JP2009029771A - Method for producing aromatic compound - Google Patents

Method for producing aromatic compound Download PDF

Info

Publication number
JP2009029771A
JP2009029771A JP2008007897A JP2008007897A JP2009029771A JP 2009029771 A JP2009029771 A JP 2009029771A JP 2008007897 A JP2008007897 A JP 2008007897A JP 2008007897 A JP2008007897 A JP 2008007897A JP 2009029771 A JP2009029771 A JP 2009029771A
Authority
JP
Japan
Prior art keywords
molybdenum
catalyst
silver
rate
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007897A
Other languages
Japanese (ja)
Other versions
JP5315698B2 (en
Inventor
Shinichi Yamada
真一 山田
Tomohiro Yamada
知弘 山田
Yuji Ogawa
裕治 小川
Takuya Hatagishi
琢弥 畑岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008007897A priority Critical patent/JP5315698B2/en
Priority to PCT/JP2008/056117 priority patent/WO2009004843A1/en
Priority to US12/595,924 priority patent/US8558045B2/en
Priority to EP08739235A priority patent/EP2140938A4/en
Priority to CN2008800174010A priority patent/CN101678340B/en
Publication of JP2009029771A publication Critical patent/JP2009029771A/en
Application granted granted Critical
Publication of JP5315698B2 publication Critical patent/JP5315698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the production amount of aromatic compounds of useful components such as benzene, toluene, etc., by improving an active life span stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (the total production rate of the benzene, toluene and xylene). <P>SOLUTION: This method for producing the aromatic compound comprises reacting a lower hydrocarbon and carbon dioxide gas with a catalyst prepared by loading molybdenum and silver on a metallosilicate carrier, to produce aromatic compounds. In the method for producing the aromatic compound, the amount of the carbon dioxide gas to be added is preferably set to 0.5 to 6% range based on the whole reaction gases. It is also preferable to load the metals by setting the loaded concentration of the molybdenum after calcining so as to become 2 to 12 wt.% based on the carrier, and also setting the rate X in the silver to molybdenum molar ratio in the formula (Ag:Mo)=(X:1) so as to become 0.01 to 0.3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はメタンを主成分とする天然ガス、バイオガス、メタンハイドレートの高度利用に関する。天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギー資源と考えられ、その利用技術に関心が高まっている。メタン資源はそのままクリーン性を活かして次世代の新しい有機資源、燃料電池用の水素資源として注目されている。特に本発明はメタンからプラスチック類などの化学製品原料であるベンゼン及びナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造するための触媒化学変換技術及びその触媒製造技術に関する。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane. Natural gas, biogas, and methane hydrate are considered to be the most effective energy resources as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Methane resources are attracting attention as the next generation of new organic resources and hydrogen resources for fuel cells, taking advantage of cleanliness. In particular, the present invention relates to catalytic chemical conversion technology for efficiently producing aromatic compounds mainly composed of benzene and naphthalene, which are raw materials for chemical products such as plastics, and high-purity hydrogen gas from methane, and catalyst production technology thereof. About.

メタンからベンゼン等の芳香族化合物と水素とを製造する方法としては触媒の存在下にメタンを反応させる方法が知られている。この際の触媒としてはZSM−5系のゼオライトに担持されたモリブデンが有効とされている(非特許文献1)。しかしながら、これらの触媒を使用した場合でも、炭素の析出が多いことやメタンの転換率が低いという問題を有している。この問題を解決するためにMo(モリブデン)等の触媒材料を多孔質のメタロシロケートに担持した触媒が提案されている(特許文献1、特許文献2等)。   As a method of producing an aromatic compound such as benzene and hydrogen from methane, a method of reacting methane in the presence of a catalyst is known. As the catalyst at this time, molybdenum supported on ZSM-5-based zeolite is effective (Non-patent Document 1). However, even when these catalysts are used, there are problems that carbon deposition is large and methane conversion is low. In order to solve this problem, a catalyst in which a catalyst material such as Mo (molybdenum) is supported on a porous metallosilicate has been proposed (Patent Document 1, Patent Document 2, etc.).

特許文献1及び特許文献2は担体である7オングストロームの細孔径を有する多孔質のメタロシリケートに金属成分が担持された触媒を用いることで低級炭化水素が効率的に芳香族化合物化され、これに付随して高純度の水素が得られることが確認されている。前記特許文献によると担体には前記金属成分としてモリブデン、コバルト、鉄等が担持されている。
JOURNAL OF CATALYSIS,1997,pp.165,pp.150〜161 特開平10−272366号公報 特開平11−60514号公報
In Patent Document 1 and Patent Document 2, lower hydrocarbons are efficiently converted into aromatic compounds by using a catalyst in which a metal component is supported on a porous metallosilicate having a 7 angstrom pore diameter as a carrier. Accompanyingly, it has been confirmed that high purity hydrogen can be obtained. According to the patent document, molybdenum, cobalt, iron or the like is supported on the carrier as the metal component.
JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161 JP 10-272366 A Japanese Patent Laid-Open No. 11-60514

メタンからベンゼン等の芳香族化合物と水素を製造する方法としては触媒の存在下にメタンを反応させる方法としてZSM−5にモリブデンを担持した触媒が有効とされている。   As a method for producing an aromatic compound such as benzene and hydrogen from methane, a catalyst in which molybdenum is supported on ZSM-5 is effective as a method for reacting methane in the presence of a catalyst.

しかしながら、メタン転換率(芳香族化合物と水素の生成に利用されるメタンの利用率)が低い。   However, the methane conversion rate (utilization rate of methane used for producing aromatic compounds and hydrogen) is low.

この問題を改善するために特許文献1や特許文献2のようにモリブデン及びこれに他の第二金属を多孔質のメタロシリケートに担持した触媒が提案されているが、メタン転換率をより一層改善させると共に芳香族化合物の製造効率を高めるために、さらに優れた触媒の開発が望まれている。   In order to improve this problem, a catalyst in which molybdenum and another second metal are supported on a porous metallosilicate has been proposed as in Patent Document 1 and Patent Document 2, but the methane conversion rate is further improved. In order to increase the production efficiency of the aromatic compound, development of a more excellent catalyst is desired.

そこで、前記課題を解決するための芳香族化合物の製造方法は、担体であるメタロシリケートにモリブデンと銀を担持してなる触媒に低級炭化水素及び炭酸ガスを反応させて芳香族化合物を生成する。   Therefore, in the method for producing an aromatic compound for solving the above-mentioned problem, an aromatic compound is produced by reacting a lower hydrocarbon and carbon dioxide gas with a catalyst in which molybdenum and silver are supported on a metallosilicate as a carrier.

この芳香族化合物の製造方法によれば、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。   According to this method for producing an aromatic compound, the active life stability of the methane conversion rate, the benzene production rate, the naphthalene production rate and the BTX production rate (total production rate of benzene, toluene and xylene) is improved.

前記メタロシリケートとしては例えばZSM−5やMCM−22が挙げられる。また、前記モリブデンは前記焼成した後の担持濃度が前記担体に対して2〜12重量%となると共に前記銀はモリブデンとのモル比Ag:Mo=X:1の比率Xが0.01〜0.3となるように担持するとよい。前記活性寿命安定性の向上が確実となる。前記メタロシリケートにモリブデン及び銀を担持した後の焼成温度は400〜700℃の範囲で設定するとよい。触媒の強度及び特性が維持される。   Examples of the metallosilicate include ZSM-5 and MCM-22. In addition, the supported concentration of the molybdenum after the baking is 2 to 12% by weight with respect to the support, and the silver has a molar ratio Ag: Mo = X: 1 of molybdenum to the ratio X of 0.01 to 0. .3 should be supported. The improvement of the active life stability is ensured. The firing temperature after molybdenum and silver are supported on the metallosilicate may be set in the range of 400 to 700 ° C. The strength and properties of the catalyst are maintained.

前記芳香族化合物の製造方法においては、炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲に設定するとよい。ベンゼン、トルエン等の有用成分である芳香族化合物の生成量が安定する。   In the method for producing an aromatic compound, the amount of carbon dioxide added may be set in the range of 0.5 to 6% with respect to the entire reaction gas. The production amount of aromatic compounds which are useful components such as benzene and toluene is stabilized.

以上の発明によれば、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上するので、ベンゼン、トルエン等の有用成分である芳香族化合物の生成量が増大する。   According to the above invention, active life stability of methane conversion rate, benzene formation rate, naphthalene formation rate and BTX formation rate (total formation rate of benzene, toluene and xylene) is improved, so useful components such as benzene and toluene The production amount of the aromatic compound is increased.

発明に係る低級炭化水素の芳香族化触媒はモリブデン及びその化合物から選ばれた少なくとも一種以上を触媒材料として含有する。そして、芳香族化合物を製造する際に前記低級炭化水素の芳香族化触媒は低級炭化水素の他に炭酸ガス(二酸化炭素)と反応させる。   The lower hydrocarbon aromatization catalyst according to the present invention contains at least one selected from molybdenum and its compounds as a catalyst material. When the aromatic compound is produced, the lower hydrocarbon aromatization catalyst is reacted with carbon dioxide gas (carbon dioxide) in addition to the lower hydrocarbon.

前記金属成分を担持する担体は実質的に4.5〜6.5オングストローム径の細孔を有する多孔質メタロシリケートを含んでいる。このメタロシリケートには第一金属成分としてモリブデンが担持され、モリブデン以外の第二金属成分として銀が担持される。前記モリブデン成分及び銀成分は酢酸銀または硝酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液に前記メタロシリケートを添加してモリブデン成分と銀成分とをメタロシリケートに含浸させた後に乾燥及び焼成に供すれば前記メタロシリケートに担持される。このように多孔質メタロシリケートにMoC(炭化モリブデン)すなわちモリブデン成分を単独で担持するのではなくモリブデン成分に加えて銀を第二金属成分として担持することにより触媒の安定性が得られる。特に、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度(ベンゼンとトルエンとキシレンの合計生成速度)の活性寿命安定性が向上する。   The carrier carrying the metal component substantially includes a porous metallosilicate having pores with a diameter of 4.5 to 6.5 angstroms. This metallosilicate carries molybdenum as the first metal component and silver as the second metal component other than molybdenum. The molybdenum component and silver component may be dried and fired after the metallosilicate is added to an aqueous impregnation solution prepared with silver acetate or silver nitrate and ammonium molybdate to impregnate the metallosilicate with the molybdenum component and the silver component. Supported on the metallosilicate. Thus, the stability of the catalyst can be obtained by supporting not only MoC (molybdenum carbide), that is, a molybdenum component, but also silver as a second metal component in addition to the molybdenum component in the porous metallosilicate. In particular, the active life stability of methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate (total production rate of benzene, toluene and xylene) is improved.

以下の比較例及び実施例を参照しながら発明に係る製造方法に供される低級炭化水素の芳香族化触媒について説明する。   The lower hydrocarbon aromatization catalyst used in the production method according to the invention will be described with reference to the following comparative examples and examples.

1.低級炭化水素の芳香族化触媒(以下、触媒と略称する)の製造
(比較例1)
比較例1の触媒はメタシリケートとしてアンモニウム型ZSM−5(SiO2/Al23=25〜60)が採用され、これにモリブデンのみが担持されたものである。
1. Production of lower hydrocarbon aromatization catalyst (hereinafter abbreviated as catalyst) (Comparative Example 1)
The catalyst of Comparative Example 1 employs ammonium type ZSM-5 (SiO 2 / Al 2 O 3 = 25-60) as a metasilicate, and only molybdenum is supported thereon.

(1)配合
無機成分の配合:ZSM−5(82.5重量%)、粘土(12.5重量%)、ガラス繊維(5重量%)
全体配合:前記無機成分(76.5重量%)、有機バインダー(17.3重量%)、水分(24.3重量%)
(2)成型
前記配合比率で前記無機成分と有機バインダーと水分とを配合し混練手段(ニーダ)によって混合、混練した。次に、この混合体を真空押し出し成型機によって棒状(径5mm×長さ10mm)に成型した。このときの成型時の押し出し圧力は2〜8MPaに設定した。
(1) Blending Blending of inorganic components: ZSM-5 (82.5 wt%), clay (12.5 wt%), glass fiber (5 wt%)
Total formulation: inorganic component (76.5 wt%), organic binder (17.3 wt%), moisture (24.3 wt%)
(2) Molding The inorganic component, organic binder, and moisture were blended at the blending ratio, and mixed and kneaded by a kneading means (kneader). Next, this mixture was molded into a rod shape (diameter 5 mm × length 10 mm) with a vacuum extrusion molding machine. The extrusion pressure at the time of molding at this time was set to 2 to 8 MPa.

通常炭化水素を改質するために使用する触媒担体は数μmから数百μmの粒径の粒子を用いて流動床触媒として使用している。この場合の触媒担体の製造方法は触媒の担体材料と有機バインダー、無機バインダー(通常は粘土を使用)と水を混合しスラリー状としてスプレードライヤーで造粒成型(成型圧力はない)した後に焼成する。この場合、成型圧力がないため、焼成速度を確保するために焼成助材として加える粘土の添加量が40〜60重量%程度であった。ここでは触媒の成型を真空押出成型機を用いて高圧成型することにより焼成助材として加える粘土等の添加材の添加量を15〜25重量%に低減することができる。そのため触媒活性も向上させることができる。   Usually, the catalyst support used for reforming hydrocarbons is used as a fluidized bed catalyst using particles having a particle size of several μm to several hundred μm. In this case, the catalyst carrier is produced by mixing a catalyst carrier material, an organic binder, an inorganic binder (usually using clay) and water, forming a slurry and granulating it with a spray dryer (no molding pressure), followed by firing. . In this case, since there was no molding pressure, the amount of clay added as a firing aid to ensure the firing rate was about 40 to 60% by weight. Here, the amount of the additive such as clay added as a firing aid can be reduced to 15 to 25% by weight by molding the catalyst at a high pressure using a vacuum extrusion molding machine. Therefore, the catalytic activity can also be improved.

(3)モリブデンの含浸
攪拌されたモリブデン酸アンモニウム水溶液に前記成型工程で得られた成型体を添加してモリブデン成分を前記成型体に含浸させた後に以下の乾燥及び焼成の工程に供した。尚、前記成型体は前記ZSM−5に対するモリブデンの重量比が6重量%となるように添加した。
(3) Impregnation of molybdenum The molded body obtained in the molding step was added to the stirred ammonium molybdate aqueous solution to impregnate the molded body with the molybdenum component, and then subjected to the following drying and firing steps. The molded body was added so that the weight ratio of molybdenum to ZSM-5 was 6% by weight.

(4)乾燥、焼成
乾燥は成型時に添加した水分を除去するために70℃で12時間乾燥した後に90℃で約36時間乾燥した。焼成は昇温速度及び降温速度ともに90〜100℃/時とした。成型時に添加した有機バインダーが瞬時に燃焼しないように250〜500℃の温度範囲の中に2〜6時間程度の温度保持を2回実施し、バインダーを除去するようにした。昇温速度、降温速度がこれ以上のスピードであり、バインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼し、焼成体の強度が低下するためである。焼成温度は550〜800℃の範囲とした。550℃以下では担体の強度低下、800℃以上では特性の低下が起こるためである。尚、ここでは空気中で550℃、5時間焼成した。
(4) Drying and calcination Drying was carried out at 70 ° C. for 12 hours and then at 90 ° C. for about 36 hours in order to remove moisture added during molding. Firing was performed at 90 to 100 ° C./hour for both the heating rate and the cooling rate. In order to prevent the organic binder added at the time of molding from burning instantaneously, the temperature was held twice in the temperature range of 250 to 500 ° C. for about 2 to 6 hours to remove the binder. This is because the rate of temperature increase and the rate of temperature decrease are higher than this, and when the keep time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body decreases. The firing temperature was in the range of 550 to 800 ° C. This is because the strength of the carrier is lowered at 550 ° C. or lower, and the properties are lowered at 800 ° C. or higher. In addition, it baked here at 550 degreeC for 5 hours in the air.

(5)炭化処理
前記焼成体をCH4とH2の混合ガス(メタン/水素=1/4の混合モル比)を流通下で700℃まで2時間で昇温させ、この状態を3時間維持した。その後、この雰囲気をCH4の反応ガスに切り替え、780℃まで昇温して比較例1に係る触媒を得た。
(5) Carbonization treatment The fired body is heated to 700 ° C. in 2 hours under a flow of a mixed gas of CH 4 and H 2 (mixed molar ratio of methane / hydrogen = 1/4), and this state is maintained for 3 hours. did. Thereafter, this atmosphere was switched to a reaction gas of CH 4 and the temperature was raised to 780 ° C. to obtain a catalyst according to Comparative Example 1.

(比較例2)
比較例2の触媒はモリブデンとコバルトとを担持したもので、含浸工程以外は比較例1の触媒の配合、成型、乾燥、焼成及び炭化処理の工程と同じ方法で製造した。
(Comparative Example 2)
The catalyst of Comparative Example 2 supported molybdenum and cobalt, and was produced by the same method as the steps of compounding, molding, drying, firing and carbonizing treatment of the catalyst of Comparative Example 1 except for the impregnation step.

含浸工程では酢酸コバルトとモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌しながら前記成形工程で得た成形体を添加してモリブデン成分とコバルト成分とを前記成型体に含浸させた後に乾燥、蒸発乾固させた。そして、これを空気中で550℃、5時間焼成してモリブデンとコバルトとを担持させた触媒を得た。尚、モリブデンの担持量はZSM−5に対して6重量%となるように、コバルトの担持量はモリブデンとのモル比でコバルト:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, the molded body obtained in the molding step is added while stirring the aqueous impregnated solution prepared with cobalt acetate and ammonium molybdate to impregnate the molded body with the molybdenum component and the cobalt component, followed by drying and evaporation to dryness. Solidified. And this was calcined in the air at 550 degreeC for 5 hours, and the catalyst which carry | supported molybdenum and cobalt was obtained. The supported amount of molybdenum was set to 6 wt% with respect to ZSM-5, and the supported amount of cobalt was set to be cobalt: molybdenum = 0.3: 1.0 in terms of molar ratio with molybdenum.

(比較例3)
比較例3の触媒はモリブデンと鉄とを担持したもので、含浸工程以外は比較例1の触媒の配合、成型、乾燥、焼成及び炭化処理の工程と同じ方法で製造した。
(Comparative Example 3)
The catalyst of Comparative Example 3 supported molybdenum and iron, and was produced by the same method as the steps of compounding, molding, drying, firing and carbonizing treatment of the catalyst of Comparative Example 1 except for the impregnation step.

含浸工程では酢酸鉄とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌しながら前記成形工程で得た成形体を添加してモリブデン成分と鉄成分とを前記成型体に含浸させた後に乾燥、蒸発乾固させた。そして、これを空気中で550℃、5時間焼成してモリブデンと鉄とを担持させた触媒を得た。尚、モリブデンの担持量はZSM−5に対して6重量%となるように、鉄の担持量はモリブデンとのモル比で鉄:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, the impregnated aqueous solution prepared with iron acetate and ammonium molybdate is stirred and the shaped product obtained in the forming step is added to impregnate the shaped product with the molybdenum component and the iron component, followed by drying and evaporation to dryness. Solidified. And this was baked in the air at 550 degreeC for 5 hours, and the catalyst which carry | supported molybdenum and iron was obtained. The supported amount of molybdenum was set to 6% by weight with respect to ZSM-5, and the supported amount of iron was set to iron: molybdenum = 0.3: 1.0 in terms of molar ratio with molybdenum.

(実施例1)
実施例1の触媒はモリブデンと銀とを担持したもので、含浸工程以外は比較例1の触媒の配合、成型、乾燥、焼成及び炭化処理の工程と同じ方法で製造した。
Example 1
The catalyst of Example 1 supported molybdenum and silver, and was produced by the same method as the steps of compounding, molding, drying, firing and carbonization treatment of Comparative Example 1 except for the impregnation step.

含浸工程では酢酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌しながら前記成形工程で得た成形体を添加してモリブデン成分と銀成分とを前記成型体に含浸させた後に乾燥、蒸発乾固させた。そして、これを空気中で550℃、5時間焼成してモリブデンと銀とを担持させた触媒を得た。尚、モリブデンの担持量はZSM−5に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.3:1.0となるように設定した。   In the impregnation step, the molded product obtained in the molding step is added while stirring the aqueous impregnation solution prepared with silver acetate and ammonium molybdate, and the molded product is impregnated with the molybdenum component and the silver component, and then dried and evaporated to dryness. Solidified. And this was calcined in air at 550 ° C. for 5 hours to obtain a catalyst carrying molybdenum and silver. The supported amount of molybdenum was set to 6% by weight with respect to ZSM-5, and the supported amount of silver was set such that silver: molybdenum = 0.3: 1.0 in terms of molar ratio with molybdenum.

(実施例2)
実施例2の触媒は銀:モリブデン=0.6:1.0のモル比で銀とモリブデンを担持したもので、成型体のサイズと含浸工程以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
(Example 2)
The catalyst of Example 2 carries silver and molybdenum at a molar ratio of silver: molybdenum = 0.6: 1.0, and the catalyst production process of Comparative Example 1 (molding, molding, (Drying, baking and carbonization treatment).

成型工程では比較例1に係る無機成分と有機バインダーと水分との混合体を2〜8MPaの押し出し圧力で真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。含浸工程では酢酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銀成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銀とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.6:1.0となるように設定した。   In the molding step, the mixture of the inorganic component, the organic binder, and moisture according to Comparative Example 1 was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine at an extrusion pressure of 2 to 8 MPa. In the impregnation step, an aqueous impregnation solution prepared with silver acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step is added to the stirred aqueous impregnation solution, so that a molybdenum component and a silver component are added. Were impregnated into the molded body. Then, after drying this, it baked in the air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and silver. In preparation of the aqueous impregnation solution, the supported amount of molybdenum is 6% by weight with respect to the total amount of the catalyst after calcination, and the supported amount of silver is silver: molybdenum = 0.6: It was set to 1.0.

(実施例3)
実施例3の触媒は銀:モリブデン=0.8:1.0のモル比で銀とモリブデンを担持したもので、成型体のサイズと含浸工程以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
(Example 3)
The catalyst of Example 3 carries silver and molybdenum in a molar ratio of silver: molybdenum = 0.8: 1.0, and the production process of the catalyst of Comparative Example 1 (molding, molding, (Drying, baking and carbonization treatment).

成型工程では比較例1に係る無機成分と有機バインダーと水分との混合体を2〜8MPaの押し出し圧力で真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。含浸工程では酢酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銀成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銀とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.8:1.0となるように設定した。   In the molding step, the mixture of the inorganic component, the organic binder, and moisture according to Comparative Example 1 was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine at an extrusion pressure of 2 to 8 MPa. In the impregnation step, an aqueous impregnation solution prepared with silver acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step is added to the stirred aqueous impregnation solution, so that a molybdenum component and a silver component are added. Were impregnated into the molded body. Then, after drying this, it baked in the air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and silver. In the preparation of the aqueous impregnation solution, the supported amount of silver is 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of silver is silver: molybdenum = 0.8: It was set to 1.0.

(実施例4)
実施例4の触媒は銀:モリブデン=0.1:1.0のモル比で銀とモリブデンを担持したもので、成型体のサイズと含浸工程以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
Example 4
The catalyst of Example 4 carries silver and molybdenum at a molar ratio of silver: molybdenum = 0.1: 1.0, and the production process of the catalyst of Comparative Example 1 (molding, molding, (Drying, baking and carbonization treatment).

成型工程では比較例1に係る無機成分と有機バインダーと水分との混合体を2〜8MPaの押し出し圧力で真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。含浸工程では酢酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銀成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銀とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.1:1.0となるように設定した。   In the molding step, the mixture of the inorganic component, the organic binder, and moisture according to Comparative Example 1 was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine at an extrusion pressure of 2 to 8 MPa. In the impregnation step, an aqueous impregnation solution prepared with silver acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step is added to the stirred aqueous impregnation solution, so that a molybdenum component and a silver component are added. Were impregnated into the molded body. Then, after drying this, it baked in the air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and silver. In the preparation of the aqueous impregnation solution, the supported amount of silver is 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of silver is silver: molybdenum = 0.1: It was set to 1.0.

(実施例5)
実施例5の触媒は銀:モリブデン=0.3:1.0のモル比で銀とモリブデンを担持したもので、成型体のサイズと含浸工程以外は比較例1の触媒の製造工程(成型、乾燥、焼成及び炭化処理)と同じ方法で製造した。
(Example 5)
The catalyst of Example 5 carries silver and molybdenum at a molar ratio of silver: molybdenum = 0.3: 1.0, and the catalyst production process (molding, molding, (Drying, baking and carbonization treatment).

成型工程では比較例1に係る無機成分と有機バインダーと水分との混合体を2〜8MPaの押し出し圧力で真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。含浸工程では酢酸銀とモリブデン酸アンモニウムとで調製した含浸水溶液を攪拌し、この攪拌された状態の含浸水溶液に前記成型工程を経たZSM−5を含む成型体を添加して、モリブデン成分と銀成分とを前記成型体に含浸させた。その後、これを乾燥させた後に空気中で550℃、5時間焼成してモリブデンと銀とを担持させたZSM−5担体を得た。尚、前記含浸水溶液の調製にあたり、モリブデンの担持量は焼成後の触媒全体量に対して6重量%となるように、銀の担持量はモリブデンとのモル比で銀:モリブデン=0.3:1.0となるように設定した。   In the molding step, the mixture of the inorganic component, the organic binder, and moisture according to Comparative Example 1 was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine at an extrusion pressure of 2 to 8 MPa. In the impregnation step, an aqueous impregnation solution prepared with silver acetate and ammonium molybdate is stirred, and a molded body containing ZSM-5 that has undergone the molding step is added to the stirred aqueous impregnation solution, so that a molybdenum component and a silver component are added. Were impregnated into the molded body. Then, after drying this, it baked in the air at 550 degreeC for 5 hours, and obtained the ZSM-5 support | carrier which carry | supported molybdenum and silver. In preparation of the aqueous impregnation solution, the supported amount of silver was 6% by weight based on the total amount of the catalyst after calcination, and the supported amount of silver was silver: molybdenum = 0.3: It was set to 1.0.

2.比較例及び実施例の触媒の評価
比較例及び実施例の触媒の評価法について述べる。図9に示したように固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、表1に示した条件に基づき前記反応管に反応ガスを供給した。すなわち、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間24時間、反応圧力0.3MPaの条件で、触媒と反応ガス(100メタン(CH4)+3炭酸ガス(CO2))とを反応させた。この際、生成物の分析を行い、メタン転換率、ベンゼン生成速度、ナフタレン生成速度及びBTX生成速度を経時的に調べた。前記生成物の分析はTCD−GC、FID−GCを用いて行った。
2. Evaluation of Catalysts of Comparative Examples and Examples Evaluation methods of the catalysts of Comparative Examples and Examples will be described. As shown in FIG. 9, 14 g of the catalyst to be evaluated (zeolite ratio 82.50%) was filled in the reaction tube (inner diameter: 18 mm) of the inconel 800H gas contact part calorizing treatment of the fixed bed flow type reactor 1. And based on the conditions shown in Table 1, the reaction gas was supplied to the said reaction tube. That is, under conditions of reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction temperature 780 ° C., reaction time 24 hours, reaction pressure 0.3 MPa, catalyst and reaction gas (100 methane (CH 4 ) +3 carbon dioxide gas (CO 2 )). At this time, the product was analyzed, and the methane conversion rate, benzene production rate, naphthalene production rate, and BTX production rate were examined over time. The product was analyzed using TCD-GC and FID-GC.

メタン転換率、ベンゼン生成速度,ナフタレン生成速度及びBTX生成速度は次の通り定義される。
「メタン転換率(%)」=〔(「原料メタン流速」−「未反応のメタン流速」)/「原料メタン流速」〕×100
「ベンゼン生成速度」=「触媒1gあたり、1秒間に生成したベンゼンのnmol数」。
「ナフタレン生成速度」=「触媒1gあたり、1秒間に生成したナフタレンのnmol数」。
「BTX生成速度」=「触媒1gあたり、1秒間に生成したベンゼン、トルエン及びキシレンの合計nmol数」。
Methane conversion rate, benzene production rate, naphthalene production rate and BTX production rate are defined as follows.
“Methane conversion rate (%)” = [(“Raw material methane flow rate” − “Unreacted methane flow rate”) / “Raw material methane flow rate”] × 100
“Benzene production rate” = “nmol number of benzene produced per second per 1 g of catalyst”.
“Naphthalene production rate” = “nmol number of naphthalene produced per second per 1 g of catalyst”.
“BTX production rate” = “total number of nmols of benzene, toluene and xylene produced per second per gram of catalyst”.

Figure 2009029771
Figure 2009029771

図1は比較例1〜比較例3及び実施例1に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のメタン転換率の経時的変化を示す。この特性図に示されたメタン転換率の経時的変化から明らかなように実施例1の触媒(モリブデンと銀とを担持した触媒(Ag/Mo))によれば従来技術に係る比較例1の触媒(モリブデンのみを担持した触媒(Mo))比較例2の触媒(モリブデンとコバルトとを担持した触媒(Co/Mo))、比較例3の触媒(モリブデンと鉄とを担持した触媒(Fe/Mo))と比較してメタン転換率の活性寿命の安定性が向上している。   FIG. 1 shows changes over time in the methane conversion rate when each of the catalysts according to Comparative Examples 1 to 3 and Example 1 is reacted with methane gas and carbon dioxide gas. As is clear from the time-dependent change in the methane conversion rate shown in this characteristic diagram, the catalyst of Example 1 (a catalyst supporting molybdenum and silver (Ag / Mo)) was used in Comparative Example 1 according to the prior art. Catalyst (catalyst (Mo) carrying only molybdenum (Mo)) catalyst of Comparative Example 2 (catalyst carrying molybdenum and cobalt (Co / Mo)), catalyst of Comparative Example 3 (catalyst carrying molybdenum and iron (Fe / Mo)) Compared with Mo)), the stability of the active lifetime of the methane conversion is improved.

図2は比較例1〜比較例3及び実施例1に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のベンゼン生成速度の経時的変化を示す。この特性図から明らかなように実施例1の触媒(Ag/Mo)によれば従来技術に係る比較例1の触媒(Mo)、比較例2の触媒(Co/Mo)、比較例3の触媒(Fe/Mo)と比較してベンゼン生成速度の活性寿命の安定性が向上している。   FIG. 2 shows changes over time in the benzene production rate when each of the catalysts according to Comparative Examples 1 to 3 and Example 1 was reacted with methane gas and carbon dioxide gas. As is apparent from this characteristic diagram, according to the catalyst (Ag / Mo) of Example 1, the catalyst of Comparative Example 1 (Mo), the catalyst of Comparative Example 2 (Co / Mo), and the catalyst of Comparative Example 3 according to the prior art Compared with (Fe / Mo), the stability of the active lifetime of the benzene formation rate is improved.

図3は比較例1〜比較例3及び実施例1に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のナフタレン生成速度の経時的変化を示す。この特性図から明らかなように実施例1の触媒(Ag/Mo)によれば従来技術に係る比較例1の触媒(Mo)、比較例2の触媒(Co/Mo)、比較例3の触媒(Fe/Mo)と比較してナフタレン生成速度の活性寿命の安定性が向上している。   FIG. 3 shows changes over time in the naphthalene production rate when each of the catalysts according to Comparative Examples 1 to 3 and Example 1 is reacted with methane gas and carbon dioxide gas. As is apparent from this characteristic diagram, according to the catalyst (Ag / Mo) of Example 1, the catalyst of Comparative Example 1 (Mo), the catalyst of Comparative Example 2 (Co / Mo), and the catalyst of Comparative Example 3 according to the prior art Compared with (Fe / Mo), the stability of the active lifetime of the naphthalene production rate is improved.

図4は比較例1〜比較例3及び実施例1に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のBTX生成速度の経時的変化を示す。この特性図から明らかなように実施例1の触媒(Ag/Mo)によれば従来技術に係る比較例1の触媒(Mo)、比較例2の触媒(Co/Mo)、比較例3の触媒(Fe/Mo)と比較してBTX生成速度の活性寿命の安定性が向上している。   FIG. 4 shows the change over time of the BTX production rate when each of the catalysts according to Comparative Examples 1 to 3 and Example 1 is reacted with methane gas and carbon dioxide gas. As is apparent from this characteristic diagram, according to the catalyst (Ag / Mo) of Example 1, the catalyst of Comparative Example 1 (Mo), the catalyst of Comparative Example 2 (Co / Mo), and the catalyst of Comparative Example 3 according to the prior art Compared with (Fe / Mo), the stability of the active lifetime of the BTX generation rate is improved.

表2は前記評価法に基づき実施例2〜実施例5に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合の反応時間3時間から24時間後のメタン転換率、ベンゼン生成速度、BTX生成速度の変化率の一覧である。特に実施例4及び実施例5に係る触媒はメタン転換率、ベンゼン生成速度、BTX生成速度の変化率の観点からも実施例2及び実施例3に係る触媒よりも有効であることが確認できる。   Table 2 shows the methane conversion rate, benzene production rate, and BTX production after a reaction time of 3 to 24 hours when each of the catalysts according to Examples 2 to 5 was reacted with methane gas and carbon dioxide gas based on the evaluation method. It is a list of rate of change of speed. In particular, it can be confirmed that the catalysts according to Example 4 and Example 5 are more effective than the catalysts according to Example 2 and Example 3 from the viewpoint of the rate of change in methane conversion rate, benzene production rate, and BTX production rate.

Figure 2009029771
Figure 2009029771

図5は実施例4及び実施例5に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のメタン転換率の経時的変化を示す。この特性図から明らかなように実施例4及び実施例5に係る触媒によればメタン転換率の活性寿命の安定性が向上している。   FIG. 5 shows changes over time in the methane conversion rate when each of the catalysts according to Example 4 and Example 5 was reacted with methane gas and carbon dioxide gas. As is clear from this characteristic diagram, according to the catalysts according to Example 4 and Example 5, the stability of the active life of the methane conversion rate is improved.

図6は実施例4及び実施例5に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のベンゼン生成速度の経時的変化を示す。この特性図から明らかなように実施例4及び実施例5に係る触媒によればベンゼン生成速度の活性寿命の安定性が向上している。   FIG. 6 shows changes with time in the benzene production rate when each of the catalysts according to Example 4 and Example 5 was reacted with methane gas and carbon dioxide gas. As is clear from this characteristic diagram, according to the catalysts according to Example 4 and Example 5, the stability of the active lifetime of the benzene production rate is improved.

図7は実施例4及び実施例5に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のナフタレン生成速度の経時的変化を示す。この特性図から明らかなように実施例4及び実施例5に係る触媒によればナフタレン生成速度の活性寿命の安定性が向上している。   FIG. 7 shows changes over time in the naphthalene production rate when each of the catalysts according to Example 4 and Example 5 is reacted with methane gas and carbon dioxide gas. As is clear from this characteristic diagram, according to the catalysts according to Example 4 and Example 5, the stability of the active lifetime of the naphthalene production rate is improved.

図8は実施例4及び実施例5に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のBTX生成速度の経時的変化を示す。この特性図から明らかなように実施例4及び実施例5に係る触媒によればBTX生成速度の活性寿命の安定性が向上している。   FIG. 8 shows the change with time of the BTX generation rate when each of the catalysts according to Example 4 and Example 5 was reacted with methane gas and carbon dioxide gas. As is clear from this characteristic diagram, according to the catalysts according to Example 4 and Example 5, the stability of the active life of the BTX generation rate is improved.

以上の実施例の結果から明らかなようにメタロシリケートにモリブデンの他に第二金属成分として銀を担持して低級炭化水素の芳香族化触媒を成し、そしてこの触媒を低級炭化水素及び炭酸ガスと反応させることでメタン転換率、ベンゼン生成速度及びナフタレン生成速度の活性寿命安定性が向上することが示された。さらに、ベンゼン、トルエン等の有用成分であるBTX生成速度が安定することが示された。特に銀がモリブデンとのモル比Ag:Mo=X:1の比率Xが0.01〜0.3の範囲であると、メタン転換率がより一層安定し、触媒の活性寿命安定性が確実に向上することが示された。   As is apparent from the results of the above examples, the metallosilicate is supported with silver as a second metal component in addition to molybdenum to form a lower hydrocarbon aromatization catalyst, and this catalyst is used as a lower hydrocarbon and carbon dioxide gas. It was shown that the activity lifetime stability of methane conversion rate, benzene formation rate and naphthalene formation rate was improved by reacting with. Furthermore, it has been shown that the production rate of BTX, which is a useful component such as benzene and toluene, is stable. In particular, when the molar ratio Ag: Mo = X: 1 of the silver to molybdenum ratio X is in the range of 0.01 to 0.3, the methane conversion is further stabilized, and the active life stability of the catalyst is ensured. It has been shown to improve.

比較例1(Mo単一担時)、比較例2(Co/Mo同時担時)、比較例3(Fe/Mo同時担時)、実施例1(Ag/Mo同時担時)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のメタン転換率の経時的変化。The catalyst of Comparative Example 1 (at the time of Mo single loading), Comparative Example 2 (at the same time of Co / Mo loading), Comparative Example 3 (at the same time of Fe / Mo loading), and Example 1 (at the same time of Ag / Mo loading) Change with time of methane conversion rate when each is reacted with methane gas and carbon dioxide gas. 比較例1(Mo単一担時)、比較例2(Co/Mo同時担時)、比較例3(Fe/Mo同時担時)、実施例1(Ag/Mo同時担時)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のベンゼン生成速度の経時的変化。The catalyst of Comparative Example 1 (at the time of Mo single loading), Comparative Example 2 (at the same time of Co / Mo loading), Comparative Example 3 (at the same time of Fe / Mo loading), and Example 1 (at the same time of Ag / Mo loading) Changes in benzene production rate over time when each is reacted with methane gas and carbon dioxide gas. 比較例1(Mo単一担時)、比較例2(Co/Mo同時担時)、比較例3(Fe/Mo同時担時)、実施例1(Ag/Mo同時担時)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のナフタレン生成速度の経時的変化。The catalyst of Comparative Example 1 (at the time of Mo single loading), Comparative Example 2 (at the same time of Co / Mo loading), Comparative Example 3 (at the same time of Fe / Mo loading), and Example 1 (at the same time of Ag / Mo loading) Changes in the naphthalene production rate over time when each was reacted with methane gas and carbon dioxide gas. 比較例1(Mo単一担時)、比較例2(Co/Mo同時担時)、比較例3(Fe/Mo同時担時)、実施例1(Ag/Mo同時担時)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のBTX生成速度の経時的変化。The catalyst of Comparative Example 1 (at the time of Mo single loading), Comparative Example 2 (at the same time of Co / Mo loading), Comparative Example 3 (at the same time of Fe / Mo loading), and Example 1 (at the same time of Ag / Mo loading) The time-dependent change of the BTX production | generation rate at the time of making each react with methane gas and a carbon dioxide gas. 実施例4(AgとMoのモル比Ag/Mo=0.1)及び実施例5(AgとMoのモル比Ag/Mo=0.3)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のメタン転換率の経時的変化。Each of the catalysts according to Example 4 (Ag / Mo molar ratio Ag / Mo = 0.1) and Example 5 (Ag / Mo molar ratio Ag / Mo = 0.3) was reacted with methane gas and carbon dioxide gas. Change in methane conversion rate over time. 実施例4(AgとMoのモル比Ag/Mo=0.1)及び実施例5(AgとMoのモル比Ag/Mo=0.3)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のベンゼン生成速度の経時的変化。Each of the catalysts according to Example 4 (Ag / Mo molar ratio Ag / Mo = 0.1) and Example 5 (Ag / Mo molar ratio Ag / Mo = 0.3) was reacted with methane gas and carbon dioxide gas. Change in benzene production rate with time. 実施例4(AgとMoのモル比Ag/Mo=0.1)及び実施例5(AgとMoのモル比Ag/Mo=0.3)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のナフタレン生成速度の経時的変化。Each of the catalysts according to Example 4 (Ag / Mo molar ratio Ag / Mo = 0.1) and Example 5 (Ag / Mo molar ratio Ag / Mo = 0.3) was reacted with methane gas and carbon dioxide gas. Change of naphthalene formation rate with time. 実施例4(AgとMoのモル比Ag/Mo=0.1)及び実施例5(AgとMoのモル比Ag/Mo=0.3)に係る触媒の各々をメタンガス及び炭酸ガスと反応させた場合のBTX生成速度の経時的変化。Each of the catalysts according to Example 4 (Ag / Mo molar ratio Ag / Mo = 0.1) and Example 5 (Ag / Mo molar ratio Ag / Mo = 0.3) was reacted with methane gas and carbon dioxide gas. Change in BTX generation rate with time. 低級炭化水素の芳香族化反応に用いた固定床流通式反応装置の概略図。The schematic of the fixed bed flow-type reaction apparatus used for the aromatization reaction of a lower hydrocarbon.

Claims (5)

担体であるメタロシリケートにモリブデンと銀を担持してなる触媒に低級炭化水素及び炭酸ガスを反応させて芳香族化合物を生成すること
を特徴とする芳香族化合物の製造方法。
A method for producing an aromatic compound, characterized in that an aromatic compound is produced by reacting a lower hydrocarbon and carbon dioxide with a catalyst obtained by supporting molybdenum and silver on a metallosilicate as a carrier.
前記炭酸ガスの添加量は反応ガス全体に対して0.5〜6%の範囲であること
を特徴とする請求項1に記載の芳香族化合物の製造方法。
The method for producing an aromatic compound according to claim 1, wherein the amount of carbon dioxide added is in the range of 0.5 to 6% with respect to the entire reaction gas.
前記メタロシリケートはZSM−5またはMCM−22であること
を特徴とする請求項1または2に記載の芳香族化合物の製造方法。
The method for producing an aromatic compound according to claim 1 or 2, wherein the metallosilicate is ZSM-5 or MCM-22.
前記モリブデンは前記焼成した後の担持濃度が前記担体に対して2〜12重量%となると共に前記銀はモリブデンとのモル比Ag:Mo=X:1の比率Xが0.01〜0.3となるように担持すること
を特徴とする請求項1から3のいずれか1項に記載の芳香族化合物の製造方法。
The supported concentration of the molybdenum after firing is 2 to 12% by weight with respect to the support, and the silver has a molar ratio Ag: Mo = X: 1 of molybdenum to the ratio X of 0.01 to 0.3. The method for producing an aromatic compound according to any one of claims 1 to 3, wherein the aromatic compound is supported so as to become.
前記メタロシリケートにモリブデン及び銀を担持した後の焼成温度は400〜700℃であること
を特徴とする請求項1から4のいずれか1項に記載の芳香族化合物の製造方法。
The method for producing an aromatic compound according to any one of claims 1 to 4, wherein a firing temperature after molybdenum and silver are supported on the metallosilicate is 400 to 700 ° C.
JP2008007897A 2007-06-29 2008-01-17 Method for producing aromatic compound Active JP5315698B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008007897A JP5315698B2 (en) 2007-06-29 2008-01-17 Method for producing aromatic compound
PCT/JP2008/056117 WO2009004843A1 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
US12/595,924 US8558045B2 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
EP08739235A EP2140938A4 (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
CN2008800174010A CN101678340B (en) 2007-06-29 2008-03-28 Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007172021 2007-06-29
JP2007172021 2007-06-29
JP2008007897A JP5315698B2 (en) 2007-06-29 2008-01-17 Method for producing aromatic compound

Publications (2)

Publication Number Publication Date
JP2009029771A true JP2009029771A (en) 2009-02-12
JP5315698B2 JP5315698B2 (en) 2013-10-16

Family

ID=40400682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007897A Active JP5315698B2 (en) 2007-06-29 2008-01-17 Method for producing aromatic compound

Country Status (1)

Country Link
JP (1) JP5315698B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material
JP2007014894A (en) * 2005-07-08 2007-01-25 Masaru Ichikawa Lower hydrocarbon aromatization catalyst and production method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material
JP2007014894A (en) * 2005-07-08 2007-01-25 Masaru Ichikawa Lower hydrocarbon aromatization catalyst and production method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7008005007; Qun DONG et al.: 'Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization' Journal of Natural Gas Chemistry vol.13, 2004, pp.36-40 *

Also Published As

Publication number Publication date
JP5315698B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
US8558045B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP4945242B2 (en) Process for producing aromatic hydrocarbons and hydrogen
US8278237B2 (en) Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
WO2007037388A1 (en) Process for production of aromatic compound
JP2011116707A (en) Method for producing lower hydrocarbon and aromatic compound and production catalyst
JP5402354B2 (en) Aromatic compound production method
JP2009028710A (en) Catalyst for aromatization of lower hydrocarbon
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP5315698B2 (en) Method for producing aromatic compound
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4399790B2 (en) Propylene production method
JP5568833B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP5577587B2 (en) Process for producing lower hydrocarbon aromatization catalyst and lower hydrocarbon aromatization catalyst
JP3849007B2 (en) Method for producing hydrogen
JP2005254121A (en) Manufacturing method of lower hydrocarbon direct-reforming catalyst
JP2005254120A (en) Lower hydrocarbon direct-reforming catalyst and its manufacturing method
JP2006263683A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly and catalyst for reforming lower hydrocarbon directly
JP2008132490A (en) Method for manufacturing aromatization catalyst of lower hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150