JP2009119319A - Catalyst for aromatizing lower hydrocarbon and method for preparing aromatic compounds - Google Patents

Catalyst for aromatizing lower hydrocarbon and method for preparing aromatic compounds Download PDF

Info

Publication number
JP2009119319A
JP2009119319A JP2007293010A JP2007293010A JP2009119319A JP 2009119319 A JP2009119319 A JP 2009119319A JP 2007293010 A JP2007293010 A JP 2007293010A JP 2007293010 A JP2007293010 A JP 2007293010A JP 2009119319 A JP2009119319 A JP 2009119319A
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
copper
zeolite
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293010A
Other languages
Japanese (ja)
Other versions
JP5568833B2 (en
Inventor
Takuya Hatagishi
琢弥 畑岸
Tomohiro Yamada
知弘 山田
Yuji Ogawa
裕治 小川
Shinichi Yamada
真一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007293010A priority Critical patent/JP5568833B2/en
Priority to CN2008800049557A priority patent/CN101652177B/en
Priority to EP08711142A priority patent/EP2116301A4/en
Priority to US12/524,029 priority patent/US8278237B2/en
Priority to PCT/JP2008/052284 priority patent/WO2008114550A1/en
Publication of JP2009119319A publication Critical patent/JP2009119319A/en
Application granted granted Critical
Publication of JP5568833B2 publication Critical patent/JP5568833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for aromatizing lower hydrocarbons having an improved stability of life of its catalytic activities such as conversion of methane to aromatic hydrocarbons, the rate of producing benzene, the rate of producing naphthalene, and the rate of producing BTX (the aggregate rate of producing benzene, toluene and xylene). <P>SOLUTION: The catalyst for aromatizing lower hydrocarbons is constituted by keeping molybdenum and copper supported by a zeolite comprised of a metallosilicate having been treated with a silane compound having a molecular diameter greater than the micropore diameter of the zeolite and comprising an amino group that selectively reacts with Bronsted acid points present in the zeolite and a straight chain hydrocarbon group. The amount of molybdenum supported by the zeolite is 2 to 12% by weight relative to the whole catalyst subsequent to its calcination, and the molecular ratio of copper relative to molybdenum each supported by the zeolite, namely X as defined by the equation: (Cu:Mo=X:1), is 0.01 to 0.8. The silane compound, for example, is a 3-aminoproxyl-triethoxysilane (APTES). APTES is added for treating the zeolite therewith in such an amount that the content thereof in the whole catalyst subsequent to its calcination becomes 2.5% by weight or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はメタンを主成分とする天然ガス、バイオガス、メタンハイドレートの高度利用に関する。天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギー資源と考えられ、その利用技術に関心が高まっている。メタン資源はそのままクリーン性を活かして次世代の新しい有機資源、燃料電池用の水素資源として注目されている。特に本発明はメタンからプラスチック類などの化学製品原料であるベンゼン及びナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造するための触媒化学変換技術及びその触媒製造方法に関する。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane. Natural gas, biogas, and methane hydrate are considered to be the most effective energy resources as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Methane resources are attracting attention as the next generation of new organic resources and hydrogen resources for fuel cells, taking advantage of cleanliness. In particular, the present invention relates to a catalytic chemical conversion technique for efficiently producing aromatic compounds mainly composed of benzene and naphthalene, which are raw materials for chemical products such as plastics, and high-purity hydrogen gas from methane, and a method for producing the catalyst. About.

メタンからベンゼン等の芳香族化合物と水素とを製造する方法としては触媒の存在下にメタンを反応させる方法が知られている。この際の触媒としてはZSM−5系のゼオライトに担持されたモリブデンが有効とされている(非特許文献1)。しかしながら、これらの触媒を使用した場合でも、炭素の析出が多いことやメタンの転化率が低いという問題を有している。   As a method of producing an aromatic compound such as benzene and hydrogen from methane, a method of reacting methane in the presence of a catalyst is known. As the catalyst at this time, molybdenum supported on ZSM-5-based zeolite is effective (Non-patent Document 1). However, even when these catalysts are used, there are problems that carbon deposition is large and the conversion rate of methane is low.

この問題を解決するために例えば特許文献1〜特許文献3に開示されたようなMo(モリブデン)等の触媒材料を多孔質のメタロシロケートに担持した触媒が提案されている。特許文献1〜特許文献3では担体である7オングストロームの細孔径を有する多孔質のメタロシリケートに金属成分が担持された触媒を用いることで低級炭化水素が効率的に芳香族化合物化され、これに付随して高純度の水素が得られることが確認されている。前記特許文献によると担体には前記金属成分としてモリブデン、コバルト、鉄等が担持されている。また、特許文献4にはメタロシリケートからなるゼオライトをシラン化合物で処理した後にモリブデンを担持してなる低級炭化水素の芳香族化触媒が開示されている。この芳香族化触媒によればベンゼンやトルエンの特定の芳香族化合物の生成速度を安定性させることができる。
JOURNAL OF CATALYSIS,1997,pp.165,pp.150−161 特開平10−272366号公報 特開平11−60514号公報 特開2004−269398号公報 特開2007−14894号公報
In order to solve this problem, for example, a catalyst in which a catalyst material such as Mo (molybdenum) disclosed in Patent Documents 1 to 3 is supported on a porous metallosilicate has been proposed. In Patent Documents 1 to 3, lower hydrocarbons are efficiently converted into aromatic compounds by using a catalyst in which a metal component is supported on a porous metallosilicate having a 7 angstrom pore diameter as a carrier. Accompanyingly, it has been confirmed that high purity hydrogen can be obtained. According to the patent document, molybdenum, cobalt, iron or the like is supported on the carrier as the metal component. Patent Document 4 discloses a lower hydrocarbon aromatization catalyst obtained by treating zeolite made of metallosilicate with a silane compound and then supporting molybdenum. According to this aromatization catalyst, the production rate of specific aromatic compounds such as benzene and toluene can be stabilized.
JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161 JP 10-272366 A Japanese Patent Laid-Open No. 11-60514 JP 2004-269398 A JP 2007-14894 A

メタンからベンゼン等の芳香族化合物と水素を製造する方法としては触媒の存在下にメタンを反応させる方法としてZSM−5にモリブデンを担持した触媒が有効とされている。   As a method for producing an aromatic compound such as benzene and hydrogen from methane, a catalyst in which molybdenum is supported on ZSM-5 is effective as a method for reacting methane in the presence of a catalyst.

しかし、この触媒が用いられた場合でも炭素の析出が多い。炭素の析出により触媒性能が短時間に劣化する。メタン転化率(芳香族化合物と水素の生成に利用されるメタンの利用率)が低い。特許文献1〜特許文献3のような触媒ではこの問題の改善が十分でないので芳香族化合物の製造効率をさらに高めるために一層優れた触媒の開発が望まれている。   However, even when this catalyst is used, carbon is often deposited. The catalyst performance deteriorates in a short time due to the deposition of carbon. The methane conversion rate (utilization rate of methane used for producing aromatic compounds and hydrogen) is low. Since the catalysts such as Patent Document 1 to Patent Document 3 do not sufficiently improve this problem, development of a more excellent catalyst is desired in order to further increase the production efficiency of the aromatic compound.

メタンをベンゼンに改質する触媒の活用にはメタンの転化率の向上は必須であるが、メタンの転化率を上げるにはメタンガス投入時の反応温度を上げる必要がある。特許文献1〜特許文献3のような触媒では原料ガスとの反応温度を上げると触媒の活性寿命が大幅に低下する。   In order to utilize a catalyst for reforming methane to benzene, it is essential to improve the conversion rate of methane, but in order to increase the conversion rate of methane, it is necessary to raise the reaction temperature when methane gas is introduced. In a catalyst such as Patent Document 1 to Patent Document 3, when the reaction temperature with the raw material gas is increased, the active life of the catalyst is significantly reduced.

また、特許文献4の芳香族化触媒によると芳香族化合物の生成速度を安定性させることができるが、芳香族化合物の量産性の観点から、メタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性のさらなる向上が望まれる。   Further, according to the aromatization catalyst of Patent Document 4, the production rate of the aromatic compound can be stabilized, but from the viewpoint of mass production of the aromatic compound, methane conversion rate, benzene production rate, naphthalene production rate and BTX Further improvement of the active life stability of the production rate (total production rate of benzene, toluene and xylene) is desired.

そこで、前記課題を解決するための低級炭化水素芳香族化触媒は低級炭化水素及び炭酸ガスと反応して芳香族化合物を生成させる触媒であって、メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銅を担持してなる。   Therefore, a lower hydrocarbon aromatization catalyst for solving the above problems is a catalyst that reacts with a lower hydrocarbon and carbon dioxide gas to produce an aromatic compound, and a zeolite composed of a metallosilicate is converted into a pore of the zeolite. After treatment with a silane compound having an amino group and a linear hydrocarbon group, which has a molecular diameter larger than the diameter and selectively reacts with the Bronsted acid point of the zeolite, molybdenum and copper are supported.

この低級炭化水素芳香族化触媒によればメタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。前記触媒と反応させる炭酸ガスは一酸化炭素ガスに代えてもよい。前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であるとよい。確実にメタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が向上する。   According to this lower hydrocarbon aromatization catalyst, the active life stability of methane conversion rate, benzene formation rate, naphthalene formation rate and BTX formation rate (total formation rate of benzene, toluene and xylene) is improved. Carbon dioxide gas to be reacted with the catalyst may be replaced with carbon monoxide gas. The amount of carbon dioxide added is preferably in the range of 0.5 to 6% with respect to the entire reaction gas. The active life stability of the methane conversion rate, the benzene formation rate, the naphthalene formation rate and the BTX formation rate is reliably improved.

前記メタロシリケートとしては4.5〜6.5オングストローム径の細孔を有する多孔質メタロシリケートであるZSM−5、MCM−22が例示列挙される。   Examples of the metallosilicate include ZSM-5 and MCM-22, which are porous metallosilicates having pores having a diameter of 4.5 to 6.5 angstroms.

前記シラン化合物としてはAPTES(3−Aminoproxyl−triethoxysilane)が例示される。前記シラン化合物は前記焼成後のシラン化合物の添加量が触媒全体量に対して2.5重量%未満例えば0.5重量%となるように前記シラン処理に供するとよい。メタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が確実に向上する。   Examples of the silane compound include APTES (3-Aminoproxy-trioxysilane). The silane compound may be subjected to the silane treatment so that the added amount of the silane compound after the calcination is less than 2.5% by weight, for example, 0.5% by weight with respect to the total amount of the catalyst. The active lifetime stability of the methane conversion rate, benzene formation rate, naphthalene formation rate and BTX formation rate is reliably improved.

前記モリブデンはその担持量が焼成後の触媒全体量に対して2〜12重量%となると共に前記銅はモリブデンとのモル比Cu:Mo=X:1の比率が0.01〜0.8となるように担持するとよい。メタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度の活性寿命安定性が確実に向上する。   The molybdenum has a supported amount of 2 to 12% by weight based on the total amount of the catalyst after calcination, and the copper has a molar ratio Cu: Mo = X: 1 with molybdenum of 0.01 to 0.8. It is good to carry so that it may become. The active lifetime stability of the methane conversion rate, benzene formation rate, naphthalene formation rate and BTX formation rate is reliably improved.

前記メタロシリケートにモリブデンと銅を担持した後の焼成時の焼成温度は550〜800℃であるとよい。炭酸ガスが過不足(0.5%未満)であると析出するコークの酸化作用が低くなり活性寿命安定性が低下し、逆に過剰(6%以上)であるとメタンガスの直接酸化反応により水素及び一酸化炭素が過剰に生成し、反応に必要なメタンガス濃度が低下するので、ベンゼンの生成量が低下する。そこで、反応ガス全体に対して炭酸ガスの添加量を0.5〜6%の範囲とすることでメタン転化率、ベンゼン生成速度、ナフタレン生成速度、BTX生成速度を効率よく安定させることができる。   The firing temperature at the time of firing after supporting molybdenum and copper on the metallosilicate is preferably 550 to 800 ° C. If the carbon dioxide gas is excessive or insufficient (less than 0.5%), the oxidizing action of the deposited coke is lowered and the active life stability is lowered. Conversely, if it is excessive (6% or more), hydrogen is oxidized by the direct oxidation reaction of methane gas. And carbon monoxide is produced excessively, and the methane gas concentration required for the reaction is lowered, so that the amount of benzene produced is lowered. Therefore, the methane conversion rate, the benzene production rate, the naphthalene production rate, and the BTX production rate can be efficiently stabilized by setting the amount of carbon dioxide added to the reaction gas in the range of 0.5 to 6%.

以上の発明によればメタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。したがって、ベンゼン、トルエン等の有用な芳香族化合物の生成量が増大する。   According to the above invention, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved. Therefore, the production amount of useful aromatic compounds such as benzene and toluene increases.

発明に係る低級炭化水素芳香族化触媒はモリブデン及びその化合物から選ばれた少なくとも一種以上を触媒材料として含有する。芳香族化合物を製造する際には前記低級炭化水素芳香族化触媒は低級炭化水素の他に二酸化炭素と反応させる。   The lower hydrocarbon aromatization catalyst according to the invention contains at least one selected from molybdenum and a compound thereof as a catalyst material. In producing the aromatic compound, the lower hydrocarbon aromatization catalyst is reacted with carbon dioxide in addition to the lower hydrocarbon.

この低級炭化水素芳香族化触媒はメタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銅を担持してなる。   This lower hydrocarbon aromatization catalyst is composed of a metallosilicate zeolite having a molecular diameter larger than the pore diameter of the zeolite and an amino group and a linear hydrocarbon that selectively reacts with the Bronsted acid point of the zeolite. After treatment with a silane compound having a group, molybdenum and copper are supported.

前記金属成分を担持する担体は実質的に4.5〜6.5オングストローム径の細孔を有する多孔質メタロシリケートを含んでいる。前記モリブデン成分及び銅成分は酢酸銅または硝酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液にシラン処理されたメタロシリケートを添加してモリブデン成分と銅成分とをメタロシリケートに含浸させた後に乾燥及び焼成に供すれば前記メタロシリケートに担持される。   The carrier carrying the metal component substantially includes a porous metallosilicate having pores with a diameter of 4.5 to 6.5 angstroms. Molybdenum component and copper component are dried and fired after adding silanized metallosilicate to impregnated aqueous solution prepared with copper acetate or copper nitrate and ammonium molybdate to impregnate metallosilicate with molybdenum component and copper component If it uses, it will carry | support to the said metallosilicate.

前記低級炭化水素芳香族化触媒のようにシラン化合物でシラン処理したメタロシリケートにモリブデン成分と銅成分とを担持することにより触媒の安定性が得られる。特に、メタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。   Catalyst stability can be obtained by supporting a molybdenum component and a copper component on a metallosilicate that has been silane-treated with a silane compound, such as the lower hydrocarbon aromatization catalyst. In particular, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved.

以下の実施例に基づき本発明の低級炭化水素芳香族化触媒について説明する。   The lower hydrocarbon aromatization catalyst of the present invention will be described based on the following examples.

1.低級炭化水素芳香族化触媒(以下、触媒と略称する)の製造
(比較例1)
比較例1の触媒はメタシリケートとしてアンモニウム型ZSM−5(SiO2/Al23=25〜70)が採用され、これにモリブデンのみが担持されたものである。
1. Production of lower hydrocarbon aromatization catalyst (hereinafter abbreviated as catalyst) (Comparative Example 1)
The catalyst of Comparative Example 1 employs ammonium type ZSM-5 (SiO 2 / Al 2 O 3 = 25 to 70) as a metasilicate, and only molybdenum is supported thereon.

(1)配合
無機成分の配合:ZSM−5(82.5重量%)、粘土(10.5重量%)、ガラス繊維(5重量%)
全体配合:前記無機成分(76.5重量%)、有機バインダー(17.3重量%)、水分(24.3重量%)
(2)成型
前記配合比率で前記無機成分と有機バインダーと水分とを配合し混練手段(ニーダ)によって混合、混練した。次に、この混合体を真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。このときの成型時の押し出し圧力は2〜8MPaに設定した。
(1) Blending Blending of inorganic components: ZSM-5 (82.5 wt%), clay (10.5 wt%), glass fiber (5 wt%)
Total formulation: inorganic component (76.5 wt%), organic binder (17.3 wt%), moisture (24.3 wt%)
(2) Molding The inorganic component, organic binder, and moisture were blended at the blending ratio, and mixed and kneaded by a kneading means (kneader). Next, this mixture was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine. The extrusion pressure at the time of molding at this time was set to 2 to 8 MPa.

(3)モリブデンと銅の含浸
酢酸胴とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌させた状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加してモリブデン成分と銅成分とを前記成型体に含浸させた後、以下の乾燥及び焼成の工程に供した。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.1:1.0となるように設定した。
(3) Impregnation of molybdenum and copper An impregnation aqueous solution prepared with an acetic acid cylinder and ammonium molybdate is stirred, and a molded product containing ZSM-5 which has undergone the molding step is added to this stirred impregnation aqueous solution to form molybdenum. After impregnating the molded body with a component and a copper component, it was subjected to the following drying and firing steps. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight with respect to the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.1: It was set to 1.0.

(4)乾燥、焼成
乾燥工程では成型工程時に添加した水分を除去するために70℃で約12時間行なった。焼成工程では空気中で550℃、5時間焼成した。焼成工程での焼成温度は550〜800℃の範囲とした。550℃以下では担体の強度低下、800℃以上では特性(活性)の低下が起こるためである。焼成工程における昇温速度及び降温速度は90〜100℃/時に設定した。このとき、成型時に添加した有機バインダーが瞬時に燃焼しないように250〜450℃の温度範囲の中に2〜6時間程度の温度キープを2回実施してバインダーを除去した。昇温速度及び降温速度が前記速度以上であってバインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼して焼成体の強度が低下するためである。
(4) Drying and calcination The drying process was performed at 70 ° C. for about 12 hours in order to remove moisture added during the molding process. In the firing step, firing was performed in air at 550 ° C. for 5 hours. The firing temperature in the firing step was in the range of 550 to 800 ° C. This is because the strength of the carrier is lowered at 550 ° C. or lower, and the property (activity) is lowered at 800 ° C. or higher. The temperature increase rate and temperature decrease rate in the firing step were set to 90 to 100 ° C./hour. At this time, in order to prevent the organic binder added at the time of molding from burning instantaneously, the binder was removed by performing temperature keeping for about 2 to 6 hours twice in a temperature range of 250 to 450 ° C. This is because when the temperature increase rate and the temperature decrease rate are equal to or higher than the above rate and the keep time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body decreases.

(5)炭化処理
前記焼成体をCH4とH2の混合ガス(メタン/水素=1/4の混合モル比)を流通下で700℃まで2時間で昇温させ、この状態を3時間維持させた後にこの雰囲気をCH4の反応ガスに切り替え、780℃まで昇温した。
(5) Carbonization treatment The fired body is heated to 700 ° C. in 2 hours under a flow of a mixed gas of CH 4 and H 2 (mixed molar ratio of methane / hydrogen = 1/4), and this state is maintained for 3 hours. Then, the atmosphere was switched to a reaction gas of CH 4 and the temperature was raised to 780 ° C.

(比較例2)
比較例2の触媒は銅:モリブデン=0.3:1.0のモル比で銅とモリブデンを担持した以外は比較例1の触媒の配合及び製造工程と同じ方法で製造した。
(Comparative Example 2)
The catalyst of Comparative Example 2 was produced in the same manner as the catalyst formulation and production process of Comparative Example 1 except that copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.3: 1.0.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌させた状態の含浸水溶液に比較例1に係る成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, an impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and a molded product containing ZSM-5 that has undergone the molding step according to Comparative Example 1 is added to the stirred impregnated aqueous solution, and molybdenum is added. The molded body was impregnated with a component and a copper component. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of molybdenum is 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of copper is copper: molybdenum = 0.3: It was set to 1.0.

(比較例3)
比較例3の触媒は銅:モリブデン=0.45:1.0のモル比で銅とモリブデンを担持した以外は比較例1の触媒の配合及び製造工程と同じ方法で製造した。
(Comparative Example 3)
The catalyst of Comparative Example 3 was produced in the same manner as the catalyst formulation and production process of Comparative Example 1 except that copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.45: 1.0.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌させた含浸水溶液に比較例1に係る成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.45:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step according to Comparative Example 1 is added to the stirred impregnated aqueous solution. The molded body was impregnated with a copper component. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.45: It was set to 1.0.

(比較例4)
比較例4の触媒は銅:モリブデン=0.6:1.0のモル比で銅とモリブデンを担持した以外は比較例1の触媒の配合及び製造工程と同じ方法で製造した。
(Comparative Example 4)
The catalyst of Comparative Example 4 was produced in the same manner as the catalyst formulation and production process of Comparative Example 1 except that copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.6: 1.0.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に比較例1に係る成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.6:1.0となるように設定した。   In the impregnation step, an impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step according to Comparative Example 1 is added to the stirred impregnated aqueous solution. The molded body was impregnated with a component and a copper component. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight with respect to the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.6: It was set to 1.0.

(実施例1)
実施例1の触媒はZSM−5を含む成型体をシラン化合物でシラン処理した後に銅:モリブデン=0.15:1.0のモル比で銅とモリブデンを担持したこと以外は比較例1の触媒の配合及び製造工程と同じ方法で製造した。
Example 1
The catalyst of Example 1 was the same as that of Comparative Example 1 except that the molded body containing ZSM-5 was silane-treated with a silane compound and then copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.15: 1.0. It was manufactured by the same method as the blending and manufacturing process.

シラン処理工程ではシラン化合物としてAPTESを添加量が焼成後の触媒全体量に対して0.5重量%となるように、溶解させたエタノールに比較例1に係る成型工程を経たZSM−5を含む成型体を所定時間含浸させて、これを乾燥させた後に550℃で6時間焼成して前記シラン化合物でシラン処理した。   In the silane treatment step, ZSM-5 that has undergone the molding step according to Comparative Example 1 is included in the dissolved ethanol so that the addition amount of APTES as a silane compound is 0.5% by weight with respect to the total amount of the catalyst after calcination. The molded body was impregnated for a predetermined time, dried, and then fired at 550 ° C. for 6 hours and treated with the silane compound.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記シラン処理工程を経た成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.15:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and the molded product that has undergone the silane treatment step is added to the stirred impregnated aqueous solution, so that the molybdenum component and the copper component are molded. The body was impregnated. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.15: It was set to 1.0.

(実施例2)
実施例2の触媒はZSM−5を含む成型体をシラン化合物でシラン処理した後に銅:モリブデン=0.3:1.0のモル比で銅とモリブデンを担持したこと以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
(Example 2)
The catalyst of Example 2 was the same as that of Comparative Example 1 except that the molded body containing ZSM-5 was silane-treated with a silane compound and then copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.3: 1.0. It was manufactured by the same method as the manufacturing process (molding, drying, firing and carbonization treatment).

シラン処理工程ではシラン化合物としてAPTESを添加量が焼成後の触媒全体量に対して0.5重量%となるように溶解させたエタノールに比較例1に係る成型工程を経たZSM−5を含む成型体を所定時間含浸させて、これを乾燥させた後に550℃で6時間焼成して前記シラン化合物でシラン処理した。   In the silane treatment step, a molding containing ZSM-5 that has undergone the molding step according to Comparative Example 1 in ethanol in which APTES as the silane compound is dissolved in an amount of 0.5% by weight based on the total amount of the catalyst after calcination. The body was impregnated for a predetermined time, dried, and then calcined at 550 ° C. for 6 hours and treated with the silane compound.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記シラン処理工程を経た成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and the molded product that has undergone the silane treatment step is added to the stirred impregnated aqueous solution, so that the molybdenum component and the copper component are molded. The body was impregnated. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of molybdenum is 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of copper is copper: molybdenum = 0.3: It was set to 1.0.

(実施例3)
実施例3の触媒はZSM−5を含む成型体をシラン化合物でシラン処理した後に銅:モリブデン=0.45:1.0のモル比で銅とモリブデンを担持したこと以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
(Example 3)
The catalyst of Example 3 was the same as that of Comparative Example 1 except that the molded body containing ZSM-5 was silane-treated with a silane compound and then copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.45: 1.0. It was manufactured by the same method as the manufacturing process (molding, drying, firing and carbonization treatment).

シラン処理工程ではシラン化合物としてAPTESを添加量が焼成後の触媒全体量に対して0.5重量%となるように、溶解させたエタノールに比較例1に係る成型工程を経たZSM−5を含む成型体を所定時間含浸させて、これを乾燥させた後に550℃で6時間焼成して前記シラン化合物でシラン処理した。   In the silane treatment step, ZSM-5 that has undergone the molding step according to Comparative Example 1 is included in the dissolved ethanol so that the addition amount of APTES as a silane compound is 0.5% by weight with respect to the total amount of the catalyst after calcination. The molded body was impregnated for a predetermined time, dried, and then fired at 550 ° C. for 6 hours and treated with the silane compound.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記シラン処理工程を経た成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.45:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and the molded product that has undergone the silane treatment step is added to the stirred impregnated aqueous solution, so that the molybdenum component and the copper component are molded. The body was impregnated. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.45: It was set to 1.0.

(実施例4)
実施例4の触媒はZSM−5を含む成型体をシラン化合物でシラン処理した後に銅:モリブデン=0.6:1.0のモル比で銅とモリブデンを担持した以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
Example 4
The catalyst of Example 4 was the same as that of Comparative Example 1 except that the molded body containing ZSM-5 was silane-treated with a silane compound and then copper and molybdenum were supported at a molar ratio of copper: molybdenum = 0.6: 1.0. It was manufactured by the same method as the manufacturing process (molding, drying, firing and carbonization treatment).

シラン処理工程ではシラン化合物としてAPTESを添加量が焼成後の触媒全体量に対して0.5重量%となるように溶解させたエタノールに比較例1に係る成型工程を経たZSM−5を含む成型体を所定時間含浸させて、これを乾燥させた後に550℃で6時間焼成して前記シラン化合物でシラン処理した。   In the silane treatment step, a molding containing ZSM-5 that has undergone the molding step according to Comparative Example 1 in ethanol in which APTES as the silane compound is dissolved in an amount of 0.5% by weight based on the total amount of the catalyst after calcination. The body was impregnated for a predetermined time, dried, and then calcined at 550 ° C. for 6 hours and treated with the silane compound.

含浸工程では酢酸銅とモリブデン酸アンモニウムとで調整した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記シラン処理工程を経た成型体を添加して、モリブデン成分と銅成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銅とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銅の担持量はモリブデンとのモル比で銅:モリブデン=0.6:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with copper acetate and ammonium molybdate is stirred, and the molded product that has undergone the silane treatment step is added to the stirred impregnated aqueous solution, so that the molybdenum component and the copper component are molded. The body was impregnated. Then, after drying this, it baked in air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and copper. In the preparation of the aqueous impregnation solution, the supported amount of copper was 6% by weight with respect to the total amount of the catalyst after calcination, and the supported amount of copper was copper: molybdenum = 0.6: It was set to 1.0.

2.比較例及び実施例の触媒の評価
比較例及び実施例の触媒の評価法について述べる。
2. Evaluation of Catalysts of Comparative Examples and Examples Evaluation methods of the catalysts of Comparative Examples and Examples will be described.

固定床流通式反応装置のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、この反応管に反応ガスとして炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)を供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間24時間、反応圧力0.3MPaの条件で、触媒と反応ガスとを反応させた。この際、生成物の分析を行い、メタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度を経時的に調べた。前記生成物の分析はTCD−GC、FID−GCを用いて行った。 Inconel 800H gas contact part calorizing treatment reaction tube (inner diameter 18 mm) of a fixed bed flow type reactor was filled with 14 g of the catalyst to be evaluated (zeolite ratio 82.50%). Then, carbon dioxide mixed methane gas (the molar ratio of methane and carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) is supplied as a reaction gas to the reaction tube, and the reaction space velocity = 3000 ml / g-MFI / The catalyst and the reaction gas were reacted under the conditions of h (CH 4 gas flow base), a reaction temperature of 780 ° C., a reaction time of 24 hours, and a reaction pressure of 0.3 MPa. At this time, the product was analyzed, and the methane conversion rate, benzene production rate, naphthalene production rate, and BTX production rate were examined over time. The product was analyzed using TCD-GC and FID-GC.

メタン転化率、ベンゼン生成速度,ナフタレン生成速度及びBTX生成速度は次の通り定義される。   Methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate are defined as follows.

「メタン転化率(%)」=〔(「原料メタン流速」−「未反応のメタン流速」)/「原料メタン流速」〕×100
「ベンゼン生成速度」=「触媒1gあたり、1秒間に生成したベンゼンのnmol数」。
“Methane conversion rate (%)” = [(“raw methane flow rate” − “unreacted methane flow rate”) / “raw methane flow rate”] × 100
“Benzene production rate” = “nmol number of benzene produced per second per 1 g of catalyst”.

「ナフタレン生成速度」=「触媒1gあたり、1秒間に生成したナフタレンのnmol数」。   “Naphthalene production rate” = “nmol number of naphthalene produced per second per 1 g of catalyst”.

「BTX生成速度」=「触媒1gあたり、1秒間に生成したベンゼン、トルエン及びキシレンの合計nmol数」。   “BTX production rate” = “total number of nmols of benzene, toluene and xylene produced per second per gram of catalyst”.

図1は比較例1〜4、実施例1〜4の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のメタン転化率の経時的変化を示す。実施例1〜4の触媒を反応させた場合と比較例1〜4の触媒を反応させた場合のメタン転化率の経時的変化の比較から明らかなように、実施例1〜4のようにシラン処理を行うと、シラン処理を行わない比較例1〜4の触媒と比べてメタン転化率の活性寿命安定性が向上することがわかる。   FIG. 1 shows changes over time in the methane conversion rate when the catalysts of Comparative Examples 1 to 4 and Examples 1 to 4 are reacted with the carbon dioxide mixed methane gas. As is clear from the comparison of changes over time in the methane conversion rate when the catalysts of Examples 1 to 4 are reacted and when the catalysts of Comparative Examples 1 to 4 are reacted, silanes as in Examples 1 to 4 are used. It can be seen that when the treatment is performed, the active life stability of the methane conversion rate is improved as compared with the catalysts of Comparative Examples 1 to 4 in which the silane treatment is not performed.

図2は比較例1〜4、実施例1〜4の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のベンゼン生成速度の経時的変化を示す。実施例1〜4の触媒を反応させた場合と比較例1〜4の触媒を反応させた場合のメタン転化率の経時的変化の比較から明らかなように、実施例1〜4のようにシラン処理を行うと、シラン処理を行わない比較例1〜4の触媒と比べて、ベンゼン生成速度の活性寿命安定性が向上することがわかる。   FIG. 2 shows changes with time of the benzene production rate when the catalysts of Comparative Examples 1 to 4 and Examples 1 to 4 are reacted with the carbon dioxide mixed methane gas. As is clear from the comparison of changes over time in the methane conversion rate when the catalysts of Examples 1 to 4 are reacted and when the catalysts of Comparative Examples 1 to 4 are reacted, silanes as in Examples 1 to 4 are used. It can be seen that when the treatment is performed, the active life stability of the benzene production rate is improved as compared with the catalysts of Comparative Examples 1 to 4 in which the silane treatment is not performed.

図3は比較例1〜4、実施例1〜4の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のナフタレン生成速度の経時的変化を示す。実施例1〜4の触媒を反応させた場合と比較例1〜4の触媒を反応させた場合のメタン転化率の経時的変化の比較から明らかなように、実施例1〜4のようにシラン処理を行うと、シラン処理を行わない比較例1〜4の触媒と比べて、ナフタレン生成速度の活性寿命安定性が向上することがわかる。   FIG. 3 shows changes over time in the naphthalene production rate when the catalysts of Comparative Examples 1 to 4 and Examples 1 to 4 are reacted with the carbon dioxide mixed methane gas. As is clear from the comparison of changes over time in the methane conversion rate when the catalysts of Examples 1 to 4 are reacted and when the catalysts of Comparative Examples 1 to 4 are reacted, silanes as in Examples 1 to 4 are used. It can be seen that when the treatment is performed, the active lifetime stability of the naphthalene production rate is improved as compared with the catalysts of Comparative Examples 1 to 4 in which the silane treatment is not performed.

図4は比較例1〜4、実施例1〜4の各触媒を前記炭酸ガス混合メタンガスと反応させた場合のBTX生成速度の経時的変化を示す。実施例1〜4の触媒を反応させた場合と比較例1〜4の触媒を反応させた場合のメタン転化率の経時的変化の比較から明らかなように、実施例1〜4のようにシラン処理を行うと、シラン処理を行わない比較例1〜4の触媒と比べて、BTX生成速度の活性寿命安定性が向上することがわかる。   FIG. 4 shows changes over time in the BTX generation rate when the catalysts of Comparative Examples 1 to 4 and Examples 1 to 4 are reacted with the carbon dioxide mixed methane gas. As is clear from the comparison of changes over time in the methane conversion rate when the catalysts of Examples 1 to 4 are reacted and when the catalysts of Comparative Examples 1 to 4 are reacted, silanes as in Examples 1 to 4 are used. It can be seen that when the treatment is performed, the active life stability of the BTX generation rate is improved as compared with the catalysts of Comparative Examples 1 to 4 in which the silane treatment is not performed.

表1は比較例1〜4、実施例1〜4の各触媒を前記炭酸ガス混合メタンガスと3時間、10時間、24時間反応させた場合のメタン転化率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度を開示する。各種反応時間帯の活性特性、特に反応24時間後の活性特性について比較例と実施例とを比較すると、実施例2〜4は、モリブデンに対する銅の坦持量が同一である比較例2〜4と比べても、シラン処理が施されることで比較例に係る触媒よりもメタン転換率、ベンゼン生成速度、ナフタレン生成速度、BTX生成速度が高く、高活性であることがわかる。   Table 1 shows methane conversion rate, benzene production rate, naphthalene production rate and BTX when each catalyst of Comparative Examples 1 to 4 and Examples 1 to 4 was reacted with the carbon dioxide mixed methane gas for 3 hours, 10 hours and 24 hours. Disclose the production rate. Comparing the comparative example and the example with respect to the activity characteristics in various reaction time zones, particularly the activity characteristics after 24 hours of reaction, Examples 2 to 4 are comparative examples 2 to 4 in which the supported amount of copper with respect to molybdenum is the same. Even when compared with, the silane treatment gives higher methane conversion rate, benzene production rate, naphthalene production rate, BTX production rate and higher activity than the catalyst according to the comparative example.

Figure 2009119319
Figure 2009119319

以上のようにメタシリケートをシラン処理した後にモリブデンと銅を担持してなる発明に係る触媒によればメタン転化率の活性寿命安定性を向上させ、ベンゼン生成速度、ナフタレン生成速度やベンゼン、トルエン等の有用成分であるBTX生成速度を安定して得ることができる。   As described above, the catalyst according to the invention in which molybdenum and copper are supported after silane treatment of the metasilicate improves the active life stability of the methane conversion rate, benzene formation rate, naphthalene formation rate, benzene, toluene, etc. BTX production rate which is a useful component of can be stably obtained.

上述の実施例は金属成分が担持されるメタシリケートにZSM−5が採用されているが、MCM−22が適用されても前述の実施例と同様な効果を奏する。また、前記実施例ではモリブデンの担持量が焼成後の触媒全体量に対して6重量%となっているが、その担持量が触媒全体量に対して2〜12重量%の範囲で前述の実施例と同様な効果を奏する。さらに、前記実施例では坦持される銅のモリブデンに対するモル比が0.15〜0.6となっているが、前記モル比が0.01〜0.8であっても前述の実施例と同様な効果を奏する。また、前記実施例ではシラン化合物は添加量が焼成後の触媒全体量に対して0.5重量%となるように添加されているが、その添加量が2.5重量%未満であれば前述の実施例と同様な効果を奏する。さらに、前記実施例はその評価法において芳香族化合物を生成するにあたりメタンと炭酸ガスのモル比がメタン:炭酸ガス(二酸化炭素)=100:3である反応ガスと反応させているが、前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であっても前述の実施例と同様な効果を奏する。   In the above-described embodiment, ZSM-5 is adopted for the metasilicate on which the metal component is supported. However, even when MCM-22 is applied, the same effects as in the above-described embodiment are obtained. Further, in the above examples, the supported amount of molybdenum is 6% by weight with respect to the total amount of the catalyst after calcination. The effect is similar to the example. Furthermore, in the said Example, although the molar ratio with respect to the molybdenum of the supported copper is 0.15-0.6, even if the said molar ratio is 0.01-0.8, the above-mentioned Example and The same effect is produced. Moreover, in the said Example, although the silane compound is added so that the addition amount may be 0.5 weight% with respect to the catalyst whole quantity after baking, if the addition amount is less than 2.5 weight%, it is the above-mentioned. The same effects as those of the embodiment are obtained. Further, in the above example, the aromatic compound is produced in the evaluation method by reacting with a reaction gas in which the molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3. Even if the amount of the gas added is in the range of 0.5 to 6% with respect to the entire reaction gas, the same effect as in the above-described embodiment is obtained.

比較例1〜4、実施例1〜4の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のメタン転化率の経時的変化。Methane conversion when each catalyst of Comparative Examples 1 to 4 and Examples 1 to 4 is reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) Change in rate over time. 比較例1〜4、実施例1〜4の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のベンゼン生成速度の経時的変化。Benzene production when each catalyst of Comparative Examples 1 to 4 and Examples 1 to 4 is reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) Change in speed over time. 比較例1〜4、実施例1〜4の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のナフタレン生成速度の経時的変化。Naphthalene generation when each catalyst of Comparative Examples 1 to 4 and Examples 1 to 4 is reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) Change in speed over time. 比較例1〜4、実施例1〜4の各触媒と炭酸ガス混合メタンガス(メタンと炭酸ガスのモル比はメタン:炭酸ガス(二酸化炭素)=100:3)とを反応させた場合のBTX生成速度の経時的変化。BTX generation when each catalyst of Comparative Examples 1 to 4 and Examples 1 to 4 is reacted with carbon dioxide mixed methane gas (molar ratio of methane to carbon dioxide is methane: carbon dioxide (carbon dioxide) = 100: 3) Change in speed over time.

Claims (9)

低級炭化水素及び炭酸ガスと反応して芳香族化合物を生成させる触媒であって、
メタロシリケートからなるゼオライトを、前記ゼオライトの細孔口径よりも大きな分子径であると共に前記ゼオライトのブレーンステッド酸点に選択的に反応するアミノ基と直鎖炭化水素基を有するシラン化合物で処理した後にモリブデンと銅を担持してなること
を特徴とする低級炭化水素芳香族化触媒。
A catalyst that reacts with lower hydrocarbons and carbon dioxide to produce an aromatic compound,
After treating a zeolite comprising a metallosilicate with a silane compound having an amino group and a linear hydrocarbon group, which has a molecular diameter larger than the pore diameter of the zeolite and selectively reacts with the zeolite's Bronsted acid point A lower hydrocarbon aromatization catalyst characterized by supporting molybdenum and copper.
前記モリブデンはその担持量が焼成後の触媒全体量に対して2〜12重量%となると共に前記銅はモリブデンとのモル比Cu:Mo=X:1の比率が0.01〜0.8となるように担持することを特徴とする請求項1に記載の低級炭化水素芳香族化触媒。   The molybdenum has a supported amount of 2 to 12% by weight based on the total amount of the catalyst after calcination, and the copper has a molar ratio Cu: Mo = X: 1 with molybdenum of 0.01 to 0.8. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the lower hydrocarbon aromatization catalyst is supported as follows. 前記メタロシリケートにモリブデンと銅を担持した後の焼成時の焼成温度は550〜800℃であることを特徴とする請求項1または2に記載の低級炭化水素芳香族化触媒。   The lower hydrocarbon aromatization catalyst according to claim 1 or 2, wherein the firing temperature after firing molybdenum and copper on the metallosilicate is 550 to 800 ° C. 前記メタロシリケートはZSM−5、MCM−22のいずれかであることを特徴とする請求項1から3のいずれか1項に記載の低級炭化水素芳香族化触媒。   4. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the metallosilicate is ZSM-5 or MCM-22. 5. 前記シラン化合物はAPTES(3−Aminoproxyl−triethoxysilane)であることを特徴とする請求項1から4のいずれか1項に記載の低級炭化水素芳香族化触媒。   5. The lower hydrocarbon aromatization catalyst according to claim 1, wherein the silane compound is APTES (3-Aminopropyl-triethoxysilane). 前記APTESはその添加量が焼成後の触媒全体量に対して2.5重量%未満となるようにシラン処理に供することを特徴とする請求項5に記載の低級炭化水素芳香族化触媒。   6. The lower hydrocarbon aromatization catalyst according to claim 5, wherein the APTES is subjected to a silane treatment such that the addition amount thereof is less than 2.5 wt% with respect to the total amount of the catalyst after calcination. 前記APTESはその添加量が焼成後の触媒全体量に対して0.5重量%となるようにシラン処理に供することを特徴とする請求項6に記載の低級炭化水素芳香族化触媒。   The lower hydrocarbon aromatization catalyst according to claim 6, wherein the APTES is subjected to silane treatment so that the amount of the APTES added is 0.5 wt% with respect to the total amount of the catalyst after calcination. 担体であるメタロシリケートにモリブデンと銅を担持した後に焼成してなる触媒に低級炭化水素と炭酸ガスとを含む反応ガスを反応させて芳香族化合物を生成すること
を特徴とする芳香族化合物の製造方法。
Production of an aromatic compound, characterized in that a reaction gas containing lower hydrocarbon and carbon dioxide gas is reacted with a catalyst obtained by supporting molybdenum and copper on a metallosilicate carrier and then calcined to produce an aromatic compound Method.
前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であることを特徴とする請求項8に記載の芳香族化合物の製造方法。   The method for producing an aromatic compound according to claim 8, wherein the amount of carbon dioxide added is in the range of 0.5 to 6% with respect to the total reaction gas.
JP2007293010A 2007-03-20 2007-11-12 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound Expired - Fee Related JP5568833B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007293010A JP5568833B2 (en) 2007-11-12 2007-11-12 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
CN2008800049557A CN101652177B (en) 2007-03-20 2008-02-13 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
EP08711142A EP2116301A4 (en) 2007-03-20 2008-02-13 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
US12/524,029 US8278237B2 (en) 2007-03-20 2008-02-13 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
PCT/JP2008/052284 WO2008114550A1 (en) 2007-03-20 2008-02-13 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293010A JP5568833B2 (en) 2007-11-12 2007-11-12 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Publications (2)

Publication Number Publication Date
JP2009119319A true JP2009119319A (en) 2009-06-04
JP5568833B2 JP5568833B2 (en) 2014-08-13

Family

ID=40812091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293010A Expired - Fee Related JP5568833B2 (en) 2007-03-20 2007-11-12 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Country Status (1)

Country Link
JP (1) JP5568833B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07826A (en) * 1993-02-24 1995-01-06 Inst Fr Petrole Composite catalyst containing halogen, precious metal and at least one additional metal and method for use thereof in aromatization of hydrocarbon having carbon atom number of 2-12
JPH1024237A (en) * 1996-07-10 1998-01-27 Idemitsu Kosan Co Ltd Production of catalyst for purifying exhaust gas
JPH10128123A (en) * 1996-11-01 1998-05-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and its preparation
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material
US6051520A (en) * 1998-05-19 2000-04-18 Phillips Petroleum Company Hydrotreating catalyst composition and processes therefor and therewith
JP2002336704A (en) * 2001-05-18 2002-11-26 Masaru Ichikawa Aromatizing reaction catalyst of methane and method for preparing the same
JP2007014894A (en) * 2005-07-08 2007-01-25 Masaru Ichikawa Lower hydrocarbon aromatization catalyst and production method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07826A (en) * 1993-02-24 1995-01-06 Inst Fr Petrole Composite catalyst containing halogen, precious metal and at least one additional metal and method for use thereof in aromatization of hydrocarbon having carbon atom number of 2-12
JPH1024237A (en) * 1996-07-10 1998-01-27 Idemitsu Kosan Co Ltd Production of catalyst for purifying exhaust gas
JPH10128123A (en) * 1996-11-01 1998-05-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and its preparation
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material
US6051520A (en) * 1998-05-19 2000-04-18 Phillips Petroleum Company Hydrotreating catalyst composition and processes therefor and therewith
JP2002336704A (en) * 2001-05-18 2002-11-26 Masaru Ichikawa Aromatizing reaction catalyst of methane and method for preparing the same
JP2007014894A (en) * 2005-07-08 2007-01-25 Masaru Ichikawa Lower hydrocarbon aromatization catalyst and production method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012044313; S. QI et al.: 'Methane aromatization using Mo-based catalysts prepared by microwave heating' Catalysis Today Vol.98, No.4, 20041214, p.639-645, Elsevier B.V. *

Also Published As

Publication number Publication date
JP5568833B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
US8278237B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP4945242B2 (en) Process for producing aromatic hydrocarbons and hydrogen
US8558045B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
WO2007037388A1 (en) Process for production of aromatic compound
JP5402354B2 (en) Aromatic compound production method
JP2009028710A (en) Catalyst for aromatization of lower hydrocarbon
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP5568833B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
JP5315698B2 (en) Method for producing aromatic compound
JP4399790B2 (en) Propylene production method
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP5018161B2 (en) Method for producing lower hydrocarbon reforming catalyst
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP2005254121A (en) Manufacturing method of lower hydrocarbon direct-reforming catalyst
JP5577587B2 (en) Process for producing lower hydrocarbon aromatization catalyst and lower hydrocarbon aromatization catalyst
JP2008093663A (en) Manufacturing method of aromatization catalyst of lower hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5568833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees