製反応管(内径 8mm)を使用し、固定床流通式反応装置で行なった。生成物の分析はガスクロマトグラフで行なった。なお、触媒の評価に使用したベンゼン生成速度は、1秒間当たりに生成したベンゼンの炭素数に換算した物質量(nmol−C・sec−1)で示した。
実施例1
手順1(MoO担持H型ZSM−5の調製):粉末状のNH型ZSM−5(Zeolyst製、CBV3324、SiO/Al比=30、比表面積=400m/g)を空気中、500℃で24時間焼成しH型ZSM−5を得た。次にナス型フラスコ中で0.380gのパラモリブデン酸アンモニウムを150mlのイオン交換水に溶解し、上記H型ZSM−5の粉末10.0gを投入した。このナス型フラスコをロータリーエバポレーターに装着し、回転攪拌を行ないながら蒸発乾固して上記パラモリブデン酸アンモニウム担持H型ZSM−5を得た。さらにこのパラモリブデン酸アンモニウム担持H型ZSM−5を空気中、500℃で6時間焼成し、3重量%MoO担持H型ZSM−5(以後、3%MoO/HZSM−5と略す)を得た。
The present invention will be described more specifically with reference to the following examples and comparative examples, but the present invention is not limited to these examples. The catalytic reactions in the following examples, comparative examples, and reference examples were carried out in a fixed bed flow reactor using a quartz glass reaction tube (inner diameter 8 mm). The product was analyzed by gas chromatography. In addition, the benzene production | generation rate used for evaluation of a catalyst was shown with the amount of substances (nmol-C * sec < -1 >) converted into the carbon number of the benzene produced | generated per second.
Example 1
Procedure 1 (Preparation of MoO 3 supported H-type ZSM-5): Powdered NH 4 type ZSM-5 (Zeolyst, CBV3324, SiO 2 / Al 2 O 3 ratio = 30, specific surface area = 400 m 2 / g) Baking in the air at 500 ° C. for 24 hours gave H-type ZSM-5. Next, 0.380 g of ammonium paramolybdate was dissolved in 150 ml of ion-exchanged water in an eggplant-shaped flask, and 10.0 g of the above H-type ZSM-5 powder was added. The eggplant-shaped flask was attached to a rotary evaporator and evaporated to dryness while rotating and stirring to obtain the ammonium paramolybdate-supporting H-type ZSM-5. Further, this ammonium paramolybdate-supported H-type ZSM-5 was calcined in air at 500 ° C. for 6 hours, and 3 wt% MoO 3 -supported H-type ZSM-5 (hereinafter abbreviated as 3% MoO 3 / HZSM-5). Obtained.

手順2(H型ZSM−5上へのMoの固定):手順1で調製した3%MoO/HZSM−5をメタン気流中、650℃で30分間、次いで700℃で10分間焼成し、担持MoOのカーバイド化処理を行なった。この操作により3%MoC担持H型ZSM−5(以後、3%MoC/HZSM−5と略す)を得た。 Procedure 2 (Mo fixation on H-type ZSM-5): 3% MoO 3 / HZSM-5 prepared in Procedure 1 was calcined in a methane stream at 650 ° C. for 30 minutes and then at 700 ° C. for 10 minutes and supported. Carbide treatment of MoO 3 was performed. By this operation, 3% Mo 2 C-supported H-type ZSM-5 (hereinafter abbreviated as 3% Mo 2 C / HZSM-5) was obtained.

手順3(MoC/HZSM−5とバインダーとの混合):手順2まで調製した3%MoC/HZSM−5とSiOを重量比1:1の割合でイオン交換水中よく混合した後、蒸発乾固した。その後、造粒成型を行なって3%MoC/HZSM−5+SiOバインダー触媒成型体を得た。 Procedure 3 (mixing of Mo 2 C / HZSM-5 and binder): After mixing 3% Mo 2 C / HZSM-5 prepared up to Procedure 2 and SiO 2 well in ion-exchanged water at a weight ratio of 1: 1. Evaporate to dryness. Thereafter, granulation molding was performed to obtain a 3% Mo 2 C / HZSM-5 + SiO 2 binder catalyst molded body.

上記3%MoC/HZSM−5+SiOバインダー触媒成型体300mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図1(△)に示す。
比較例1
実施例1において手順1の操作を行なった後、手順2の操作を行なわずに3%MoO/HZSM−5を使用して手順3の操作を行ない、3%MoO/HZSM−5+SiOバインダー触媒成型体を得た。
Using 300 mg of the 3% Mo 2 C / HZSM-5 + SiO 2 binder catalyst molding, methane dehydroaromatization reaction was performed at 700 ° C. The change with time in the benzene production rate is shown in FIG.
Comparative Example 1
After performing the operation of the procedure 1 in Example 1, the operation of the procedure 3 was performed using 3% MoO 3 / HZSM-5 without performing the operation of the procedure 2, and a 3% MoO 3 / HZSM-5 + SiO 2 binder was used. A molded catalyst was obtained.

上記3%MoO/HZSM−5+SiOバインダー触媒成型体300mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図1(○)に示す。
参考例1
実施例1の手順1で得られた3%MoO/HZSM−5を造粒し、バインダー成分を全く含まない3%MoO/HZSM−5触媒成型体を得た。
Using 300 mg of the 3% MoO 3 / HZSM-5 + SiO 2 binder catalyst molding, methane dehydrogenation aromatization reaction was carried out at 700 ° C. The change with time in the benzene production rate at that time is shown in FIG.
Reference example 1
The 3% MoO 3 / HZSM-5 obtained in Procedure 1 of Example 1 was granulated to obtain a 3% MoO 3 / HZSM-5 catalyst molded body containing no binder component.

上記3%MoO/HZSM−5触媒成型体150mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図1(□)に示す。
実施例2
手順1(MoO担持H型ZSM−5の調製方法):担持粉末状のNH型ZSM−5(Zeolyst製、CBV3324、SiO/Al比=30、比表面積=400m/g)を空気中、500℃で24時間焼成しH型ZSM−5を得た。次にナス型フラスコ中で1.213gのパラモリブデン酸アンモニウムを150mlのイオン交換水に溶解し、上記H型ZSM−5の粉末10.0gを投入した。このナス型フラスコをロータリーエバポレーターに装着し、回転攪拌を行ないながら蒸発乾固して上記パラモリブデン酸アンモニウム担持H型ZSM−5を得た。さらにこのパラモリブデン酸アンモニウム担持H型ZSM−5を空気中、500℃で6時間焼成し、9重量%MoO担持H型ZSM−5(以後、9%MoO/HZSM−5と略す)を得た。
Using 150 mg of the 3% MoO 3 / HZSM-5 catalyst molded body, methane dehydroaromatization reaction was carried out at 700 ° C. The change over time in the benzene production rate is shown in FIG.
Example 2
Procedure 1 (Method for preparing MoO 3 supported H-type ZSM-5): Supported powdery NH 4 type ZSM-5 (Zeolyst, CBV3324, SiO 2 / Al 2 O 3 ratio = 30, specific surface area = 400 m 2 / g ) Was calcined in air at 500 ° C. for 24 hours to obtain H-type ZSM-5. Next, 1.213 g of ammonium paramolybdate was dissolved in 150 ml of ion-exchanged water in an eggplant-shaped flask, and 10.0 g of the above H-type ZSM-5 powder was added. The eggplant-shaped flask was attached to a rotary evaporator and evaporated to dryness while rotating and stirring to obtain the ammonium paramolybdate-supporting H-type ZSM-5. Further, this ammonium paramolybdate-supported H-type ZSM-5 was calcined in air at 500 ° C. for 6 hours, and 9 wt% MoO 3 -supported H-type ZSM-5 (hereinafter abbreviated as 9% MoO 3 / HZSM-5). Obtained.

手順2(H型ZSM−5上へのMoの固定):手順1で調製した9%MoO/HZSM−5をメタン気流中、650℃で30分間、次いで700℃で10分間焼成し、担持MoOのカーバイド化処理を行なった。この操作により9%MoC担持H型ZSM−5(以後、9%MoC/HZSM−5と略す)を得た。 Procedure 2 (Mo fixation on H-type ZSM-5): 9% MoO 3 / HZSM-5 prepared in Procedure 1 was calcined in a methane stream at 650 ° C. for 30 minutes and then at 700 ° C. for 10 minutes and supported. Carbide treatment of MoO 3 was performed. By this operation, 9% Mo 2 C-supported H-type ZSM-5 (hereinafter abbreviated as 9% Mo 2 C / HZSM-5) was obtained.

手順3(MoC/H型ZSM−5とバインダーとの混合):手順2で調製した9%MoC/HZSM−5とγ−Alを重量比1:1の割合でイオン交換水中でよく混合した後、蒸発乾固した。その後、造粒成型を行なって9%MoC/HZSM−5+γ−Alバインダー触媒成型体を得た。 Procedure 3 (mixing of Mo 2 C / H type ZSM-5 and binder): 9% Mo 2 C / HZSM-5 and γ-Al 2 O 3 prepared in Procedure 2 were ionized at a weight ratio of 1: 1. After mixing well in exchanged water, it was evaporated to dryness. Thereafter, granulation molding was performed to obtain a 9% Mo 2 C / HZSM-5 + γ-Al 2 O 3 binder catalyst molded body.

上記9%MoC/HZSM−5+γ−Alバインダー触媒成型体300mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図2(△)に示す。
比較例2
実施例2において手順1の操作を行なった後、手順2の操作を行なわずに9%MoO/HZSM−5を使用して手順3の操作を行ない、9%MoO/HZSM−5+γ−Alバインダー触媒成型体を得た。
Using 300 mg of the 9% Mo 2 C / HZSM-5 + γ-Al 2 O 3 binder catalyst molding, methane dehydroaromatization reaction was performed at 700 ° C. FIG. 2 (Δ) shows the change with time in the benzene production rate.
Comparative Example 2
After performing the operation of the procedure 1 in Example 2, the operation of the procedure 3 was performed using 9% MoO 3 / HZSM-5 without performing the operation of the procedure 2, and 9% MoO 3 / HZSM-5 + γ-Al A 2 O 3 binder catalyst molding was obtained.

上記9%MoO/HZSM−5+γ−Alバインダー触媒成型体300mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図2(○)に示す。
参考例2
実施例2の手順2で得られた9%MoC/HZSM−5を造粒し、バインダー成分を全く含まない9%MoC/HZSM−5触媒成型体を得た。
Using 300 mg of the 9% MoO 3 / HZSM-5 + γ-Al 2 O 3 binder catalyst molded body, a dehydroaromatization reaction of methane was carried out at 700 ° C. The change with time of the benzene production rate at that time is shown in FIG.
Reference example 2
The 9% Mo 2 C / HZSM-5 obtained in the procedure 2 of Example 2 was granulated to obtain a 9% Mo 2 C / HZSM-5 catalyst molded body containing no binder component.

上記9%MoC/HZSM−5触媒成型体150mgを使用して700℃でメタンの脱水素芳香族化反応を行なった。その際のベンゼン生成速度の経時変化を図2(□)に示す。 Using 150 mg of the 9% Mo 2 C / HZSM-5 molded catalyst, methane dehydroaromatization reaction was performed at 700 ° C. The change over time in the benzene production rate at that time is shown in FIG.

本発明の方法によれば、バインダー上への活性金属成分の担持を防ぐことができるため、高価な活性金属成分の使用量を最小限に抑えつつ効率的に反応を行なえる低級炭化水素の脱水素芳香族化反応用触媒成型体を製造することが可能である。   According to the method of the present invention, since it is possible to prevent the active metal component from being supported on the binder, the dehydration of lower hydrocarbons can be efficiently performed while minimizing the amount of expensive active metal component used. It is possible to produce a molded catalyst body for an aromatization reaction.

実施例1および比較例1の方法で製造した3重量%Mo担持HZSM−5+SiOバインダー触媒成型体と、参考例1の方法で製造した3重量%Mo担持HZSM−5触媒成型体でメタンの脱水素芳香族化反応を行なった際のベンゼン生成速度の経時変化を示す。Dehydration of methane using the 3 wt% Mo-supported HZSM-5 + SiO 2 binder catalyst molded body produced by the method of Example 1 and Comparative Example 1 and the 3 wt% Mo-supported HZSM-5 catalyst molded body produced by the method of Reference Example 1 The time-dependent change of the benzene production | generation rate at the time of performing an aromatization reaction is shown. 実施例2および比較例2の方法で製造した9重量%Mo担持HZSM−5+γ−Alバインダー触媒成型体と、参考例2の方法で製造した9重量%Mo担持HZSM−5触媒成型体でメタンの脱水素芳香族化反応を行なった際のベンゼン生成速度の経時変化を示す。9% by weight Mo-supported HZSM-5 + γ-Al 2 O 3 binder catalyst molded body produced by the method of Example 2 and Comparative Example 2, and 9% by weight Mo-supported HZSM-5 catalyst molded body produced by the method of Reference Example 2 Shows the change over time in the rate of benzene formation during the dehydroaromatization of methane.

Claims (1)

触媒活性金属成分としてのモリブデンを含む前駆体の水溶液またはアルコール溶液をメタロシリケートに含浸し、焼成処理してメタロシリケートの表面に酸化モリブデンを担持させ、カーバイド化処理した後に、バインダー成分と混合して成型することを特徴とする低級炭化水素の脱水素芳香族化反応用触媒成型体の製造方法。After impregnating the metallosilicate with an aqueous solution or alcohol solution of a precursor containing molybdenum as a catalytically active metal component, firing the molybdenum oxide on the surface of the metallosilicate and carrying out the carbide treatment, and then mixing with the binder component A method for producing a molded catalyst for a dehydroaromatization reaction of a lower hydrocarbon, characterized by molding.
JP2003386927A 2003-11-17 2003-11-17 Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon Expired - Lifetime JP4235731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386927A JP4235731B2 (en) 2003-11-17 2003-11-17 Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386927A JP4235731B2 (en) 2003-11-17 2003-11-17 Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon

Publications (2)

Publication Number Publication Date
JP2005144360A JP2005144360A (en) 2005-06-09
JP4235731B2 true JP4235731B2 (en) 2009-03-11

Family

ID=34694476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386927A Expired - Lifetime JP4235731B2 (en) 2003-11-17 2003-11-17 Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon

Country Status (1)

Country Link
JP (1) JP4235731B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943671B2 (en) * 2004-07-08 2012-05-30 ズードケミー触媒株式会社 Lower hydrocarbon aromatization catalyst and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using the same
US7683227B2 (en) * 2004-12-22 2010-03-23 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
CN100363103C (en) * 2005-07-14 2008-01-23 北京化工大学 Porous molecular-sieve catalyst for assembling carbide and its preparation
CN100363104C (en) * 2005-07-14 2008-01-23 北京化工大学 Porous molecular sieve catalyst for assembling tungsten carbide and its preparation
US20100185034A1 (en) 2007-08-03 2010-07-22 Mitsui Chemicals , Inc Process for producing aromatic hydrocarbon
WO2009140790A1 (en) * 2008-05-21 2009-11-26 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Production of aromatics from methane
WO2010013527A1 (en) * 2008-07-29 2010-02-04 株式会社明電舎 Process for producing aromatic compound
CN105214704A (en) * 2015-10-29 2016-01-06 无锡桥阳机械制造有限公司 A kind of preparation method of catalyst
CN114733562B (en) * 2022-03-21 2023-05-19 大连理工大学 High-activity methane-methanol oxygen-free co-aromatization catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005144360A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US4604371A (en) Oxidation catalyst
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
TW200844076A (en) Alkylation process using a catalyst comprising rare earth containing zeolites and a hydrogenation metal
JP4235731B2 (en) Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon
WO2005105710A1 (en) Method for producing lower olefin
JP4823655B2 (en) Method for producing xylenes
US6617275B1 (en) Process for preparing a catalyst for aromatic production
JP2002506067A (en) Epoxidation method using gold catalyst supported on carrier
JP2017527536A (en) Alkylation process using cerium-rich rare earth-containing zeolite and catalyst containing metal hydride
JPH0462780B2 (en)
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
US20110172478A1 (en) Catalyst for aromatization of lower hydrocarbon, and process for production of aromatic compound
WO2005032713A1 (en) A process for preparing a catalyst with a non-acidic binder and a process for using the catalyst to produce aromatics
JP5288256B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP2010018556A (en) Method for producing lower olefin from ethanol
KR100939437B1 (en) A method for preparing decomposition catalyst for hydrocarbon
JP2005254120A (en) Lower hydrocarbon direct-reforming catalyst and its manufacturing method
RU2184722C1 (en) Method of oxidation of benzene to phenol
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4235731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term