JP2007012421A - Negative electrode for lithium ion battery and lithium ion battery using it - Google Patents

Negative electrode for lithium ion battery and lithium ion battery using it Download PDF

Info

Publication number
JP2007012421A
JP2007012421A JP2005191411A JP2005191411A JP2007012421A JP 2007012421 A JP2007012421 A JP 2007012421A JP 2005191411 A JP2005191411 A JP 2005191411A JP 2005191411 A JP2005191411 A JP 2005191411A JP 2007012421 A JP2007012421 A JP 2007012421A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
lithium ion
ion battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191411A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Masaya Ugaji
正弥 宇賀治
Nobuaki Nagao
宣明 長尾
Keiichi Takahashi
慶一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005191411A priority Critical patent/JP2007012421A/en
Publication of JP2007012421A publication Critical patent/JP2007012421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium ion battery surely having a sufficient space absorbing stress caused by the expansion/contraction of a negative active material, and to provide the lithium ion battery using the negative electrode. <P>SOLUTION: The negative electrode has a current collector made of metal not alloyed with lithium and having a plurality of columnar projections 12 each having a height of 1 μm or higher, and the negative active material 13 formed on only the top of the plurality of columnar projections. Even if the lithium active material 1S repeats the volume expansion/contraction caused by the absorbing/releasing of lithium, although only surfaces of the columnar projections are affected by the expansion/contraction, since the spaces having no active material are present in the current collector, an adverse effect on the current collector by the expansion/contraction of the active material can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリチウムイオン電池に関し、特に負極の構造に関するものである。   The present invention relates to a lithium ion battery, and more particularly to the structure of a negative electrode.

現在、高容量リチウム二次電池が要望されている。これを実現するために負極材料(負極活物質)の新規開発が特に重要である。新たな負極として、集電体の上にリチウムと合金化するSiまたはSnあるいはこれらの合金を負極に応用する技術が公開されている(特許文献1参照)。しかしこれらの材料は、リチウムイオンの吸蔵・放出に伴う体積膨張・収縮が大きいため、実用化が困難であった。   Currently, there is a demand for high-capacity lithium secondary batteries. In order to realize this, new development of negative electrode material (negative electrode active material) is particularly important. As a new negative electrode, a technique of applying Si or Sn alloyed with lithium or an alloy thereof to a negative electrode on a current collector is disclosed (see Patent Document 1). However, these materials have been difficult to put into practical use because of the large volume expansion / contraction associated with the insertion and extraction of lithium ions.

この課題を解決するために、上記材料の薄膜を集電体上に形成した負極が注目されている(特許文献2参照)。この技術は、負極集電体に負極活物質の厚み以下の凹凸を設け、柱状の活物質粒子を形成する。これにより柱状粒子間に空間を作り、膨張による応力を緩和してサイクル特性の改善をおこなうものである。
特開平10−255768号公報 特開2002−83594号公報
In order to solve this problem, attention is paid to a negative electrode in which a thin film of the above material is formed on a current collector (see Patent Document 2). In this technique, the negative electrode current collector is provided with irregularities having a thickness equal to or less than the thickness of the negative electrode active material to form columnar active material particles. This creates a space between the columnar particles, relieves stress due to expansion, and improves cycle characteristics.
Japanese Patent Laid-Open No. 10-255768 JP 2002-83594 A

しかしながら、特許文献2に記載の負極では、凹凸を有する集電体表面に、CVD法やスパッタリング法などを用いて負極活物質を形成するため、負極活物質も集電体の表面形状の影響を受け、凹凸を有する。この時、集電体の凹部にも負極活物質が形成される。このように、集電体の表面の全体に亘って負極活物質層が形成されるので、負極活物質がリチウムイオンの吸蔵・放出に伴って体積膨張・収縮を繰り返すと、集電体の表面全体がその影響を受ける。その結果、負極活物質の膨張・収縮により発生する応力の緩和ができず、集電体に皺や切断が生じ、最終的にはサイクル特性の低下を招いていた。   However, in the negative electrode described in Patent Document 2, since the negative electrode active material is formed on the surface of the current collector having irregularities using a CVD method, a sputtering method, or the like, the negative electrode active material also has an influence on the surface shape of the current collector. Receiving and uneven. At this time, a negative electrode active material is also formed in the concave portion of the current collector. Thus, since the negative electrode active material layer is formed over the entire surface of the current collector, if the negative electrode active material repeatedly expands and contracts as the lithium ions are absorbed and released, the surface of the current collector The whole is affected. As a result, the stress generated by the expansion / contraction of the negative electrode active material could not be relieved, and the current collector was wrinkled or cut, resulting in a deterioration in cycle characteristics.

本発明は、前記課題を解決するもので、負極活物質の膨張・収縮に伴う応力を吸収する十分な空間を確実有し、サイクル特性劣化の少ないリチウムイオン電池用負極およびそれを用いたリチウムイオン電池を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has a sufficient space to absorb stress accompanying expansion / contraction of the negative electrode active material, and has a low cycle characteristic deterioration and a lithium ion battery using the same. An object is to provide a battery.

前記従来の課題を解決するために、本発明のリチウムイオン電池用負極は、リチウムと合金化しない金属からなり、高さが1μm以上である複数の柱状凸部が表面に形成された集電体と、複数の柱状凸部の上面のみに形成された負極活物質と、を有する。   In order to solve the above-described conventional problems, the negative electrode for a lithium ion battery according to the present invention is made of a metal that is not alloyed with lithium, and has a plurality of columnar protrusions having a height of 1 μm or more formed on the surface. And a negative electrode active material formed only on the upper surfaces of the plurality of columnar protrusions.

本構成により、負極活物質がLiの吸蔵・放出に伴って体積膨張・収縮を繰り返しても、柱状凸部の表面はその影響を受けるが、集電体には活物質を有さない空白部があるので、集電体全体に亘って活物質の膨張収縮の影響を受けることがなくなる。   With this configuration, even when the negative electrode active material repeatedly expands / contracts as Li is occluded / released, the surface of the columnar convex portion is affected, but the current collector does not have an active material. Therefore, the entire current collector is not affected by the expansion and contraction of the active material.

本発明の構造の負極によれば、電池の充放電に伴う負極活物質の膨張・収縮に伴う応力を緩和する空白部を設けてあるので、充放電に伴う集電体に皺や切断が生じることが無く、電池の充放電サイクル特性の劣化を低減できるリチウム二次電池を提供することができる。   According to the negative electrode having the structure of the present invention, the blank portion for relaxing the stress accompanying expansion / contraction of the negative electrode active material accompanying charging / discharging of the battery is provided. Thus, it is possible to provide a lithium secondary battery that can reduce deterioration of charge / discharge cycle characteristics of the battery.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明による負極の概略断面図である。負極10は、集電体基材11上に設けられた高さが1μm以上である複数の柱状凸部12を表面に有しており、柱状凸部12の上面にのみ負極活物質13が形成されている。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a negative electrode according to the present invention. The negative electrode 10 has a plurality of columnar protrusions 12 provided on the current collector base 11 and having a height of 1 μm or more on the surface, and the negative electrode active material 13 is formed only on the upper surface of the columnar protrusions 12. Has been.

集電体基材11および柱状凸部12としては銅、ニッケル、白金および金といったリチウムと合金化しない金属およびその合金を使用することが出来る。集電体基材11と柱状凸部12とは同じ材料であることが好ましい。   As the current collector base material 11 and the columnar convex portions 12, metals such as copper, nickel, platinum, and gold, which are not alloyed with lithium, and alloys thereof can be used. The current collector base material 11 and the columnar convex portions 12 are preferably made of the same material.

柱状凸部12は、集電体基材11に対して略垂直に形成されている。略垂直でない場合には、柱状凸部12の上面に形成された負極活物質13が膨張した時に、隣り合う負極活物質13同士がぶつかりあうことを防ぐための空間が、略垂直とした場合と比べて多く必要になる。その結果、負極の単位面積あたりの活物質の量が少なくなり、実用的ではない。   The columnar protrusions 12 are formed substantially perpendicular to the current collector base material 11. In the case where it is not substantially vertical, when the negative electrode active material 13 formed on the upper surface of the columnar protrusion 12 expands, the space for preventing the adjacent negative electrode active materials 13 from colliding with each other is substantially vertical. More are needed. As a result, the amount of the active material per unit area of the negative electrode decreases, which is not practical.

柱状凸部12の高さは1μm以上必要である。上部に形成する負極活物質13の厚みにもよるが、1μm以下では応力を緩和する効果が十分得られない。柱状凸部12の高さの上限は特に制限はない。しかし円柱あるいは角柱が高くなると、結果として負極に占める集電体の割合が高くなり、負極としての容量が低下する。従って高さの上限は実用的な容量を考慮して決められる。   The height of the columnar convex portion 12 is required to be 1 μm or more. Although it depends on the thickness of the negative electrode active material 13 formed on the upper portion, if the thickness is 1 μm or less, the effect of relaxing the stress cannot be sufficiently obtained. The upper limit of the height of the columnar convex part 12 is not particularly limited. However, when the cylinder or the prism is high, as a result, the ratio of the current collector to the negative electrode increases, and the capacity as the negative electrode decreases. Therefore, the upper limit of the height is determined in consideration of a practical capacity.

本発明の効果をさらに高めるためには、柱状凸部12の上面に形成された負極活物質13の厚さ(t)と、隣り合う柱状凸部12の間の距離(X)との比(X/t)が、2以上であることが好ましい。隣り合う柱状凸部12の間の距離とは、柱状凸部12の側面とその隣りの柱状凸部12の側面とを結ぶ最短距離のことを指す。負極活物質13がリチウムイオンを吸蔵し、膨張する際は、柱状凸部12の上面との接合部での膨張が他の部分と比べて小さいため、扇形に膨れる。X/tの値が2よりも小さいと、柱状凸部12に形成された負極活物質13が膨張する時に、隣り合う負極活物質13ぶつかり合うことになる。その結果、集電体に応力がかかり、最悪の場合は集電体の破断が生じる。X/tの上限は、実用的な容量と負極に占める活物質の割合を考慮して決めればよい。   In order to further enhance the effect of the present invention, the ratio of the thickness (t) of the negative electrode active material 13 formed on the upper surface of the columnar protrusion 12 to the distance (X) between the adjacent columnar protrusions 12 ( X / t) is preferably 2 or more. The distance between the adjacent columnar convex portions 12 refers to the shortest distance connecting the side surface of the columnar convex portion 12 and the side surface of the adjacent columnar convex portion 12. When the negative electrode active material 13 occludes lithium ions and expands, the expansion at the junction with the upper surface of the columnar convex portion 12 is smaller than the other portions, so that it expands in a fan shape. When the value of X / t is smaller than 2, when the negative electrode active material 13 formed on the columnar convex portion 12 expands, adjacent negative electrode active materials 13 collide with each other. As a result, stress is applied to the current collector, and in the worst case, the current collector is broken. The upper limit of X / t may be determined in consideration of the practical capacity and the ratio of the active material in the negative electrode.

柱状凸部12は円柱状であっても角柱状であっても良く、角柱状の場合の形状は三角柱、四角柱、五角柱および六角柱が、空間を効率的に確保するために望ましい。   The columnar convex portion 12 may be a columnar shape or a prismatic shape, and a triangular column shape, a quadrangular column shape, a pentagonal column shape, and a hexagonal column shape are desirable in order to efficiently secure a space.

ここで集電体基材11の柱状凸部12が形成されていない箇所(空白部)の形状は、平坦であることが好ましい。空白部に三角溝部などの応力が集中しやすい形状が形成されていない方が、本発明の効果を得やすいためである。   Here, the shape of the portion (blank portion) where the columnar convex portions 12 of the current collector base material 11 are not formed is preferably flat. This is because it is easier to obtain the effect of the present invention when a shape such as a triangular groove portion where stress tends to concentrate is not formed in the blank portion.

負極活物質13としてはリチウムイオン電池の負極として一般に用いられている材料を使用することができる。特にリチウムイオンを吸蔵するときの膨張が大きい材料を用いた場合、本願の効果が大きい。膨張の大きい材料としてはSi、Sn、SiO(0<X≦2)およびSnO(0<X≦2)からなる群より選ばれた少なくとも1つを含む材料が挙げられる。例えばSi単体、Sn単体、NiSn、MgSnといった合金や固溶体、SiB、SiBといった化合物が挙げられる。 As the negative electrode active material 13, a material generally used as a negative electrode of a lithium ion battery can be used. In particular, when a material having a large expansion when occlusion of lithium ions is used, the effect of the present application is great. Examples of the material having large expansion include a material containing at least one selected from the group consisting of Si, Sn, SiO x (0 <X ≦ 2), and SnO x (0 <X ≦ 2). Examples thereof include Si simple substance, Sn simple substance, alloys such as Ni 3 Sn 4 and Mg 2 Sn, solid solutions, and compounds such as SiB 4 and SiB 6 .

本発明の負極10は、例えば以下のようにして作製することができる。図2を参照しながら説明する。表面が平滑な圧延銅箔からなる集電体基材11上に、2.3.5トリメチルフェノールからなるレジスト21を塗布する(図2a)。その後、露光法によりレジストへのパターニングを施す(図2b)。その上に蒸着法などで銅からなる柱状凸部12を形成ずる(図2c)。その上にSiを含む負極活物質層22を形成する(図2d)。負極活物質層22の形成は、活物質材料の粉体にバインダーと溶媒を加えてペーストを作り、それをドクターブレード法などで形成する。あるいはスパッタリング法、真空蒸着法、レーザーアブレーション法、イオンプレーティング法、あるいはCVD(Chemical Vapor Deposition)法などの乾式薄膜プロセスで形成してもよい。その後、レジスト剥離液に浸漬するリフトオフ工程を行う(図2e)。   The negative electrode 10 of the present invention can be produced, for example, as follows. This will be described with reference to FIG. A resist 21 made of 2.3.5 trimethylphenol is applied on the current collector base 11 made of rolled copper foil having a smooth surface (FIG. 2a). Thereafter, the resist is patterned by an exposure method (FIG. 2b). A columnar convex portion 12 made of copper is formed thereon by vapor deposition or the like (FIG. 2c). A negative electrode active material layer 22 containing Si is formed thereon (FIG. 2d). The negative electrode active material layer 22 is formed by making a paste by adding a binder and a solvent to the powder of the active material, and forming the paste by a doctor blade method or the like. Alternatively, it may be formed by a dry thin film process such as sputtering, vacuum deposition, laser ablation, ion plating, or CVD (Chemical Vapor Deposition). Thereafter, a lift-off step of immersing in a resist stripping solution is performed (FIG. 2e).

以上のようにして得られた本発明による負極と、リチウムイオンを吸蔵・放出する正極活物質であるコバルト酸リチウムなどを含む正極活物質層をアルミニウムなどの正極集電体上に形成した正極とを、多孔質ポリプロピレン製などのセパレーターで挟み、アルミラミネート等の袋に入れ、リチウムイオン伝導性の電解液またはポリマー電解質を加えることによってリチウムイオン電池を作製できる。   The negative electrode according to the present invention obtained as described above, and a positive electrode in which a positive electrode active material layer containing lithium cobaltate, which is a positive electrode active material that absorbs and releases lithium ions, is formed on a positive electrode current collector such as aluminum. Is sandwiched between separators made of porous polypropylene or the like, placed in a bag made of aluminum laminate or the like, and a lithium ion conductive electrolyte or polymer electrolyte is added to produce a lithium ion battery.

このようにして得られたリチウムイオン電池は、負極膨張による応力が緩和され、極板の皺や切断が抑制され、サイクル劣化の少ないために信頼性が得られる。   In the lithium ion battery thus obtained, stress due to negative electrode expansion is relieved, wrinkles and cutting of the electrode plate are suppressed, and reliability is obtained because of less cycle deterioration.

以下、具体的な実施例によって本発明をさらに詳細に説明する。なお、本発明は以下に示す実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of specific examples. In addition, this invention is not limited to the Example shown below.

(実施例1)
下記の手法にて図1に示す負極10を作製した。集電体基材11として20mm×20mm、厚み35μmの電解銅箔を用い、表面にレジスト21を形成した。レジストは日立化成工業(株)製のRY−3315を用いた。次に一辺が10μmの正方形を並べてパターニングした石英マスクを通して紫外光を照射し(光量:50mJ/cm)、炭酸ナトリウム水溶液(0.8wt%、25℃)に10秒間浸して、レジストのパターニングを行った。露光機はオーク製作所製のEXM−1201、光量計はオーク製作所製のUV−350SD型を用いた。
Example 1
The negative electrode 10 shown in FIG. 1 was produced by the following method. An electrolytic copper foil having a size of 20 mm × 20 mm and a thickness of 35 μm was used as the current collector base material 11, and a resist 21 was formed on the surface. RY-3315 manufactured by Hitachi Chemical Co., Ltd. was used as the resist. Next, ultraviolet light is irradiated through a quartz mask patterned by arranging 10 μm squares on one side (light quantity: 50 mJ / cm 2 ), and immersed in an aqueous sodium carbonate solution (0.8 wt%, 25 ° C.) for 10 seconds to pattern the resist. went. The exposure machine used was EXM-1201 manufactured by Oak Manufacturing Co., Ltd., and the UV-350SD type manufactured by Oak Manufacturing Co., Ltd. was used as the light meter.

次に、その上から銅を蒸着した。膜厚は10μmとし、抵抗加熱蒸着により製膜した。真空度は10−6Torrとして、板状のタングステンのヒーターを用いてその上に銅のインゴットを300mg置き、ヒーターに50Aの電流を流して銅を融解させ蒸発させて成膜した(装置:SVC−700T サンユー電子株式会社製)。 Next, copper was vapor-deposited from the top. The film thickness was 10 μm, and the film was formed by resistance heating vapor deposition. The degree of vacuum was 10 −6 Torr, and 300 mg of copper ingot was placed thereon using a plate-like tungsten heater, and a current of 50 A was applied to the heater to melt and evaporate the copper (apparatus: SVC). -700T Sanyu Electronics Co., Ltd.).

更にその上から負極活物質層22としてのSiO0.3膜を1μmの厚みで電子ビーム(EB)蒸着法により成膜した。蒸着条件は、EBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。 Further, a SiO 0.3 film as a negative electrode active material layer 22 was formed thereon by an electron beam (EB) vapor deposition method with a thickness of 1 μm. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (film formation apparatus manufactured by Shinko Seiki Co., Ltd.).

次に、水酸化ナトリウム水溶液(2.0wt%、50℃)に10秒間浸して、レジストとその上の銅膜と更にその上のSiO0.3膜を除去するリフトオフを行った。これにより、柱状凸部12の形状は一辺が10μmの正立方体になった。また、隣り合う柱状凸部12の距離は2.5μmとした。空白部はほぼ平坦であった。 Next, it was immersed in an aqueous sodium hydroxide solution (2.0 wt%, 50 ° C.) for 10 seconds, and lift-off was performed to remove the resist, the copper film thereon, and the SiO 0.3 film thereon. Thereby, the shape of the columnar convex part 12 became a regular cube whose one side was 10 μm. The distance between the adjacent columnar convex portions 12 was 2.5 μm. The blank part was almost flat.

その後で水酸化ナトリウムを完全に除去するために純水に10分間浸漬して取り出し、大気中で乾燥した。   Thereafter, in order to completely remove sodium hydroxide, it was taken out by being immersed in pure water for 10 minutes and dried in the atmosphere.

このようにして形成されたSiO0.3からなる負極活物質13は、柱状凸部12の上面に成膜され、空白部には成膜されなかった。 The negative electrode active material 13 made of SiO 0.3 formed in this manner was formed on the upper surface of the columnar convex portion 12 and was not formed in the blank portion.

(比較例1)
次に比較例1として、図3に示すような、柱状凸部を有しない負極30を作製した。電極作製方法は、集電体基材31として20mm×20mm、厚み35μmの電解銅箔を用い、その上に負極活物質層32としてのSiO0.3膜を1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。
(Comparative Example 1)
Next, as Comparative Example 1, a negative electrode 30 having no columnar protrusion as shown in FIG. In the electrode manufacturing method, an electrolytic copper foil having a thickness of 20 mm × 20 mm and a thickness of 35 μm is used as the current collector base material 31, and an SiO 0.3 film as the negative electrode active material layer 32 is formed thereon by an EB deposition method with a thickness of 1 μm. Filmed. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

(比較例2)
更に比較例2として、図4に示すような、柱状凸部を有さず、活物質のみパターニングした負極40を作製した。電極作製方法は、集電体基材41として20mm×20mm、厚み35μmの電解銅箔を用い、上記実施例1と同様に表面にレジストを形成した。レジストは日立化成工業(株)製のRY−3315を用いた。次に一辺が10μmの正方形を並べてパターニングした石英マスクを通して紫外光を照射し(光量:50mJ/cm)、炭酸ナトリウム水溶液(0.8wt%、25℃)に10秒間浸して、レジストのパターニングを行った。次にその上から負極活物質層42としてのSiO0.3膜を1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。
(Comparative Example 2)
Further, as Comparative Example 2, a negative electrode 40 having no columnar protrusions and only the active material was patterned as shown in FIG. In the electrode production method, an electrolytic copper foil having a size of 20 mm × 20 mm and a thickness of 35 μm was used as the current collector base material 41, and a resist was formed on the surface in the same manner as in Example 1 above. RY-3315 manufactured by Hitachi Chemical Co., Ltd. was used as the resist. Next, ultraviolet light is irradiated through a quartz mask patterned by arranging 10 μm squares on one side (light quantity: 50 mJ / cm 2 ), and immersed in an aqueous sodium carbonate solution (0.8 wt%, 25 ° C.) for 10 seconds to pattern the resist. went. Next, a SiO 0.3 film as a negative electrode active material layer 42 was formed thereon with a thickness of 1 μm by EB vapor deposition. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

次に、水酸化ナトリウム水溶液(2.0wt%、50℃)に10秒間浸して、レジストとその上のSiO0.3膜を除去するリフトオフを行った。その後で水酸化ナトリウムを完全に除去するために純水に10分間浸漬して取り出し、大気中で乾燥した。 Next, it was immersed in an aqueous sodium hydroxide solution (2.0 wt%, 50 ° C.) for 10 seconds, and lift-off was performed to remove the resist and the SiO 0.3 film thereon. Thereafter, in order to completely remove sodium hydroxide, it was taken out by being immersed in pure water for 10 minutes and dried in the atmosphere.

(比較例3)
更に比較例3として、図5に示すような、柱状凸部を有する集電体の上にSiO0.3膜を形成した負極50を作製した。電極作製方法は、集電体基材51として20mm×20mm、厚み35μmの電解銅箔を用い、表面にレジストを形成した。レジストは日立化成工業(株)製のRY−3315を用いた。次に一辺が10μmの正方形を並べてパターニングした石英マスクを通して紫外光を照射し(光量:50mJ/cm)、炭酸ナトリウム水溶液(0.8wt%、25℃)に10秒間浸して、レジストのパターニングを行った。
(Comparative Example 3)
Further, as Comparative Example 3, a negative electrode 50 having a SiO 0.3 film formed on a current collector having columnar protrusions as shown in FIG. In the electrode preparation method, an electrolytic copper foil having a size of 20 mm × 20 mm and a thickness of 35 μm was used as the current collector substrate 51, and a resist was formed on the surface. RY-3315 manufactured by Hitachi Chemical Co., Ltd. was used as the resist. Next, ultraviolet light is irradiated through a quartz mask patterned by arranging 10 μm squares on one side (light quantity: 50 mJ / cm 2 ), and immersed in an aqueous sodium carbonate solution (0.8 wt%, 25 ° C.) for 10 seconds to pattern the resist. went.

次に、その上から銅を蒸着した。膜厚は10μmとし、抵抗加熱蒸着により製膜した。次に、水酸化ナトリウム水溶液(2.0wt%、50℃)に10秒間浸して、レジストとその上の銅膜を除去するリフトオフを行った。その後で水酸化ナトリウムを完全に除去するために純水に10分間浸漬して取り出し、大気中で乾燥した。これにより、柱状凸部53を形成した。柱状凸部53の形状は一辺が10μmの立方体であった。また、隣り合う柱状凸部12の距離は2.5μmであった。空白部はほぼ平坦であった。   Next, copper was vapor-deposited from the top. The film thickness was 10 μm, and the film was formed by resistance heating vapor deposition. Next, it was immersed in an aqueous sodium hydroxide solution (2.0 wt%, 50 ° C.) for 10 seconds, and lift-off was performed to remove the resist and the copper film thereon. Thereafter, in order to completely remove sodium hydroxide, it was taken out by being immersed in pure water for 10 minutes and dried in the atmosphere. Thereby, the columnar convex part 53 was formed. The shape of the columnar convex portion 53 was a cube having a side of 10 μm. Further, the distance between adjacent columnar convex portions 12 was 2.5 μm. The blank part was almost flat.

更にその上から負極活物質層52としてのSiO0.3膜を1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。 Further, a SiO 0.3 film as a negative electrode active material layer 52 was formed thereon with a thickness of 1 μm by EB vapor deposition. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

(電池の作製)
次に、上記実施例1および比較例1〜3で作製した負極と組み合わせるための正極を以下のように作製した。まず、基板12として20mm×20mm、厚み50μmの白金箔を用い、その上に、第一活物質13としてLiCoOを、厚み2μmでスパッタ法(200Wパワー、Ar/O=3/1を20SCCM、20mTorr)により形成し、さらに大気中にて800℃2時間で管状炉にて熱処理を行ない、正極とした。
(Production of battery)
Next, a positive electrode to be combined with the negative electrodes prepared in Example 1 and Comparative Examples 1 to 3 was prepared as follows. First, a 20 mm × 20 mm platinum foil having a thickness of 50 μm is used as the substrate 12, and then LiCoO 2 is used as the first active material 13, and a sputtering method (200 W power, Ar / O 2 = 3/1 is 20 SCCM at a thickness of 2 μm. , 20 mTorr), and further heat-treated in a tube furnace at 800 ° C. for 2 hours in the atmosphere to obtain a positive electrode.

電解液としては1mol/lのLiPFを、エチレンカーボネートとジエチレンカーボネートの混合溶媒(混合体積比=1:2)に溶解したものを用いた。 As an electrolytic solution, 1 mol / l LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethylene carbonate (mixing volume ratio = 1: 2) was used.

セパレーターとしては、セルガード社製のポリプロピレン製セパレーター(厚さ20μm)を用いた。   As the separator, a polypropylene separator (thickness 20 μm) manufactured by Celgard was used.

上記正極と、上記実施例および比較例1〜3の負極とをそれぞれ活物質同士が対抗するように組み合わせて、その正極と負極との間にセパレーターを配置して積層後、アルミラミネート製の袋に挿入し、上記電解液を1cm注入し、袋の電解液注入口をヒートシールにより封印して、2mm厚のガラス板で袋を挟み込み、クリップで固定してモデルセルを作製した。 The positive electrode and the negative electrodes of Examples and Comparative Examples 1 to 3 are combined so that the active materials oppose each other, a separator is disposed between the positive electrode and the negative electrode, and laminated, and then an aluminum laminate bag The electrolyte solution was injected at 1 cm 3 , the electrolyte solution inlet of the bag was sealed by heat sealing, the bag was sandwiched between 2 mm-thick glass plates, and fixed with clips to prepare a model cell.

(評価)
得られたモデルセルのサイクル特性は次のようにして求めた。充電を0.1mAの電流で4.2Vまで行い、その後の放電は0.1mA電流で3.0Vまで行う。この充放電サイクルを200回行い、1サイクル目の放電容量を200回目の放電容量で割った値を100倍してサイクル特性を求めた。作製したモデルセルの1サイクル目の放電容量はおおむね0.5mAhであった。更に前記の充放電の200サイクル後にアルミラミネートの袋を開封して負極を取り出し、負極集電体の皺の有無を調べた。結果を表1に示す。
(Evaluation)
The cycle characteristics of the obtained model cell were obtained as follows. Charging is performed at a current of 0.1 mA up to 4.2 V, and subsequent discharging is performed at a current of 0.1 mA up to 3.0 V. This charge / discharge cycle was performed 200 times, and the cycle characteristic was determined by multiplying the value obtained by dividing the discharge capacity of the first cycle by the discharge capacity of the 200th cycle by 100. The discharge capacity at the first cycle of the produced model cell was approximately 0.5 mAh. Furthermore, after 200 cycles of the charge and discharge, the aluminum laminate bag was opened, the negative electrode was taken out, and the presence or absence of wrinkles on the negative electrode current collector was examined. The results are shown in Table 1.

Figure 2007012421
Figure 2007012421

表1から明らかなように、実施例1は比較例1〜3に比べてサイクル特性が高く、負極集電体の皺もなかった。これは、実施例1では、活物質の体積膨張による応力を集電体の空白部が緩和したためであると考えられる。比較例2については、空白部を有するものの集電体基材に活物質を直接形成したため、また比較例3については、空白部が無かったため、応力緩和が不十分であったと考えられる。また、空白部のない比較例1については集電体に皺が多数発生し、集電体の切断が観察された。   As is clear from Table 1, Example 1 had higher cycle characteristics than Comparative Examples 1 to 3, and no negative electrode current collector was found. This is considered to be because in Example 1, the blank portion of the current collector relaxed the stress due to the volume expansion of the active material. In Comparative Example 2, the active material was directly formed on the current collector base material although it had a blank portion. In Comparative Example 3, it was considered that stress relaxation was insufficient because there was no blank portion. Further, in Comparative Example 1 having no blank portion, a large number of wrinkles were generated on the current collector, and cutting of the current collector was observed.

(実施例2)
次に、上記実施例1の負極と同様の構造で、柱状凸部の高さを変化させ、実施例1と同様の評価を行った結果を示す。柱状凸部の高さは、実施例1における銅の蒸着時間を調整することで行った。その他は実施例1と同様とした。結果を表2に示す。
(Example 2)
Next, a result of performing the same evaluation as in Example 1 with the same structure as that of the negative electrode in Example 1 above, with the height of the columnar convex portion being changed will be shown. The height of the columnar protrusions was adjusted by adjusting the copper deposition time in Example 1. Others were the same as in Example 1. The results are shown in Table 2.

Figure 2007012421
Figure 2007012421

これにより、柱状凸部の高さは1μm以上あれば、サイクル特性の向上に効果があることが判った。これは、柱状凸部に成膜された活物質の膨張によって基板にかかる応力が、柱状凸部を高くすることで、減少するからと考えられる。   Accordingly, it was found that if the height of the columnar convex portion is 1 μm or more, the cycle characteristics are effective. This is presumably because the stress applied to the substrate due to the expansion of the active material deposited on the columnar protrusions is reduced by increasing the columnar protrusions.

(実施例3)
次に、上記実施例1の負極と同様の構造で、隣り合う柱状凸部の距離(X)とを変化させ、実施例1と同様の評価を行い、負極活物質の厚さ(t)とXとの関係について求めた。隣り合う柱状凸部の距離は、実施例1におけるレジストのパターニングを変更することで行った。その他は実施例1と同様とした。結果を表3に示す。
(Example 3)
Next, with the same structure as that of the negative electrode of Example 1, the distance (X) between adjacent columnar protrusions was changed, and the same evaluation as in Example 1 was performed to determine the thickness (t) of the negative electrode active material and The relationship with X was determined. The distance between adjacent columnar protrusions was changed by changing the resist patterning in Example 1. Others were the same as in Example 1. The results are shown in Table 3.

Figure 2007012421
Figure 2007012421

表3から明らかなようにX/tは2以上で特性の向上が見られた。   As is apparent from Table 3, characteristics were improved when X / t was 2 or more.

また、柱状凸部の形状が、円柱、三角柱、四角柱、五角柱、または六角柱についても同様の結果が得られた。   Moreover, the same result was obtained when the columnar convex portions were cylindrical, triangular, quadrangular, pentagonal, or hexagonal.

なお、1つの集電体における柱状凸部の形状は、全て同一である必要はなく、例えば円柱と四角柱とが混ざっていても、柱状凸部の高さが1μm以上であり、柱状凸部の上面にのみ負極活物質が形成されていれば、柱状凸部の形状に依らず本発明の効果を得ることができる。   Note that the shape of the columnar protrusions in one current collector need not all be the same. For example, even if a cylinder and a square column are mixed, the height of the columnar protrusions is 1 μm or more, and the columnar protrusions If the negative electrode active material is formed only on the upper surface, the effect of the present invention can be obtained regardless of the shape of the columnar protrusions.

本発明にかかる負極は、集電体に複数の柱状凸部を設けて、柱状凸部の上面にのみ負極活物質を形成し、また、複数の柱状凸部以外の集電体には、活物質が形成されない空白部を確実に設けることで、活物質の体積変化による応力の集中を緩和することができ、集電体の皺や切断の発生を防止してサイクル特性の低下を抑制することが可能である。このため、本発明の電極を用いることでサイクル特性などの信頼性に優れた高容量のリチウム二次電池の作製が可能となる。   In the negative electrode according to the present invention, the current collector is provided with a plurality of columnar convex portions, the negative electrode active material is formed only on the upper surface of the columnar convex portions, and the current collectors other than the plurality of columnar convex portions have active By providing a blank area where no material is formed, stress concentration due to volume change of the active material can be alleviated, and the occurrence of wrinkling and cutting of the current collector can be prevented to suppress deterioration of cycle characteristics. Is possible. For this reason, by using the electrode of the present invention, it is possible to produce a high-capacity lithium secondary battery excellent in reliability such as cycle characteristics.

本発明の実施の形態1における負極の概略断面図Schematic cross-sectional view of the negative electrode in Embodiment 1 of the present invention 本発明の実施の形態1における負極の作製方法の一例を示す概略断面図Schematic cross-sectional view showing an example of a method for manufacturing a negative electrode in Embodiment 1 of the present invention 本発明の比較例1における負極の概略断面図Schematic sectional view of a negative electrode in Comparative Example 1 of the present invention 本発明の比較例2における負極の概略断面図Schematic sectional view of the negative electrode in Comparative Example 2 of the present invention 本発明の比較例3における負極の概略断面図Schematic sectional view of the negative electrode in Comparative Example 3 of the present invention

符号の説明Explanation of symbols

10,30,40,50 負極
11,31,41,51 集電体基材
12,53 柱状凸部
13 負極活物質
21 レジスト
22,32,42,52 負極活物質層
10, 30, 40, 50 Negative electrode 11, 31, 41, 51 Current collector base material 12, 53 Columnar projection 13 Negative electrode active material 21 Resist 22, 32, 42, 52 Negative electrode active material layer

Claims (5)

リチウムと合金化しない金属からなり、高さが1μm以上である複数の柱状凸部が表面に形成された集電体と、
前記複数の柱状凸部の上面のみに形成された負極活物質と、
を有するリチウムイオン電池用負極。
A current collector made of a metal that is not alloyed with lithium and having a plurality of columnar protrusions having a height of 1 μm or more formed on the surface;
A negative electrode active material formed only on the upper surfaces of the plurality of columnar convex portions;
A negative electrode for a lithium ion battery.
隣接する前記柱状凸部の間の距離(X)と前記負極活物質の厚さ(t)との比(X/t)が2以上であること、
を特徴とする請求項1記載のリチウムイオン電池用負極。
The ratio (X / t) between the distance (X) between the adjacent columnar convex portions and the thickness (t) of the negative electrode active material is 2 or more;
The negative electrode for a lithium ion battery according to claim 1.
前記柱状凸部が、円柱、三角柱、四角柱、五角柱、および六角柱からなる群より選ばれた1つであること、
を特徴とする請求項1または2に記載のリチウムイオン電池用負極。
The columnar convex portion is one selected from the group consisting of a cylinder, a triangular column, a quadrangular column, a pentagonal column, and a hexagonal column;
The negative electrode for a lithium ion battery according to claim 1 or 2, wherein:
前記負極活物質は、Si、Sn、SiO(0<X≦2)およびSnO(0<X≦2)からなる群より選ばれた少なくとも1つを含むこと、
を特徴とする請求項1から3のいずれかに記載のリチウムイオン電池用負極。
The negative electrode active material includes at least one selected from the group consisting of Si, Sn, SiO x (0 <X ≦ 2) and SnO x (0 <X ≦ 2);
The negative electrode for a lithium ion battery according to any one of claims 1 to 3.
請求項1から4のいずれかに記載のリチウム二次電池用負極と、
リチウムイオンを吸蔵・放出する正極活物質を有する正極と、
リチウムイオン伝導性の電解液またはポリマー電解質と、
を備えたリチウムイオン電池。
A negative electrode for a lithium secondary battery according to any one of claims 1 to 4,
A positive electrode having a positive electrode active material that absorbs and releases lithium ions;
A lithium ion conductive electrolyte or polymer electrolyte;
Lithium ion battery with
JP2005191411A 2005-06-30 2005-06-30 Negative electrode for lithium ion battery and lithium ion battery using it Pending JP2007012421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191411A JP2007012421A (en) 2005-06-30 2005-06-30 Negative electrode for lithium ion battery and lithium ion battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191411A JP2007012421A (en) 2005-06-30 2005-06-30 Negative electrode for lithium ion battery and lithium ion battery using it

Publications (1)

Publication Number Publication Date
JP2007012421A true JP2007012421A (en) 2007-01-18

Family

ID=37750633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191411A Pending JP2007012421A (en) 2005-06-30 2005-06-30 Negative electrode for lithium ion battery and lithium ion battery using it

Country Status (1)

Country Link
JP (1) JP2007012421A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052960A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Method of manufacturing electrode
JP2009016310A (en) * 2007-07-09 2009-01-22 Panasonic Corp Current collector, electrode, and nonaqueous electrolyte secondary battery
WO2009060614A1 (en) * 2007-11-09 2009-05-14 Panasonic Corporation Electrode for electrochemical device
WO2011114709A1 (en) * 2010-03-18 2011-09-22 パナソニック株式会社 Lithium secondary battery
JP2012038528A (en) * 2010-08-05 2012-02-23 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, and method for manufacturing negative electrode plate
CN103268933A (en) * 2013-05-06 2013-08-28 华南理工大学 Al-Sn film negative electrode and preparation method thereof
JP2015213079A (en) * 2010-03-26 2015-11-26 株式会社半導体エネルギー研究所 Power storage device
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR101876402B1 (en) * 2012-01-20 2018-07-09 에스케이이노베이션 주식회사 manufacturing method of electrode plate for secondary battery and manufacturing device using its manufacturing method
CN108847474A (en) * 2018-06-26 2018-11-20 桑顿新能源科技有限公司 A kind of pre- micro- texturing negative electrode tab and preparation method thereof for mending lithium
US10243179B2 (en) 2015-11-25 2019-03-26 Samsung Electronics Co., Ltd. Secondary battery and method of manufacturing the same
JP2022504655A (en) * 2018-10-11 2022-01-13 寧徳時代新能源科技股▲分▼有限公司 Secondary battery and its manufacturing method, electrode member and its manufacturing method, current collector manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052960A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Method of manufacturing electrode
JP2009016310A (en) * 2007-07-09 2009-01-22 Panasonic Corp Current collector, electrode, and nonaqueous electrolyte secondary battery
WO2009060614A1 (en) * 2007-11-09 2009-05-14 Panasonic Corporation Electrode for electrochemical device
JP2009117267A (en) * 2007-11-09 2009-05-28 Panasonic Corp Electrode for electrochemical element
WO2011114709A1 (en) * 2010-03-18 2011-09-22 パナソニック株式会社 Lithium secondary battery
JP2015213079A (en) * 2010-03-26 2015-11-26 株式会社半導体エネルギー研究所 Power storage device
JP2012038528A (en) * 2010-08-05 2012-02-23 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, and method for manufacturing negative electrode plate
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR101876402B1 (en) * 2012-01-20 2018-07-09 에스케이이노베이션 주식회사 manufacturing method of electrode plate for secondary battery and manufacturing device using its manufacturing method
CN103268933A (en) * 2013-05-06 2013-08-28 华南理工大学 Al-Sn film negative electrode and preparation method thereof
US10243179B2 (en) 2015-11-25 2019-03-26 Samsung Electronics Co., Ltd. Secondary battery and method of manufacturing the same
CN108847474A (en) * 2018-06-26 2018-11-20 桑顿新能源科技有限公司 A kind of pre- micro- texturing negative electrode tab and preparation method thereof for mending lithium
JP2022504655A (en) * 2018-10-11 2022-01-13 寧徳時代新能源科技股▲分▼有限公司 Secondary battery and its manufacturing method, electrode member and its manufacturing method, current collector manufacturing method
JP7212773B2 (en) 2018-10-11 2023-01-25 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, ELECTRODE MEMBER AND MANUFACTURING METHOD THEREOF, METHOD FOR MANUFACTURING CURRENT COLLECTOR

Similar Documents

Publication Publication Date Title
JP2007012421A (en) Negative electrode for lithium ion battery and lithium ion battery using it
JP4183401B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
JP4647014B2 (en) Batteries, electrodes and current collectors used therefor
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP4037229B2 (en) Lithium secondary battery electrode and lithium secondary battery using this as a negative electrode
US10622641B2 (en) Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same
JP2007194076A (en) Lithium secondary battery
JP2001283834A (en) Secondary battery
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
JP2008210564A (en) Current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and its manufactueing method, and nonaqueous electrolyte secondary battery
JP5787307B2 (en) Porous electrode for secondary battery
JP2005190902A (en) Manufacturing method for lithium precursor battery and lithium secondary battery
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
JP2004139768A (en) Porous thin film electrode and lithium secondary battery using this as negative electrode
JP4318405B2 (en) Lithium secondary battery
JP4887684B2 (en) Electrode manufacturing method
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JP5045085B2 (en) Negative electrode for lithium secondary battery
JP2007335086A (en) Manufacturing method of electrode for lithium battery
JPH11307083A (en) Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery
KR100366345B1 (en) Negative electrode for lithium-sulfur battery
JP2003257420A (en) Nonaqueous electrolyte secondary battery
JP2008181835A (en) Negative electrode for lithium secondary battery
JP2007250536A (en) Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it