JP5288256B2 - Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same - Google Patents

Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same Download PDF

Info

Publication number
JP5288256B2
JP5288256B2 JP2008279314A JP2008279314A JP5288256B2 JP 5288256 B2 JP5288256 B2 JP 5288256B2 JP 2008279314 A JP2008279314 A JP 2008279314A JP 2008279314 A JP2008279314 A JP 2008279314A JP 5288256 B2 JP5288256 B2 JP 5288256B2
Authority
JP
Japan
Prior art keywords
catalyst
producing
water
lower olefin
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279314A
Other languages
Japanese (ja)
Other versions
JP2010104909A5 (en
JP2010104909A (en
Inventor
朋也 井上
憲一郎 大瀧
洋貴 杉山
嘉道 清住
聡 濱川
富士夫 水上
拓郎 古川
正雄 川原
悟郎 澤田
宏 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2008279314A priority Critical patent/JP5288256B2/en
Publication of JP2010104909A publication Critical patent/JP2010104909A/en
Publication of JP2010104909A5 publication Critical patent/JP2010104909A5/en
Application granted granted Critical
Publication of JP5288256B2 publication Critical patent/JP5288256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法に関する。更に詳しくは、低級オレフィンを効率よく製造することができると共に、高温水蒸気雰囲気下における耐久性の高いゼオライト系触媒、その製造方法及びこれを用いた低級オレフィンの製造方法に関するものである。   The present invention relates to a catalyst for producing a lower olefin, a production method thereof and a production method of a lower olefin using the same. More specifically, the present invention relates to a zeolite catalyst that can efficiently produce a lower olefin and has high durability in a high-temperature steam atmosphere, a production method thereof, and a production method of a lower olefin using the same.

エチレン、プロピレン等の低級オレフィンは、各種化学品の基礎原料として重要な物質である。従来、これらの低級オレフィンの製造方法としては、エタン、プロパン、ブタン等のガス状炭化水素或いはナフサ等の液状炭化水素を原料とし、外熱式の管状炉内で水蒸気雰囲気下に加熱分解する方法が広く実施されている。しかしながら、この方法では、オレフィン収率を高めるためには800℃以上の高温が必要であり、そのような温度条件では、オレフィンだけではなく芳香族成分も多く生成することが知られている。この芳香族成分は、加熱分解する方法以外の製造方法により容易に製造できることから、低級オレフィン類を選択的に製造する技術が求めてられている。このため、触媒を用いたオレフィンの製造方法が種々検討されてきており、それらの中でも固体酸、特にゼオライト系触媒を用いた場合は、比較的低温(350〜700℃)で上記原料を分解できるため、この方法について数多くの例が報告されている。   Lower olefins such as ethylene and propylene are important substances as basic raw materials for various chemicals. Conventionally, as a method for producing these lower olefins, gas hydrocarbons such as ethane, propane and butane, or liquid hydrocarbons such as naphtha are used as raw materials, and heat decomposition is performed in a steam atmosphere in an externally heated tubular furnace. Is widely implemented. However, this method requires a high temperature of 800 ° C. or higher in order to increase the olefin yield, and it is known that not only olefin but also aromatic components are produced under such temperature conditions. Since this aromatic component can be easily produced by a production method other than the method of thermally decomposing, a technique for selectively producing lower olefins has been demanded. For this reason, various methods for producing olefins using catalysts have been studied, and among them, when a solid acid, especially a zeolitic catalyst is used, the above raw material can be decomposed at a relatively low temperature (350 to 700 ° C.). Therefore, many examples of this method have been reported.

例えば特許文献1では、クラッキング活性の指標であるα値を特定の範囲に制御したZSM−5(結晶性アルミノシリケート)による低級オレフィンの製造方法が開示されており、又、特許文献2では酸量及びZSM−5の結晶サイズを特定の範囲に制御したZSM−5型触媒を用いたナフサの接触分解法が開示されている。しかしながら、これらの方法では芳香族成分(ベンゼン、トルエン、キシレン、以下「BTX」と記載する。)が20〜25質量%程度生成すると共に、エチレン及びプロピレン収率は35〜45%質量程度に留まり、オレフィンを効率的に得ることはできなかった。   For example, Patent Document 1 discloses a method for producing a lower olefin using ZSM-5 (crystalline aluminosilicate) in which the α value that is an index of cracking activity is controlled within a specific range, and Patent Document 2 discloses an acid amount. And a catalytic cracking method of naphtha using a ZSM-5 type catalyst in which the crystal size of ZSM-5 is controlled in a specific range. However, in these methods, aromatic components (benzene, toluene, xylene, hereinafter referred to as “BTX”) are produced in an amount of about 20 to 25% by mass, and the yields of ethylene and propylene remain at about 35 to 45% by mass. The olefin could not be obtained efficiently.

又、特許文献3では、カルシウム及びリンを担持したZSM−5による、メタノールを原料とした低級オレフィンの製造方法が開示されており、カルシウムとリンを導入することにより低級オレフィンの選択性及び触媒寿命が改善されることが示されている。しかしながら、分子内に酸素原子を含むために比較的温和な条件で接触分解を行うことのできるメタノールを含まない、他の炭化水素原料を用いた場合はより高い温度で接触分解が行われるため、芳香族及びコーク成分が多く生成し、低級オレフィンの選択性及び触媒寿命改善の効果は充分ではなかった。   Patent Document 3 discloses a method for producing a lower olefin using methanol as a raw material by ZSM-5 carrying calcium and phosphorus, and the selectivity and catalyst life of the lower olefin by introducing calcium and phosphorus. Has been shown to improve. However, since it contains oxygen atoms in the molecule, it does not contain methanol that can be subjected to catalytic cracking under relatively mild conditions.If other hydrocarbon raw materials are used, catalytic cracking is performed at a higher temperature. A lot of aromatic and coke components were produced, and the effect of improving selectivity and catalyst life of lower olefins was not sufficient.

同様に、アルカリ土類金属とリンを担持した触媒を用いる低級オレフィンの製造方法として、特許文献4及び5等が知られている。特許文献4では、酸化マグネシウム、しゅう酸カルシウム等の非水溶性金属塩とリン酸化合物を含むZSM−5を触媒としたオレフィンの製造方法が開示されているが、原料転化率が80質量%以下、エチレン及びプロピレン収率が40質量%未満と低く、又、特許文献5では、マグネシウムとリンをZSM−5に担持した触媒を用いたオレフィンの製造方法が開示されているが原料転化率が70質量%未満と低く、又、触媒活性の劣化の抑制効果も不充分であった。   Similarly, Patent Documents 4 and 5 are known as a method for producing a lower olefin using a catalyst supporting an alkaline earth metal and phosphorus. Patent Document 4 discloses a method for producing olefins using ZSM-5 containing a water-insoluble metal salt such as magnesium oxide or calcium oxalate and a phosphoric acid compound as a catalyst, but the raw material conversion is 80% by mass or less. In addition, the yield of ethylene and propylene is as low as less than 40% by mass, and Patent Document 5 discloses a method for producing olefins using a catalyst in which magnesium and phosphorus are supported on ZSM-5, but the raw material conversion is 70. It was as low as less than mass%, and the effect of suppressing deterioration of the catalyst activity was insufficient.

更に特許文献6では、マグネシウムとリン又はカルシウムとリンを含有するゼオライトを含む低級オレフィン製造用触媒が開示されており、当該触媒が高温条件で水蒸気雰囲気下にさらされた場合においても優れた活性安定性を有することが示されている。しかしながら、その性能は未だ工業的に満足できるものではなかった。   Furthermore, Patent Document 6 discloses a catalyst for producing a lower olefin containing a zeolite containing magnesium and phosphorus or calcium and phosphorus, and exhibits excellent activity stability even when the catalyst is exposed to a steam atmosphere under high temperature conditions. It has been shown to have sex. However, its performance has not been industrially satisfactory.

上記のように、アルカリ土類金属及びリンで担持されたZSM−5によるオレフィンの製造方法はいくつか開示されているが、その性能はいまだ工業的に満足できるものではなく、更なるオレフィン収率の向上、触媒活性の劣化抑制が望まれていた。
特表平3−504737号公報 特開平6−346062号公報 特開昭61−15848号公報 米国特許公開2007/0082809A1号公報 中国特許公開1414068号公報 特開平11−192431号公報
As mentioned above, several methods for the production of olefins by alkaline earth metal and phosphorus supported ZSM-5 have been disclosed, but their performance is still not industrially satisfactory and further olefin yields Improvement of the catalyst and suppression of catalyst activity deterioration have been desired.
Japanese Patent Publication No. 3-504737 JP-A-6-346062 Japanese Patent Laid-Open No. 61-15848 US Patent Publication No. 2007 / 0082809A1 Chinese Patent Publication No. 14104068 Japanese Patent Laid-Open No. 11-192431

本発明の目的は、低級オレフィンを効率よく製造することができると共に、高温水蒸気雰囲気下における耐久性の高いゼオライト系触媒、その製造方法及びこれを用いた低級オレフィンの製造方法を提供することにある。   An object of the present invention is to provide a zeolite catalyst that can efficiently produce lower olefins and has high durability in a high-temperature steam atmosphere, a method for producing the same, and a method for producing lower olefins using the same. .

本発明者らは、アルカリ土類金属及びリンを担持した従来の触媒の調製法では、前記成分を担持する際に、不溶性の塩を含むスラリー状の混合液にゼオライトを含浸するなどしていたことに注目し、前記課題を解決すべく鋭意検討を重ねた結果、アルカリ土類金属とリンを含む水溶性の塩を用いて担持することにより、低級オレフィンを効率よく製造することができると共に、高温水蒸気雰囲気下における耐久性の高い触媒が得られることを見出し、本発明を完成させた。   In the conventional method for preparing an alkaline earth metal and phosphorus-supported catalyst, the present inventors impregnated zeolite with a slurry-like mixed liquid containing an insoluble salt when supporting the above components. As a result of intensive investigations to solve the above-mentioned problems, it is possible to efficiently produce a lower olefin by carrying it using a water-soluble salt containing an alkaline earth metal and phosphorus, The inventors have found that a highly durable catalyst in a high-temperature steam atmosphere can be obtained, and have completed the present invention.

すなわち、本発明は、前記課題を解決するために以下の手段を提供するものである。   That is, the present invention provides the following means in order to solve the above problems.

〔1〕 含浸工程、乾燥工程及び焼成工程を含む工程によりアルカリ土類金属及びリンを担持したMFI構造を有する結晶性アルミノシリケートであり、アルカリ土類金属及びリンを、アルカリ土類金属とリンを含む水溶性の塩により担持してなることを特徴とする低級オレフィン製造用触媒。 [1] A crystalline aluminosilicate having an MFI structure in which an alkaline earth metal and phosphorus are supported by a process including an impregnation process, a drying process, and a firing process, and the alkaline earth metal and phosphorus are mixed with alkaline earth metal and phosphorus. A catalyst for producing a lower olefin, which is supported by a water-soluble salt contained therein.

〔2〕 前記水溶性の塩の水に対する溶解度が、20℃で1g/100ml以上である〔1〕に記載の低級オレフィン製造用触媒。 [2] The catalyst for producing a lower olefin according to [1], wherein the solubility of the water-soluble salt in water is 1 g / 100 ml or more at 20 ° C.

〔3〕 前記水溶性の塩が、アルカリ土類金属のリン酸二水素塩又は次亜リン酸塩である〔1〕又は〔2〕に記載の低級オレフィン製造用触媒。 [3] The catalyst for producing a lower olefin according to [1] or [2], wherein the water-soluble salt is an alkaline earth metal dihydrogen phosphate or hypophosphite.

〔4〕 前記水溶性の塩が、ポリオールリン酸エステルのアルカリ土類金属塩である〔1〕又は〔2〕に記載の低級オレフィン製造用触媒。 [4] The catalyst for producing a lower olefin according to [1] or [2], wherein the water-soluble salt is an alkaline earth metal salt of a polyol phosphate.

〔5〕 結晶性アルミノシリケートがZSM−5である〔1〕〜〔〕のいずれかに記載の低級オレフィン製造用触媒。 [5] The catalyst for producing a lower olefin according to any one of [1] to [ 4 ], wherein the crystalline aluminosilicate is ZSM-5.

〔6〕 アルカリ土類金属の含有量が0.1〜20質量%である〔1〕〜〔〕のいずれかに記載の低級オレフィン製造用触媒。 [6] The catalyst for producing a lower olefin according to any one of [1] to [ 5 ], wherein the content of the alkaline earth metal is 0.1 to 20% by mass.

〔7〕 リンの含有量が0.1〜20質量%である〔1〕〜〔〕のいずれかに記載の低級オレフィン製造用触媒。 [7] The catalyst for producing a lower olefin according to any one of [1] to [ 6 ], wherein the phosphorus content is 0.1 to 20% by mass.

〔8〕 更に、希土類元素を含む〔1〕〜〔〕のいずれかに記載の低級オレフィン製造用触媒。 [8] The catalyst for producing a lower olefin according to any one of [1] to [ 7 ], further comprising a rare earth element.

〔9〕 MFI構造を有する結晶性アルミノシリケートに、含浸工程、乾燥工程及び焼成工程を含む工程によりアルカリ土類金属及びリンを担持して低級オレフィン製造用触媒を製造する際、含浸工程においてアルカリ土類金属とリンを含む水溶性の塩を使用することを特徴とする低級オレフィン製造用触媒製造方法。 [9] the crystalline aluminosilicate having an MFI structure, impregnation step, drying step and making the lower olefin production catalyst for carrying the alkaline earth metal and phosphorus by a process comprising calcining step, the alkaline earth in the impregnation step method for producing lower olefins production catalyst, which comprises using a metalloid and a water-soluble salt containing phosphorus.

〔10〕 前記水溶性の塩の水に対する溶解度が、20℃で1g/100ml以上である〔〕に記載の低級オレフィン製造用触媒の製造方法。 [10] The method for producing a catalyst for producing a lower olefin according to [ 9 ], wherein the solubility of the water-soluble salt in water is 1 g / 100 ml or more at 20 ° C.

〔11〕 前記水溶性の塩が、アルカリ土類金属のリン酸二水素塩又は次亜リン酸塩である〔〕又は〔10〕に記載の低級オレフィン製造用触媒の製造方法。 [11] The method for producing a catalyst for producing a lower olefin according to [ 9 ] or [ 10 ], wherein the water-soluble salt is an alkaline earth metal dihydrogen phosphate or hypophosphite.

〔12〕 前記水溶性の塩が、ポリオールリン酸エステルのアルカリ土類金属塩である〔〕又は〔10〕に記載の低級オレフィン製造用触媒の製造方法。 [12] The method for producing a catalyst for producing a lower olefin according to [ 9 ] or [ 10 ], wherein the water-soluble salt is an alkaline earth metal salt of a polyol phosphate.

〔13〕 〔1〕〜〔〕のいずれかに記載の低級オレフィン製造用触媒を用いた低級オレフィンの製造方法。 [13] A method for producing a lower olefin using the catalyst for producing a lower olefin according to any one of [1] to [ 8 ].

〔14〕 水蒸気の存在下に行う〔13〕に記載の低級オレフィンの製造方法。 [14] The method for producing a lower olefin according to [ 13 ], which is carried out in the presence of water vapor.

本発明の低級オレフィン製造用触媒は、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができ、更に、高温水蒸気雰囲気下における触媒劣化を抑制することができるので、接触分解反応における低級オレフィン製造用触媒として好適に用いることができる。   The catalyst for producing a lower olefin of the present invention can suppress the production of aromatic components, can produce a lower olefin efficiently, and can further suppress catalyst deterioration under a high-temperature steam atmosphere. Can be suitably used as a catalyst for the production of lower olefins.

本発明の触媒は、結晶性アルミノシリケートを主成分とし、これにアルカリ土類金属及びリンを担持してなる。主成分の結晶性アルミノシリケートとしてはMFI構造を持つもの、中でもZSM−5が特に好ましい。この結晶性アルミノシリケートのSiO/Alモル比は、好ましくは20〜600、更に好ましくは22〜300、特に好ましくは25〜100である。 The catalyst of the present invention comprises a crystalline aluminosilicate as a main component and supports an alkaline earth metal and phosphorus. As the main component crystalline aluminosilicate, one having an MFI structure, ZSM-5 is particularly preferable. The SiO 2 / Al 2 O 3 molar ratio of this crystalline aluminosilicate is preferably 20 to 600, more preferably 22 to 300, and particularly preferably 25 to 100.

結晶性アルミノシリケートに担持させるアルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等を何れも好適に使用することができ、これらの中でも特にマグネシウム、カルシウムが好ましい。アルカリ土類金属はそれぞれを単独で使用しても、又、2種以上を混合してもよい。アルカリ土類金属の含有量は、本発明の触媒に対し元素換算で、好ましくは0.1〜20質量%、更に好ましくは0.2〜15質量%、特に好ましくは0.5〜10質量%である。   As the alkaline earth metal supported on the crystalline aluminosilicate, any of magnesium, calcium, strontium, barium and the like can be suitably used, and among these, magnesium and calcium are particularly preferable. The alkaline earth metals may be used alone or in combination of two or more. The content of the alkaline earth metal is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, and particularly preferably 0.5 to 10% by mass in terms of elements with respect to the catalyst of the present invention. It is.

リンの含有量は、本発明の触媒に対し元素換算で、好ましくは0.1〜20質量%、更に好ましくは1.0〜15質量%、特に好ましくは1.5〜10質量%である。   The phosphorus content is preferably 0.1 to 20% by mass, more preferably 1.0 to 15% by mass, and particularly preferably 1.5 to 10% by mass in terms of elements with respect to the catalyst of the present invention.

本発明の触媒は、アルカリ土類金属とリンを結晶性アルミノシリケートに担持する際、アルカリ土類金属とリンを含む水溶性の塩を使用することにより得られる。この水溶性の塩としては、水に対する溶解度が20℃で1g/100ml以上であるものが好ましく、具体的な水溶性の塩としては、アルカリ土類金属のリン酸二水素塩、次亜リン酸塩等の無機塩や、グリセロリン酸塩等のポリオールリン酸エステルの塩等を挙げることができる。これらの水溶性の塩を用いてアルカリ土類金属及びリンを担持する方法としては、当該水溶性の塩を溶解させた水溶液にプロトン型の結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   The catalyst of the present invention can be obtained by using a water-soluble salt containing an alkaline earth metal and phosphorus when the alkaline earth metal and phosphorus are supported on the crystalline aluminosilicate. The water-soluble salt preferably has a water solubility of 1 g / 100 ml or more at 20 ° C., and specific water-soluble salts include alkaline earth metal dihydrogen phosphate and hypophosphorous acid. Examples thereof include inorganic salts such as salts and salts of polyol phosphate esters such as glycerophosphate. As a method of supporting alkaline earth metal and phosphorus using these water-soluble salts, a method of impregnating a proton-type crystalline aluminosilicate in an aqueous solution in which the water-soluble salt is dissolved, drying, and firing. Can be mentioned.

例えばリン酸二水素塩、次亜リン酸塩等を用いた場合、リンとアルカリ土類金属の比は2:1(モル比)となるが、リンとアルカリ土類金属の比率を変更したい場合は、水溶性の塩を用いて担持を行う前又は後に、別工程でアルカリ土類金属及び/又はリンを担持してもよい。   For example, when dihydrogen phosphate, hypophosphite, etc. are used, the ratio of phosphorus to alkaline earth metal is 2: 1 (molar ratio), but you want to change the ratio of phosphorus to alkaline earth metal May carry alkaline earth metal and / or phosphorus in a separate step before or after loading with a water-soluble salt.

アルカリ土類金属を担持する方法としては、アルカリ土類金属の種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩或いはアルコキシド、アセチルアセトナート等を溶解させた水、エタノール等の溶液に、上記結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   Examples of the method for supporting the alkaline earth metal include various salts of alkaline earth metal such as acetate, nitrate, halide, sulfate, carbonate or alkoxide, water in which acetylacetonate is dissolved, ethanol and the like. Examples of the method include impregnating the crystalline aluminosilicate in a solution, drying, and firing.

リンを担持する方法としては、例えばリン酸やリン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン化合物を溶解させた水、エタノール等の溶液に、上記結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   As a method for supporting phosphorus, for example, the above crystalline aluminosilicate is impregnated in a solution of water, ethanol or the like in which a phosphorus compound such as phosphoric acid, ammonium dihydrogen phosphate, or diammonium hydrogen phosphate is dissolved, dried, The method of baking can be mentioned.

触媒調製の際の含浸方法については、蒸発乾固法、インシピエントウェットネス法、pore filling法など通常の含浸法を用いることができる。含浸時間は通常0.5〜2時間程度であり、乾燥温度は通常80〜200℃であり、焼成温度は通常400〜800℃であり、焼成時間は通常1〜12時間程度である。   As the impregnation method in preparing the catalyst, a normal impregnation method such as an evaporation to dryness method, an incipient wetness method, or a pore filling method can be used. The impregnation time is usually about 0.5 to 2 hours, the drying temperature is usually 80 to 200 ° C., the firing temperature is usually 400 to 800 ° C., and the firing time is usually about 1 to 12 hours.

又、本発明の触媒は、結晶性アルミノシリケート及びアルカリ土類金属、リンの他に、希土類元素、アルカリ金属、遷移金属、貴金属、ハロゲン等を担持していても良い。更に、本発明の触媒はシリカ、アルミナ、石英砂等で希釈して使用することも可能である。   In addition to the crystalline aluminosilicate, alkaline earth metal, and phosphorus, the catalyst of the present invention may carry a rare earth element, alkali metal, transition metal, noble metal, halogen, or the like. Furthermore, the catalyst of the present invention can be diluted with silica, alumina, quartz sand or the like.

例えば希土類元素を担持する方法としては、希土類元素の種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩或いはアルコキシド、アセチルアセトナート等を溶解させた水、エタノール等の溶液に、上記結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   For example, as a method for supporting a rare earth element, various salts of rare earth elements, such as acetate, nitrate, halide, sulfate, carbonate or alkoxide, acetylacetonate, etc. dissolved in water, ethanol or the like, Examples of the method include impregnating the crystalline aluminosilicate, drying, and firing.

このようにして得られた本発明の触媒は、接触分解反応による低級オレフィンの製造において、低級オレフィンを効率よく製造することができると共に、高温水蒸気雰囲気下における触媒劣化を抑制することが可能であり、種々の炭化水素を原料とする低級オレフィン製造用触媒として好適に用いることができる。アルカリ土類金属とリンを含む水溶性の塩を使用することで、このような効果が得られる理由は定かではないが、1つには水溶性の塩を用いることで、各成分が触媒中に均一に担持されるためだと推測される。逆に従来用いられている方法では、水に不溶なアルカリ土類金属とリンを含む塩が形成されてスラリー状となり、触媒中に均一に担持されないのではないかと推測される。   The catalyst of the present invention thus obtained can efficiently produce lower olefins in the production of lower olefins by catalytic cracking reaction, and can suppress catalyst deterioration under a high-temperature steam atmosphere. It can be suitably used as a catalyst for producing lower olefins using various hydrocarbons as raw materials. The reason why such an effect can be obtained by using a water-soluble salt containing an alkaline earth metal and phosphorus is not clear, but by using a water-soluble salt for one, each component is contained in the catalyst. This is presumed to be uniformly supported on the surface. On the other hand, in the conventionally used method, it is presumed that a salt containing an alkaline earth metal and phosphorus insoluble in water is formed into a slurry and is not uniformly supported in the catalyst.

本発明の触媒を用いた接触分解反応による低級オレフィンの製造において、炭化水素原料としては、常温、常圧でガス状又は液状の炭化水素や、メタノールやエタノール、ジメチルエーテルといった含酸素化合物が使用できる。一般的には、炭素数2〜30、好ましくは炭素数4〜10のパラフィン類又はこれを主成分とする炭化水素原料が用いられ、このような炭化水素原料としては、例えば、エタン、プロパン、ブタン、ペンタン、ヘキサン等のパラフィン類、或いは、ナフサ、軽油等の軽質炭化水素留分を挙げることができる。又、炭化水素原料は飽和炭化水素に限定されるものではなく、不飽和結合を有する成分を含有するものでも使用でき、更に、芳香族成分が含まれていてもよい。   In the production of the lower olefin by the catalytic cracking reaction using the catalyst of the present invention, as the hydrocarbon raw material, a gaseous or liquid hydrocarbon at normal temperature and normal pressure, or an oxygen-containing compound such as methanol, ethanol or dimethyl ether can be used. In general, paraffins having 2 to 30 carbon atoms, preferably 4 to 10 carbon atoms, or hydrocarbon raw materials based on these are used. Examples of such hydrocarbon raw materials include ethane, propane, Examples thereof include paraffins such as butane, pentane and hexane, and light hydrocarbon fractions such as naphtha and light oil. Further, the hydrocarbon raw material is not limited to saturated hydrocarbons, and those containing components having unsaturated bonds can be used, and further aromatic components may be included.

上記接触分解反応は、固定床、流動床等の形式の反応器を使用し、上記本発明の触媒を充填した触媒層へ炭化水素原料を供給することにより行われる。このとき炭化水素原料は窒素、水素、ヘリウム、或いは水蒸気等で希釈されていてもよい。これらの希釈剤の中でも特に水蒸気は、コーク成分の生成を抑制し、触媒の活性を保つ効果があり好ましい。水蒸気の供給量は原料炭化水素に対して質量比で0.1〜1、好ましくは0.3〜0.7である。反応温度は通常350〜780℃、好ましくは500〜750℃、更に好ましくは600〜700℃の範囲である。780℃を越える温度でも実施はできるが、メタン及びコーク成分の生成が急増し、又、350℃未満では充分な活性が得られないため、1回通過あたりのオレフィン収量が少なくなる。   The catalytic cracking reaction is carried out by supplying a hydrocarbon raw material to a catalyst layer filled with the catalyst of the present invention using a reactor of a fixed bed type, fluidized bed type or the like. At this time, the hydrocarbon raw material may be diluted with nitrogen, hydrogen, helium, water vapor or the like. Among these diluents, water vapor is particularly preferable because it suppresses the production of coke components and maintains the activity of the catalyst. The supply amount of water vapor is 0.1 to 1, preferably 0.3 to 0.7 in terms of mass ratio with respect to the raw material hydrocarbon. The reaction temperature is usually 350 to 780 ° C, preferably 500 to 750 ° C, more preferably 600 to 700 ° C. Although it can be carried out at a temperature exceeding 780 ° C., the production of methane and coke components increases rapidly, and sufficient activity cannot be obtained at a temperature below 350 ° C., so that the olefin yield per pass is reduced.

以下に、本発明について実施例を挙げて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
(1)触媒調製
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、次亜リン酸カルシウム水溶液{1.36gの次亜リン酸カルシウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で2.6質量%、3.9質量%であった。
Example 1
(1) Catalyst preparation 10 g of powdered proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40), calcium hypophosphite aqueous solution {1.36 g of calcium hypophosphite (special grade), ion-exchanged water The product dissolved in 100 g} was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 2.6% by mass and 3.9% by mass, respectively, in terms of element.

(2)反応評価
得られた触媒2.2gを内径10mmのステンレス反応管(SUS316製)に触媒層の長さが40mmとなるように充填した。触媒層の上下には石英砂を充填した。このリアクターに窒素を流しながら触媒層の温度を650℃まで昇温し、原料としてn−ヘキサン(特級)を8g/hr、窒素を10ml/min、水蒸気を4g/hrの流量で供給し、n−ヘキサンの接触分解反応を行った。反応生成物の分析をガスクロマトグラフィーによって行い、生成物収率及び原料転化率を次式により算出した。
(2) Reaction evaluation The obtained catalyst (2.2 g) was packed in a stainless steel reaction tube (made of SUS316) having an inner diameter of 10 mm so that the length of the catalyst layer was 40 mm. The upper and lower sides of the catalyst layer were filled with quartz sand. While flowing nitrogen into the reactor, the temperature of the catalyst layer was raised to 650 ° C., and n-hexane (special grade) was supplied as raw materials at a flow rate of 8 g / hr, nitrogen at 10 ml / min, and water vapor at a flow rate of 4 g / hr. -Catalytic decomposition reaction of hexane was performed. The reaction product was analyzed by gas chromatography, and the product yield and the raw material conversion were calculated by the following equations.

生成物収率(C−mol%)=(各成分炭素基準mol数/供給原料炭素基準mol数)×100
原料転化率(質量%)=(1−未反応原料重量/供給原料重量)×100
Product yield (C-mol%) = (number of moles of each component based on carbon / number of moles based on feed carbon) × 100
Raw material conversion (mass%) = (1-unreacted raw material weight / feed raw material weight) × 100

原料供給開始後6時間後の生成物収率及び原料転化率を表1(スチーミング処理前の欄)に示す。   Table 1 (column before steaming treatment) shows the product yield and the raw material conversion rate after 6 hours from the start of the raw material supply.

(3)耐水熱安定性評価
次に、触媒の耐水熱安定性を評価した。即ち、得られた触媒5gを石英管に充填し、水蒸気供給量10g/hr、窒素流量10ml/min、700℃で40時間スチーミング処理を行い、処理後の触媒について上記(2)と同じ条件で反応評価を行った。反応開始6時間後の結果を表1(スチーミング処理後の欄)に示す。
(3) Hydrothermal stability evaluation Next, the hydrothermal stability of the catalyst was evaluated. That is, 5 g of the obtained catalyst was filled in a quartz tube, steamed at a steam supply rate of 10 g / hr, a nitrogen flow rate of 10 ml / min, and 700 ° C. for 40 hours, and the treated catalyst was subjected to the same conditions as in (2) above. The reaction was evaluated. The results 6 hours after the start of the reaction are shown in Table 1 (column after the steaming treatment).

比較例1
90℃の温浴上にて、酢酸カルシウム溶液{6.34gの酢酸カルシウム一水和物(特級)をイオン交換水300gに溶解したもの}とリン酸二水素アンモニウム溶液{4.14gのリン酸二水素アンモニウム(一級)をイオン交換水300gに溶解したもの}を混合し、スラリー状の混合溶液を得た。この混合溶液に、粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを加え、40℃で1時間攪拌した。生成したスラリーを減圧濾過し、イオン交換水で洗浄後、空気中、120℃で12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で8.9質量%、4.6質量%であった。
Comparative Example 1
Calcium acetate solution {6.34 g of calcium acetate monohydrate (special grade) dissolved in 300 g of ion-exchanged water} and ammonium dihydrogen phosphate solution {4.14 g of dibasic phosphate in a 90 ° C. warm bath A solution of ammonium hydrogen (primary) dissolved in 300 g of ion-exchanged water} was mixed to obtain a slurry-like mixed solution. To this mixed solution, 10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) was added and stirred at 40 ° C. for 1 hour. The produced slurry was filtered under reduced pressure, washed with ion exchange water, dried in air at 120 ° C. for 12 hours, heated to 600 ° C. over 4 hours in a muffle furnace, and calcined at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 8.9 mass% and 4.6 mass%, respectively, in terms of element.

得られた触媒を用いて、実施例1と同様の方法で上記(2)反応評価及び(3)耐水熱安定性評価を行った。結果を表1に示す。   Using the obtained catalyst, the above (2) reaction evaluation and (3) hydrothermal stability evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

表1から明らかなように、スチーミング処理前の触媒活性を比べると、カルシウムとリンを含む水溶液の塩の水溶液を用いて担持した実施例1の触媒は、カルシウムとリンをスラリー状の混合溶液を用いて担持した比較例1の触媒と比べて、より高い低級オレフィン収率(C2+C3収率)とより低い芳香族成分収率(BTX収率)を示しており、低級オレフィンの選択性において優位であることがわかる。又、スチーミング処理後の触媒活性を比べると、実施例1の触媒は、比較例1に比べて、低級オレフィン収率(C2+C3収率)及び転化率が著しく高く維持されており、耐水熱安定性に優れることが判る。   As is apparent from Table 1, when the catalytic activity before the steaming treatment is compared, the catalyst of Example 1 supported by using an aqueous salt solution containing calcium and phosphorus is a mixed solution of calcium and phosphorus in a slurry state. Compared with the catalyst of Comparative Example 1 supported by using a higher yield of lower olefin (C2 + C3 yield) and lower aromatic component yield (BTX yield), superior in lower olefin selectivity It can be seen that it is. Further, when the catalytic activity after the steaming treatment is compared, the catalyst of Example 1 maintains the lower olefin yield (C2 + C3 yield) and the conversion rate remarkably higher than those of Comparative Example 1, and is hydrothermal stable. It turns out that it is excellent in property.

実施例2及び比較例2
実施例1及び比較例1において調製した触媒をそれぞれ用い、n−ヘキサンの供給量を2.6g/hr、水蒸気の供給量を1.3g/hrに変えた他は、実施例1と同様の方法で反応評価を行った。触媒1gあたりのヘキサン処理量に対する原料転化率の変化を図1に、低級オレフィン収率(C2+C3収率)の変化を図2に示す。図1から明らかなように、比較例2では実施例に比べ初期転化率がやや高いものの、ヘキサン処理量が増加するに伴い転化率が低下しているのに対し、実施例2では転化率がほぼ一定に保たれており、転化率の低下が抑制されていることがわかる。又、図2から明らかなように、実施例2の触媒は、比較例2と比べて低級オレフィン収率(C2+C3収率)が高く維持されており、低級オレフィンを効率よく製造することができる。
Example 2 and Comparative Example 2
Example 1 and Comparative Example 1 were used, respectively, except that the amount of n-hexane supplied was changed to 2.6 g / hr and the amount of water vapor supplied was changed to 1.3 g / hr. The reaction was evaluated by the method. FIG. 1 shows the change in the raw material conversion with respect to the amount of hexane treated per 1 g of the catalyst, and FIG. As is apparent from FIG. 1, although the initial conversion rate in Comparative Example 2 is slightly higher than that in the Example, the conversion rate decreases as the amount of hexane increases, whereas in Example 2, the conversion rate is low. It can be seen that the ratio is kept almost constant and the decrease in the conversion rate is suppressed. As is clear from FIG. 2, the catalyst of Example 2 maintains a lower olefin yield (C2 + C3 yield) higher than that of Comparative Example 2, and can efficiently produce the lower olefin.

実施例3
次亜リン酸カルシウムの量を1.36gから0.68gに変えた他は実施例1と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で1.3質量%、2.0質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後4時間での原料転化率及び生成物選択率を表2に示す。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the amount of calcium hypophosphite was changed from 1.36 g to 0.68 g. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 1.3% by mass and 2.0% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the raw material conversion rate and product selectivity after 4 hours from the start of the reaction.

実施例4
次亜リン酸カルシウムの量を1.36gから1.02gに変えた他は実施例1と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で2.0質量%、3.0質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後4時間での原料転化率及び生成物選択率を表2に示す。
Example 4
A catalyst was prepared in the same manner as in Example 1 except that the amount of calcium hypophosphite was changed from 1.36 g to 1.02 g. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 2.0% by mass and 3.0% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the raw material conversion rate and product selectivity after 4 hours from the start of the reaction.

実施例5
含浸溶液をリン酸二水素カルシウム水溶液{1.01gのリン酸二水素カルシウム・一水和物(特級)をイオン交換水100gに溶解したもの}に変えた他は実施例1と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で1.2質量%、2.1質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後5時間後の結果を表2に示す。
Example 5
The catalyst was the same as in Example 1 except that the impregnation solution was changed to calcium dihydrogen phosphate aqueous solution {1.01 g of calcium dihydrogen phosphate monohydrate (special grade) dissolved in 100 g of ion-exchanged water}. Prepared. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 1.2% by mass and 2.1% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the results after 5 hours from the start of the reaction.

実施例6
含浸溶液を次亜リン酸マグネシウム水溶液{1.04gの次亜リン酸マグネシウム(特級)をイオン交換水100gに溶解したもの}に変えた他は実施例1と同様に触媒を調製した。調製した触媒中のMg、P濃度をICP−MSにより測定したところ、それぞれ元素換算で0.9質量%、3.5質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後5時間後の結果を表2に示す。
Example 6
A catalyst was prepared in the same manner as in Example 1 except that the impregnation solution was changed to a magnesium hypophosphite aqueous solution {1.04 g of magnesium hypophosphite (special grade) dissolved in 100 g of ion-exchanged water}. When the Mg and P concentrations in the prepared catalyst were measured by ICP-MS, they were 0.9% by mass and 3.5% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the results after 5 hours from the start of the reaction.

表2から、アルカリ土類及びリンの担持量、前駆体の種類、アルカリ土類金属の種類を変えても、オレフィン収率及び転化率の高い触媒が得られることがわかる。   From Table 2, it can be seen that a catalyst having a high olefin yield and a high conversion rate can be obtained even if the supported amount of alkaline earth and phosphorus, the type of precursor, and the type of alkaline earth metal are changed.

実施例7
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸カルシウム水溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた焼成物を次亜リン酸カルシウム水溶液{1.36gの次亜リン酸カルシウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で4.2質量%、4.3質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後5時間後の結果を表3に示す。
Example 7
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and calcium acetate aqueous solution {0.71 g of calcium acetate monohydrate (special grade) are dissolved in 100 g of ion-exchanged water. Was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained fired product was impregnated with a calcium hypophosphite aqueous solution {1.36 g of calcium hypophosphite (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 4.2% by mass and 4.3% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results after 5 hours from the start of the reaction.

実施例8
次亜リン酸カルシウム水溶液をリン酸二水素カルシウム水溶液{1.02gのリン酸二水素カルシウム・一水和物(特級)をイオン交換水100gに溶解したもの}に変えた他は実施例7と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で4.2質量%、4.3質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後6時間後の結果を表3に示す。
Example 8
Similar to Example 7 except that the calcium hypophosphite aqueous solution was changed to calcium dihydrogen phosphate aqueous solution {1.02 g of calcium dihydrogen phosphate monohydrate (special grade) dissolved in 100 g of ion-exchanged water}. A catalyst was prepared. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 4.2% by mass and 4.3% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results 6 hours after the start of the reaction.

実施例9
酢酸カルシウムと次亜リン酸カルシウムによる担持の順番を逆にした他は実施例7と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で4.2質量%、4.3質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後6時間後の結果を表3に示す。
Example 9
A catalyst was prepared in the same manner as in Example 7 except that the order of loading with calcium acetate and calcium hypophosphite was reversed. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 4.2% by mass and 4.3% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results 6 hours after the start of the reaction.

実施例10
酢酸カルシウムとリン酸二水素カルシウムによる担持の順番を逆にした他は実施例8と同様に触媒を調製した。調製した触媒中のCa、P濃度をICP−MSにより測定したところ、それぞれ元素換算で4.2質量%、4.3質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後5時間後の結果を表3に示す。
Example 10
A catalyst was prepared in the same manner as in Example 8 except that the order of loading with calcium acetate and calcium dihydrogen phosphate was reversed. When the Ca and P concentrations in the prepared catalyst were measured by ICP-MS, they were 4.2% by mass and 4.3% by mass, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results after 5 hours from the start of the reaction.

実施例11
酢酸カルシウムの代わりに酢酸ランタン1.5水和物(純度99.9%)0.95gを用いた他は実施例9と同様に触媒を調製した。調製した触媒中のCa、P、La濃度をICP−MSにより測定したところ、それぞれ元素換算で2.7質量%、4.2質量%、1.3質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後5時間後の結果を表3に示す。
Example 11
A catalyst was prepared in the same manner as in Example 9 except that 0.95 g of lanthanum acetate hemihydrate (purity 99.9%) was used instead of calcium acetate. When the Ca, P, and La concentrations in the prepared catalyst were measured by ICP-MS, they were 2.7 mass%, 4.2 mass%, and 1.3 mass%, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results after 5 hours from the start of the reaction.

実施例12
酢酸ランタン1.5水和物(純度99.9%)の量を2.63gに変えた他は実施例11と同様に触媒を調製した。調製した触媒中のCa、P、La濃度をICP−MSにより測定したところ、それぞれ元素換算で2.7質量%、4.2質量%、3.6質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。反応開始後6時間後の結果を表3に示す。
Example 12
A catalyst was prepared in the same manner as in Example 11 except that the amount of lanthanum acetate hemihydrate (purity 99.9%) was changed to 2.63 g. When the Ca, P, and La concentrations in the prepared catalyst were measured by ICP-MS, they were 2.7 mass%, 4.2 mass%, and 3.6 mass%, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the results 6 hours after the start of the reaction.

表3に示されるように、水溶性の塩を用いてアルカリ土類金属とリンを担持する前又は後に、アルカリ土類金属化合物を別途担持することにより、アルカリ土類金属とリンの担持比率を調整することができる。このようにして得られた実施例7〜10の触媒も、表3に示されるように高い転化率及び低級オレフィン収率を有しており、接触分解用触媒として好適に用いることができる。   As shown in Table 3, before or after supporting the alkaline earth metal and phosphorus using a water-soluble salt, the supporting ratio of the alkaline earth metal and phosphorus can be increased by separately supporting the alkaline earth metal compound. Can be adjusted. The catalysts of Examples 7 to 10 thus obtained also have a high conversion rate and lower olefin yield as shown in Table 3, and can be suitably used as a catalyst for catalytic cracking.

又、実施例11及び12に示されるように、本発明の触媒には希土類元素を担持させることができる。希土類元素を担持した実施例11及び12の触媒も、表3に示されるように高い転化率及び低級オレフィン収率を有しており、接触分解用触媒として好適に用いることができる。   Further, as shown in Examples 11 and 12, rare earth elements can be supported on the catalyst of the present invention. The catalysts of Examples 11 and 12 loaded with rare earth elements also have a high conversion rate and lower olefin yield as shown in Table 3, and can be suitably used as a catalyst for catalytic cracking.

実施例2及び比較例2における転化率の変化を示した図である。It is the figure which showed the change of the conversion rate in Example 2 and Comparative Example 2. FIG. 実施例2及び比較例2におけるC2+C3オレフィン収率の変化を示した図である。It is the figure which showed the change of the C2 + C3 olefin yield in Example 2 and Comparative Example 2.

Claims (14)

含浸工程、乾燥工程及び焼成工程を含む工程によりアルカリ土類金属及びリンを担持したMFI構造を有する結晶性アルミノシリケートであり、アルカリ土類金属及びリンを、アルカリ土類金属とリンを含む水溶性の塩により担持してなることを特徴とする低級オレフィン製造用触媒。 A crystalline aluminosilicate having an MFI structure carrying an alkaline earth metal and phosphorus by a process including an impregnation process, a drying process, and a baking process , and the alkaline earth metal and phosphorus are soluble in water containing alkaline earth metal and phosphorus. A catalyst for producing a lower olefin, which is supported by a salt of 前記水溶性の塩の水に対する溶解度が、20℃で1g/100ml以上である請求項1に記載の低級オレフィン製造用触媒。   The catalyst for producing a lower olefin according to claim 1, wherein the solubility of the water-soluble salt in water is 1 g / 100 ml or more at 20 ° C. 前記水溶性の塩が、アルカリ土類金属のリン酸二水素塩又は次亜リン酸塩である請求項1又は2に記載の低級オレフィン製造用触媒。   The catalyst for producing a lower olefin according to claim 1 or 2, wherein the water-soluble salt is an alkaline earth metal dihydrogen phosphate or hypophosphite. 前記水溶性の塩が、ポリオールリン酸エステルのアルカリ土類金属塩である請求項1又は2に記載の低級オレフィン製造用触媒。   The catalyst for producing a lower olefin according to claim 1 or 2, wherein the water-soluble salt is an alkaline earth metal salt of a polyol phosphate. 結晶性アルミノシリケートがZSM−5である請求項1〜のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 4 , wherein the crystalline aluminosilicate is ZSM-5. アルカリ土類金属の含有量が0.1〜20質量%である請求項1〜のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 5 , wherein the content of the alkaline earth metal is 0.1 to 20% by mass. リンの含有量が0.1〜20質量%である請求項1〜のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 6 , wherein the phosphorus content is 0.1 to 20% by mass. 更に、希土類元素を含む請求項1〜のいずれかに記載の低級オレフィン製造用触媒。 Furthermore, a lower olefin production catalyst according to any one of claims 1 to 7 including a rare earth element. MFI構造を有する結晶性アルミノシリケートに、含浸工程、乾燥工程及び焼成工程を含む工程によりアルカリ土類金属及びリンを担持して低級オレフィン製造用触媒を製造する際、含浸工程においてアルカリ土類金属とリンを含む水溶性の塩を使用することを特徴とする低級オレフィン製造用触媒製造方法。 A crystalline aluminosilicate having an MFI structure, impregnation step, making the drying process and lower olefin production catalyst for carrying the alkaline earth metal and phosphorus by a process comprising calcining step, the alkaline earth metals in the impregnation step method for producing lower olefins production catalyst, which comprises using a water-soluble salt containing phosphorus. 前記水溶性の塩の水に対する溶解度が、20℃で1g/100ml以上である請求項に記載の低級オレフィン製造用触媒の製造方法。 The method for producing a catalyst for producing a lower olefin according to claim 9 , wherein the solubility of the water-soluble salt in water is 1 g / 100 ml or more at 20 ° C. 前記水溶性の塩が、アルカリ土類金属のリン酸二水素塩又は次亜リン酸塩である請求項又は10に記載の低級オレフィン製造用触媒の製造方法。 The method for producing a catalyst for producing a lower olefin according to claim 9 or 10 , wherein the water-soluble salt is an alkaline earth metal dihydrogen phosphate or hypophosphite. 前記水溶性の塩が、ポリオールリン酸エステルのアルカリ土類金属塩である請求項又は10に記載の低級オレフィン製造用触媒の製造方法。 The method for producing a catalyst for producing a lower olefin according to claim 9 or 10 , wherein the water-soluble salt is an alkaline earth metal salt of a polyol phosphate. 請求項1〜のいずれかに記載の低級オレフィン製造用触媒を用いた低級オレフィンの製造方法。 Any method for producing lower olefins with lower olefin production catalyst according to claim 1-8. 水蒸気の存在下に行う請求項1に記載の低級オレフィンの製造方法。 Lower process for producing an olefin according to claim 1 to 3, carried out in the presence of water vapor.
JP2008279314A 2008-10-30 2008-10-30 Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same Expired - Fee Related JP5288256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279314A JP5288256B2 (en) 2008-10-30 2008-10-30 Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279314A JP5288256B2 (en) 2008-10-30 2008-10-30 Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same

Publications (3)

Publication Number Publication Date
JP2010104909A JP2010104909A (en) 2010-05-13
JP2010104909A5 JP2010104909A5 (en) 2011-12-01
JP5288256B2 true JP5288256B2 (en) 2013-09-11

Family

ID=42294886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279314A Expired - Fee Related JP5288256B2 (en) 2008-10-30 2008-10-30 Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same

Country Status (1)

Country Link
JP (1) JP5288256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169651A1 (en) 2011-06-10 2012-12-13 Sumitomo Chemical Company, Limited Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms
CN102794195B (en) * 2012-08-28 2014-08-27 丁泳 Catalyst suitable for enhancing gasoline octane number of fuel and lowering olefin content and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115848A (en) * 1984-06-30 1986-01-23 Agency Of Ind Science & Technol Production of lower olefin using zeolite catalyst modified with calcium phosphate
JPS6431733A (en) * 1987-07-27 1989-02-02 Agency Ind Science Techn Production of lower olefin
JP4414169B2 (en) * 2003-08-20 2010-02-10 出光興産株式会社 Olefin production method
JP2010042344A (en) * 2008-08-12 2010-02-25 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP2010042343A (en) * 2008-08-12 2010-02-25 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst

Also Published As

Publication number Publication date
JP2010104909A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
KR100802690B1 (en) Toluene methylation process
US11123719B2 (en) Metal-loaded zeolite catalysts for the halogen-free conversion of dimethyl ether to methyl acetate
EP2498907B1 (en) Phosphorus-containing zeolite catalysts and their method of preparation
KR101646295B1 (en) Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
JP4742371B2 (en) Propylene synthesis catalyst
WO2005105710A1 (en) Method for producing lower olefin
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP4823655B2 (en) Method for producing xylenes
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
CN110975928A (en) Modification method and application of binder-free ZSM-11 molecular sieve catalyst
JP5288256B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP5536778B2 (en) Process for producing aromatic hydrocarbon and transition metal-containing crystalline metallosilicate catalyst used in the process
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP4414169B2 (en) Olefin production method
JP2005144360A (en) Catalyst molding for dehydrogenation-aromatization reaction of lower hydrocarbon and manufacturing method for the same
JP5674029B2 (en) Propylene and ethylene production method
KR100939437B1 (en) A method for preparing decomposition catalyst for hydrocarbon
JP5229882B2 (en) Method for producing olefins having 3 or more carbon atoms from ethanol
JP5158796B2 (en) Method for producing olefins having 3 or more carbon atoms from ethanol
KR100822728B1 (en) Decomposition catalyst for hydrocarbon and preparation method thereof
KR101448357B1 (en) Catalyst for production of light olefin and production method of light olefins through catalytic cracking of hydrocarbons using the catalyst
JP5311409B2 (en) Method for producing olefins having 3 or more carbon atoms from ethanol
JP2012200650A (en) Catalyst for producing propylene and method for producing the propylene using the same
JP2010105974A (en) Method for producing olefin
KR20170035621A (en) Process for producing ispbutylene from tert-butanol

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Ref document number: 5288256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees