JP2007012961A - 配線基板 - Google Patents

配線基板 Download PDF

Info

Publication number
JP2007012961A
JP2007012961A JP2005193401A JP2005193401A JP2007012961A JP 2007012961 A JP2007012961 A JP 2007012961A JP 2005193401 A JP2005193401 A JP 2005193401A JP 2005193401 A JP2005193401 A JP 2005193401A JP 2007012961 A JP2007012961 A JP 2007012961A
Authority
JP
Japan
Prior art keywords
wiring board
adhesive
substrate
layer
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005193401A
Other languages
English (en)
Other versions
JP4711757B2 (ja
Inventor
Kenji Suzuki
健二 鈴木
Satoshi Hirano
訓 平野
Ichiei Higo
一詠 肥後
Koichiro Shimogami
晃一郎 下上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005193401A priority Critical patent/JP4711757B2/ja
Publication of JP2007012961A publication Critical patent/JP2007012961A/ja
Application granted granted Critical
Publication of JP4711757B2 publication Critical patent/JP4711757B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

【課題】樹脂層と接着層との密着性に優れた配線基板を提供すること。
【解決手段】配線基板11は、非熱可塑性樹脂を主体とする樹脂層51と、ポリエーテルエーテルケトンを主体とする接着層61,71とを備える。接着層61,71は、樹脂層51の主面52,53上に接合される。なお、主面52,53は凹凸部58を有しており、表面粗さRaは0.249μm、表面粗さRzは0.793μmとなる。これにより、樹脂層51と接着層61,71との接合時に、凹凸部58における凹部に接着層61,71の一部が入り込むため、両者の密着性が向上する。
【選択図】 図2

Description

本発明は、樹脂層と接着層からなる配線基板に関するものである。
近年、パーソナルコンピュータ、デジタル家電などの電気製品分野や、自動車分野などにおいては、製品の小型化、高機能化、高付加価値化が益々進んでいる。それに伴い、この種の製品における重要な電気的部品であるマザーボードの小型化や高密度化が望まれており、マザーボード上に実装される各種部品の小型化も同様に望まれている。各種部品の小型化を実現するものとしては、例えば、複数のLSIを単一のパッケージに封止してシステム化した、いわゆるシステム・イン・パッケージ(SIP)を挙げることができる。なお、このようなパッケージにおいて、ICチップ等の半導体回路素子は、例えば、接着層を介してフレキシブル基板を積層した構造の配線基板などに実装される(例えば、特許文献1,2参照)。なお、特許文献1,2記載の配線基板では、フレキシブル基板の表面粗さRaを規定することにより、フレキシブル基板と接着層との密着を図っている。
特開2005−5560号公報 特開2004−128365号公報
ところで、従来の接着層は、一般に熱可塑性ポリイミド(PI)によって形成されているが、配線基板の寸法安定性を高めるために、熱可塑性ポリイミドよりもヤング率が高い熱可塑性樹脂、例えばポリエーテルエーテルケトン(PEEK)を用いて接着層を形成することが考えられている。ところが、接着層がポリエーテルエーテルケトンからなる場合、フレキシブル基板の表面粗さRaをポリイミドの場合と同じ範囲にて設定したとしても、フレキシブル基板と接着層とを上手く密着させることができない。このため、フレキシブル基板の表面粗さを新たに規定して、接着層との密着性を向上させることが求められている。
本発明は上記の課題に鑑みてなされたものであり、その目的は、樹脂層(フレキシブル基板)と接着層との密着性に優れた配線基板を提供することにある。
そして、上記課題を解決するための手段(手段1)としては、非熱可塑性樹脂を主体とする樹脂層と、前記樹脂層の主面上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、前記主面の表面粗さRaが0.1μm以上であるとともに、前記主面の表面粗さRzが0.5μm以上であることを特徴とする配線基板がある。
また、上記課題を解決するための別の手段(手段2)としては、非熱可塑性樹脂を主体とするフレキシブル基板と、前記フレキシブル基板上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、前記フレキシブル基板において、前記接着層と接着する接着面の表面粗さRaが0.1μm以上であるとともに、前記接着面の表面粗さRzが0.5μm以上であることを特徴とする配線基板がある。
従って、上記手段1,2の配線基板によれば、樹脂層の主面またはフレキシブル基板の接着面の表面粗さRa,Rzを上記のように設定することにより、ポリエーテルエーテルケトンとの接着に好適な大きさの凹凸部が主面または接着面に形成される。その結果、樹脂層(またはフレキシブル基板)と接着層との接合時に、凹凸部における凹部に接着層の一部が入り込むため、両者の密着性を向上させることができる。よって、高い信頼性を得ることができる。
特に、樹脂層がフレキシブル基板である場合、樹脂層がリジッド基板である場合に比べて可撓性は高いが、寸法安定性は低下する。このため、寸法安定性を高めたいという要望がある。そこで、上記手段1,2では、接着層を、従来用いられてきたポリイミドよりもヤング率の高いポリエーテルエーテルケトンによって形成している。その結果、フレキシブル基板に接着層を接合した際のトータルの寸法安定性を、接着層をポリイミドで形成した場合よりも高くすることができる。
なお、上記手段1において、前記主面上にパターン形成された導体パターンが、前記樹脂層と前記接着層との間に形成(埋設)されている場合、樹脂層と接着層との接合部分の面積が小さくなる。そこで、樹脂層の主面の表面粗さRa,Rzを上記のように設定すれば、接合部分の面積が小さい場合であっても、樹脂層と接着層とを確実に密着させることができる。
ここで、本明細書で述べられている「表面粗さRa」とは、JIS B0601で定義されている算術平均粗さRaであり、「表面粗さRz」とは、同じくJIS B0601で定義されている十点平均粗さRzである。なお、表面粗さRa,Rzの測定方法はJIS B0651に準じるものとする。
なお、前記主面(または前記接着面)の表面粗さRaは0.1μm以上である。仮に、表面粗さRaが0.1μm未満であると、ポリエーテルエーテルケトンとの接着に好適な大きさの凹凸部が主面(または接着面)に形成されず、樹脂層(またはフレキシブル基板)と接着層とが確実に密着しないからである。また、表面粗さRaは、好ましくは0.1μm以上3μm以下である。仮に、表面粗さRaが3μmを超えてしまうと、凹凸部における凹部が深くなりすぎるため、樹脂層(またはフレキシブル基板)と接着層との接合時に、接着層を形成するポリエーテルエーテルケトンが凹部に入り込みにくくなり、ポリエーテルエーテルケトンの流れ性が不均一になりやすいからである。
また、前記主面(または前記接着面)の表面粗さRzは0.5μm以上である。仮に、表面粗さRzが0.5μm未満であると、ポリエーテルエーテルケトンとの接着に好適な大きさの凹凸部が主面(または接着面)に形成されず、樹脂層(またはフレキシブル基板)と接着層とが確実に密着しないからである。また、表面粗さRzは、0.5μm以上7μm以下であることがより好ましい。表面粗さRzを7μm以下とすることで、前記凹凸部における凹部の最大深さが小さく抑えられる。よって、接着層の代わりにエアが凹部に入り込むことに起因したボイドの発生を抑制できる。ゆえに、ボイドを起点として生じた、樹脂層(またはフレキシブル基板)と接着層との密着の不具合を防止できる。
ここで、ポリエーテルエーテルケトンは、概してポリイミドよりもヤング率が高い反面、流れ性はポリイミドなどよりも劣ると考えられる。よって、表面粗さRa,Rzを上記の上限値以下に設定することは、ポリイミドよりも流れ性の劣るポリエーテルエーテルケトンを凹凸に入り込ませて密着力を向上させるうえで非常に好ましい。
前記樹脂層は、コスト性、加工性、絶縁性、可撓性、機械的強度などを考慮して適宜選択することができるが、可撓性の高いフレキシブル基板であることが好ましい。このようにすれば、フレキシブル基板が変形するために接着層との密着の維持が困難な配線基板において、表面粗さRa,Rzを上記のように設定することによる効果が大きくなるからである。フレキシブル基板を形成する材料は、コスト性、加工性、絶縁性、可撓性、機械的強度などを考慮して、非熱可塑性樹脂の中から適宜選択することができる。このような樹脂を用いた基板であれば、微細な配線層を比較的簡単にかつ正確に形成することができ、端子数の非常に多い半導体回路素子が搭載可能な素子搭載部を容易に形成することができる。即ち、このような基板は半導体回路素子実装用の基板として適している。
また、樹脂層を形成する樹脂材料は耐熱性を有することが好ましい。具体的に言うと、樹脂材料は、ガラス転移温度(Tg)が220℃以上であることが好ましい。また、樹脂材料は、耐熱性が例えば260℃,10分のレベル以上であることが好ましく、特には耐熱性300℃,30分のレベル以上であることがより好ましい。さらに、樹脂材料は、はんだ耐熱性が250℃,20秒のレベル以上であることが好ましく、特には、はんだ耐熱性260℃,120秒のレベル以上であることが好ましく、さらには、はんだ耐熱性300℃,180秒のレベル以上であることがより好ましい。このようにすれば、例えば熱圧着によって配線基板を形成する場合であっても、樹脂層の変形を防止できるからである。
樹脂層を形成する非熱可塑性樹脂の好適例としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料を使用してもよい。
一方、前記接着層はポリエーテルエーテルケトンを主体としている。このような材料を使用すれば、高温での信頼性などに優れた配線基板を実現しやすくなる。また、ポリエーテルエーテルケトンはポリイミドよりもヤング率が高いため、樹脂層と接着層とを接合することで、寸法安定性を高めることができる。なお、好適な接着層としては、例えば前記樹脂層と別体で作製された耐熱性樹脂を主体とする接着シートを挙げることができる。さらに、前記接着シートは、前記樹脂層のカバーレイとしても機能することが好ましい。ここでカバーレイとは、通常、導体パターンの一部を除いて樹脂層の表面(主面など)を絶縁被覆する絶縁被覆層(保護膜)のことをいう。このようにすれば、接着シートとは別々に、樹脂層の保護膜を形成しなくても済む。その結果、配線基板を厚み方向(Z方向)に小型化することができる。また、配線基板を構成する部品点数や工数が少なくなり、生産効率の向上及び製造コストの低減が達成しやすくなる。さらに、配線基板の構造を簡単にすることができる。
なお、前記接着層は、第1主面及び第2主面を有するとともに、前記第1主面側及び前記第2主面側を連通させるビア孔内に設けられた導体部を有することが好ましい。このようにすれば、ビア孔が貫通しているため、導体部の端面がビア孔から完全に露出する。よって、接着層を介して樹脂層と他層とを接合する際に、露出した導体部の端面に対して前記樹脂層の導体パターン及び他層の導体部分を直接接触させることができる。よって、導体パターンと導体部分とが導体部を介して確実に導通するため、高い接続信頼性を得ることができる。
前記導体パターン、及び、前記接着層の導体部は、例えば導電性金属により形成される。前記導電性金属としては特に限定されないが、例えば銅、金、銀、白金、パラジウム、ニッケル、スズ、鉛、チタン、タングステン、モリブデン、タンタル、ニオブなどから選択される1種または2種以上の金属を挙げることができる。2種以上の金属からなる導電性金属としては、例えば、スズ及び鉛の合金であるはんだ等を挙げることができる。2種以上の金属からなる導電性金属として、鉛フリーのはんだ(例えば、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Sn−Ag−Bi系はんだ、Sn−Ag−Bi−Cu系はんだ、Sn−Zn系はんだ、Sn−Zn−Bi系はんだ等)を用いても勿論よい。
なお、前記配線基板は前記樹脂層を複数備えており、前記フレキシブル基板同士が前記接着層を介して接合されるとともに、前記樹脂層の主面上にパターン形成された導体パターン同士が、前記接着層内の導体部を介して互いに電気的に接続されることが好ましい。このようにすれば、樹脂層が1層しかない場合に比べて、内部に複雑な回路を構成することが可能となるため、配線基板の付加価値を高めることができる。
以下、本発明を具体化した一実施形態を図1〜図7に基づき詳細に説明する。図1は、フレキシブル配線基板51(樹脂層、フレキシブル基板)などからなる本実施形態の配線基板11を示す概略断面図である。図2は、配線基板11の拡大断面図である。図3は、フレキシブル配線基板51、接着シート61,71(接着層)及びガラスセラミック配線基板31などからなる構造体の構成を示す分解断面図である。図4は、接着性有機材料シート60を示す概略断面図である。図5,図6は、接着シート61,71を作製するときの状態を示す概略断面図である。図7は、フレキシブル配線基板51、接着シート61,71及びガラスセラミック配線基板31を接合するときの様子を示す概略断面図である。
図1〜図3に示されるように、本実施形態の配線基板11は、フレキシブル配線基板51と、同フレキシブル配線基板51と別体で作製された接着シート61,71とを交互に積層した積層部を有している。
フレキシブル配線基板51は、耐熱性の非熱可塑性樹脂(本実施形態ではポリイミド)からなる絶縁基材を主体として形成されている。本実施形態において、フレキシブル配線基板51は、銅張積層板(新日鐵化学株式会社製 エスパネックスS)を用いて形成されている。また、かかる絶縁基材の平面方向における熱膨張係数は約17ppm/℃、ヤング率は約6.5GPa、伸び率は約45%である。なお、フレキシブル配線基板51のガラス転移温度(Tg)は、270℃であって、配線基板11を形成する際の加熱温度よりも高くなっている。また、耐熱性(長期耐熱性)は300℃,30分であって、はんだ耐熱性は300℃,180秒である。
また、フレキシブル配線基板51は、基板上面52(主面、接着面)及び基板下面53(主面、接着面)を有している。基板上面52の略全域及び基板下面53の略全域には、凹凸部58(図2参照)が形成されている。本実施形態では、フレキシブル配線基板51の厚さは約30μmに設定されている。また、凹凸部58の形成により、基板上面52及び基板下面53の表面粗さRa(算術平均粗さRa)は0.249μmとなり、基板上面52及び基板下面53の表面粗さRz(十点平均粗さRz)は0.793μmとなっている。基板上面52には、基板平面方向に延びる上面側配線層54(導体パターン)が形成され、基板下面53には、同じく基板平面方向に延びる下面側配線層55(導体パターン)が形成されている。なお、本実施形態における上面側配線層54及び下面側配線層55の厚さは、18μmに設定されている。また、フレキシブル配線基板51には、基板上面52及び基板下面53を貫通する複数のビア導体57が設けられている。各ビア導体57の上端面は上面側配線層54に電気的に接続され、各ビア導体57の下端面は下面側配線層55に電気的に接続されている。これにより、上面側配線層54及び下面側配線層55はビア導体57と導通するようになっている。
図1〜図3に示されるように、接着シート61,71は、耐熱性の熱可塑性樹脂からなる絶縁基材を主体として形成されている。本実施形態において、かかる絶縁基材は、ポリエーテルエーテルケトン(三菱樹脂株式会社製 IBUKI)によって形成されている。また、かかる絶縁基材の平面方向における熱膨張係数は約15ppm/℃、ヤング率は約9GPa、伸び率は約5%である。また、接着シート61,71は、上面側配線層54や下面側配線層55よりも肉厚に形成されており、厚さ20〜30μm程度に設定されている。なお、接着シート61,71のガラス転移温度(Tg)は250℃であり、フレキシブル配線基板51のガラス転移温度よりも低くなっている。
接着シート71を構成する接着シート本体73は、上面74(第1主面)を有するとともに、基板上面52上に接着する下面75(第2主面)を有している。また、接着シート71には、上面74及び下面75を連通する複数のビア孔76(図5参照)が格子状に形成されている。そして、ビア孔76内には、表面に銀をコートした銅粉を含む導電ペーストの充填により形成された導体柱72(導体部)が設けられている。導体柱72の下端面は、フレキシブル配線基板51の上面側配線層54に直接接合されている。これにより、上面側配線層54は、フレキシブル配線基板51と接着シート71との間に埋設される。また、接着シート61は、接着シート71と同様の構成をなしている。即ち、接着シート61を構成する接着シート本体63は、基板下面53上に接着する上面64(第1主面)を有するとともに、下面65(第2主面)を有している。また、接着シート61には、上面64及び下面65を連通する複数のビア孔66(図5参照)が格子状に形成されている。そして、ビア孔66内には、導体柱72と同じ材料からなる導体柱62(導体部)が設けられている。導体柱62の上端面は、フレキシブル配線基板51の下面側配線層55に直接接合されている。これにより、下面側配線層55は、フレキシブル配線基板51と接着シート61との間に埋設される。
図1〜図3に示されるように、接着シート71は、フレキシブル配線基板51の基板上面52上に接合されており、基板上面52側を覆っている。また、接着シート61は、フレキシブル配線基板51の基板下面53上に接合されており、基板下面53側を覆っている。よって、接着シート61,71は、上面側配線層54や下面側配線層55を埃や水分から保護している。このため、接着シート61,71における接着部分、即ち、導体柱62,72を除いた部分は、フレキシブル配線基板51のカバーレイとしても機能している。
また、接着シート61において、各導体柱62の下端面は、ガラスセラミック配線基板31の上側端子電極36に電気的に接続されている。ガラスセラミック配線基板31は、上面32と、同上面32の反対側に位置する下面33とを有している。ガラスセラミック配線基板31は、複数のセラミック層30と複数の配線層(図示略)とを交互に積層した構造を有している。セラミック層30は、ガラス及びアルミナを主成分とするグリーンシートを焼成することによって形成され、配線層は、銀(または銅)を主成分として形成されている。
図1,図3に示されるように、ガラスセラミック配線基板31には、下面33にて開口する略矩形状の凹部130が形成されている。この凹部130内の奥側には、板状をなすキャパシタ131が配置されている。このキャパシタ131は、接着剤133により凹部130内に固定されている。キャパシタ131のビア導体134は、ガラスセラミック配線基板31における電源用のビア導体135と電気的に接続されている。このキャパシタ131は、ノイズを除去してICチップ21に供給すべき電源を安定化させる機能を有している。また、凹部130の開口部付近には、板状をなすメモリIC132が接着剤133により固定されている。メモリIC132の図示しない接続端子は、ガラスセラミック配線基板31におけるビア導体と電気的に接続されている。このようにすれば、メモリIC132と、配線基板11の上面に搭載されたICチップ21とを繋ぐ配線長が短縮されるため、高速でデータの伝送を行うのに好適となる。
また、ガラスセラミック配線基板31には、上面32及び下面33を貫通する複数のビア孔34が格子状に形成されている。そして、かかるビア孔34内には、銀(または銅)を主材料とするビア導体35が設けられている。各ビア導体35の上端面には、銀(または銅)からなる上側端子電極36が設けられている。これにより、上側端子電極36はビア導体35と導通するようになっている。一方、各ビア導体35の下端面には、マザーボード81の複数の端子82との電気的な接続を図るための複数のはんだバンプ49が格子状に配設されている。はんだバンプ49は、90Pb/10Snという組成の錫鉛はんだからなっている。
そして、各はんだバンプ49により、図1に示される配線基板11はマザーボード81上に実装される。なお、配線基板11はBGA(ボールグリッドアレイ)である。配線基板11の形態は、BGAのみに限定されず、例えばLGA(ランドグリッドアレイ)やPGA(ピングリッドアレイ)等であってもよい。
図1に示されるように、接着シート71の上面74における所定領域(具体的には、ガラスセラミック配線基板31の真上の領域)には、上面側配線層54の一部である複数のフリップチップ接続パッドが配置された素子搭載部56が設定されている。このような素子搭載部56には、MPUとしての機能を有するICチップ21がフリップチップ実装されている。ICチップ21は、下側部分が接着シート71内に埋設された状態で実装されている(図2参照)。本実施形態のICチップ21は、縦12.0mm×横10.0mm×厚さ0.7mmの矩形平板状であって、シリコンからなる。かかるICチップ21の下面側表層には、図示しない回路素子が形成されている。また、ICチップ21の下面には、複数の面接続端子22が格子状に設けられている。ICチップ21の下面は、接着シート71の上面74に直接接着されている。この際、各面接続端子22は、接着シート71の導体柱72を介してフレキシブル配線基板51の上面側配線層54(即ちフリップチップ接続パッド)に電気的に接続されている。なお、フレキシブル配線基板51においては、素子搭載部56を中心としてその周囲にファンアウトする複数の微細な上面側配線層54がパターン形成されている。また、素子搭載部56には、メモリなどの電子部品がさらに実装されていてもよい。
従って、このような構造の配線基板11では、フレキシブル配線基板51のビア導体57は、下面側配線層55、接着シート61の導体柱62及び上側端子電極36を介して、ガラスセラミック配線基板31のビア導体35に電気的に接続されている。そして、素子搭載部56にICチップ21を実装した場合には、ICチップ21の面接続端子22が、上面側配線層54(フリップチップ接続パッド)を介して、フレキシブル配線基板51のビア導体57に電気的に接続される。ゆえに、ガラスセラミック配線基板31−ICチップ21間で信号の入出力が行われるとともに、ICチップ21をMPUとして動作させるための電源が供給されるようになっている。
次に、上記の配線基板11を製造する手順について説明する。
まず、フレキシブル配線基板作製工程を実施して、フレキシブル配線基板51を個別に作製する。フレキシブル配線基板51の作製は、基本的には従来周知の手法によって行われる。ここでは、表面粗さRaが0.1μm以上3μm以下、表面粗さRzが0.5μm以上7μm以下となる絶縁基材の両面に銅箔が貼付された銅張積層板を準備する。次に、銅張積層板に対してメカニカルドリル、YAGレーザーまたは炭酸ガスレーザーを用いて孔あけ加工を行い、銅張積層板を貫通するビア孔(図示略)を所定位置にあらかじめ形成しておく。そして、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことでビア孔内にビア導体57を形成する。さらに、銅張積層板の両面のエッチングを行って上面側配線層54及び下面側配線層55を形成する。その結果、フレキシブル配線基板51を得る。
また、接着シート作製工程において接着シート61,71を作製する。具体的には、接着シート61となる接着性有機材料シート60(図4参照)に対してメカニカルドリル、YAGレーザー、COレーザー、パンチング装置等を用いて孔あけ加工を行い、接着性有機材料シート60を貫通するビア孔66(図5参照)を所定位置にあらかじめ形成しておく。また、接着シート71となる接着性有機材料シート60に対しても同様に孔あけ加工を行い、接着性有機材料シート60を貫通するビア孔76を所定位置にあらかじめ形成しておく。なお、ビア孔66(またはビア孔76)は、上側開口部の直径が約117μmとなり、下側開口部の直径が約113μmとなる。
次に、従来周知の印刷法により、導電ペーストをビア孔66(またはビア孔76)に充填し導体柱62(または導体柱72)を形成する。具体的には、接着性有機材料シート60を支持台(図示略)に載置する。次に、ビア孔66(またはビア孔76)に対応した位置に開口部を有する印刷マスクを用い、印圧を2kgf/cm、印刷スピードを50mm/secに設定して、表面に銀をコートした銅粉を含む導電ペーストを印刷し、ペースト充填層を形成する。そして、印刷装置から取り外した後、導電ペーストを加熱して溶剤等を蒸発させ、固形化させる。次いで、100℃程度の温度で約30分間加熱して仮硬化を行う。これにより、導電ペーストからなる導体柱62(または導体柱72)が少しだけ硬化し、接着シート61(接着シート71)が完成する。その結果、ビア孔76内に導体柱72が形成され、ビア孔66内に導体柱62が形成される。このとき、導体柱62(導体柱72)の先端部分が、接着性有機材料シート60の上面から突出する(図6参照)。このような構造にすれば、フレキシブル配線基板51にガラスセラミック配線基板31を接合する際に、導体柱62の先端部分とガラスセラミック配線基板31の上側端子電極36とが圧接する。また、フレキシブル配線基板51にICチップ21を接合する際に、導体柱72の先端部分とICチップ21の面接続端子22とが圧接する。よって、例えば先端部分がフラットである場合に比べて他部材の導体部分との接合強度が高くなり、導体同士の接続信頼性の向上が図りやすくなる。
また、ガラスセラミック配線基板31の作製も、基本的には従来周知の手法によって行われる。例えば、周知のセラミックグリーンシート形成技術によって、ガラス及びアルミナを主成分とするグリーンシートを複数枚作製する。そして、各グリーンシートの所定位置に、表裏両面を貫通するビア孔をパンチング等により形成する。また、各グリーンシートの所定位置に、後に凹部130となる貫通孔をパンチングなどにより形成する。即ち、貫通孔の形成は、焼結後のセラミック層30に対して行われるのではなく、焼結前の柔らかいグリーンシートに対して行われるため、凹部130の形成が容易になる。さらに、各グリーンシートのビア孔内に銀ペースト(または銅ペースト)を充填して、後にビア導体35となるペースト充填層を形成しておく。そして、これらのグリーンシートを積層、圧着した後、還元雰囲気中にて所定温度で焼成(同時焼成)を行って、アルミナと銀ペースト(または銅ペースト)とを焼結させる。その結果、ビア導体35及び凹部130を有する複数のセラミック層30の積層体が作製される。次に、凹部130内の奥側にキャパシタ131を実装した後、凹部130の開口部付近にメモリIC132を実装する。さらに、凹部130とキャパシタ131との隙間に接着剤133を充填してキャパシタ131を固定し、凹部130とメモリIC132との隙間に接着剤133を充填してメモリIC132を固定する。なお、メモリIC132を、配線基板11の完成後に取り付けてもよい。その結果、図3に示すガラスセラミック配線基板31が完成する。
次に、電気検査工程を実施し、完成したフレキシブル配線基板51及び接着シート61,71に対する電気検査を個別に行う。それとともに、完成したガラスセラミック配線基板31に対する電気検査も行う。なお、本実施形態における電気検査とは、例えば、インサーキットテスタを用いて行う一般的なインサーキットテストを指す。さらに、完成したフレキシブル配線基板51、接着シート61,71及びガラスセラミック配線基板31に対し、この時点で併せて外観検査を個別に行ってもよい。このとき、不良品を発見した場合には、その不良品を事前に除去する。そして、電気検査や外観検査に合格したフレキシブル配線基板51、接着シート61,71及びガラスセラミック配線基板31のみを用いて位置決め工程以降の工程を行う。従って、配線基板11が不良品となる確率が低くなり、歩留まりの向上につながる。
そして、位置決め工程では、まず、平板状の下治具101上に、接着シート71、フレキシブル配線基板51、接着シート61、ガラスセラミック配線基板31を順番に重ねる。これにより、互いに対向した接着シート61,71間に、フレキシブル配線基板51が位置するようになる。そして、下治具101の上にスペーサ102を載置する。なお、スペーサ102の板厚は、ガラスセラミック配線基板31の高さと略等しくなっている。また、スペーサ102には、下治具101に突設された複数の位置決めピン105が挿通される。このため、スペーサ102及びガラスセラミック配線基板31の平面方向への位置ずれが防止される。その後、ガラスセラミック配線基板31及びスペーサ102上に平板状の上治具104を載置する(図7参照)。なお、上記の下治具101は、同下治具101の上面側に、クッション材103を貼り付けた構造となっている。従って、接着シート71から突出する導体柱72は、弾性体であるクッション材103に接触するようになっている。このとき、クッション材103は弾性変形して接着シート71側の凹凸形状に追従する。これにより、接着シート71に対して均等に押圧力を付加することができる。なお、上記のような治具を用いて位置決めを行う代わりに、基板などの位置を検出する画像認識装置を有する、いわゆるダイマウンタ装置を用いて位置決めを行うことも可能である。
そして次に、下記の要領で接合工程を実施する。本実施形態において具体的には、20Torr(≒2666Pa)以下の真空下で260℃以上の温度となるように加熱を行いながら積層方向(接合方向)に押圧力(4MPa)を加える(真空熱プレス)。これに伴い、フレキシブル配線基板51及び接着シート61,71が積層方向に沿って押圧されるとともに、熱により接着シート61,71の可塑性が大きくなる。そして、フレキシブル配線基板51の基板上面52上に接着シート71の下面75が接着(熱圧着)され、フレキシブル配線基板51の基板下面53上に接着シート61の下面65が接着(熱圧着)される。この際、基板上面52の凹凸部58における凹部に、接着シート71の一部が入り込むとともに、基板下面53の凹凸部58における凹部に、接着シート61の一部が入り込む。よって、フレキシブル配線基板51と接着シート61,71とが確実に密着する。また、フレキシブル配線基板51の下面側配線層55が接着シート61の導体柱62に圧接するとともに、フレキシブル配線基板51の上面側配線層54が接着シート71の導体柱72に圧接する。よって、導体柱62,72、ビア導体57、上面側配線層54及び下面側配線層55が互いに電気的に接続され、配線基板11が形成される。即ち、フレキシブル配線基板51及び接着シート61,71の接合は真空雰囲気下での接合となるため、エアの巻き込みによるボイドの発生を効果的に抑制できる。
次に、ガラスセラミック配線基板31の下面33側に対するはんだペースト印刷を行い、はんだバンプ49を形成する。このようにすれば、接合工程を実施する際にはんだバンプ49が邪魔にならなくて済む。また、前記接合工程後にはんだバンプ形成を行うと、前記接合工程前にはんだバンプ形成を行う場合とは異なり、はんだバンプ49が260℃以上の高温に遭遇しにくくなる。従って、必ずしも高融点はんだを選択しなくてもよくなり、はんだ材料の選択の自由度が大きくなる。
もっとも、ガラスセラミック配線基板31を作製する時点で、はんだバンプ49を同時に形成し、その後で接合工程を実施するようにしてもよい。このようにすれば、電気検査工程にてガラスセラミック配線基板31を検査する際に、はんだバンプ49も含めて検査できるため、はんだバンプ49に不良が生じた状態で配線基板11が製造されることを防止できる。
その後、フレキシブル配線基板51の素子搭載部56にICチップ21を載置する。このとき、ICチップ21側の面接続端子22と、フレキシブル配線基板51側の上面側配線層54とを位置合わせするようにする。そして、加熱を行いながら積層方向(接合方向)に押圧力を加える。これに伴い、ICチップ21及び接着シート71が積層方向に沿って押圧されるとともに、熱により接着シート71の可塑性が大きくなる。そして、接着シート71の上面74上にICチップ21の下面が接着(熱圧着)される。この際、ICチップ21の下側部分が接着シート71内に埋設されるとともに、面接続端子22と上面側配線層54とが接着シート71の導体柱72を介して電気的に接続される。
さらに、ガラスセラミック配線基板31のはんだバンプ49と、マザーボード81側の端子82とを位置合わせして、マザーボード81上に配線基板11を載置する。そして、加熱して各はんだバンプ49をリフローすることにより、はんだバンプ49と端子82とを接合する。これにより、配線基板11がマザーボード81上に搭載される。
次に、フレキシブル配線基板51の密着性についての評価方法及びその結果について述べる。
まず、JIS B0651に倣って表面粗さRa(算術平均粗さRa)及び表面粗さRz(十点平均粗さRz)を測定した。まず測定用サンプルを次のように準備した。絶縁基材が非熱可塑性のポリイミドからなり、両面に銅箔を有する銅張積層板を準備した。そして、銅張積層板のエッチングを行って銅箔を除去(剥離)し、これを測定用サンプルとした。なお、銅箔の厚さが18μmとなる銅張積層板(新日鐵化学株式会社製 エスパネックスS)から形成した測定用サンプルを、実施例1とした。また、銅箔の厚さが18μmとなる銅張積層板(新日鐵化学株式会社製 エスパネックスM)から形成した測定用サンプルを、実施例2とし、銅箔の厚さが12μmとなる銅張積層板(新日鐵化学株式会社製 エスパネックスM)から形成した測定用サンプルを、実施例3とした。さらに、銅張積層板(東レ・デュポン株式会社製 カプトン100H)から形成した測定用サンプルを、比較例1とした。また、銅張積層板の銅箔を剥離した後、銅箔を除去した面をブラストで粗化することにより形成した測定用サンプルを、比較例2とした。
次に、各測定用サンプル(実施例1〜3、比較例1,2)の銅箔を除去した面に対して、表面粗度計(株式会社東京精密製)を用いて表面粗さRa,Rzの測定を行い、それぞれの表面粗さRa,Rzを得た(図8参照)。
また、各測定用サンプルの銅箔を除去した面に対して、接着シート61(または接着シート71)を接合して積層体を形成し、JIS C6481に倣ってピール強度を評価した。ピール強度の測定は、接着シート61(接着シート71)の一端を、測定用サンプルの上面に対して垂直な方向に引き上げることにより行った。
このように測定した結果、比較例1では、接着シート61(接着シート71)と測定用サンプルとの界面が剥離した。一方、実施例1〜3、比較例2では、接着シート61(接着シート71)と測定用サンプルとの界面は剥離しなかった。なお、実施例1〜3でのピール強度は、0.4〜1.0kgf/cmであった。また、比較例2のピール強度は実施例1〜3のピール強度よりも低く、0.1kgf/cm以下であった。従って、表面粗さRaを比較例1の値(0.072μm)よりも大きくし、表面粗さRzを比較例1の値(0.205μm)よりも大きくすれば、接着シート61,71とフレキシブル配線基板51との密着状態が良好となることが証明された。
また、ピール強度測定に用いた測定用サンプルとは別の測定用サンプルを準備した。そして、ピール強度測定と同様の前記積層体を形成して積層方向に切断し、その切断面を顕微鏡で観察した。
このように観察した結果、比較例2では、接着シート61(接着シート71)と測定用サンプルとの界面にボイドが確認された。一方、実施例1〜3、比較例1では、接着シート61(接着シート71)と測定用サンプルとの界面にボイドは確認されなかった。従って、表面粗さRaを比較例2の値(4.183μm)よりも小さくし、表面粗さRzを比較例2の値(7.511μm)よりも小さくすれば、接着シート61(接着シート71)とフレキシブル配線基板51との界面にボイドが発生しないことが証明された。
従って、本実施形態によれば以下の効果を得ることができる。
(1)本実施形態の配線基板11では、フレキシブル配線基板51の基板上面52及び基板下面53の表面粗さRaを0.249μmとし、基板上面52及び基板下面53の表面粗さRzを0.793μmとしている。これにより、ポリエーテルエーテルケトンとの接着に好適な大きさの凹凸部58が基板上面52及び基板下面53に形成される。その結果、フレキシブル配線基板51及び接着シート61,71の接合時に、凹凸部58における凹部に接着シート61,71の一部が入り込むため、アンカー効果により両者の密着性を向上させることができる。よって、フレキシブル配線基板51と接着シート61,71との界面の信頼性を向上させることができる。
しかも、フレキシブル配線基板51と接着シート61,71との密着に伴い、上面側配線層54と導体柱72とが密着し、下面側配線層55と導体柱62とが密着する。このため、導体柱72と導体柱62とが、上面側配線層54、下面側配線層55及びビア導体57を介して確実に導通するため、導体同士の接続信頼性も向上する。このことは、配線基板11全体の低抵抗化にもつながる。
(2)本実施形態では、上面側配線層54が、フレキシブル配線基板51と接着シート71との間に埋設されているため、上面側配線層54が存在しない場合に比べて、フレキシブル配線基板51の基板上面52と接着シート71との接触面積が小さくなる。同様に、下面側配線層55が、フレキシブル配線基板51と接着シート61との間に埋設されているため、下面側配線層55が存在しない場合に比べて、フレキシブル配線基板51の基板下面53と接着シート61との接触面積が小さくなる。しかし、基板上面52及び基板下面53の表面粗さRa,Rzが上記のように設定されているため、接触面積が小さくても、フレキシブル配線基板51と接着シート61,71とを確実に密着させることができる。
(3)本実施形態のフレキシブル配線基板51は非熱可塑性樹脂を主体とするため、配線基板11を形成する際などに熱が加わったとしても塑性変形しにくい。よって、寸法安定性の高い配線基板11を得ることができる。しかも、熱が加わった際に凹凸部58が変形しないため、表面粗さRa,Rzの値が上記好適範囲内に維持される。よって、フレキシブル配線基板51及び接着シート61,71の密着性を維持することができる。
(4)本実施形態のフレキシブル配線基板51は、基板上面52及び基板下面53の両方に導体パターン(上面側配線層54、下面側配線層55)が形成されている。このため、導体パターンが何ら形成されていない接着シート61,71を用いたとしても、多くの回路を内部に構成すること等が可能となり、付加価値を高めることができる。
(5)本実施形態の接着シート61,71は、熱可塑性樹脂であるポリエーテルエーテルケトンを主体として形成されている。よって、例えば、フレキシブル配線基板51及び接着シート61,71が互いに位置ずれした状態で接合されたとしても、接着シート61,71を再度加熱すれば、フレキシブル配線基板51から接着シート61,71を剥離できる。このため、フレキシブル配線基板51及び接着シート61,71を容易に接合し直すことが可能となる。しかも、接合し直す場合であっても、凹凸部58における凹部に接着シート61,71の一部が入り込むため、フレキシブル配線基板51及び接着シート61,71を確実に密着させることができる。さらに、ICチップ21が接着シート71に対して位置ずれした状態で接合されたとしても、接着シート71を再度加熱すれば、接着シート71からICチップ21を剥離できる。このため、ICチップ21を容易に接合し直すことが可能となる。この場合、比較的高価なICチップ21が無駄にならずに済む。
(6)本実施形態では、ICチップ21が、ヤング率の高いポリエーテルエーテルケトンからなるフレキシブル配線基板51に支持されるため、ICチップ21を安定的に支持できる。しかも、ICチップ21を支持するフレキシブル配線基板51及び接着シート61,71の一部が、高剛性のガラスセラミック配線基板31によって支持される。よって、ガラスセラミック配線基板31に支持される領域においては、フレキシブル配線基板51及び接着シート61,71が変形しにくくなるため、ICチップ21をより安定的に支持できる。また、上記領域においてフレキシブル配線基板51及び接着シート61,71が互いに剥離しにくくなるため、信頼性を維持しやすくなる。
(7)本実施形態では、表面粗さRaが0.1μm以上3μm以下、表面粗さRzが0.5μm以上0.7μm以下となる絶縁基材を備えた銅張積層板を用いて、フレキシブル配線基板51を形成している。即ち、実施例1では、表面粗さRaが0.249μm、表面粗さRzが0.793μmとなる絶縁基材を備え、実施例2では、表面粗さRaが0.438μm、表面粗さRzが1.75μmとなる絶縁基材を備え、実施例3では、表面粗さRaが0.497μm、表面粗さRzが1.65μmとなる絶縁基材を備えた銅張積層板を用いている。このため、フレキシブル配線基板51を作製するにあたり、ブラストなどを用いて基板上面52及び基板下面53を粗化させる粗化工程が不要となる。よって、粗化工程を行うことで上面側配線層54及び下面側配線層55の表面が荒れてしまうことも防止できる。
なお、本発明の実施形態は以下のように変更してもよい。
・上記実施形態のフレキシブル配線基板51は、ポリイミド(新日鐵化学株式会社製 エスパネックスS)を絶縁基材として形成されていた。しかし、フレキシブル配線基板51は、基板上面52及び基板下面53の表面粗さRaが0.1μm以上、表面粗さRzが0.5μm以上となる他の材料を絶縁基材として形成されていてもよい。
例えば、フレキシブル配線基板51は、ポリイミド(新日鐵化学株式会社製 エスパネックスM)などを絶縁基材として形成されていてもよい。なお、上面側配線層54及び下面側配線層55の厚さが18μmである場合、表面粗さRaは0.438μm、表面粗さRzは1.75μmである(図8の実施例2参照)。また、上面側配線層54及び下面側配線層55の厚さが12μmである場合、表面粗さRaは0.497μm、表面粗さRzは1.65μmである(図8の実施例3参照)。また、ポリイミド以外の樹脂を絶縁基材としてフレキシブル配線基板51を形成してもよいが、絶縁基材は、耐熱性を有する非熱可塑性樹脂であることがよい。
・図9に示されるように、接着シート61は、複数層の接着シート本体63を有する積層接着シートであってもよい。このようにすれば、接着シート本体63が単層である場合に比べて、内部に複雑な回路を構成することが可能となるため、付加価値を高めることができる。
・上記実施形態の配線基板11は、1枚のフレキシブル配線基板51、1枚の接着シート61、及び、1枚の接着シート71を備えていた。しかし、配線基板11は、複数枚のフレキシブル配線基板51と複数枚の接着シート61とを備えていてもよい。例えば図10に示されるように、配線基板11は、4枚のフレキシブル配線基板51と5枚の接着シート61とを備えていてもよい。このようにすれば、フレキシブル配線基板51が1層しかない場合に比べて、さらに多くの回路を内部に構成すること等が可能となり、付加価値を高めることができる。また、配線基板11が厚くなるため、フレキシブル配線基板51及び接着シート61からなる積層体に、キャパシタ131を埋設するためのキャビティを形成できる。
次に、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1)非熱可塑性樹脂を主体とする樹脂層と、前記樹脂層の主面上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、前記主面の表面粗さRaが0.1μm以上3μm以下であるとともに、前記主面の表面粗さRzが0.5μm以上7μm以下であることを特徴とする配線基板。
(2)非熱可塑性樹脂を主体とするフレキシブル基板と、前記フレキシブル基板上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、前記フレキシブル基板において、前記接着層と接着する接着面の表面粗さRaが0.1μm以上3μm以下であるとともに、前記接着面の表面粗さRzが0.5μm以上7μm以下であることを特徴とする配線基板。
本実施形態において、フレキシブル配線基板などからなる配線基板を示す概略断面図。 配線基板を示す拡大断面図。 フレキシブル配線基板及び接着シート及びガラスセラミック配線基板などからなる構造体の構成を示す分解断面図である。 接着シートの作製過程において、接着性有機材料シートを示す概略断面図。 接着シートの作製過程において、接着性有機材料シートにビア孔を形成する工程を示す概略断面図。 接着シートの作製過程において、ビア孔内に導体柱を形成する工程を示す概略断面図。 配線基板の製造過程において、フレキシブル配線基板、接着シート及びガラスセラミック配線基板を接合するときの様子を示す概略断面図。 実施例1〜3及び比較例1,2における表面粗さRa,Rzの値を示す表。 他の実施形態における配線基板を示す拡大断面図。 他の実施形態における配線基板を示す概略断面図。
符号の説明
11…配線基板
51…樹脂層及びフレキシブル基板としてのフレキシブル配線基板
52…主面及び接着面としての基板上面
53…主面及び接着面としての基板下面
54…導体パターンとしての上面側配線層
55…導体パターンとしての下面側配線層
61,71…接着層としての接着シート
62,72…導体部としての導体柱
64,74…接着層の第1主面としての上面
65,75…接着層の第2主面としての下面
66,76…ビア孔

Claims (5)

  1. 非熱可塑性樹脂を主体とする樹脂層と、
    前記樹脂層の主面上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、
    前記主面の表面粗さRaが0.1μm以上であるとともに、前記主面の表面粗さRzが0.5μm以上である
    ことを特徴とする配線基板。
  2. 導体パターンが、前記樹脂層と前記接着層との間に形成されていることを特徴とする請求項1に記載の配線基板。
  3. 非熱可塑性樹脂を主体とするフレキシブル基板と、
    前記フレキシブル基板上に接合され、ポリエーテルエーテルケトンを主体とする接着層とを備え、
    前記フレキシブル基板において、前記接着層と接着する接着面の表面粗さRaが0.1μm以上であるとともに、前記接着面の表面粗さRzが0.5μm以上であることを特徴とする配線基板。
  4. 前記接着層は、第1主面及び第2主面を有するとともに、前記第1主面側及び前記第2主面側を連通させるビア孔内に設けられた導体部を有することを特徴とする請求項1乃至3のいずれか1項に記載の配線基板。
  5. 前記非熱可塑性樹脂はポリイミドであることを特徴とする請求項1乃至4のいずれか1項に記載の配線基板。
JP2005193401A 2005-07-01 2005-07-01 配線基板 Active JP4711757B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193401A JP4711757B2 (ja) 2005-07-01 2005-07-01 配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193401A JP4711757B2 (ja) 2005-07-01 2005-07-01 配線基板

Publications (2)

Publication Number Publication Date
JP2007012961A true JP2007012961A (ja) 2007-01-18
JP4711757B2 JP4711757B2 (ja) 2011-06-29

Family

ID=37751047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193401A Active JP4711757B2 (ja) 2005-07-01 2005-07-01 配線基板

Country Status (1)

Country Link
JP (1) JP4711757B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211152A (ja) * 2007-02-28 2008-09-11 Meiko:Kk プリント配線板及び電子部品実装基板
JP2009288322A (ja) * 2008-05-27 2009-12-10 Epson Imaging Devices Corp 電子デバイス及び電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125331A (ja) * 1994-10-19 1996-05-17 Toshiba Corp 印刷配線板の製造方法
JPH08172277A (ja) * 1994-12-16 1996-07-02 Shin Etsu Chem Co Ltd 多層化用フレキシブル印刷配線用基板
JPH11302809A (ja) * 1998-04-16 1999-11-02 Mitsui Chem Inc 銅薄膜基板及びプリント配線板の製造法
JP2000208936A (ja) * 1999-01-13 2000-07-28 Ngk Spark Plug Co Ltd プリント配線板の製造方法
JP2002043752A (ja) * 2000-07-27 2002-02-08 Nec Kansai Ltd 配線基板,多層配線基板およびそれらの製造方法
JP2003110240A (ja) * 2001-10-01 2003-04-11 Sumitomo Metal Mining Co Ltd 複合配線基板及びその製造方法
JP2004146602A (ja) * 2002-10-24 2004-05-20 Sony Corp 光・電気配線混載ハイブリッド回路基板及びその製造方法並びに光・電気配線混載ハイブリット回路モジュール及びその製造方法
JP2004158545A (ja) * 2002-11-05 2004-06-03 Denso Corp 多層基板及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125331A (ja) * 1994-10-19 1996-05-17 Toshiba Corp 印刷配線板の製造方法
JPH08172277A (ja) * 1994-12-16 1996-07-02 Shin Etsu Chem Co Ltd 多層化用フレキシブル印刷配線用基板
JPH11302809A (ja) * 1998-04-16 1999-11-02 Mitsui Chem Inc 銅薄膜基板及びプリント配線板の製造法
JP2000208936A (ja) * 1999-01-13 2000-07-28 Ngk Spark Plug Co Ltd プリント配線板の製造方法
JP2002043752A (ja) * 2000-07-27 2002-02-08 Nec Kansai Ltd 配線基板,多層配線基板およびそれらの製造方法
JP2003110240A (ja) * 2001-10-01 2003-04-11 Sumitomo Metal Mining Co Ltd 複合配線基板及びその製造方法
JP2004146602A (ja) * 2002-10-24 2004-05-20 Sony Corp 光・電気配線混載ハイブリッド回路基板及びその製造方法並びに光・電気配線混載ハイブリット回路モジュール及びその製造方法
JP2004158545A (ja) * 2002-11-05 2004-06-03 Denso Corp 多層基板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211152A (ja) * 2007-02-28 2008-09-11 Meiko:Kk プリント配線板及び電子部品実装基板
JP2009288322A (ja) * 2008-05-27 2009-12-10 Epson Imaging Devices Corp 電子デバイス及び電子機器

Also Published As

Publication number Publication date
JP4711757B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4718889B2 (ja) 多層配線基板及びその製造方法、多層配線基板構造体及びその製造方法
TWI475932B (zh) 帶有補強材之配線基板
KR100987688B1 (ko) 프린트 배선 기판 및 프린트 배선 기판의 제조 방법
JP4541753B2 (ja) 電子部品実装構造の製造方法
JP5224845B2 (ja) 半導体装置の製造方法及び半導体装置
JP5306789B2 (ja) 多層配線基板及びその製造方法
JP2009076873A (ja) 多層配線基板及びその製造方法、ic検査装置用基板及びその製造方法
TW200425808A (en) Intermediate board, intermediate board with a semiconductor device, substrate board with an intermediate board, structural member including a semiconductor device, an intermediate board and a substrate board, and method of producing an intermediate board
JP2001068857A (ja) 多層セラミック基板およびその製造方法
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
JP2009021578A (ja) 補強材付き配線基板
JP4194408B2 (ja) 補強材付き基板、半導体素子と補強材と基板とからなる配線基板
JP2006237232A (ja) 複合配線基板構造体及びその製造方法
JP4711757B2 (ja) 配線基板
JP4786914B2 (ja) 複合配線基板構造体
JP4718890B2 (ja) 多層配線基板及びその製造方法、多層配線基板構造体
JP2005005692A (ja) 回路部品内蔵モジュールおよびその製造方法
JP2006237233A (ja) 複合配線基板構造体及びその製造方法
JP2004221388A (ja) 電子部品搭載用多層基板及びその製造方法
JP2002151853A (ja) 多層配線基板とその製造方法
JP2006310543A (ja) 配線基板及びその製造方法、半導体回路素子付き配線基板
JPH10335528A (ja) 半導体パッケージおよび半導体パッケージの製造方法
JP2008098202A (ja) 多層配線基板、多層配線基板構造体
JP2006310542A (ja) 配線基板及びその製造方法、半導体回路素子付き配線基板
JP4841234B2 (ja) ビアアレイキャパシタ内蔵配線基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4711757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250