JP2007052960A - Method of manufacturing electrode - Google Patents

Method of manufacturing electrode Download PDF

Info

Publication number
JP2007052960A
JP2007052960A JP2005236269A JP2005236269A JP2007052960A JP 2007052960 A JP2007052960 A JP 2007052960A JP 2005236269 A JP2005236269 A JP 2005236269A JP 2005236269 A JP2005236269 A JP 2005236269A JP 2007052960 A JP2007052960 A JP 2007052960A
Authority
JP
Japan
Prior art keywords
current collector
active material
electrode
negative electrode
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005236269A
Other languages
Japanese (ja)
Other versions
JP4887684B2 (en
Inventor
Nobuaki Nagao
宣明 長尾
Tatsuji Mino
辰治 美濃
Masaya Ugaji
正弥 宇賀治
Keiichi Takahashi
慶一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005236269A priority Critical patent/JP4887684B2/en
Publication of JP2007052960A publication Critical patent/JP2007052960A/en
Application granted granted Critical
Publication of JP4887684B2 publication Critical patent/JP4887684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To realize an electrode which is easy to be manufactured and has a high capacity and a superior charge and discharge cycle characteristics in which occurrence of wrinkles caused by expansion and shrinkage occurring during charge and discharge cycles can be suppressed in the electrode used for the lithium-ion secondary battery. <P>SOLUTION: This manufacturing method of the electrode is arranged so that the manufacturing method has a process for installing an intermediate layer that is mutually soluble with an electrolytic solution so as to cover a current collector on a sheet-state surface of the current collector having conductivity and having a plurality of protrusions on the surface, a process in which at least a part of the plurality of protrusions of the current collector are made to be exposed by removing a part of the surface of the intermediate layer, and a process in which an active material layer is installed at the exposed part of the protrusions. It is easy to be manufactured, and when a battery is constituted by using this electrode, a space is formed for moderating the expansion and shrinkage at the time of charging and discharging, thus occurrence of wrinkle on the electrode is suppressed, and the electrode having the high capacity and superior charge and discharge cycle characteristics and the lithium-ion secondary battery using it are realized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電極の製造方法に関し、特にリチウムイオン二次電池用の電極の製造に好適な製造方法に関するものである。   The present invention relates to an electrode manufacturing method, and more particularly to a manufacturing method suitable for manufacturing an electrode for a lithium ion secondary battery.

近年、非水電解質二次電池の高容量化のための負極活物質として、Si(ケイ素)やSn(スズ)などの元素を含む合金系負極材料が注目されている。例えば、Siの理論放電容量は約4199mAh/gであり、黒鉛の理論放電容量の約11倍である。   In recent years, alloy-based negative electrode materials containing elements such as Si (silicon) and Sn (tin) have attracted attention as negative electrode active materials for increasing the capacity of nonaqueous electrolyte secondary batteries. For example, the theoretical discharge capacity of Si is about 4199 mAh / g, which is about 11 times the theoretical discharge capacity of graphite.

しかしながら、これら合金系負極材料は、リチウムイオンを吸蔵する際に構造が大きく変化するために膨張する。その結果、活物質粒子が割れたり、集電体から活物質層が剥がれたりすることによって、活物質と集電体間の電子伝導性が低下し、結果としてサイクル特性といった電池特性が低下する。   However, these alloy-based negative electrode materials expand due to a large change in structure when occlusion of lithium ions. As a result, the active material particles are broken or the active material layer is peeled off from the current collector, whereby the electronic conductivity between the active material and the current collector is lowered, and as a result, battery characteristics such as cycle characteristics are lowered.

上記のような材料を活物質に用いる負極では、膨張に伴っておこる活物質層の破壊や導電性の低下を抑制するための技術がいくつか開示されている(例えば、特許文献1、特許文献2、特許文献3参照)。   In the negative electrode using the above-mentioned material as an active material, several techniques for suppressing the destruction of the active material layer and the decrease in conductivity that occur with expansion are disclosed (for example, Patent Document 1, Patent Document) 2, see Patent Document 3).

特許文献1には表面が凹凸である集電体上に活物質薄膜をつくることで、柱状構造ができることが開示されている。これにより活物質の膨張収縮による応力を緩和できることでサイクル特性が改善されている。集電体上への凹凸の形成方法としては金属箔上に粒子状銅をメッキで付与後、緻密な銅メッキを行うことが開示されている。   Patent Document 1 discloses that a columnar structure can be formed by forming an active material thin film on a current collector having an uneven surface. Thereby, the cycle characteristics are improved by relieving stress due to expansion and contraction of the active material. As a method for forming irregularities on a current collector, it is disclosed that fine copper plating is performed after applying particulate copper on a metal foil by plating.

特許文献2には、Liと合金化しない材料からなる集電体上に、Liと合金化する金属またはこの金属を含有する合金からなる薄膜が形成された電池用電極が開示されている。この例では、フォトレジスト法とメッキ技術などを適用して集電体上に所定のパターンで、凹凸状負極活物質層を形成する。これにより負活物質間に空隙を確保している。   Patent Document 2 discloses a battery electrode in which a thin film made of a metal alloyed with Li or an alloy containing the metal is formed on a current collector made of a material that is not alloyed with Li. In this example, an uneven negative electrode active material layer is formed in a predetermined pattern on a current collector by applying a photoresist method and a plating technique. Thereby, the space | gap is ensured between negative active materials.

特許文献3にはパターン塗工した有機チタン化合物やシランカップリング剤などからなる接着樹脂層の上に活物質層を形成することが開示されている。これによって集電体と活物質層の接着力と電気的接続が両立できてサイクル特性が向上することが示されている。これを応用することで塗布工程、硬化状態の工程(パターン化)、除去工程、活物質形成工程を経ることで、基板の上に樹脂材料の凹凸が形成可能である。その上に活物質層を形成することで、柱状粒子をもつ活物質層を作製することが出来る。
特開2002−319408号公報 特開2002−279972号公報 特開平11−73947号公報
Patent Document 3 discloses that an active material layer is formed on an adhesive resin layer made of a pattern-coated organic titanium compound, a silane coupling agent, or the like. This shows that the adhesive force and electrical connection between the current collector and the active material layer can be compatible and the cycle characteristics are improved. By applying this, the unevenness of the resin material can be formed on the substrate through a coating process, a cured process (patterning), a removing process, and an active material forming process. An active material layer having columnar particles can be formed by forming an active material layer thereover.
JP 2002-319408 A JP 2002-279972 A Japanese Patent Laid-Open No. 11-73947

しかしながら、上記の従来方法で柱状活物質粒子間の空隙を作製することは、複雑な工程を経るため煩雑であり、また、集電体の凹部にも活物質が積層するので、充放電時に集電体が変形しやすいという課題がある。   However, it is complicated to produce the voids between the columnar active material particles by the above-described conventional method because it is complicated, and the active material is also stacked in the recesses of the current collector. There is a problem that the electric body is easily deformed.

このような状況に鑑み、本発明は、集電体の凹部に余分な活物質が積層しないことにより、膨張収縮率の大きな高性能活物質のサイクル特性を改善させる電極の簡略な製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides a simple method for manufacturing an electrode that improves the cycle characteristics of a high-performance active material having a large expansion / contraction rate by not stacking an excess active material in the recess of the current collector. The purpose is to do.

前記従来の課題を解決するために、本発明の電極の製造方法は、
導電性を有し、表面に複数の凸部を有するシート状の集電体の表面に、集電体を覆うように電解液と相溶する中間層を設ける工程と、
中間層の表面の一部を除去することにより、集電体の複数の凸部の少なくとも一部を露出させる工程と、
露出した凸部に活物質層を設ける工程と、を有することを特徴とする。
In order to solve the conventional problems, the method for producing an electrode of the present invention includes:
A step of providing an intermediate layer compatible with the electrolyte solution so as to cover the current collector on the surface of the sheet-shaped current collector having conductivity and having a plurality of convex portions on the surface;
Removing a part of the surface of the intermediate layer to expose at least some of the plurality of convex portions of the current collector; and
And a step of providing an active material layer on the exposed convex portion.

本製造方法は、集電体の複数の凸部を露出させ、その他の部分を中間層で覆っているので、露出した複数の凸部の表面にのみ活物質層を形成することが可能となる。また、活物質層が形成されていない部分、すなわち中間層で覆った部分には、余分な活物質が存在せず、さらに、電池構成時に中間層が有機電解液に相溶するため、活物質の膨張収縮を吸収するだけの十分な空間を確保する電極を容易に得ることが出来る。   In this manufacturing method, since the plurality of convex portions of the current collector are exposed and the other portions are covered with the intermediate layer, the active material layer can be formed only on the exposed surfaces of the plurality of convex portions. . In addition, there is no excess active material in the portion where the active material layer is not formed, that is, the portion covered with the intermediate layer, and the intermediate layer is compatible with the organic electrolyte when the battery is configured. Thus, it is possible to easily obtain an electrode that secures a sufficient space for absorbing the expansion and contraction.

本発明の製造方法によれば、柱状粒子間に活物質の膨張収縮を吸収するだけの十分な空隙を確保する電極を容易に得ることが出来、またその電極を用いた電池の電池性能、特にサイクル特性を向上させることができる。   According to the production method of the present invention, it is possible to easily obtain an electrode that secures a sufficient space between the columnar particles to absorb the expansion and contraction of the active material, and the battery performance of the battery using the electrode, in particular, Cycle characteristics can be improved.

以下、本発明の実施するための最良の形態について、図面を参照しながら説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明による負極の概略断面図である。図1において、負極10は、複数の凸部12を表面に有する集電体11と、電解液と相溶する中間層14と、凸部12の上面にのみ形成された負極活物質13とからなる。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a negative electrode according to the present invention. In FIG. 1, the negative electrode 10 includes a current collector 11 having a plurality of convex portions 12 on the surface, an intermediate layer 14 compatible with the electrolytic solution, and a negative electrode active material 13 formed only on the upper surface of the convex portion 12. Become.

この負極10の作製方法の一例を図2を元に説明する。図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。すなわち、複数の凸部12を表面に有する集電体11(図2(a))の表面に、集電体11を覆うように電解液と相溶する中間層14を形成する(図2(b))。次に、中間層14の表面を除去し、凸部12の少なくとも一部を露出させる(図2(c))。この時、集電体11の巨視的な表面と平行に除去することが好ましい。また、図2(c)に示すように、凸部12も同じように除去することが好ましい。こうすることで、露出した凸部12の高さを中間層14と同じ高さに揃えることが出来る。その後、露出した凸部12の表面に負極活物質13を形成する(図2(d))。   An example of a method for producing the negative electrode 10 will be described with reference to FIG. In FIG. 2, the same components as those in FIG. That is, the intermediate layer 14 compatible with the electrolytic solution is formed on the surface of the current collector 11 (FIG. 2A) having a plurality of convex portions 12 on the surface so as to cover the current collector 11 (FIG. 2 ( b)). Next, the surface of the intermediate layer 14 is removed, and at least a part of the convex portion 12 is exposed (FIG. 2C). At this time, it is preferable to remove the current collector 11 in parallel with the macroscopic surface. Moreover, as shown in FIG.2 (c), it is preferable to remove the convex part 12 similarly. By doing so, the height of the exposed convex portion 12 can be made equal to the height of the intermediate layer 14. Thereafter, the negative electrode active material 13 is formed on the exposed surface of the convex portion 12 (FIG. 2D).

集電体11としては、電解液中に金属粒子を分散させ電着させる粗面化処理を施した銅、ニッケル、白金および金といったリチウムと合金化しない金属箔およびその合金箔を使用することが出来る。なかでも、銅箔または銅合金箔が、安価で電導度が高いという観点から好ましい。   As the current collector 11, a metal foil that is not alloyed with lithium, such as copper, nickel, platinum, or gold, which has been subjected to a roughening treatment in which metal particles are dispersed and electrodeposited in an electrolytic solution, and an alloy foil thereof are used. I can do it. Of these, copper foil or copper alloy foil is preferable from the viewpoint of low cost and high electrical conductivity.

凸部12の高さは1μm以上であることが好ましい。上部に形成する負極活物質13の厚みにもよるが、1μm未満では応力を緩和する効果が十分得られない場合があるからである。凸部12の高さの上限は特に制限はない。凸部12の高さが高くなると、結果として負極に占める集電体の割合が高くなり、負極としての容量が低下する。従って高さの上限は実用的な容量を考慮して決められる。   The height of the convex portion 12 is preferably 1 μm or more. This is because, depending on the thickness of the negative electrode active material 13 formed on the upper portion, if the thickness is less than 1 μm, the effect of relaxing the stress may not be sufficiently obtained. The upper limit of the height of the convex portion 12 is not particularly limited. If the height of the convex part 12 becomes high, as a result, the ratio of the collector which occupies for a negative electrode will become high, and the capacity | capacitance as a negative electrode will fall. Therefore, the upper limit of the height is determined in consideration of a practical capacity.

本発明の効果をさらに高めるためには、凸部12の上面に形成された負極活物質13の厚さ(t)と、隣り合う負極活物質13の間の平均距離(X)との比(X/t)が、2以上であることが好ましい。隣り合う負極活物質13の間の距離とは、負極活物質13の側面とその隣りの負極活物質13とを結ぶ最短距離のことを指す。負極活物質13がリチウムイオンを吸蔵し、膨張する際は、凸部12の上面との接合部での膨張が他の部分と比べて小さいため、扇形に膨れる。X/tの値が2よりも小さいと、凸部12に形成された負極活物質13が膨張する時に、隣り合う負極活物質13ぶつかり合うことになる。その結果、集電体に応力がかかり、最悪の場合は集電体の破断が生じる。X/tの上限は、実用的な容量と負極に占める活物質の割合を考慮して決めればよい。   In order to further enhance the effect of the present invention, the ratio of the thickness (t) of the negative electrode active material 13 formed on the upper surface of the convex portion 12 and the average distance (X) between adjacent negative electrode active materials 13 ( X / t) is preferably 2 or more. The distance between adjacent negative electrode active materials 13 refers to the shortest distance connecting the side surface of the negative electrode active material 13 and the adjacent negative electrode active material 13. When the negative electrode active material 13 occludes lithium ions and expands, the expansion at the junction with the upper surface of the convex portion 12 is smaller than that of other portions, so that the negative electrode active material 13 expands in a fan shape. When the value of X / t is smaller than 2, when the negative electrode active material 13 formed on the convex portion 12 expands, the adjacent negative electrode active materials 13 collide with each other. As a result, stress is applied to the current collector, and in the worst case, the current collector is broken. The upper limit of X / t may be determined in consideration of the practical capacity and the ratio of the active material in the negative electrode.

負極活物質13としてはリチウムイオン電池の負極として一般に用いられている材料を使用することができる。特にリチウムイオンを吸蔵するときの膨張が大きい材料を用いた場合、本願の効果が大きい。膨張の大きい材料としてはSi、Sn、SiO(0<X<2)およびSnO(0<X<2)からなる群より選ばれた少なくとも1つを含む材料が挙げられる。例えばSi単体、Sn単体、NiSn、MgSnといった合金や固溶体、SiB、SiBといった化合物が挙げられる。 As the negative electrode active material 13, a material generally used as a negative electrode of a lithium ion battery can be used. In particular, when a material having a large expansion when occlusion of lithium ions is used, the effect of the present application is great. Examples of the material having a large expansion include a material containing at least one selected from the group consisting of Si, Sn, SiO x (0 <X <2), and SnO x (0 <X <2). Examples thereof include Si simple substance, Sn simple substance, alloys such as Ni 3 Sn 4 and Mg 2 Sn, solid solutions, and compounds such as SiB 4 and SiB 6 .

中間層14としては例えばリチウム電池の場合には融点が0℃以上200℃以下の有機モノマー、有機オリゴマーおよびそれらの重合体からなる群より選ばれた少なくとも一種を用いることができる。また、カーボネートモノマー、カーボネートオリゴマーおよびそれらの重合体からなる群より選ばれた少なくとも一種を用いることも出来る。こうした材料として例えば環状カーボネートであるエチレンカーボネート(EC)或いは、重合度が10から100程度のポリカーボネートオリゴマー材料を用いることができる。また中間層14の形成手法としては各種の薄膜形成法や塗布手法、例えばスピンコート等が用いられる。   As the intermediate layer 14, for example, in the case of a lithium battery, at least one selected from the group consisting of organic monomers, organic oligomers, and polymers thereof having a melting point of 0 ° C. or higher and 200 ° C. or lower can be used. Further, at least one selected from the group consisting of carbonate monomers, carbonate oligomers and polymers thereof can also be used. As such a material, for example, ethylene carbonate (EC), which is a cyclic carbonate, or a polycarbonate oligomer material having a degree of polymerization of about 10 to 100 can be used. As a method for forming the intermediate layer 14, various thin film forming methods and coating methods such as spin coating are used.

次に中間層14の表面を除去し、凸部12の少なくとも一部を露出させる方法として、化学的機械的研磨(CMP:Chemical Mechanical Polishing)を使用することが出来る。この際、研磨量を変えることによって凸部の高さを変化させることが出来る。CMPスラリーは、半導体製造工程における銅配線研磨用スラリーを用いることができる。   Next, chemical mechanical polishing (CMP) can be used as a method of removing the surface of the intermediate layer 14 and exposing at least a part of the convex portion 12. At this time, the height of the convex portion can be changed by changing the polishing amount. As the CMP slurry, a slurry for polishing copper wiring in a semiconductor manufacturing process can be used.

露出した凸部12および中間層14の表面上に負極活物質13を形成する方法としては、スパッタリング法、真空蒸着法、レーザーアブレーション法、イオンプレーティング法、あるいはCVD(Chemical Vapor Deposition)法などの乾式薄膜プロセスを用いることができる。これらの方法においては、真空中での中間層14の蒸気圧が高いため中間層14の表面には負極活物質13が付着しにくいため、露出した主に凸部12の表面に負極活物質13が堆積し選択的に成長する。   As a method for forming the negative electrode active material 13 on the surface of the exposed convex portion 12 and intermediate layer 14, a sputtering method, a vacuum deposition method, a laser ablation method, an ion plating method, a CVD (Chemical Vapor Deposition) method, or the like is used. A dry thin film process can be used. In these methods, since the vapor pressure of the intermediate layer 14 in vacuum is high, the negative electrode active material 13 hardly adheres to the surface of the intermediate layer 14, and thus the negative electrode active material 13 is mainly exposed on the surface of the convex portion 12. Accumulates and grows selectively.

以上のようにして得られた本発明による負極と、リチウムイオンを吸蔵・放出する正極活物質であるコバルト酸リチウムなどを含む正極活物質層をアルミニウムなどの正極集電体上に形成した正極とを、多孔質ポリプロピレン製などのセパレーターで挟み、アルミラミネート等の袋に入れ、リチウムイオン伝導性の電解液またはポリマー電解質を加えることによってリチウムイオン電池を作製できる。   The negative electrode according to the present invention obtained as described above, and a positive electrode in which a positive electrode active material layer containing lithium cobaltate, which is a positive electrode active material that absorbs and releases lithium ions, is formed on a positive electrode current collector such as aluminum. Is sandwiched between separators made of porous polypropylene or the like, placed in a bag made of aluminum laminate or the like, and a lithium ion conductive electrolyte or polymer electrolyte is added to produce a lithium ion battery.

このようにして得られたリチウムイオン電池は、負極膨張による応力が緩和され、極板の皺や切断が抑制され、サイクル劣化の少ないために信頼性が得られる。   In the lithium ion battery thus obtained, stress due to negative electrode expansion is relieved, wrinkles and cutting of the electrode plate are suppressed, and reliability is obtained because of less cycle deterioration.

以下、具体的な実施例によって本発明をさらに詳細に説明する。なお、本発明は以下に示す実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of specific examples. In addition, this invention is not limited to the Example shown below.

(実施例1)
下記の手法にて図1に示す負極10を作製した。集電体11として20mm×20mm、基材厚み35μm、平均表面粗さRa=1μm、凸部12の最大高さRmax=6μm、の粗面化銅箔を用い、表面に中間層14を形成するために集電体をスピンコーターのステージに固定し、20℃のドライ雰囲気(露点=−25℃)中で毎分1000回転(rpm)で回転させ、60℃に加熱し溶融させたECを滴下することで、集電体の裏面に1μm程度のEC層を形成し、これを7回繰り返すことで、厚さ7μmの中間層を形成した。
Example 1
The negative electrode 10 shown in FIG. 1 was produced by the following method. The current collector 11 is made of a roughened copper foil having a size of 20 mm × 20 mm, a substrate thickness of 35 μm, an average surface roughness Ra = 1 μm, and a maximum height Rmax = 6 μm of the convex portion 12, and an intermediate layer 14 is formed on the surface. For this purpose, the current collector was fixed on the stage of a spin coater, rotated at 1000 rpm (rpm) in a dry atmosphere (dew point = −25 ° C.) at 20 ° C., and melted by heating to 60 ° C. As a result, an EC layer having a thickness of about 1 μm was formed on the back surface of the current collector, and this was repeated seven times to form an intermediate layer having a thickness of 7 μm.

次に表面を研磨し集電体の凸部12を露出させるために、Siウェハ上に集電体11を貼り付け固定し化学機械的研磨(CMP)を使用し、研磨量を変えることによって凸部の高さを変化させた(CMP研磨装置は、テクノライズ株式会社製TRCP500、CMPスラリーは、セイミケミカル株式会社製CL−1200)。   Next, in order to polish the surface and expose the convex portion 12 of the current collector, the current collector 11 is affixed and fixed on the Si wafer, and chemical mechanical polishing (CMP) is used. The height of the part was changed (CMP polishing apparatus is TRCP500 manufactured by Technorise Co., Ltd., and CMP slurry is CL-1200 manufactured by Seimi Chemical Co., Ltd.).

更にその上から負極活物質層としてのSiO0.3膜13を1μmの厚みで電子ビーム(EB)蒸着法により成膜した。蒸着条件は、EBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。 Further, a SiO 0.3 film 13 as a negative electrode active material layer was formed thereon by an electron beam (EB) evaporation method with a thickness of 1 μm. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (film formation apparatus manufactured by Shinko Seiki Co., Ltd.).

このようにして形成されたSiO0.3からなる負極活物質13は、凸部12の上面に成膜され、中間層14上部には成膜されなかった。 The negative electrode active material 13 made of SiO 0.3 thus formed was formed on the upper surface of the convex portion 12 and was not formed on the intermediate layer 14.

(比較例1)
次に比較例1として、図3に示すような、凸部を有しない負極30を作製した。電極作製方法は、集電体31として20mm×20mm、厚み35μmの電解銅箔を用い、その上に負極活物質層としてのSiO0.3膜33を1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。
(Comparative Example 1)
Next, as Comparative Example 1, a negative electrode 30 having no projection as shown in FIG. In the electrode manufacturing method, an electrolytic copper foil having a thickness of 20 mm × 20 mm and a thickness of 35 μm was used as the current collector 31, and a SiO 0.3 film 33 as a negative electrode active material layer was formed thereon by an EB vapor deposition method with a thickness of 1 μm. . Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

(比較例2)
更に比較例2として、図4に示すような、凸部を有さず、活物質のみパターニングした負極40を作製した。電極作製方法は、集電体41として20mm×20mm、厚み35μmの電解銅箔を用い、表面に2.3.5トリメチルフェノールからなるレジストを塗布しレジストを形成した。レジストは日立化成工業(株)製のRY−3315を用いた。次に一辺が10μmの正方形を並べてパターニングした石英マスクを通して紫外光を照射し(光量:50mJ/cm)、炭酸ナトリウム水溶液(0.8wt%、25℃)に10秒間浸して、レジストのパターニングを行った。次にその上から負極活物質層としてのSiO0.3膜43を1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。
(Comparative Example 2)
Furthermore, as Comparative Example 2, a negative electrode 40 having no convex part and patterned only with an active material as shown in FIG. 4 was produced. In the electrode production method, an electrolytic copper foil having a size of 20 mm × 20 mm and a thickness of 35 μm was used as the current collector 41, and a resist made of 2.3.5 trimethylphenol was applied to the surface to form a resist. RY-3315 manufactured by Hitachi Chemical Co., Ltd. was used as the resist. Next, ultraviolet light is irradiated through a quartz mask patterned by arranging 10 μm squares on one side (light quantity: 50 mJ / cm 2 ), and immersed in an aqueous sodium carbonate solution (0.8 wt%, 25 ° C.) for 10 seconds to pattern the resist. went. It was then formed by EB vapor deposition in a thickness of 1μm to SiO 0.3 film 43 serving as the negative electrode active material layer thereon. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

次に、水酸化ナトリウム水溶液(2.0wt%、50℃)に10秒間浸して、レジストとその上のSiO0.3膜を除去するリフトオフを行った。その後で水酸化ナトリウムを完全に除去するために純水に10分間浸漬して取り出し、大気中で乾燥した。 Next, it was immersed in an aqueous sodium hydroxide solution (2.0 wt%, 50 ° C.) for 10 seconds, and lift-off was performed to remove the resist and the SiO 0.3 film thereon. Thereafter, in order to completely remove sodium hydroxide, it was taken out by being immersed in pure water for 10 minutes and dried in the atmosphere.

(比較例3)
更に比較例3として、図5に示すような、平均表面粗さRa=1μmの凸部52を有する粗面化銅箔の集電体51上にSiO0.3膜53を形成した負極50を作製した。負極活物質層としてのSiO0.3膜は1μmの厚みでEB蒸着法により成膜した。蒸着条件はEBパワー:500mA、真空度:4×10−3Pa、酸素流量:10SCCM、製膜時間:1時間とした(成膜装置は神港精機株式会社製)。
(Comparative Example 3)
Further, as Comparative Example 3, a negative electrode 50 in which a SiO 0.3 film 53 is formed on a current collector 51 of a roughened copper foil having convex portions 52 having an average surface roughness Ra = 1 μm as shown in FIG. Produced. The SiO 0.3 film as the negative electrode active material layer was formed by EB vapor deposition with a thickness of 1 μm. Deposition conditions were EB power: 500 mA, degree of vacuum: 4 × 10 −3 Pa, oxygen flow rate: 10 SCCM, film formation time: 1 hour (the film formation apparatus was manufactured by Shinko Seiki Co., Ltd.).

(電池の作製)
次に、上記実施例1および比較例1〜3で作製した負極と組み合わせるための正極を以下のように作製した。まず、基板12として20mm×20mm、厚み50μmの白金箔を用い、その上に、第一活物質13としてLiCoOを、厚み2μmでスパッタ法(200Wパワー、Ar/O=3/1を20SCCM、20mTorr)により形成し、さらに大気中にて800℃2時間で管状炉にて熱処理を行ない、正極とした。
(Production of battery)
Next, a positive electrode to be combined with the negative electrodes prepared in Example 1 and Comparative Examples 1 to 3 was prepared as follows. First, a 20 mm × 20 mm platinum foil having a thickness of 50 μm is used as the substrate 12, and then LiCoO 2 is used as the first active material 13, and a sputtering method (200 W power, Ar / O 2 = 3/1 is 20 SCCM at a thickness of 2 μm. , 20 mTorr), and further heat-treated in a tube furnace at 800 ° C. for 2 hours in the atmosphere to obtain a positive electrode.

電解液としては1mol/lのLiPFを、エチレンカーボネートとジエチレンカーボネートの混合溶媒(混合体積比=1:2)に溶解したものを用いた。 As an electrolytic solution, 1 mol / l LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethylene carbonate (mixing volume ratio = 1: 2) was used.

セパレーターとしては、セルガード社製のポリプロピレン製セパレーター(厚さ20μm)を用いた。   As the separator, a polypropylene separator (thickness 20 μm) manufactured by Celgard was used.

上記正極と、上記実施例および比較例1〜3の負極とをそれぞれ活物質同士が対抗するように組み合わせて、その正極と負極との間にセパレーターを配置して積層後、アルミラミネート製の袋に挿入し、上記電解液を1cm注入し、袋の電解液注入口をヒートシールにより封印して、2mm厚のガラス板で袋を挟み込み、クリップで固定してモデルセルを作製した。 The positive electrode and the negative electrodes of Examples and Comparative Examples 1 to 3 are combined so that the active materials oppose each other, a separator is disposed between the positive electrode and the negative electrode, and laminated, and then an aluminum laminate bag The electrolyte solution was injected at 1 cm 3 , the electrolyte solution inlet of the bag was sealed by heat sealing, the bag was sandwiched between 2 mm-thick glass plates, and fixed with clips to prepare a model cell.

(評価)
得られたモデルセルのサイクル特性は次のようにして求めた。充電を0.1mAの電流で4.2Vまで行い、その後の放電は0.1mA電流で3.0Vまで行う。この充放電サイクルを200回行い、1サイクル目の放電容量を200回目の放電容量で割った値を100倍してサイクル特性を求めた。作製したモデルセルの1サイクル目の放電容量はおおむね0.5mAhであった。更に前記の充放電の200サイクル後にアルミラミネートの袋を開封して負極を取り出し、負極集電体の皺の有無を調べた。結果を表1に示す。
(Evaluation)
The cycle characteristics of the obtained model cell were obtained as follows. Charging is performed at a current of 0.1 mA up to 4.2 V, and subsequent discharging is performed at a current of 0.1 mA up to 3.0 V. This charge / discharge cycle was performed 200 times, and the cycle characteristic was determined by multiplying the value obtained by dividing the discharge capacity of the first cycle by the discharge capacity of the 200th cycle by 100. The discharge capacity at the first cycle of the produced model cell was approximately 0.5 mAh. Furthermore, after 200 cycles of the charge and discharge, the aluminum laminate bag was opened, the negative electrode was taken out, and the presence or absence of wrinkles on the negative electrode current collector was examined. The results are shown in Table 1.

Figure 2007052960
Figure 2007052960

表1から明らかなように、実施例1は比較例1〜3に比べてサイクル特性が高く、負極集電体の皺もなかった。これは、実施例1では、活物質の体積膨張による応力を集電体の空間が緩和したためであると考えられる。比較例2については、空間を有するものの集電体上に活物質を直接形成したため、また比較例3については、空間が無かったため、応力緩和が不十分であったと考えられる。また、空間のない比較例1については集電体に皺が多数発生し、集電体の切断が観察された。   As is clear from Table 1, Example 1 had higher cycle characteristics than Comparative Examples 1 to 3, and no negative electrode current collector was found. This is considered to be because the space of the current collector relaxed the stress due to the volume expansion of the active material in Example 1. In Comparative Example 2, the active material was formed directly on the current collector although it had space, and in Comparative Example 3, there was no space, so stress relaxation was considered insufficient. Further, in Comparative Example 1 having no space, many wrinkles were generated on the current collector, and cutting of the current collector was observed.

(実施例2)
次に、上記実施例1の負極と同様の構造で、凸部の高さを変化させ、実施例1と同様の評価を行った結果を示す。凸部の高さは、実施例1における研磨量を調整することで行った。表面形状の確認は、中間層をジメチルカーボネートで溶解させた後、キーエンス社製レーザー顕微鏡VK−8550を用いて測定を行った。その他は実施例1と同様とした。結果を表2に示す。
(Example 2)
Next, the result of having performed the same evaluation as in Example 1 with the same structure as that of the negative electrode in Example 1 and changing the height of the convex portion is shown. The height of the convex portion was adjusted by adjusting the polishing amount in Example 1. For confirmation of the surface shape, the intermediate layer was dissolved with dimethyl carbonate, and then measured using a laser microscope VK-8550 manufactured by Keyence Corporation. Others were the same as in Example 1. The results are shown in Table 2.

Figure 2007052960
Figure 2007052960

これにより、凸部の高さは1μm以上あれば、サイクル特性の向上に特に効果があることが判った。これは、凸部に成膜された活物質の膨張によって基板にかかる応力が、凸部を高くすることで、減少するからと考えられる。   Accordingly, it was found that if the height of the convex portion is 1 μm or more, the cycle characteristics are particularly effective. This is presumably because the stress applied to the substrate due to the expansion of the active material deposited on the convex portion is reduced by increasing the convex portion.

(実施例3)
次に、上記実施例1の負極と同様の構造で、隣り合う負極活物質の間の平均距離(X)を変化させ、実施例1と同様の評価を行い、負極活物質の厚さ(t)とXとの関係について求めた。隣り合う負極活物質の距離は、表面粗さの異なる集電体を使用し研磨量を変更することで行った。表面形状の確認は、中間層をジメチルカーボネートで溶解させた後、キーエンス社製レーザー顕微鏡VK−8550を用いて測定を行った。その他は実施例1と同様とした。結果を表3に示す。
(Example 3)
Next, with the same structure as the negative electrode of Example 1, the average distance (X) between adjacent negative electrode active materials was changed, the same evaluation as in Example 1 was performed, and the thickness of the negative electrode active material (t ) And X. The distance between adjacent negative electrode active materials was determined by using a current collector having a different surface roughness and changing the polishing amount. For confirmation of the surface shape, the intermediate layer was dissolved with dimethyl carbonate, and then measured using a laser microscope VK-8550 manufactured by Keyence Corporation. Others were the same as in Example 1. The results are shown in Table 3.

Figure 2007052960
Figure 2007052960

表3から明らかなようにX/tは2以上で特性の向上が見られた。   As is apparent from Table 3, characteristics were improved when X / t was 2 or more.

なお、本実施例1および2においては、電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒を用いたが、これに限定されるものではなく、プロピレンカーボネートあるいはγ−ブチルラクトンと、ジメチルカーボネート、メチルエチルカーボネートの混合溶媒を用いても同様の効果が得られる。   In Examples 1 and 2, a mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution. However, the present invention is not limited to this, and propylene carbonate or γ-butyl lactone, dimethyl carbonate, and methyl ethyl are used. The same effect can be obtained even if a mixed solvent of carbonate is used.

また、本実施例1および2においては、中間層としてECおよびポリカーボネートオリゴマーを用いたが、これに限定されるものではなく、重合度が10から100のエチレンアクリル酸共重合体オリゴマー、エチレンメタクリル酸共重合体オリゴマー、エチレンメタクリル酸メチル共重合体オリゴマー、ポリエステルオリゴマー、ポリカプロラクトンオリゴマー、ポリビニルアルコールオリゴマーを用いても同様の効果が得られる。   Further, in Examples 1 and 2, EC and polycarbonate oligomer were used as the intermediate layer, but the present invention is not limited thereto, and ethylene acrylic acid copolymer oligomer having a polymerization degree of 10 to 100, ethylene methacrylic acid The same effect can be obtained by using a copolymer oligomer, an ethylene methyl methacrylate copolymer oligomer, a polyester oligomer, a polycaprolactone oligomer, or a polyvinyl alcohol oligomer.

本発明の製造方法による負極は、集電体に複数の凸部を設け、凸部の上面にのみ負極活物質を形成し、また、複数の凸部以外の集電体には、活物質が形成されない空間を確実に設けることができるため、活物質の体積変化による応力の集中を緩和することができ、集電体の皺や切断の発生を防止してサイクル特性の低下を抑制することが可能である。このため、本発明の製造方法による電極を用いることでサイクル特性などの信頼性に優れた高容量のリチウム二次電池の作製が可能となる。   In the negative electrode produced by the manufacturing method of the present invention, the current collector is provided with a plurality of convex portions, the negative electrode active material is formed only on the upper surface of the convex portions, and the active material is present on the current collector other than the plurality of convex portions. Since the space that is not formed can be provided with certainty, the concentration of stress due to the volume change of the active material can be alleviated, and the occurrence of wrinkling and cutting of the current collector can be prevented and the deterioration of cycle characteristics can be suppressed. Is possible. For this reason, by using the electrode according to the manufacturing method of the present invention, it is possible to produce a high-capacity lithium secondary battery excellent in reliability such as cycle characteristics.

本発明の実施の形態1における負極の概略断面図Schematic cross-sectional view of the negative electrode in Embodiment 1 of the present invention 本発明の実施の形態1における負極の作製方法の一例を示す概略断面図Schematic cross-sectional view showing an example of a method for manufacturing a negative electrode in Embodiment 1 of the present invention 本発明の比較例1における負極の概略断面図Schematic sectional view of a negative electrode in Comparative Example 1 of the present invention 本発明の比較例2における負極の概略断面図Schematic sectional view of the negative electrode in Comparative Example 2 of the present invention 本発明の比較例3における負極の概略断面図Schematic sectional view of the negative electrode in Comparative Example 3 of the present invention

符号の説明Explanation of symbols

10,30,40,50 負極
11,31,41,51 集電体
12,52 集電体凸部
13,33,43,53 負極活物質
14 中間層
10, 30, 40, 50 Negative electrode 11, 31, 41, 51 Current collector 12, 52 Current collector convex portion 13, 33, 43, 53 Negative electrode active material 14 Intermediate layer

Claims (7)

導電性を有し、表面に複数の凸部を有するシート状の集電体の表面に、前記集電体を覆うように電解液と相溶する中間層を設ける工程と、
前記中間層の表面の一部を除去することにより、前記集電体の前記複数の凸部の少なくとも一部を露出させる工程と、
前記露出した凸部に活物質層を設ける工程と、
を有することを特徴とする電極の製造方法。
A step of providing an intermediate layer compatible with the electrolytic solution so as to cover the current collector on the surface of the sheet-shaped current collector having conductivity and having a plurality of convex portions on the surface;
Exposing at least some of the plurality of convex portions of the current collector by removing a portion of the surface of the intermediate layer;
Providing an active material layer on the exposed protrusions;
A method for producing an electrode, comprising:
前記集電体は、表面粗さRaが0.1μm以上3μm以下であること、
を特徴とする請求項1に記載の電極の製造方法。
The current collector has a surface roughness Ra of 0.1 μm or more and 3 μm or less,
The method for producing an electrode according to claim 1.
前記集電体の前記複数の凸部の少なくとも一部を露出させる方法として、化学的機械的研磨を用いること、
を特徴とする請求項1に記載の電極の製造方法。
Using chemical mechanical polishing as a method of exposing at least some of the plurality of convex portions of the current collector;
The method for producing an electrode according to claim 1.
前記集電体は、銅箔または銅合金箔である、
請求項1に記載の電極の製造方法。
The current collector is a copper foil or a copper alloy foil.
The manufacturing method of the electrode of Claim 1.
前記中間層は、有機モノマー、有機オリゴマーおよびそれらの重合体からなる群より選ばれた少なくとも一種を含む、
請求項1から4のいずれかに記載の電極の製造方法。
The intermediate layer includes at least one selected from the group consisting of organic monomers, organic oligomers, and polymers thereof,
The manufacturing method of the electrode in any one of Claim 1 to 4.
前記中間層は、カーボネートモノマー、カーボネートオリゴマーおよびそれらの重合体からなる群より選ばれた少なくとも一種を含む、
請求項1から4のいずれかに記載の電極の製造方法。
The intermediate layer includes at least one selected from the group consisting of carbonate monomers, carbonate oligomers, and polymers thereof.
The manufacturing method of the electrode in any one of Claim 1 to 4.
前記活物質層は、Si、Si酸化物およびSi合金からなる群より選ばれた少なくとも一種を含む、
請求項1から6のいずれかに記載の電極の製造方法。
The active material layer includes at least one selected from the group consisting of Si, Si oxide and Si alloy,
The manufacturing method of the electrode in any one of Claim 1 to 6.
JP2005236269A 2005-08-17 2005-08-17 Electrode manufacturing method Active JP4887684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236269A JP4887684B2 (en) 2005-08-17 2005-08-17 Electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236269A JP4887684B2 (en) 2005-08-17 2005-08-17 Electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2007052960A true JP2007052960A (en) 2007-03-01
JP4887684B2 JP4887684B2 (en) 2012-02-29

Family

ID=37917266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236269A Active JP4887684B2 (en) 2005-08-17 2005-08-17 Electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP4887684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026595A1 (en) * 2006-08-29 2008-03-06 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
KR100985241B1 (en) 2007-07-09 2010-10-04 파나소닉 주식회사 Current collector, electrode, and non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811768B (en) * 2014-02-22 2015-09-23 深圳市旭冉电子有限公司 Pit affluxion body in lithium ion batteries and preparation method thereof and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190298A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Method for manufacturing electrode for secondary cell
JP2002279972A (en) * 2001-03-21 2002-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and the lithium secondary battery
JP2007012421A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion battery and lithium ion battery using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190298A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Method for manufacturing electrode for secondary cell
JP2002279972A (en) * 2001-03-21 2002-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and the lithium secondary battery
JP2007012421A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion battery and lithium ion battery using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026595A1 (en) * 2006-08-29 2008-03-06 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
US7838153B2 (en) 2006-08-29 2010-11-23 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
KR100985241B1 (en) 2007-07-09 2010-10-04 파나소닉 주식회사 Current collector, electrode, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4887684B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
KR101156225B1 (en) Lithium deposited anode for Lithium Second Battery and Method for Preparation thereof
CN108847474B (en) Micro-textured negative plate for pre-supplementing lithium and preparation method thereof
JP5169156B2 (en) Electrodes for electrochemical devices
JP2007012421A (en) Negative electrode for lithium ion battery and lithium ion battery using it
US10622641B2 (en) Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same
JP2001283834A (en) Secondary battery
JP5433144B2 (en) Negative electrode base material for lithium secondary battery
JP4831946B2 (en) Non-aqueous electrolyte battery
US9196897B2 (en) Secondary battery porous electrode
KR20170091994A (en) Electrode for a lithium polymer secondary battery
JP3754374B2 (en) Method for producing electrode for lithium secondary battery
JP4887684B2 (en) Electrode manufacturing method
JP4589419B2 (en) Method for producing negative electrode body for lithium ion secondary battery
JP5061433B2 (en) Current collector and lithium ion secondary battery using the same
JP4326162B2 (en) Method for manufacturing lithium secondary battery
CN114678514B (en) Patterned lithium metal, electrode for secondary battery comprising same, and secondary battery
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JPS63289759A (en) Nonaqueous secondary battery
JP5045085B2 (en) Negative electrode for lithium secondary battery
JP2008103231A (en) Electrode for lithium secondary battery
JPWO2014156068A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN110537273B (en) Method of patterning surface of lithium metal and electrode for lithium secondary battery obtained using the same
US10374206B2 (en) Lithium battery electrode and method of manufacturing the same
KR20090049022A (en) Cathode substrate
JP2010080395A (en) Electrode plate for lithium-ion secondary battery and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3