JP4565277B2 - Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method - Google Patents
Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method Download PDFInfo
- Publication number
- JP4565277B2 JP4565277B2 JP2003061014A JP2003061014A JP4565277B2 JP 4565277 B2 JP4565277 B2 JP 4565277B2 JP 2003061014 A JP2003061014 A JP 2003061014A JP 2003061014 A JP2003061014 A JP 2003061014A JP 4565277 B2 JP4565277 B2 JP 4565277B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- lower hydrocarbon
- catalytic reaction
- methane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、天然ガスやバイオガスなどのメタンを含有するガスから、化学工業、薬品工業などで原料として使用されるベンゼン及びナフタレン類を主成分とする芳香族化合物と、燃料電池用の燃料、あるいは半導体工業で使用される水素とを効率的に製造するための触媒反応に関するものであり、芳香族化合物の合成分野、メタンから水素を生成する改質分野、ひいてはプロセスCO2を排出しないことから環境保全分野に関連する発明である。
【0002】
【従来の技術】
従来、メタンを一段階の反応で直接芳香族化する触媒として、特許文献1〜6に示されるように、多孔質メタロシリケートの孔径と担持する金属種の最適化によりメタンを直接芳香族化して水素を並産する触媒、およびその芳香族化合物と水素との製造法が発明者によって開発されてきた。
これらの特許文献では、メタンや天然ガスなどの原料ガスを触媒反応容器に直接導入し、触媒反応により芳香族化合物と水素とを同時に生成する方法である。しかし、このような有機化合物を高温で反応させる場合、目的とする反応以外に有機物が炭素と水素に熱分解する反応が並行して生じるために、この生成炭素が触媒上に沈着し、触媒性能を低下させるという問題があった。このような問題に対して一酸化炭素あるいは二酸化炭素を0.01〜30%、原料ガスに添加することにより、炭素の生成、沈着を緩和し、触媒の寿命を延命する方法が提案されている(特許文献3〜5)。
【0003】
また、Zhangらは同様に芳香族と水素とを併産する反応において、原料メタンと水素とを交互に反応器に導入することで触媒の劣化が抑えられることを報告している(非特許文献1)。
【0004】
【特許文献1】
特開平10−272366号公報
【特許文献2】
特開平11−47606号公報
【特許文献3】
特開平11−60514号公報
【特許文献4】
特開2001−334151号公報
【特許文献5】
特開2001−334152号公報
【特許文献6】
特開2002−336704号公報
【非特許文献1】
第12回北海道大学触媒化学センター国際シンポジウム、2001年11月18〜20日、札幌。予稿集p15〜16
【0005】
【発明が解決しようとする課題】
しかしこれらの従来技術のうち、原料ガスをそのまま触媒上で反応させる方法では、前述のように触媒性能の経時的な劣化が著しく、実用上の問題が大きかった。一方、一酸化炭素や二酸化炭素を原料ガス中に添加する方法は、確かに触媒寿命を延長する効果はあるが、添加する一酸化炭素や二酸化炭素の量に非常に敏感であり、ほんの少し添加量が変るだけで触媒の反応特性、寿命特性が大きく変化するため、実規模のプラントに適用する場合、添加量を厳密に管理しなければならず、操作上の困難があった。また、これら一酸化炭素や二酸化炭素などの酸素を含有する添加物を用いた場合、生成ガス中に−酸化炭素が含まれることになる。生成する水素を燃料電池の燃料として使用する場合には、燃料電池の電極を被毒する一酸化炭素濃度を極力低いレベルに抑える必要があるため、この方法で芳香族と水素とを生産しても、この水素を燃料電池用燃料として使用するためにはさらに一酸化炭素を取り除く装置を追加する必要があった。
【0006】
他方、原料メタンと水素とを交互に反応器に導入する方法は、操作が煩雑となることはもちろんであるが、触媒寿命の延長には効果があるように見えるがメタンと短時間反応させた直後に水素で触媒上に生成した炭素を除去する再生工程を入れているに過ぎず、時間あたりの芳香族生成量が少ないこと、および目的とする反応で生成する水素ガス量に比べて再生工程で消費する水素量が多いこと、などから実用的な方法とは言い難い。
【0007】
この発明は、上記のような従来方法による触媒性能の劣化、生成ガス中への一酸化炭素の混入、生成物の水素の消費といった問題を解決するためになされたものであり、装置的に簡便で、かつ炭素の析出による触媒性能の劣化を抑えることが可能で、大規模の実プラントに適用し得るメタンからなる低級炭化水素またはメタンを含む低級炭化水素の芳香族化触媒反応方法および芳香族化触媒反応装置ならびに芳香族化合物および水素の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
従来技術であるCO2などを原料ガスに添加する方法あるいは交互に水素を導入する方法は、メタンの熱分解反応により生成する炭素を酸化することにより、ガス状物質として触媒表面から取り去る方法であるが、CO2などを添加する場合にはその反応の制御が困難であり、生成ガス中に一酸化炭素が含まれるという欠点があった。また、水素を交互に導入してこまめに再生する方法は、水素の消費量が多く、また、芳香族化合物および水素を生成する反応効率が大きく低下するために実用的ではない。これに対して発明者らは、目的とする芳香族と水素とを製造する反応;6CH4→C6H6+9H2およびメタンの熱分解反応;CH4→C+2H2の生成物である水素が、目的とする反応を生じさせている最中でもメタン熱分解の逆反応により触媒表面に生成した炭素と反応することに着目し、本発明を完成するに至った。
【0009】
すなわち、本発明の低級炭化水素の芳香族化触媒反応方法のうち、請求項1記載の発明は、多孔質メタロシリケート上に金属元素または金属元素化合物を担持した触媒を用いてメタンからなる低級炭化水素またはメタンを含む低級炭化水素ガスから芳香族と水素とを直接併産する触媒反応方法において、前記原料低級炭化水素ガス中に水素を1〜20体積%添加して前記触媒反応に供することを特徴とする。
【0010】
請求項2記載の低級炭化水素の芳香族化触媒反応方法の発明は、請求項2記載の発明において、前記水素の一部または全部が、前記低級炭化水素ガスの触媒反応によって生成されたものであることを特徴とする。
【0011】
請求項3記載の低級炭化水素の芳香族化触媒反応方法の発明は、請求項2記載の発明において、前記低級炭化水素ガスの触媒反応を経たガスから水素を分離し、該水素を原料炭化水素ガスに添加することを特徴とする。
【0012】
請求項4記載の低級炭化水素の芳香族化触媒反応方法の発明は、請求項3記載の発明において、前記水素が未反応低級炭化水素ガス中に残存するものであることを特徴とする。
【0013】
請求項5記載の低級炭化水素の芳香族化触媒反応方法の発明は、請求項1〜4のいずれかに記載の触媒反応方法において、前記金属元素または金属元素化合物は、モリブデン、レニウム、タングステン、亜鉛、ガリウム、鉄、銅およびコバルトから選択される金属またはその化合物もしくはこれらの混合物であることを特徴とする。
請求項6記載の芳香族化合物および水素の製造方法の発明は、請求項1〜5のいずれかに記載の触媒反応方法において、前記低級炭化水素ガスから芳香族化合物および水素を得ることを特徴とする。
【0014】
請求項7記載の芳香族化触媒反応装置は、メタンからなる低級炭化水素またはメタンを含む低級炭化水素が導入される原料低級炭化水素ガス導入部とガス排出部とを有し、内部に多孔質メタロシリケート上に金属元素または金属元素化合物を担持した触媒を収容する触媒反応容器と、前記排出部に連結され、排出ガス中から水素を分離可能とした生成物分離手段と、該生成物分離手段から分離された水素または該水素と未反応低級炭化水素ガスとを前記ガス導入部に送って水素を1〜20体積%含む前記低級炭化水素ガスを前記触媒反応容器に導入するべく原料低級炭化水素ガスと混合するガス還流路とを備えることを特徴とする。
請求項8記載の芳香族化触媒反応装置は、請求項7記載の発明において、前記金属元素または金属元素化合物は、モリブデン、レニウム、タングステン、亜鉛、ガリウム、鉄、銅およびコバルトから選択される金属またはその化合物もしくはこれらの混合物であることを特徴とする。
【0015】
すなわち、本発明によれば、適量の水素ガスを予め原料メタンガスに添加することにより、目的とする触媒反応の進行を妨げるという作用があるが、反応速度を著しく低下させるものではなく、その一方で、触媒活性低下の原因となる生成炭素による触媒表面のコーティングを抑制する効果がある。
【0016】
さらに、その作用について具体的に見ると、例えば原料メタン中に生成物の水素が混入することにより、反応式;6CH4→C6H6+9H2で表される目的とする反応は、水素の存在により平衡が左側に移動するため、反応の進行が抑制される。一方で、触媒性能劣化の原因となる望ましくない反応;CH4→C+2H2の進行も抑制することができる。平衡論的には両反応の進行を抑制すること、すなわち反応をゆっくりと進行させることで触媒劣化に要する時間を延長することができる。一方、実際の触媒反応塔を考えた場合、触媒が充填された層の−方から原料ガスを導入し、反応後のガスを他方の出口から排出する形態をとる。このため、反応初期においてはガス入り口付近で反応が活発に進行し、時間の経過によりこの部分の触媒が劣化するとともに次第に活発な反応域が出口方向に移動していくような反応形態をとる。原料としてメタンガスのみを使用した場合は炭素の析出により劣化した触媒はそのままの状態を保つが、水素を添加したメタンガスを用いた場合には、その水素が析出炭素と反応することにより、メタンガスの形で触媒表面から炭素を取り去り、再び触媒活性を引き出すことが可能になる。この領域でメタンとなったガスは、より活性な触媒層の後段で原料のメタンとともに目的とする反応を生じさせることができるため、触媒反応塔全体としては芳香族や水素の生成速度を大きく低下させることなしに、触媒寿命を大幅に延長することが可能となる。このため全体として触媒反応効率が向上し、さらに長期に亘って安定した反応効率を示す。
【0017】
この方法は従来のCO2などを添加する方法と比べて、反応速度の添加量依存性が小さいため、添加量を厳密に設定する必要がないため、実装置でのガスの混合を簡便な装置で容易に行えるという効果もある。また、従来技術の原料メタンと水素とを交互導入する方法に比べて操作が簡単であり、また水素の消責量が少なく、より経済的な触媒寿命の向上方法である。さらに、一般に触媒反応では反応が100%進行しない場合には、得られる反応ガスから生成物を取り除き、未反応の原料ガスを再度反応塔に戻す循環方式の反応装置が用いられる。芳香族と水素とを生産する触媒反応では、反応塔出口ガスから生成物である芳香族と水素とを分離して、残った未反応メタンを再び原料ガスとして反応塔に循環させる方法が取られる。この反応性生物の分離を考えた場合、ベンゼンやナフタレンなどの芳香族は沸点が低いために冷却することで簡単に分離除去可能であるが、メタンと水素を完全に分離するには大がかりな装置が必要となり、プラントの建設責用、運転費用がかさむことになる。しかし、この発明によれば触媒寿命を向上させる目的で原料メタン中に水素を添加しているため、反応ガス中のメタンと水素との分離を完全に行う必要がなく、簡便なPSA(Pressure Swing Adsorption)等を用いて水素を含んだメタンリッチガスを循環させることで原料メタンへの水素添加が可能になるという効果がある。このため、生成する水素ガスの一部を添加することで、別途添加ガスを用意する必要がなくなるとともに、反応後のガスの分離度を低く抑えることによる装置費用、運転費用を低減できる効果もある。
【0018】
なお、本発明では触媒の担体として多孔質メタロシリケートが用いられる。該多孔質メタロシリケートとしては、種々の組成から成るシリカ及びアルミナからなる多孔質担体やリン酸を主成分とする多孔質担体、シリカ及びチタニアから成るチタノシリケート等の多孔質担体を用いることができる。該多孔質メタロシリケートは、ミクロ細孔やメゾ細孔を有しており、実質的に径4.5〜5.5Åのものが例示される。
【0019】
該多孔質シリケートには、触媒材料として金属元素または金属元素化合物が担持される。触媒材料としては、モリブデン、レニウム、タングステン、亜鉛、ガリウム、鉄、銅およびコバルトなどの金属またはその化合物が例示され、これらの混合物であってもよい。
本発明としては、上記触媒材料をメタロシリケートに担持させる際の担持量に特に制限はなく、触媒材料の種別等に応じて適切な量を選定すればよい。
【0020】
上記触媒材料をメタロシリケートに担持させる方法としては、触媒材料の前駆体等をメタロシリケートに含浸担持させたり、イオン変換法により担持させたりする方法が例示される。ただし、本発明としては触媒材料の担持方法については特に制限されない。
【0021】
上記により得られる本発明の触媒は、粉末状又はペレット状及びその他の形状のいずれの形状であってもよく、形状が特に限定されるものでもない。該触媒は、通常、触媒反応容器に収容してメタンからなる低級炭化水素またはメタンを含む低級炭化水素ガスと接触させて触媒反応に供する。該触媒との反応に供するメタンまたはメタンを含む原料低級炭化水素は、適量の水素と混合して触媒反応させることによって上記作用を得ることができる。なお、メタンまたはメタンを含む原料低級炭化水素に添加する水素は、好適には目的とする触媒反応によって生成されたものを使用することができる。なお、この場合、上記生成物以外の水素を用いることもでき、また、生成物における水素とその他の水素を混合して添加することもできる。さらに、該水素は、常時、連続的にメタンまたはメタンを含む原料低級炭化水素に混合して触媒反応に供してもよく、断続的にメタンまたはメタンを含む原料低級炭化水素に添加して触媒反応に供するようにしてもよい。
メタンまたはメタンを含む原料低級炭化水素に水素を添加する場合、その添加量は、1〜20体積%の範囲内とする。1体積%未満では、触媒活性低下の原因となる生成炭素による触媒表面のコーティングを抑制する作用が十分に得られず、経時的な触媒性能の劣化を十分に抑制できない。一方、水素の添加量が20体積% を越えると、目的とする触媒反応の進行を妨げるという作用が強くなり、十分な反応効率が得られなくなる。したがって水素の添加量を上記範囲に限定する。なお、上記と同様の理由で下限を5体積%、上限を15体積%とするのが望ましい。
【0022】
また、上記触媒反応に供する低級炭化水素としては、代表的には炭素数が1のメタンが示されるが、この他に炭素数が1〜5の炭化水素を反応対象とすることができる。
【0023】
【発明の実施の形態】
以下に、本発明における芳香族化触媒反応装置の一実施形態を図1 に基づいて説明する。
触媒反応容器10内には、多孔質メタロシリケートに所定の触媒材料を担持した触媒20が収容されており、該触媒反応容器10には、メタンからなる低級炭化水素またはメタンを含む低級炭化水素を導入するガス導入部11とガス排出部12とが設けられている。ガス排出部12には、生成した芳香族化合物を分離する分離手段29とそこからガスを排出するガス排出部28が設けられており、ガス排出部28にはPSA(圧力変動吸着)を利用した生成物分離手段30が連結されており、該生成物分離手段30には、水素を送出する反応物送出路31と、水素が含まれる未反応原料炭化水素を送出する還流管40とが接続されている。上記還流管40は、流量制御弁41を介して前記ガス導入部11に接続されており、水素と未反応原料炭化水素をガス導入部11に供給することができる。
【0024】
次に、上記芳香族化触媒反応装置を用いたメタンまたはメタンを含む低級炭化水素の芳香族化触媒反応方法について説明する。メタンまたはメタンを含む原料低級炭化水素をガス導入部11を通して触媒反応容器10内に導入し、触媒20と接触させて触媒反応を起こす。該反応によってメタンまたはメタンを含む低級炭化水素から芳香族化合物と水素とが生成され、これら生成物は、触媒反応容器10を通ってガス排出部12から排出されて芳香族分離手段29に至る。芳香族分離手段29では、芳香族化合物が反応物送出路27を通して取り出される。この芳香族分離手段29で芳香族化合物と分離された生成ガスはガス排出部28を通って生成物分離手段30に至る。一方、生成物分離手段30では、水素ガスが反応物送出路31、未反応の低級炭化水素と水素の一部が還流路40に送り出される。還流路40では、流量制御弁41で流量を制御して、ガス導入部11を通して触媒反応容器10内に導入されるガスに、1〜20体積%の割合で水素を混入する。
【0025】
触媒反応容器10内では、触媒反応によって目的とする芳香族化合物と水素とが製造されるとともに、一部の低級炭化水素では、炭素を生成して該反応に伴って触媒表面に炭素が付着する現象がある。しかし、原料ガスに水素を混入させておけば、炭素が生成される反応を抑制し、また、上記反応によって生成した炭素を還元して炭化水素の形で触媒表面から除去する作用が得られ、触媒の経時劣化が抑制される。なお、水素の混入によって芳香族化合物と水素とが製造される反応も抑制されるが、触媒劣化を抑える作用によって全体としては反応効率が向上する。
【0026】
【実施例】
以下に本発明の実施例を比較例と比較しつつ説明する。
(触媒調整および実験条件)
450℃、5時間焼成して水を除いたハネカム型ZSM−5(細孔経5.4〜5.6Å)を、モリブデン酸アンモン水溶液に浸漬してMoを担持し、秤量後、真空乾燥、500℃、5時間焼成して触媒を調製した。この6wt%Mo/HZSM−5触媒10gを内径20mm、高さ130mmのSUS製反応管に入れ、650℃で30分炭化後、750℃、3気圧、メタンSV=2520ml MFl/g/hの条件で反応を開始した。
【0027】
(実施例1)
上記実験において、メタンに3.6体積%の水素を添加した混合ガスを反応原料ガスとして用いて10時間の触媒反応を行わせた。この際、反応管出口のガスを分析することにより、生成する主要芳香族であるベンゼンの生成速度を測定した。
【0028】
(実施例2)
実施例1と同様の実験において、メタンに6体積%の水素を添加した混合ガスを反応原料ガスとして用いて10時間の触媒反応を行わせた。この際、反応管出口のガスを分析することにより、生成する主要芳香族であるベンゼンの生成速度を測定した。
【0029】
(比較例1)
実施例1と同様の実験において、水素を添加しない純メタンを原料ガスとして用いて10時間の触媒反応を行わせた。この際、反応管出口のガスを分析することにより、生成する主要芳香族であるベンゼンの生成速度を測定した。
【0030】
上記実施例1、実施例2、比較例1の試験結果に基づいて、触媒の反応活性を示す指標であるベンゼンの生成速度の経時変化を図2にまとめて示した。原料メタンに水素を添加することにより、実施例2の場合で最大反応速度は約20%の低下を示すが、その性能は長時間安定して発揮され、10時間後のベンゼン生成速度が比較例では最大値の25%まで低下するのに比べて、実施例2では10時間後のベンゼン生成速度が最大値の90%を維持することができた。
【0031】
【発明の効果】
以上のように、この発明によれば、多孔質メタロシリケート上に金属元素または金属元素化合物を担持した触媒を用いてメタンからなる低級炭化水素またはメタンを含む低級炭化水素ガスから芳香族と水素とを直接併産する触媒反応方法において、メタンからなる原料低級炭化水素またはメタンを含む原料低級炭化水素ガス中に水素を1〜20体積% 添加して前記触媒反応に供するので、芳香族化合物と水素とを生産する触媒反応において副次反応として生成する炭素を触媒表面から除去して、反応速度を大きく低下させること無しに触媒寿命を向上させることができ、また、芳香族化合物および水素を効率よく製造することができる。
また、本発明の芳香族化触媒反応装置によれば、上記作用を容易かつ確実に実現することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の芳香族化触媒反応装置を示す概略図である。
【図2】 本発明の実施例における試験結果(ベンゼンの生成速度の経時変化)を示すグラフである。
【符号の説明】
10 触媒反応容器
11 ガス導入部
12 ガス排出部
20 触媒
27 反応物送出路
28 ガス排出部
29 芳香族分離手段
30 生成物分離手段
31 反応物送出路
40 還流管
41 流量制御弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aromatic compound mainly composed of benzene and naphthalene used as a raw material in a chemical industry, a pharmaceutical industry, etc., from a gas containing methane such as natural gas or biogas, a fuel for a fuel cell, Or it relates to the catalytic reaction for efficiently producing hydrogen used in the semiconductor industry, from the field of synthesis of aromatic compounds, the field of reforming to produce hydrogen from methane, and thus not discharging process CO 2 This invention relates to the environmental conservation field.
[0002]
[Prior art]
Conventionally, as a catalyst for directly aromatizing methane by one-step reaction, as shown in Patent Documents 1 to 6, methane is directly aromatized by optimizing the pore size of the porous metallosilicate and the supported metal species. The inventors have developed a catalyst for producing hydrogen in parallel and a method for producing the aromatic compound and hydrogen.
In these patent documents, a raw material gas such as methane or natural gas is directly introduced into a catalytic reaction vessel, and an aromatic compound and hydrogen are simultaneously generated by catalytic reaction. However, when such an organic compound is reacted at a high temperature, in addition to the target reaction, a reaction in which the organic substance is thermally decomposed into carbon and hydrogen occurs in parallel. There was a problem of lowering. In order to solve such problems, a method has been proposed in which carbon monoxide or carbon dioxide is added to the raw material gas in an amount of 0.01 to 30%, thereby reducing the formation and deposition of carbon and extending the life of the catalyst. (Patent Documents 3 to 5).
[0003]
Similarly, Zhang et al. Have reported that deterioration of a catalyst can be suppressed by introducing raw material methane and hydrogen alternately into a reactor in a reaction in which aromatics and hydrogen are produced together (non-patent document). 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-272366 [Patent Document 2]
Japanese Patent Laid-Open No. 11-47606 [Patent Document 3]
Japanese Patent Laid-Open No. 11-60514 [Patent Document 4]
JP 2001-334151 A [Patent Document 5]
JP 2001-334152 A [Patent Document 6]
JP 2002-336704 A [Non-Patent Document 1]
12th Hokkaido University Catalysis Center International Symposium, November 18-20, 2001, Sapporo. Proceedings p15-16
[0005]
[Problems to be solved by the invention]
However, among these conventional techniques, in the method of reacting the raw material gas as it is on the catalyst, the catalyst performance deteriorated over time as described above, and there was a great practical problem. On the other hand, the method of adding carbon monoxide and carbon dioxide to the raw material gas has the effect of extending the catalyst life, but it is very sensitive to the amount of carbon monoxide and carbon dioxide to be added. Since the reaction characteristics and life characteristics of the catalyst change greatly only by changing the amount, when applied to a full-scale plant, the addition amount must be strictly controlled, which causes operational difficulties. Further, when an additive containing oxygen such as carbon monoxide or carbon dioxide is used, -carbon oxide is contained in the generated gas. When the generated hydrogen is used as fuel for fuel cells, the concentration of carbon monoxide that poisons fuel cell electrodes must be kept as low as possible, so this method produces aromatics and hydrogen. However, in order to use this hydrogen as a fuel for fuel cells, it was necessary to add a device for removing carbon monoxide.
[0006]
On the other hand, the method of alternately introducing the raw material methane and hydrogen into the reactor is not only complicated, but it seems to be effective in extending the catalyst life, but it was reacted with methane for a short time. Immediately after that, there is only a regeneration step for removing carbon produced on the catalyst with hydrogen, and the regeneration step is less than the amount of aromatics produced per hour and the amount of hydrogen gas produced in the target reaction. Because it consumes a lot of hydrogen, it is hard to say that it is a practical method.
[0007]
The present invention has been made to solve the problems such as the deterioration of the catalyst performance by the conventional method as described above, the incorporation of carbon monoxide into the product gas, and the consumption of hydrogen of the product. In addition, it is possible to suppress degradation of catalyst performance due to carbon deposition, and a lower hydrocarbon comprising methane or a methane-containing lower hydrocarbon aromatization catalytic reaction method and aromatic that can be applied to a large-scale actual plant. It is an object of the present invention to provide a chemical catalyst reaction apparatus and a method for producing an aromatic compound and hydrogen.
[0008]
[Means for Solving the Problems]
The conventional method of adding CO 2 or the like to the raw material gas or the method of alternately introducing hydrogen is a method of removing carbon as a gaseous substance from the catalyst surface by oxidizing carbon generated by a thermal decomposition reaction of methane. However, when CO 2 or the like is added, it is difficult to control the reaction, and carbon monoxide is contained in the product gas. Further, the method of frequently regenerating by alternately introducing hydrogen is not practical because it consumes a large amount of hydrogen, and the reaction efficiency for producing aromatic compounds and hydrogen is greatly reduced. On the other hand, the inventors have prepared a reaction for producing the target aromatic and hydrogen; a thermal decomposition reaction of 6CH 4 → C 6 H 6 + 9H 2 and methane; and hydrogen as a product of CH 4 → C + 2H 2 The present invention has been completed by paying attention to the reaction with the carbon generated on the catalyst surface by the reverse reaction of methane pyrolysis, even during the target reaction.
[0009]
That is, among the lower hydrocarbon aromatization catalytic reaction methods of the present invention, the invention according to claim 1 is a lower carbonization comprising methane using a catalyst in which a metal element or a metal element compound is supported on a porous metallosilicate. in the catalytic reaction method of co-producing directly an aromatic hydrogen from a lower hydrocarbon gas containing hydrogen or methane, said raw lower hydrocarbon gas to the hydrogen added 1 to 20 vol% is subjected to the catalytic reaction Features.
[0010]
The invention of the lower hydrocarbon aromatization catalytic reaction method according to claim 2 is the invention according to claim 2, wherein a part or all of the hydrogen is produced by a catalytic reaction of the lower hydrocarbon gas. It is characterized by being.
[0011]
The invention of the lower hydrocarbon aromatization catalytic reaction method according to claim 3 is the invention according to claim 2, wherein hydrogen is separated from the gas that has undergone the catalytic reaction of the lower hydrocarbon gas, and the hydrogen is used as a raw material hydrocarbon. It is characterized by adding to gas.
[0012]
The invention of a lower hydrocarbon aromatization catalytic reaction method according to claim 4 is characterized in that, in the invention of claim 3, the hydrogen remains in the unreacted lower hydrocarbon gas.
[0013]
The invention of the lower hydrocarbon aromatization catalytic reaction method according to claim 5 is the catalytic reaction method according to any one of claims 1 to 4, wherein the metal element or the metal element compound is molybdenum, rhenium, tungsten, It is characterized by being a metal selected from zinc, gallium, iron, copper and cobalt, a compound thereof or a mixture thereof .
The invention of claim 6 aromatics and method for producing hydrogen as claimed is Oite the catalytic reaction method according to any one of claims 1 to 5 to obtain an aromatic compound and hydrogen from said lower hydrocarbon gas Features.
[0014]
The aromatization catalytic reactor according to claim 7 has a raw material lower hydrocarbon gas introduction part and a gas discharge part into which a lower hydrocarbon composed of methane or a lower hydrocarbon containing methane is introduced, and is porous inside A catalytic reaction vessel containing a metal element or metal element compound-supported catalyst on a metallosilicate; a product separation means connected to the discharge part and capable of separating hydrogen from the exhaust gas; and the product separation means The raw material lower hydrocarbon to introduce hydrogen or the lower hydrocarbon gas containing 1 to 20% by volume of hydrogen separated into the catalyst reaction vessel A gas reflux path for mixing with the gas is provided.
An aromatization catalytic reaction apparatus according to claim 8 is the invention according to claim 7, wherein the metal element or metal element compound is a metal selected from molybdenum, rhenium, tungsten, zinc, gallium, iron, copper and cobalt. Or a compound thereof or a mixture thereof .
[0015]
That is, according to the present invention, by adding an appropriate amount of hydrogen gas to the raw material methane gas in advance, there is an effect of hindering the progress of the target catalytic reaction, but it does not significantly reduce the reaction rate, There is an effect of suppressing the coating of the catalyst surface with the produced carbon which causes a decrease in the catalytic activity.
[0016]
Further, when the action is specifically observed, for example, when the product hydrogen is mixed in the raw material methane, the target reaction represented by the reaction formula; 6CH 4 → C 6 H 6 + 9H 2 is Since the equilibrium shifts to the left side due to the presence, the progress of the reaction is suppressed. On the other hand, the progress of an undesirable reaction that causes catalyst performance deterioration; CH 4 → C + 2H 2 can also be suppressed. In equilibrium, the time required for catalyst degradation can be extended by suppressing the progress of both reactions, that is, by allowing the reactions to proceed slowly. On the other hand, when an actual catalytic reaction tower is considered, the raw material gas is introduced from the negative side of the layer packed with the catalyst, and the reacted gas is discharged from the other outlet. For this reason, in the initial stage of the reaction, the reaction proceeds actively in the vicinity of the gas inlet, and the catalyst is deteriorated as time passes, and the active reaction zone gradually moves toward the outlet. When only methane gas is used as a raw material, the catalyst deteriorated by carbon deposition remains as it is, but when hydrogen-added methane gas is used, the hydrogen reacts with the deposited carbon to form methane gas. Thus, it is possible to remove carbon from the catalyst surface and extract the catalytic activity again. The gas that has become methane in this region can cause the target reaction together with the raw material methane at the later stage of the more active catalyst layer, so the overall reaction rate of the catalyst reaction tower is greatly reduced. Without this, the catalyst life can be greatly extended. For this reason, the catalytic reaction efficiency is improved as a whole, and the reaction efficiency is stable over a long period of time.
[0017]
Compared to the conventional method of adding CO 2 or the like, this method is less dependent on the addition amount of the reaction rate, so it is not necessary to set the addition amount strictly. There is also an effect that can be easily performed. Further, the operation is simpler than the conventional method of alternately introducing the raw material methane and hydrogen, and the amount of depletion of hydrogen is small, which is a more economical method for improving the catalyst life. Further, generally, when the reaction does not proceed 100% in the catalytic reaction, a circulation type reaction apparatus is used in which the product is removed from the obtained reaction gas and the unreacted raw material gas is returned to the reaction tower again. In the catalytic reaction for producing aromatics and hydrogen, a method is used in which aromatics and hydrogen as products are separated from the reaction tower outlet gas, and the remaining unreacted methane is recycled as a raw material gas to the reaction tower again. . Considering this separation of reactive organisms, aromatics such as benzene and naphthalene have low boiling points, so they can be easily separated and removed by cooling, but a large-scale apparatus is needed to completely separate methane and hydrogen. Will be required, which will increase the cost of plant construction and operation. However, according to the present invention, since hydrogen is added to the raw material methane for the purpose of improving the catalyst life, it is not necessary to completely separate methane and hydrogen in the reaction gas, and a simple PSA (Pressure Swing) can be used. There is an effect that hydrogen can be added to the raw material methane by circulating the methane rich gas containing hydrogen using Adsorption) or the like. For this reason, by adding a part of the generated hydrogen gas, it is not necessary to prepare an additional gas separately, and there is an effect that the apparatus cost and the operation cost can be reduced by suppressing the degree of separation of the gas after the reaction. .
[0018]
In the present invention, porous metallosilicate is used as a catalyst carrier. As the porous metallosilicate, it is possible to use a porous carrier made of silica and alumina having various compositions, a porous carrier mainly composed of phosphoric acid, and a titanosilicate composed of silica and titania. it can. The porous metallosilicate has micropores and mesopores, and is substantially exemplified by a diameter of 4.5 to 5.5 mm.
[0019]
The porous silicate carries a metal element or a metal element compound as a catalyst material. Examples of the catalyst material include metals such as molybdenum, rhenium, tungsten, zinc, gallium, iron, copper and cobalt, or compounds thereof, and may be a mixture thereof.
In the present invention, the amount of the catalyst material supported on the metallosilicate is not particularly limited, and an appropriate amount may be selected according to the type of the catalyst material.
[0020]
Examples of the method of supporting the catalyst material on the metallosilicate include a method of impregnating and supporting a precursor of the catalyst material or the like on the metallosilicate or by an ion conversion method. However, in the present invention, the method for supporting the catalyst material is not particularly limited.
[0021]
The catalyst of the present invention obtained as described above may be in the form of powder, pellets, or other shapes, and the shape is not particularly limited. The catalyst is usually accommodated in a catalytic reaction vessel and brought into contact with a lower hydrocarbon composed of methane or a lower hydrocarbon gas containing methane for the catalytic reaction. The above action can be obtained by subjecting methane to be reacted with the catalyst or raw material lower hydrocarbon containing methane to a catalytic reaction by mixing with an appropriate amount of hydrogen. In addition, as the hydrogen added to the raw material lower hydrocarbon containing methane or methane, it is possible to preferably use hydrogen produced by the target catalytic reaction. In this case, hydrogen other than the above product can be used, and hydrogen in the product and other hydrogen can be mixed and added. Furthermore, hydrogen is always continuously may be mixed in the raw material lower hydrocarbon containing methane or methane and subjected to catalytic reaction, intermittently added to the raw material lower hydrocarbon containing methane or methane catalysis You may make it use for.
When hydrogen is added to methane or a raw material lower hydrocarbon containing methane , the addition amount is in the range of 1 to 20% by volume. If it is less than 1% by volume, the effect of suppressing the coating of the catalyst surface with the produced carbon that causes a decrease in the catalyst activity cannot be obtained sufficiently, and the deterioration of the catalyst performance over time cannot be sufficiently suppressed. On the other hand, if the amount of hydrogen added exceeds 20% by volume, the effect of hindering the progress of the target catalytic reaction becomes strong, and sufficient reaction efficiency cannot be obtained. Therefore, the amount of hydrogen added is limited to the above range. For the same reason as described above, it is desirable that the lower limit is 5% by volume and the upper limit is 15% by volume.
[0022]
As the lower hydrocarbon to be used for the catalytic reaction, methane having 1 carbon is typically shown, but other hydrocarbons having 1 to 5 carbon can be used as the reaction target.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the aromatization catalyst reaction apparatus in the present invention will be described with reference to FIG.
The
[0024]
Next, a method of aromatizing catalytic reaction of methane or lower hydrocarbons containing methane using the aromatizing catalytic reactor will be described. Methane or raw material lower hydrocarbon containing methane is introduced into the
[0025]
In the
[0026]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
(Catalyst preparation and experimental conditions)
Honeycomb type ZSM-5 (pore diameter 5.4 to 5.6 mm), which was baked at 450 ° C. for 5 hours to remove water, was immersed in an ammonium molybdate aqueous solution to carry Mo, weighed, and then vacuum dried. A catalyst was prepared by calcination at 500 ° C. for 5 hours. 10 g of this 6 wt% Mo / HZSM-5 catalyst was put into a SUS reaction tube having an inner diameter of 20 mm and a height of 130 mm, carbonized at 650 ° C. for 30 minutes, 750 ° C., 3 atm, methane SV = 2520 ml MFl / g / h. The reaction was started.
[0027]
Example 1
In the above experiment, a catalytic reaction was carried out for 10 hours using a mixed gas obtained by adding 3.6% by volume of hydrogen to methane as a reaction raw material gas. Under the present circumstances, the production | generation rate of benzene which is the main aromatic to produce | generate was measured by analyzing the gas of the reaction tube exit.
[0028]
(Example 2)
In the same experiment as in Example 1, a catalytic reaction was performed for 10 hours using a mixed gas obtained by adding 6% by volume of hydrogen to methane as a reaction raw material gas. Under the present circumstances, the production | generation rate of benzene which is the main aromatic to produce | generate was measured by analyzing the gas of the reaction tube exit.
[0029]
(Comparative Example 1)
In the same experiment as in Example 1, a catalytic reaction was performed for 10 hours using pure methane to which hydrogen was not added as a raw material gas. Under the present circumstances, the production | generation rate of benzene which is the main aromatic to produce | generate was measured by analyzing the gas of the reaction tube exit.
[0030]
Based on the test results of Example 1, Example 2, and Comparative Example 1, changes over time in the production rate of benzene, which is an index indicating the reaction activity of the catalyst, are shown together in FIG. By adding hydrogen to the raw material methane, the maximum reaction rate is reduced by about 20% in the case of Example 2, but the performance is stably exhibited for a long time, and the benzene production rate after 10 hours is a comparative example. In Example 2, the benzene production rate after 10 hours was able to maintain 90% of the maximum value, compared with 25% of the maximum value.
[0031]
【The invention's effect】
As described above, according to the present invention, aromatics and hydrogen are produced from a lower hydrocarbon comprising methane or a lower hydrocarbon gas containing methane using a catalyst in which a metal element or a metal element compound is supported on a porous metallosilicate. In the catalytic reaction method for directly co-producing hydrogen, 1 to 20% by volume of hydrogen is added to the raw material lower hydrocarbon comprising methane or the raw material lower hydrocarbon gas containing methane, and used for the catalytic reaction. The carbon produced as a side reaction in the catalytic reaction to produce the catalyst can be removed from the surface of the catalyst, the catalyst life can be improved without greatly reducing the reaction rate, and aromatic compounds and hydrogen can be efficiently removed. Can be manufactured.
In addition, according to the aromatization catalyst reaction apparatus of the present invention, the above-described action can be easily and reliably realized.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an aromatization catalytic reactor according to an embodiment of the present invention.
FIG. 2 is a graph showing test results (change in benzene production rate over time) in Examples of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003061014A JP4565277B2 (en) | 2003-03-07 | 2003-03-07 | Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003061014A JP4565277B2 (en) | 2003-03-07 | 2003-03-07 | Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004269398A JP2004269398A (en) | 2004-09-30 |
JP4565277B2 true JP4565277B2 (en) | 2010-10-20 |
Family
ID=33123341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003061014A Expired - Lifetime JP4565277B2 (en) | 2003-03-07 | 2003-03-07 | Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4565277B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4677194B2 (en) * | 2004-03-11 | 2011-04-27 | 勝 市川 | Method for converting lower hydrocarbons using catalysts |
JP4943671B2 (en) * | 2004-07-08 | 2012-05-30 | ズードケミー触媒株式会社 | Lower hydrocarbon aromatization catalyst and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using the same |
CN1989088B (en) * | 2004-07-28 | 2010-12-01 | 株式会社明电舍 | Process for producing aromatic hydrocarbon and hydrogen |
US7683227B2 (en) * | 2004-12-22 | 2010-03-23 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
JP5082254B2 (en) * | 2005-02-18 | 2012-11-28 | 三菱化学株式会社 | Method for producing aromatic compound and method for producing hydrogenated aromatic compound |
WO2006087971A1 (en) * | 2005-02-18 | 2006-08-24 | Mitsubishi Chemical Corporation | Process for production of aromatic compound and process for production of hydrogenated aromatic compound |
JP4697941B2 (en) | 2005-05-11 | 2011-06-08 | 株式会社日本製鋼所 | Method for producing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbons |
CN101652177B (en) | 2007-03-20 | 2013-11-13 | 株式会社明电舍 | Catalyst for aromatization of lower hydrocarbon and process for producing aromatic compound |
CN101678340B (en) | 2007-06-29 | 2013-05-15 | 株式会社明电舍 | Catalyst for aromatization of lower hydrocarbons and process for producing aromatic compounds |
US20100185034A1 (en) | 2007-08-03 | 2010-07-22 | Mitsui Chemicals , Inc | Process for producing aromatic hydrocarbon |
US8951929B2 (en) | 2008-01-16 | 2015-02-10 | Agency For Science, Technology And Research | Catalyst preparation and methods of using such catalysts |
JP5434115B2 (en) * | 2009-02-12 | 2014-03-05 | 株式会社明電舎 | Aromatic hydrocarbon production method and aromatic hydrocarbon production apparatus |
US8729331B2 (en) * | 2009-04-06 | 2014-05-20 | Basf Se | Method for electrochemically removing hydrogen from a reaction mixture |
JP2016000679A (en) * | 2014-06-12 | 2016-01-07 | Jx日鉱日石エネルギー株式会社 | Hydrogen production apparatus and hydrogen production method |
JP6376999B2 (en) * | 2015-03-18 | 2018-08-22 | 富士電機株式会社 | Hydrogen production apparatus and hydrogen production method |
JP7553048B2 (en) | 2020-09-02 | 2024-09-18 | 古河電気工業株式会社 | Synthetic gas production apparatus and method for producing synthetic gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026613A (en) * | 2001-07-12 | 2003-01-29 | National Institute Of Advanced Industrial & Technology | Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2514066B2 (en) * | 1988-03-08 | 1996-07-10 | 工業技術院長 | Method and apparatus for producing aromatic hydrocarbon |
JPH0558919A (en) * | 1990-12-20 | 1993-03-09 | Res Assoc Util Of Light Oil | Production of aromatic hydrocarbon |
-
2003
- 2003-03-07 JP JP2003061014A patent/JP4565277B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026613A (en) * | 2001-07-12 | 2003-01-29 | National Institute Of Advanced Industrial & Technology | Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon |
Also Published As
Publication number | Publication date |
---|---|
JP2004269398A (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4565277B2 (en) | Lower hydrocarbon aromatization catalytic reaction method, aromatization catalytic reactor, aromatic compound and hydrogen production method | |
KR101193163B1 (en) | Catalyst for oxidizing carbon monoxide and method of producing the same | |
FI118647B (en) | Procedure for reforming gas containing tar-like pollutants | |
TWI428177B (en) | A steam reforming catalyst, a device for producing hydrogen, and a fuel cell system | |
Liu et al. | Unique promotion effect of CO and CO 2 on the catalytic stability for benzene and naphthalene production from methane on Mo/HZSM-5 catalysts | |
Shimura et al. | Hydrogen production from water and methane over Pt-loaded calcium titanate photocatalyst | |
US8558045B2 (en) | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds | |
JP3985038B2 (en) | Process for producing aromatic hydrocarbons and hydrogen from lower hydrocarbons | |
CN1253511A (en) | Autothermic reactor comprising oxygen ion conducting dense ceramic membrane and process using autothermic reactor for producing synthesis gas | |
JP2004522672A (en) | Suppression of methanation activity by water gas conversion catalyst | |
JP2005343879A (en) | Catalytic reaction method of lower hydrocarbon aromatization, catalytic reaction apparatus of aromatization and method for producing aromatic compound and hydrogen | |
Chen et al. | Experimental investigation of the promotion effect of CO on catalytic behavior of Mo/HZSM-5 catalyst in CH4 dehydroaromatization at 1073 K | |
RU2325219C1 (en) | Porous ceramic catalytical module and method of synthesis gas preparation in its presence | |
JP5593106B2 (en) | Hydrogen production method, hydrogen production apparatus and fuel cell system | |
CN106902894B (en) | Regeneration method of catalyst for treating Fischer-Tropsch reaction synthetic water | |
Stepanov et al. | State-of-the-Art and Achievements in the Catalytic Conversion of Natural Gas into Valuable Chemicals | |
US7029640B2 (en) | Process for selective oxidation of carbon monoxide in a hydrogen containing stream | |
KR102225612B1 (en) | A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen | |
JP2011230939A (en) | Hydrogen production method and hydrogen production apparatus | |
EP1257502A1 (en) | Process for selective oxidation of carbon monoxide in a hydrogen containing stream | |
KR102271431B1 (en) | A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen | |
JP2002346388A (en) | Catalyst for manufacturing synthetic gas and method for converting biomass to synthetic gas | |
JP2016059845A (en) | Catalyst for hydrogen production, production process therefor, and fuel cell system | |
EA012595B1 (en) | A method of converting natural gas into fuels | |
RU2778109C2 (en) | Method for production of propylene from propane under action of supercritical co2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4565277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |