WO2011114709A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2011114709A1
WO2011114709A1 PCT/JP2011/001502 JP2011001502W WO2011114709A1 WO 2011114709 A1 WO2011114709 A1 WO 2011114709A1 JP 2011001502 W JP2011001502 W JP 2011001502W WO 2011114709 A1 WO2011114709 A1 WO 2011114709A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
positive electrode
lithium secondary
secondary battery
Prior art date
Application number
PCT/JP2011/001502
Other languages
French (fr)
Japanese (ja)
Inventor
秀治 武澤
朝樹 塩崎
泰右 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011114709A1 publication Critical patent/WO2011114709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, particularly a lithium secondary battery containing an alloy-based active material.
  • Lithium secondary batteries have high capacity and high energy density, and can be easily reduced in size and weight.
  • mobile phones personal digital assistants (PDAs), notebook personal computers, video cameras, portable game machines, etc. It is widely used as a power source for portable electronic devices.
  • PDAs personal digital assistants
  • portable small electronic devices further multi-functionalization has been promoted, and continuous use time has been required to be extended.
  • lithium secondary batteries are expected not only as a power source for small electronic devices but also as a power source for large devices such as hybrid cars, electric vehicles, and electric tools. In order to meet these demands, it is necessary to further increase the capacity of lithium secondary batteries used as power sources.
  • a lithium secondary battery includes a substrate (current collector), a negative electrode including a negative electrode active material layer (negative electrode active material layer) formed on the substrate, a substrate (current collector), The positive electrode comprised from the layer (positive electrode active material layer) containing the positive electrode active material formed on the board
  • Patent Document 1 discloses the use of silicon, tin, oxides thereof, nitrides thereof, compounds containing them, alloys, and the like as a high-capacity negative electrode active material.
  • a separator including a porous heat-resistant layer.
  • the negative electrode active material when an alloy containing silicon or tin is used as the negative electrode active material, there are the following problems.
  • the alloy-based active material has a large volume expansion / contraction due to insertion / extraction of lithium ions. For this reason, if charging / discharging is repeated, there is a possibility that current collection failure may occur between the substrate and the negative electrode active material layer, or the negative electrode may be flawed or broken. These are factors that deteriorate the charge / discharge cycle characteristics of the lithium secondary battery.
  • Patent Document 2 proposes that a negative electrode active material film is formed by directly depositing a negative electrode active material on a substrate having an uneven surface by a vapor phase method such as sputtering.
  • the negative electrode active material film is separated into a plurality of columnar active material bodies by charging and discharging while maintaining the current collecting property with the substrate.
  • Patent Document 3 proposes using a substrate having a plurality of convex portions and forming a negative electrode active material only on the convex portions.
  • Patent Document 3 a plurality of resist patterns are formed on a substrate, and copper and a negative electrode active material are deposited thereon. Next, the resist pattern and the copper and negative electrode active material thereon are removed by lift-off. Thereby, while forming the convex part which consists of copper on a board
  • the present invention has been made in view of the above circumstances, and an object thereof is to suppress deterioration of the negative electrode and the positive electrode due to repeated charge and discharge in a lithium secondary battery using an alloy containing silicon or tin as a negative electrode active material. Thus, the charge / discharge cycle characteristics are improved.
  • the lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and a gap between the positive electrode and the negative electrode.
  • a lithium secondary battery comprising a separator disposed and an electrolyte having lithium ion conductivity, wherein the negative electrode has a negative electrode current collector having a plurality of protrusions on the surface, and the negative electrode current collector.
  • a negative electrode active material layer including a plurality of active material bodies formed, and each of the plurality of active material bodies is disposed on each convex portion of the negative electrode current collector, and silicon or An alloy-based active material containing tin is included, and a porous insulating layer mainly composed of an inorganic oxide is further provided between the positive electrode and the negative electrode.
  • the lithium secondary battery of the present invention uses an alloy-based active material containing silicon or tin as a negative electrode active material, the energy density is high.
  • the plurality of active material bodies including the negative electrode active material are disposed on the respective convex portions on the surface of the current collector, the stress accompanying expansion and contraction of the negative electrode active material can be relaxed.
  • a porous insulating layer mainly composed of an inorganic oxide is provided between the positive electrode and the negative electrode, the stress generated in the positive electrode active material layer due to the volume change of the negative electrode can be reduced, and the positive electrode active material can be prevented from falling off. Can do. Therefore, it is possible to suppress a decrease in the positive electrode capacity due to the falling off of the positive electrode active material.
  • the present invention not only the deterioration of the negative electrode but also the deterioration of the positive electrode caused by the volume change of the negative electrode active material can be suppressed, so that the charge / discharge cycle characteristics can be improved.
  • FIG. 1 It is sectional drawing which shows typically the electrode group in the lithium secondary battery 100 of embodiment by this invention.
  • (A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the conventional lithium secondary battery using the negative electrode which has a columnar structure, (a) is before charging. (During discharging), (b) shows the state during charging.
  • (A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the lithium secondary battery using the negative electrode of 1st Embodiment by this invention, (a) is charge. Before performing (when discharging), (b) shows the state during charging.
  • (A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the conventional lithium secondary battery using the negative electrode which does not have a columnar structure, (a) performs charge. The previous (during discharging) and (b) show the state during charging, respectively.
  • (A)-(c) is typical sectional drawing for demonstrating the mechanism in which electrolyte solution reduces by charging / discharging in the conventional lithium secondary battery provided with the negative electrode which has a columnar structure, respectively.
  • (A)-(c) is typical sectional drawing for demonstrating the effect acquired by arrange
  • FIG. 3 is an enlarged cross-sectional view schematically showing an active material body included in a negative electrode active material layer in a lithium secondary battery 200.
  • FIG. 3 is a perspective view schematically showing an example of a negative electrode current collector in a lithium secondary battery 200.
  • FIG. 4 is an enlarged cross-sectional view schematically showing an active material body included in another negative electrode active material layer in the lithium secondary battery 200.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of an electron beam evaporation apparatus 50.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of an electrode group (a porous insulating layer is formed on the surface of a positive electrode) in the lithium secondary batteries of Examples 1 to 4, 6, and 7.
  • 6 is a schematic cross-sectional view showing a configuration of an electrode group (a porous insulating layer is formed on a separator surface) in a lithium secondary battery of Example 5.
  • FIG. FIG. 4 is a schematic cross-sectional view showing a configuration of an electrode group (having no porous insulating layer) in lithium secondary batteries of Comparative Examples 1 to 3.
  • (A) And (b) is a figure for demonstrating the charging / discharging cycling characteristics of the conventional lithium secondary battery.
  • the present inventor repeated diligent studies to further improve the charge / discharge cycle characteristics in a conventional lithium secondary battery including a negative electrode having a columnar structure. As a result, it was found that not only the negative electrode but also the positive electrode deteriorated by repeated charge and discharge. In particular, it has also been found that the positive electrode may be greatly deteriorated as compared with the case where a negative electrode having no columnar structure is used.
  • FIG. 16A and 16 (b) are diagrams illustrating results of measuring charge / discharge cycle characteristics of a conventional lithium secondary battery.
  • a graph 71 shows charge / discharge cycle characteristics of a lithium secondary battery (referred to as “battery II”) using carbon (C) as a negative electrode active material
  • a graph 72 shows a negative electrode active material.
  • the charge / discharge cycle characteristics of a lithium secondary battery (referred to as “battery I”) using silicon oxide (SiOx) are shown.
  • As the positive electrode active material a nickel acid positive electrode material is used.
  • graph 73 and graph 75 show the charge / discharge cycle characteristics of the negative electrode and the positive electrode (changes in negative electrode capacity and positive electrode capacity accompanying the charge / discharge cycle), respectively, in the battery II.
  • graph 74 and graph 76 show the charge / discharge cycle characteristics of the negative electrode and the positive electrode in Battery I, respectively.
  • the battery I using silicon oxide having a large volume change associated with insertion and extraction of lithium as the negative electrode active material is more effective than the battery II using carbon.
  • the charge / discharge cycle characteristics of the graph are degraded (graphs 71 and 72).
  • the positive electrode is deteriorated in addition to the negative electrode as the charge / discharge cycle is repeated (graphs 74 and 76).
  • the deterioration of the negative electrode of the battery I is larger than the deterioration of the negative electrode of the battery II. This is considered because the negative electrode of the battery I is more easily deteriorated due to the volume change of the silicon oxide.
  • the deterioration of the positive electrode of the battery I is larger than the deterioration of the positive electrode of the battery II.
  • the cause of the deterioration of the positive electrode of the battery I is considered as follows.
  • the negative electrode active material greatly expands and contracts with charge and discharge.
  • the volume change of each active material body is further increased. This volume change of the active object gives local stress to the positive electrode active material layer, and as a result, the positive electrode active material layer is likely to fall off partially.
  • the positive electrode active material is generally composed of a material having a lower strength than the negative electrode active material, and is easily dropped or deformed. When the positive electrode active material layer falls off, the positive electrode capacity decreases, which causes a decrease in battery capacity.
  • the negative electrode does not have a columnar structure
  • the deterioration of the negative electrode capacity (decrease in the negative electrode capacity) is large, so the decrease in charge / discharge cycle characteristics of the battery is mainly due to the decrease in the negative electrode capacity. Is hardly a problem.
  • the negative electrode has a columnar structure
  • the deterioration of the negative electrode is suppressed to some extent, and the positive electrode capacity is greatly reduced as the volume change of the negative electrode increases. For this reason, the deterioration of the positive electrode becomes obvious, and the possibility of becoming one of the main factors that deteriorate the charge / discharge cycle characteristics of the battery increases. Therefore, in order to improve the charge / discharge cycle characteristics of the battery, it is more important to suppress the decrease in the positive electrode capacity.
  • the present inventor has repeatedly studied a battery structure that suppresses deterioration of the positive electrode. As a result, it has been found that by providing a porous insulating layer mainly composed of an inorganic oxide between the positive electrode and the negative electrode, the stress applied to the positive electrode active material layer due to the volume change of the negative electrode can be reduced. It came.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery 100 of the present embodiment.
  • the lithium secondary battery 100 of this embodiment includes a negative electrode 20, a positive electrode 30, a separator 13 disposed between the negative electrode 20 and the positive electrode 30, a porous insulating layer 15, and an electrolytic solution having lithium ion conductivity.
  • the negative electrode 20 includes a negative electrode current collector 21 having a plurality of protrusions 22 on the surface, and a negative electrode active material layer 23 formed on the surface of the negative electrode current collector 21.
  • the positive electrode 30 includes a positive electrode current collector 31 and a positive electrode active material layer 33 formed on the surface of the positive electrode current collector 31. The positive electrode 30 and the negative electrode 20 are disposed so that the negative electrode active material layer 23 and the positive electrode active material layer 33 are opposed to each other with the separator 13 interposed therebetween.
  • the porous insulating layer 15 is provided between the positive electrode active material layer 33 and the negative electrode active material layer 23.
  • the porous insulating layer 15 contains an inorganic oxide as a main component, and has lithium ion permeability and insulating properties during normal use of a lithium secondary battery.
  • the negative electrode active material layer 23 has a plurality of columnar active material bodies 24 arranged on the convex portions 22 of the negative electrode current collector 21.
  • the active material body 24 includes an alloy-based active material containing silicon or tin as a negative electrode active material. It is preferable that the active material bodies 24 are arranged at intervals (spaces 26) from each other during discharge. In addition, when each active material body 24 expand
  • porous insulating layer 15 in this embodiment is sufficiently hard because it is mainly composed of an inorganic oxide, and reduces the stress applied to the positive electrode active material layer 33 by the volume change of the negative electrode active material. Functions as a buffer layer. Therefore, according to this embodiment, it is possible to suppress the deterioration of the positive electrode due to the volume change of the negative electrode.
  • FIG. 2 is a schematic cross-sectional view for explaining the stress applied to the positive electrode in a conventional lithium secondary battery using a negative electrode having a columnar structure.
  • FIG. 3 is a schematic cross-sectional view for explaining the stress applied to the positive electrode in the lithium secondary battery of this embodiment.
  • (A) in each figure shows a state before charging (during discharging), and (b) in each figure shows a state during charging.
  • each active material body 24 absorbs lithium and expands, and adjacent active material bodies. 24 come into contact with each other.
  • Each active material body 24 also expands in the thickness direction and applies mechanical stress to the separator 13.
  • Such expansion stress of the active material body 24 is transmitted to the positive electrode active material layer 33 through the separator 13.
  • the portion 33p located above the active material body 24 in the positive electrode active material layer 33 is pressed, and stress (mechanical stress) s1 is generated.
  • the positive electrode active material is likely to fall off.
  • the porous insulating layer 15 is disposed between the positive electrode 30 and the separator 13.
  • the expansion stress is transmitted to the porous insulating layer 15 via the separator 13.
  • the porous insulating layer 15 is mainly composed of an inorganic oxide and is sufficiently hard, the expansion stress from the negative electrode 20 side is dispersed by the porous insulating layer 15.
  • the stress s2 transmitted to the positive electrode active material layer 33 is smaller than the stress s1 transmitted to the positive electrode active material layer 33 in the conventional lithium secondary battery. Accordingly, it is possible to suppress the loss of the positive electrode active material due to the volume change of the negative electrode 20 as compared with the conventional case, and it is possible to suppress the decrease in the positive electrode capacity due to the drop of the positive electrode active material.
  • the stress applied to the positive electrode active material layer 33 due to the volume change of the negative electrode active material can be reduced. Therefore, since the deterioration of the positive electrode 30 due to repeated charge / discharge can be suppressed as compared with the conventional case, the charge / discharge cycle characteristics can be improved.
  • FIGS. 4A and 4B are schematic cross-sectional views for explaining the stress applied to the positive electrode in a conventional lithium secondary battery using a negative electrode having no columnar structure. Show.
  • the negative electrode active formed on the negative electrode 121 is started when charging is started.
  • the material layer 123 absorbs lithium and expands in the thickness direction.
  • the negative electrode active material layer 123 expands greatly, and the mechanical stress is applied to the positive electrode active material layer 33.
  • This mechanical stress (stress) is substantially uniformly applied to the entire surface of the positive electrode active material layer 33, unlike the stresses s1 and s2 shown in FIGS. Since the positive electrode active material layer 33 is not partially pressed (unevenly pressed), it is considered that the positive electrode active material does not easily fall off.
  • the negative electrode 20 itself is largely deteriorated due to the expansion of the negative electrode active material, so that the problem of deterioration of the positive electrode 30 does not become obvious.
  • the negative electrode active material layer 123 has a small expansion coefficient, so that the problem of deterioration of the negative electrode 20 and the positive electrode 30 due to the expansion stress of the negative electrode active material does not occur. From this, the deterioration of the positive electrode 30 due to the volume change of the negative electrode active material is a problem peculiar to the lithium secondary battery including the negative electrode 20 including the negative electrode active material containing silicon or tin and having the columnar structure. I understand.
  • the porous insulating layer 15 is preferably harder than the separator 13. Thereby, the function as a buffer layer can be exhibited more effectively.
  • the porous insulating layer 15 is disposed between the positive electrode active material layer 33 and the separator 13, but the position of the porous insulating layer 15 is not limited to the illustrated position. If the porous insulating layer 15 is disposed between the positive electrode active material layer 33 and the negative electrode active material layer 23, the above effect can be obtained. In addition, the porous insulating layer 15 may be formed on at least a part of a portion located between the positive electrode active material layer 33 and the negative electrode active material layer 23 in a plane parallel to the negative electrode current collector 21. . However, it is preferable to be formed over the entire portion because dropping of the positive electrode active material from the positive electrode active material layer 33 can be more effectively suppressed.
  • the thickness of the porous insulating layer 15 is preferably 1 ⁇ m or more. If thickness is 1 micrometer or more, since the stress from a negative electrode side can be relieve
  • the negative electrode active material layer 23 should just be comprised from the active material body 24 formed on each convex part 22 of the electrical power collector 21.
  • FIG. it is preferable that a space is formed between the adjacent active material bodies 24 during discharge.
  • swells by occlusion of lithium can be ensured, the peeling of the negative electrode active material and the deformation
  • the expansion in the thickness direction can be reduced by the amount that each active material body 24 expands in the lateral direction during charging, the stress applied to the positive electrode active material layer 33 can be reduced.
  • the volume change of the active material body 24 means (volume of active material body during charging ⁇ volume of active material body during discharge) / volume (%) of active material body during discharge.
  • the volume change of the active material body 24 is preferably 200% or more, for example.
  • the porous insulating layer 15 is inferior to the separator (resin separator) 13, it has a high insulating property and an excellent ion permeability, and thus has a function as a separator. Therefore, even if the porous insulating layer 15 is disposed between the positive electrode 30 and the negative electrode 20, the movement of the electrolytic solution is not hindered, so that the effects as described above can be obtained while maintaining the battery performance. .
  • the inorganic oxide has high chemical stability. It is possible to prevent the surface of the positive electrode side from being oxidized. Accordingly, it is possible to suppress an increase in resistance due to the surface alteration of the separator 13.
  • Electrolytic solution retention effect of porous insulating layer 15 The surface of the porous insulating layer 15 has higher wettability with respect to the electrolytic solution than the surface of the positive electrode 30 (here, the surface of the positive electrode active material layer 33). Preferably it is. Thereby, it has the function to hold
  • porous insulating layer 15 can suppress the decrease in the electrolyte along with the problems in the conventional lithium secondary battery along with the problems in the conventional lithium secondary battery will be described in detail with reference to the drawings.
  • the present inventor has found that the conventional lithium secondary battery has a problem that the electrolyte solution on the positive electrode side gradually decreases due to repeated charge and discharge, resulting in a decrease in capacity and a decrease in charge / discharge cycle characteristics. It was. This is presumably because a phenomenon occurs in which the electrolyte solution on the positive electrode side gradually decreases when charging and discharging are repeated. This phenomenon is particularly noticeable in a lithium secondary battery using a negative electrode having a columnar structure, and is considered to be one of the factors that make it difficult to further improve the charge / discharge cycle characteristics.
  • FIG. 5A is a cross-sectional view showing a state of the lithium secondary battery before charging.
  • the lithium secondary battery includes a negative electrode 20, a separator 13, and a positive electrode 30 disposed to face the negative electrode 20 with the separator 13 interposed therebetween.
  • the negative electrode 20 includes a current collector 21 and a negative electrode active material layer 23 formed on the surface of the current collector 21.
  • the negative electrode active material layer 23 is composed of a plurality of columnar active material bodies (active material bodies) 24.
  • an electrolyte solution exists between the positive electrode 30 and the negative electrode 20.
  • the plurality of active material bodies 24 are arranged at intervals. For this reason, the electrolytic solution enters the space 26 between the active material bodies 24.
  • each active material member 24 expands by absorbing lithium, and adjacent active material members 24 come into contact with each other. As a result, there is almost no space between the active material bodies 24, and the negative electrode active material layer 23 becomes a continuous film. Since each active material body 24 expands not only in the width direction of the active material body 24 but also in the height direction, the thickness of the negative electrode active material layer 23 also increases. For this reason, a part of the electrolytic solution that has entered the space 26 of the active material body 24 is discharged out of the system (arrow 45).
  • inside system a region sandwiched between the positive electrode active material layer 33 and the negative electrode active material layer 23 is referred to as “inside system”, and a region other than the above region in the lithium secondary battery is referred to as “outside system”.
  • each active material body 24 contracts, and a space 26 is formed between the adjacent active material bodies 24.
  • the amount of the electrolyte solution on the negative electrode side is smaller than that during the previous discharge (FIG. 5A). This is because the electrolyte discharged outside the system at the time of charging is difficult to return to the system even after discharging. Moreover, since the electrolyte solution on the negative electrode side is consumed by the side reaction of the negative electrode 20, it further decreases.
  • the above-mentioned “side reaction” includes a reaction in which the electrolytic solution undergoes reductive decomposition on a new surface exposed by cracking.
  • the negative electrode active material itself and the electrolytic solution directly react with each other to include a reaction in which the negative electrode active material is altered (oxidation or the like).
  • the amount of the electrolytic solution in the system gradually decreases.
  • the reaction occurs non-uniformly in the positive electrode 30 and the deterioration proceeds.
  • the porous insulating layer 15 having high wettability is disposed between the positive electrode 30 and the negative electrode 20, the electrolytic solution is difficult to move from the positive electrode 30 to the negative electrode 20, and as a result, the positive electrode The decrease of the electrolyte solution on the side can be suppressed.
  • FIG. 6A to 6C are schematic cross-sectional views showing a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 6A shows a state before charging (during discharging)
  • FIG. 6 (c) shows a state where the battery is discharged again after being charged as shown in FIG. 6 (b).
  • convex portions on the surface of the negative electrode current collector 21 are omitted.
  • each active material member 24 absorbs lithium and expands.
  • adjacent active material bodies 24 are in contact with each other.
  • the thickness of the negative electrode active material layer 23 also increases.
  • the thickness of the negative electrode active material layer 23 before charging is t
  • the thickness of the negative electrode active material layer 23 is t + ⁇ t by charging.
  • a part of the electrolytic solution that has entered the space 26 of the active material body 24 flows out of the system as indicated by an arrow 41. For this reason, the electrolyte solution on the negative electrode side decreases by the amount that flows out of the system.
  • the next discharge is started in a state where the electrolyte solution on the negative electrode side is insufficient, and a space 26 is formed again between the active material bodies 24.
  • the porous insulating layer 15 having a surface with higher wettability than the surface of the positive electrode 30 is disposed between the positive electrode 30 and the negative electrode 20. For this reason, even if the space 26 is formed in a state where the electrolyte solution on the negative electrode side is reduced, the electrolyte solution on the positive electrode side is held by the porous insulating layer 15 and hardly moves to the negative electrode side.
  • the porous insulating layer 15 by providing the porous insulating layer 15, it is possible to suppress the movement of the electrolyte solution from the positive electrode side to the negative electrode side, thereby suppressing the decrease in the electrolyte solution on the positive electrode side due to charge / discharge. Can do. Therefore, the deterioration of the positive electrode due to repeated charge / discharge can be suppressed more than before. In addition, since a part of the electrolytic solution that flows out of the system during charging is easily returned to the system, a decrease in the amount of the electrolytic solution in the system is also suppressed. Therefore, the charge / discharge cycle characteristics can be further improved as compared with the prior art.
  • the porous insulating layer 15 preferably has a higher porosity (porosity) than the separator 13. Assuming that the thickness T ′ of the separator 13 in the conventional lithium secondary battery shown in FIG. 5 is equal to the total thickness T of the separator 13 and the porous insulating layer 15 in the present embodiment, the porous insulating layer 15 is empty. By making the porosity higher than the porosity of the separator 13, it is possible to reduce the amount of the electrolyte flowing out of the system during charging. Therefore, it is possible to more effectively suppress the decrease in the electrolyte solution in the system.
  • the ratio of the thickness of the porous insulating layer 15 to the thickness of the separator 13 is preferably 5% or more, for example. Thereby, since the movement of the electrolyte solution from the positive electrode side to the negative electrode side can be more reliably suppressed, the charge / discharge cycle life can be improved more effectively. Moreover, it is preferable that the said ratio is 40% or less, for example. Thereby, the capacity
  • the porous insulating layer 15 Since the porous insulating layer 15 mainly composed of inorganic oxide has a melting point higher than that of the separator 13, it is stable even at a high temperature. For this reason, since it is harder to dissolve than the separator 13, it is possible to prevent physical contact between the positive electrode active material layer 33 and the negative electrode active material layer 23 even when heat is generated.
  • the porous insulating layer 15 may be a porous layer mainly composed of an inorganic oxide and having insulating properties. For example, it may be formed using an inorganic oxide and a binder.
  • the porous insulating layer 15 may have heat resistance.
  • a porous insulating layer 15 can be formed using, for example, an inorganic oxide and a heat resistant resin.
  • the specific surface area of the negative electrode active material is large, which may further increase the heat generation rate.
  • the porous insulating layer 15 has heat resistance, not only the movement of the electrolytic solution can be suppressed, but also the progress of the internal short circuit can be suppressed when an internal short circuit occurs. Therefore, in addition to the charge / discharge cycle characteristics of the lithium secondary battery, safety can be improved more effectively.
  • FIG. 7 is a cross-sectional view schematically showing an example of the lithium secondary battery of the present embodiment.
  • the illustrated example is a coin-type lithium secondary battery.
  • the same components as those in FIG. 7 are identical to FIG. 7 and are identical to FIG. 7 .
  • the lithium secondary battery 200 includes an electrode group in which a positive electrode 30, a porous insulating layer 15, a separator 13, and a negative electrode 20 are stacked, a positive electrode lead 18 connected to the positive electrode 30, and a negative electrode lead 19 connected to the negative electrode 20.
  • the positive electrode 30 includes a positive electrode current collector 31 and a positive electrode active material layer 33.
  • the positive electrode current collector 31 those commonly used in this field can be used.
  • a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, or aluminum or a conductive resin can be used.
  • the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, a fiber group molded body (nonwoven fabric, etc.), and the like.
  • the non-porous conductive substrate include a foil, a sheet, and a film.
  • the thickness of the porous or non-porous conductive substrate is not particularly limited, but is, for example, 1 to 500 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • the positive electrode active material layer 33 contains a positive electrode active material. Moreover, the electrically conductive agent and the binder may be contained as needed.
  • the positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions, but lithium-containing composite metal oxides, olivine-type lithium phosphate, and the like can be preferably used.
  • the lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • Mn, Al, Co, Ni, Mg, etc. are preferable.
  • One kind or two or more kinds of different elements may be used.
  • m value which shows the molar ratio of lithium is a value immediately after positive electrode active material preparation, and increases / decreases by charging / discharging.
  • M, x, m and n are the same.
  • the general formula Li x Ni 1-m M m O n lithium-containing composite metal oxide represented by are preferred.
  • the lithium-containing composite metal oxide can be produced according to a known method. For example, it can be manufactured as follows. First, a composite metal hydroxide containing a metal other than lithium is prepared by a coprecipitation method using an alkali agent such as sodium hydroxide. Next, the composite metal hydroxide is subjected to a heat treatment to obtain a composite metal oxide. Subsequently, a lithium compound such as lithium hydroxide is added to the composite metal oxide and further heat-treated. Thereby, a lithium-containing composite metal oxide is obtained.
  • the olivine type lithium phosphate include LiXPO 4 (wherein X is at least one selected from the group consisting of Co, Ni, Mn and Fe).
  • the positive electrode active material one of the above-described active materials may be used alone, or two or more of them may be used in combination as necessary.
  • conductive agent those commonly used in the field of lithium secondary batteries can be used. Examples include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive fibers such as carbon fiber and metal fiber. It is done. One of these conductive agents may be used alone, or two or more may be used in combination as necessary.
  • binder those commonly used in the field of lithium secondary batteries can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyethylene polypropylene
  • acrylic rubber acrylic rubber
  • polyvinyl acetate polyvinyl pyrrolidone
  • polyether polyether sulfone
  • hexafluoropolypropylene styrene butadiene rubber
  • modified acrylic examples thereof include rubber and carboxymethyl cellulose.
  • these binders one kind may be used alone, or two or more kinds may be used in combination as necessary.
  • the positive electrode active material layer 33 is formed as follows, for example. First, a positive electrode mixture slurry containing a positive electrode active material and having a conductive agent, a binder or the like dissolved or dispersed in an organic solvent is prepared as necessary. Next, the positive electrode mixture slurry is applied to the surface of the positive electrode current collector 31 and dried.
  • the organic solvent for example, dimethylformamide, dimethylacetamide, methylformamide, N-methyl-2-pyrrolidone (NMP), dimethylamine, acetone, cyclohexanone and the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • dimethylamine acetone
  • cyclohexanone cyclohexanone
  • the thickness of the positive electrode active material layer 33 is appropriately selected according to various conditions such as the design performance and application of the lithium secondary battery 200.
  • the total thickness of the positive electrode active material layers 33 formed on both surfaces is preferably about 50 to 150 ⁇ m.
  • the porous insulating layer 15 contains an inorganic oxide as a main component, and has lithium ion permeability and insulating properties during normal use of the lithium secondary battery.
  • the porous insulating layer 15 may be composed of an inorganic oxide and a binder, or may be composed of an inorganic oxide and a heat resistant resin.
  • the inorganic oxide contained in the porous insulating layer 15 is not particularly limited as long as it can maintain insulation even when the battery generates heat and is chemically stable in the environment inside the battery. Moreover, if it has a high melting
  • the inorganic oxide include alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), magnesia (MgO), and yttria (Y 2 O 3 ). It can. Among these inorganic oxides, one kind may be used alone, or two or more kinds may be used in combination.
  • the median diameter of the inorganic oxide is preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • binder used for the porous insulating layer 15 PVDF, acrylic rubber particles, PTFE or the like can be used.
  • PTFE or acrylic rubber particles it is preferably used in combination with carboxymethyl cellulose, polyethylene oxide, modified acrylonitrile rubber or the like as a thickener for paste or slurry.
  • One of these binders and thickeners may be used alone, or two or more thereof may be used in combination.
  • the heat-resistant resin constituting the porous insulating layer 15 is not particularly limited, but aramid, polyamideimide, cellulose and the like can be used.
  • a heat resistant resin may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use combining a heat resistant resin and other resin.
  • the porosity of the porous insulating layer 15 is preferably 30% or more and 70% or less, more preferably 40% or more and 70% or less, in view of ion permeability, mechanical strength, and insulation. .
  • “Porosity” is the ratio of the volume of pores existing in the porous insulating layer 15 to the volume of the porous insulating layer 15. It is preferable that the porosity of the porous insulating layer 15 be equal to or higher than the porosity of the separator 13 described later. More preferably, it is higher than the porosity of the separator 13. Thereby, since more electrolyte solution can be hold
  • the porous insulating layer 15 containing an inorganic oxide and a binder has a relatively high mechanical strength, the durability is high.
  • the content ratio of the inorganic oxide in the porous insulating layer 15 is, for example, 80 to 95% by weight or more.
  • the porous insulating layer 15 may contain a heat resistant resin in a ratio exceeding 20% by weight, for example.
  • the porous insulating layer 15 containing a heat resistant resin and an inorganic oxide (for example, less than 80% by weight) can have a good balance between flexibility and durability.
  • the heat-resistant resin contributes to flexibility
  • the inorganic oxide having high mechanical strength contributes to durability.
  • the porous insulating layer 15 is formed on the surface of any one of the positive electrode active material layer 33 of the positive electrode 30, the negative electrode active material layer 23 of the negative electrode 20, and the resin porous film serving as the separator 13. It can be formed by casting the raw material of the layer. A plurality of porous insulating layers may be formed by casting the raw material of the porous insulating layer on any two or more of the above surfaces. For example, when a porous insulating layer is formed on the surfaces of the positive electrode active material layer 33 and the separator 13, two porous insulating layers 15a and 15b are provided between the positive electrode 30 and the negative electrode 20, as shown in FIG. it can.
  • the porous insulating layer 15 may be an independent sheet. In that case, it can be formed by casting the raw material on a porous sheet.
  • the independent sheet-like porous insulating layer 15 is disposed between the positive electrode 30 and the resin porous film (separator 13) or between the negative electrode 20 and the resin porous film (separator 13).
  • a plurality of porous insulating layers 15 may be disposed between the positive electrode 30 and the negative electrode 20.
  • the porous insulating layer 15 may be disposed between the positive electrode 30 and the negative electrode 20, but is preferably disposed between the separator 13 and the positive electrode 30. Thereby, the separator 13 exists between the porous insulating layer 15 and the negative electrode 20, and the porous insulating layer 15 is hardly affected by the expansion / contraction of the negative electrode active material. Can be prevented. Further, since the porous insulating layer 15 is disposed adjacent to the positive electrode active material layer 33, the stress applied to the positive electrode active material layer 33 can be more reliably reduced.
  • the porous insulating layer 15 is preferably disposed on the surface of the separator 13 on the positive electrode side or the negative electrode side, or on the surface of the positive electrode 30. In this case, it is preferable that the porous insulating layer 15 is integrally formed on the separator 13 or is integrally formed by coating the surface of the positive electrode active material layer 33. Thereby, a manufacturing process can be simplified rather than the case where the porous insulating layer 15 is formed independently.
  • the porous insulating layer 15 may be integrally formed on the surface of the negative electrode active material layer 23. However, if the porous insulating layer 15 is formed on the surface of the negative electrode active material layer 23, the mechanical properties may not be maintained due to expansion / contraction of the alloy-based active material. In addition, a part of the porous insulating layer 15 may enter the space in the negative electrode active material layer 23 (the space between the active material bodies), thereby impairing the original function.
  • an inorganic oxide and a binder are mixed with a liquid component to prepare a paste or slurry.
  • the binder is preferably 0.5 to 10 parts by weight per 100 parts by weight of the inorganic oxide, but is not particularly limited.
  • the inorganic oxide, the binder and the liquid component are mixed using, for example, a double kneader.
  • the obtained paste or slurry is applied onto at least one surface of the porous resin film that becomes the positive electrode 30, the negative electrode 20, and the separator 13.
  • the paste or slurry can be applied using, for example, a doctor blade or a die coat. Thereafter, the liquid component contained in the paste or slurry is removed by drying. In this way, the porous insulating layer 15 is obtained.
  • the porous insulating layer 15 may be formed using an inorganic oxide and a heat resistant resin.
  • a resin solution in which a heat resistant resin is dissolved in a solvent is prepared.
  • the solvent for dissolving the heat-resistant resin is not particularly limited, but is preferably a polar solvent such as N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP).
  • NMP N-methyl-2-pyrrolidone
  • 500 g or less (preferably 33 g to 300 g) of inorganic oxide may be dispersed per 100 g of heat resistant resin.
  • the resin solution is applied on at least one surface of the positive electrode 30, the negative electrode 20, and the porous resin film. Thereafter, the solvent is removed by drying to obtain a porous insulating layer 15 containing a heat resistant resin.
  • the negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 23.
  • the negative electrode current collector 21 those commonly used in the field of lithium secondary batteries can be used.
  • a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, nickel, copper, or a conductive resin can be used.
  • the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, a fiber group molded body (nonwoven fabric, etc.), and the like.
  • the non-porous conductive substrate include a foil, a sheet, and a film.
  • the thickness of the porous or non-porous conductive substrate is not particularly limited, but is usually 1 to 500 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and particularly preferably 10 to 30 ⁇ m. Further, as will be described later, the surface of the negative electrode current collector 21 is provided with a plurality of convex portions.
  • the negative electrode active material layer 23 contains an alloy-based active material and is formed in a thin film on one or both surfaces of the negative electrode current collector 21. Moreover, the negative electrode active material layer 23 may contain a well-known negative electrode active material, an additive, etc. in the range which does not impair the characteristic with an alloy type active material. Furthermore, the thickness of the negative electrode active material layer 23 (thickness when the negative electrode active material layer 23 is formed) is preferably 3 to 50 ⁇ m. The negative electrode active material layer 23 is preferably amorphous or low crystalline.
  • the alloy-based active material is a negative electrode active material that occludes lithium by alloying with lithium during charging and releases lithium during discharging. It does not restrict
  • a silicon containing compound, a tin containing compound, etc. are mentioned.
  • the silicon-containing compound include silicon, silicon oxide, silicon nitride, silicon-containing alloy, silicon compound and its solid solution.
  • the silicon oxide include silicon oxide represented by the composition formula: SiO ⁇ (0 ⁇ ⁇ 2).
  • silicon carbide include silicon carbide represented by the composition formula: SiC ⁇ (0 ⁇ ⁇ 1).
  • Examples of the silicon nitride include silicon nitride represented by the composition formula: SiN ⁇ (0 ⁇ ⁇ 4/3).
  • Examples of the silicon-containing alloy include an alloy containing silicon and one or more elements selected from the group consisting of Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. . Further, a part of silicon is selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. It may be substituted with one or more elements. Among these, it is particularly preferable to use SiO ⁇ (0 ⁇ ⁇ 2) which is excellent in reversibility of charge / discharge.
  • tin-containing compound examples include tin, tin oxide, tin nitride, tin-containing alloy, tin compound and its solid solution, and the like.
  • tin-containing compounds include tin, tin oxides such as SnO ⁇ (0 ⁇ ⁇ 2), SnO 2 , Ni—Sn alloys, Mg—Sn alloys, Fe—Sn alloys, Cu—Sn alloys, and Ti—Sn.
  • Tin-containing alloys such as alloys, tin compounds such as SnSiO 3 , Ni 2 Sn 4 and Mg 2 Sn can be preferably used.
  • tin and tin oxides such as SnO ⁇ (0 ⁇ ⁇ 2) and SnO 2 are particularly preferable.
  • the negative electrode active material layer 23 is an aggregate of a plurality of columnar bodies (active material bodies) containing an alloy-based active material. As described above with reference to FIG. 1, these active material bodies contain an alloy-based active material and are arranged on the surface of the negative electrode current collector 21 with a space therebetween. Each active material body extends from the surface of the negative electrode current collector 21 in a direction away from the surface of the negative electrode current collector 21. Preferably, the plurality of active material bodies are formed to extend in the same direction.
  • Such a negative electrode active material layer 23 can be manufactured by providing a plurality of convex portions on the surface of the negative electrode current collector 21 and forming an active material body on each of the convex portions.
  • FIG. 8 is an enlarged cross-sectional view illustrating a part of the negative electrode 20.
  • FIG. 8 shows only one active material body.
  • FIG. 9 is a schematic perspective view of the negative electrode current collector 21.
  • the negative electrode current collector 21 has a plurality of convex portions 22 on the surface (surface on which the negative electrode active material layer is to be formed) 21a.
  • the convex portion 22 may be similarly provided on the surface opposite to the surface 21a.
  • the convex portion 22 is a protrusion that extends from the surface 21 a of the negative electrode current collector 21 in a direction away from the negative electrode current collector 21.
  • the convex portions 22 may be randomly arranged, or may be regularly arranged as illustrated. It is preferable that the convex portions 22 are regularly arranged because the size of the space formed between the active material bodies 24 can be easily controlled by the pitch and size of the convex portions 22.
  • the height (average height) h of the convex portion 22 is not particularly limited, but is preferably 3 ⁇ m or more. If it is 3 micrometers or more, when forming the active material body 24 by the oblique vapor deposition mentioned later, the active material body 24 can be selectively arrange
  • the height h of the convex portion 22 is preferably 10 ⁇ m or less. If the convex part 22 is 10 micrometers or less, since the volume ratio of the electrical power collector 11 which occupies for an electrode can be restrained small, it becomes possible to obtain a high energy density.
  • the height (average height) h of the convex portion 22 is perpendicular to the surface 21 a of the negative electrode current collector 21 and includes a vertex of the convex portion 22.
  • a vertex of the convex portion 22 refers to the highest point with respect to the surface 21 a of the negative electrode current collector 21.
  • the “surface 21a” refers to the surface of the surface of the negative electrode current collector 21 where the convex portions 22 are not formed.
  • the average height of the convex portions 22 is obtained by, for example, observing a cross section of the negative electrode 20 perpendicular to the surface of the negative electrode current collector 21 with a scanning electron microscope (SEM), and measuring the height of the 100 convex portions 22. , By calculating an average value thereof.
  • SEM scanning electron microscope
  • the cross-sectional diameter r of the convex portion 22 is not particularly limited, but is preferably 1 ⁇ m or more, for example. Thereby, the contact area of the convex part 22 and the active material body 24 is fully securable. On the other hand, the cross-sectional diameter r is preferably 50 ⁇ m or less. When the cross-sectional diameter r is larger than 50 ⁇ m, there may be a case where sufficient voids cannot be formed between the active material bodies 24.
  • the cross-sectional diameter r of the convex portion 22 indicates the maximum width of the convex portion 22 in a direction parallel to the surface 21 a in a cross section that is perpendicular to the surface of the negative electrode current collector 21 and includes the apex of the convex portion 22.
  • the cross-sectional diameter r of the convex portion 22 can also be obtained by measuring the width of 100 convex portions 22 and calculating the average value of these measured values.
  • the plurality of convex portions 22 may not all have the same height h or the same cross-sectional diameter r.
  • the shape of the convex part 22 seen from the normal line direction of the negative electrode 20 is circular.
  • the shape of the convex part 22 here is a convex part as viewed from above in the vertical direction when the current collector 21 is placed so that the surface opposite to the surface 21a of the negative electrode current collector 21 coincides with the horizontal plane. 22 shapes.
  • the shape of the convex part 22 is not limited to a circle, For example, a polygon, an ellipse, a parallelogram, a trapezoid, a rhombus, etc. may be sufficient.
  • the convex portion 22 preferably has a substantially planar apex p at the tip portion in the extending direction.
  • the convex portion 22 has a circular top portion p.
  • the bondability of the convex part 22 and the active material body 24 will improve.
  • the planar apex p is substantially parallel to the surface 21a, since the bonding strength between the convex portion 22 and the active material body 24 can be further increased.
  • the number of protrusions 22 per unit area, the interval between the protrusions 22, and the like are not particularly limited, and the size (height, cross-sectional diameter, etc.) of the protrusions 22 and the active material body 24 provided on the surface of the protrusions 22. It is appropriately selected according to the size of the.
  • the number of convex portions 22 per unit area is, for example, about 10,000 to 10 million pieces / cm 2 .
  • the inter-axis distance d of the adjacent convex part 22 is about 2 micrometers or more and about 100 micrometers, for example.
  • the convex portions 22 are preferably arranged regularly at a predetermined arrangement pitch, and may be arranged in a pattern such as a houndstooth pattern or a grid pattern.
  • the arrangement pitch of the protrusions 22 (the distance between the centers of the adjacent protrusions 22) is, for example, not less than 10 ⁇ m and not more than 100 ⁇ m.
  • the “center of the convex portion 22” refers to the center point of the maximum width on the upper surface (top portion) of the convex portion 22. If the arrangement pitch is 10 ⁇ m or more, a space for expanding the active material members 24 can be more reliably secured between the adjacent active material members 24. On the other hand, when the arrangement pitch is 100 ⁇ m or less, a high capacity can be secured without increasing the height of the active material body 24.
  • the ratio of the interval between the protrusions 22 to the arrangement pitch of the protrusions 22 is 1/3 or more and 2/3 or less. If the spacing ratio is 1/3 or more, when the active material bodies 24 are formed on the respective convex portions 22, the widths of the gaps in the active material bodies 24 in the respective arrangement directions of the convex portions 22 are more reliably ensured. It can be secured. On the other hand, when the proportion of the spacing is larger than 2/3, the active material is also present in the spacing (also referred to as “concave portion” or “groove”) between the convex portions 22 when forming the active material body by oblique deposition. As a result, the expansion stress applied to the negative electrode current collector 21 may increase.
  • the interval between the adjacent convex portions 22 is the width of the convex portion 22. It is preferable that it is 30% or more. As a result, a sufficient gap can be secured between the active material members 24 to significantly relieve the expansion stress. On the other hand, if the distance between the adjacent convex portions 22 is too large, the thickness of the negative electrode active material layer 23 increases in order to ensure capacity. Therefore, in the cross section of the negative electrode 20, the interval between the protrusions 22 is preferably 250% or less of the width of the protrusions 22.
  • a protrusion (not shown) may be formed on the surface of the convex portion 22 by plating or the like. Thereby, since the joining property of the convex part 22 and the active material body 24 can be improved effectively, peeling from the convex part 22 of the active material body 24, peeling propagation, etc. can be prevented more reliably.
  • the protrusion is provided so as to protrude from the surface of the protrusion 22 to the outside of the protrusion 22.
  • the width and height of the protrusions are smaller than the width and height of the protrusions 22, and a plurality of protrusions may be formed on the surface of each protrusion 22.
  • protrusions may be formed on the side surfaces of the protrusions 22 so as to extend in the circumferential direction and / or the growth direction of the protrusions 22.
  • the convex part 22 has a planar top part, one or more protrusions smaller than the convex part 22 may be formed in each top part. The protrusion formed on the top may extend in one direction.
  • the upper surface of the convex portion 22 may be flat, but preferably has irregularities.
  • the unevenness can be formed, for example, by forming a protrusion on the upper surface of the convex portion 22 as described above.
  • the surface roughness Ra of the upper surface of the convex portion 22 is preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less. As a result, a sufficient adhesion force between the convex portion 22 and the active material body 24 can be ensured, so that the active material body 24 can be prevented from peeling off.
  • “Surface roughness Ra” here refers to “arithmetic average roughness Ra” defined in Japanese Industrial Standards (JISB0601-1994), and can be measured using, for example, a surface roughness meter.
  • the boundary between the convex portion 22 and portions other than the convex portion (“groove”, “concave portion”) is not clear. May be.
  • a portion having an average height or more of the entire surface having the concavo-convex pattern is referred to as a “projection 22”, and a portion less than the average height is referred to as a “groove” or “concave”.
  • a plane including the bottom of the recess is referred to as “surface 21a”.
  • the negative electrode current collector 21 in the present embodiment can be produced by forming irregularities on a current collector material sheet such as a metal foil or a metal sheet.
  • a current collector material sheet such as a metal foil or a metal sheet.
  • the method for forming the unevenness include a method of transferring the surface of a roller having a plurality of recesses formed on the surface (hereinafter referred to as “roller processing method”), a photoresist method, and the like.
  • a current collector raw material sheet is mechanically pressed using a roller having a recess formed on the surface (hereinafter referred to as a “projection forming roller”).
  • the some convex part 22 can be formed in the at least one surface of the raw material sheet
  • the material sheet for the current collector a sheet containing the material as described above as the material of the negative electrode current collector 21 can be used.
  • the negative electrode active material layer 23 includes a plurality of columnar active material bodies 24 extending from the surface of the convex portion 22 toward the outside of the negative electrode current collector 21.
  • Each active material body 24 may extend in the normal direction D of the surface 21 a of the negative electrode current collector 21. Alternatively, it may extend in a direction inclined with respect to the normal direction D.
  • Each active material body 24 may have a structure in which a plurality of columnar lumps having different growth directions are stacked.
  • Each active material member 24 preferably has a gap between adjacent active material members 24 at least before charging. This gap can relieve stress due to expansion and contraction during charging / discharging, so that the active material body 24 is difficult to peel off from the convex portion 22. As a result, deformation of the negative electrode current collector 21 and the negative electrode 20 can be suppressed.
  • the width of the gap between the active material bodies 24 can be adjusted by the arrangement pitch or size of the protrusions 22. Further, these active material bodies 24 may be arranged immediately after the formation of the negative electrode active material layer 23 or at intervals during discharging, but adjacent active material bodies 24 may come into contact with each other during charging.
  • the active material body 24 may have a structure in which n (n ⁇ 2) layers (columnar blocks) are stacked. A larger number n is more preferable. For example, as shown in FIG. 10, it may be a columnar product in which eight columnar chunks 24a, 24b, 24c, 24d, 24e, 24f, 24g, and 24h are laminated.
  • the negative electrode active material layer 23 including such an active material body 24 is formed as follows. First, the columnar chunk 24a is formed so as to cover the top of the convex portion 22 and a part of the side surface following the top. Next, the columnar chunk 24b is formed so as to cover the remaining side surface of the convex portion 22 and a part of the top surface of the columnar chunk 24a. That is, in the cross-sectional view shown in FIG. 10, the columnar chunk 24a is formed at one end including the top of the convex portion 22, the columnar chunk 24b partially overlaps the columnar chunk 24a, but the remaining portion is the convex portion. 22 is formed at the other end.
  • the columnar chunk 24c is formed so as to cover the rest of the top surface of the columnar chunk 24a and a part of the top surface of the columnar chunk 24b. That is, the columnar chunk 24c is formed so as to mainly contact the columnar chunk 24a. Further, the columnar chunk 24d is formed mainly in contact with the columnar chunk 24b. Similarly, the active material body 24 is formed by alternately stacking the columnar chunks 24e, 24f, 24g, and 24h.
  • FIG. 11 is a cross-sectional view illustrating an electron beam evaporation apparatus 50 used for forming the negative electrode active material layer 23.
  • each member inside the vapor deposition apparatus 50 is also indicated by a solid line.
  • the vapor deposition apparatus 50 includes a chamber 51, a first pipe 52, a fixing base 53, a nozzle 54, a target (evaporation source) 55, an electron beam generator not shown, a power source 56, and a second pipe not shown.
  • the chamber 51 is a pressure-resistant container-like member having an internal space, and a first pipe 52, a fixing base 53, a nozzle 54, and a target 55 are accommodated therein.
  • the first pipe 52 supplies the source gas to the nozzle 54.
  • One end of the first pipe 52 is connected to the nozzle 54.
  • the other end of the first pipe 52 extends to the outside of the chamber 51 and is connected to a source gas cylinder or a source gas manufacturing apparatus (not shown) via a mass flow controller (not shown).
  • As source gas, oxygen, nitrogen, etc. can be used, for example.
  • the fixing base 53 is a plate-like member, and is supported so as to be angularly displaced or rotatable with respect to the horizontal plane 60.
  • the negative electrode current collector 21 is fixed to one surface of the fixing base 53.
  • the position of the fixing base 53 is switched between a first position indicated by a solid line and a second position indicated by a one-dot broken line, whereby the deposition angle can be switched.
  • the first position is that the surface of the fixing base 53 on the side where the negative electrode current collector 21 is fixed is opposed to the nozzle 54 below in the vertical direction, and the angle between the fixing base 53 and the horizontal plane 60 is ⁇ °.
  • the second position is such that the surface of the fixing base 53 on the side where the negative electrode current collector 21 is fixed is opposed to the nozzle 54 below in the vertical direction, and the angle formed by the fixing base 53 and the horizontal plane 60 is (180 ⁇ ). It is a position that becomes °.
  • the angle ⁇ ° is appropriately selected according to the dimensions of the active material body 24 to be formed.
  • the nozzle 54 is provided between the fixed base 53 and the target 55 in the vertical direction.
  • the nozzle 54 mixes the vapor of evaporation material such as an alloy-based active material that evaporates from the target 55 and rises upward in the vertical direction, and the raw material gas supplied from the first pipe 52, and the surface of the fixed base 53. To the surface of the negative electrode current collector 21 fixed to the surface.
  • the target 55 accommodates an alloy-based negative electrode active material or its raw material.
  • the electron beam generator irradiates and heats an alloy-based active material accommodated in the target 55 or its raw material with an electron beam to generate these vapors.
  • the power source 56 is provided outside the chamber 51 and is electrically connected to the electron beam generator, and applies a voltage for generating an electron beam to the electron beam generator.
  • the second pipe introduces a gas that becomes the atmospheric gas in the chamber 51.
  • the negative electrode current collector 21 is fixed to the fixing base 53, and the fixing base 53 is set to the first position.
  • Oxygen gas is introduced into the chamber 51 using the second pipe 52 and the nozzle 54.
  • the alloy-based negative electrode active material of the target 55 or its raw material is irradiated with an electron beam and heated to generate its vapor.
  • SiO ⁇ (0 ⁇ ⁇ 2) is used as the alloy-based active material.
  • the generated silicon vapor rises upward in the vertical direction, and is mixed with oxygen supplied from the nozzle 54 when passing through the nozzle 54. Thereafter, the silicon vapor and oxygen are further raised and supplied to the surface of the negative electrode current collector 21 fixed to the fixed base 53.
  • silicon vapor and oxygen gas react to grow silicon oxide.
  • silicon atoms fly toward the surface of the negative electrode current collector 21 from a direction inclined by an angle ⁇ 1 (deposition angle) with respect to the normal direction of the negative electrode current collector 21.
  • the oxygen is supplied from the nozzle 54 near the surface of 21.
  • silicon oxide is deposited on the surface of the negative electrode current collector 21.
  • the vapor deposition angle ⁇ 1 is equal to the angle ⁇ formed by the fixed base 53 and the horizontal plane 60.
  • the direction in which oxygen is supplied is not particularly limited. Here, oxygen is supplied to the surface of the negative electrode current collector 21 from the back of the sheet of FIG.
  • the material of the evaporation source silicon
  • the material of the evaporation source silicon
  • the silicon oxide grows in a columnar shape selectively only on the top.
  • silicon atoms do not enter the portion of the surface of the negative electrode current collector 21 that is shadowed by the silicon oxide that grows in a columnar shape, and silicon oxide is difficult to deposit (shadowing effect). In this way, the columnar mass 24a of the active material body shown in FIG. 10 is formed.
  • the fixed base 53 is rotated and set to the second position, and silicon oxide is grown in the same manner as described above.
  • silicon atoms and oxygen gas are introduced to the surface of the negative electrode current collector 21 from a direction inclined to the opposite side of the vapor deposition direction when forming the columnar mass 24 a with respect to the normal direction of the negative electrode current collector 21.
  • an active material body composed of a plurality of columnar chunks 24a to 24h The negative electrode active material layer 23 containing 24 can be formed.
  • the growth direction of the columnar mass 24 a is inclined by the angle ⁇ 1 with respect to the normal direction D of the negative electrode current collector 21.
  • the inclination angle ⁇ 1 is determined by the deposition angle (silicon incident angle) ⁇ 1 .
  • the inclination angle calculated from the above relational expression is lowered by controlling the pressure in the vacuum chamber by changing the oxygen introduction amount. Therefore, the inclination angle ⁇ 1 can be controlled by changing the deposition angle ⁇ 1 and the vacuum chamber internal pressure.
  • the growth direction of the columnar chunk 24 b is inclined by an angle ⁇ 2 in the direction opposite to the growth direction of the columnar chunk 24 a with respect to the normal direction D of the negative electrode current collector 21.
  • the growth directions of the plurality of columnar chunks 24a to 24h are changed. Are alternately inclined in the opposite direction with respect to the normal direction D of the negative electrode current collector 21.
  • the active material body 24 formed by the above method has a chemical composition of SiO x .
  • the average value of the molar ratio x of the oxygen amount to the silicon amount is greater than 0 and less than 2.
  • the active material body 24 may be formed so that an oxygen concentration gradient is formed in the thickness direction of the active material body 24.
  • the oxygen content may be increased in a portion close to the negative electrode current collector 21, and the oxygen content may be reduced as the distance from the negative electrode current collector 21 increases.
  • the higher the oxygen content, that is, the closer x is to 2 the smaller the volume expansion coefficient of the active material due to occlusion of lithium.
  • the volume capacity density (mAh / cm 3 ) can be increased as the oxygen content is lower, that is, as x is closer to zero, but the volume expansion coefficient is increased. Therefore, in the active material body 24 having the oxygen concentration gradient as described above, the expansion / shrinkage of the active material can be suppressed in the portion close to the negative electrode current collector 21, so that the bonding between the convex portion 22 and the active material body 24 is performed. The sex can be further improved. Moreover, in the part away from the negative electrode collector 21, since the oxygen content is small, the volume capacity density is high.
  • the formation method of the active material body 24 is not limited to the method mentioned above.
  • the raw material gas may not be supplied from the nozzle 54 and the active material body 24 mainly composed of silicon or tin may be formed.
  • vapor deposition may be performed with a constant deposition angle without switching. Thereby, the active material body 24 grown along one direction is obtained. Further, during the vapor deposition, the vapor deposition angle may be changed by rotating the fixed base 53 along the rotation axis to change the installation direction of the negative electrode current collector 21.
  • the number of times of vapor deposition is not particularly limited.
  • the vapor deposition angle is alternately switched between 60 ° and ⁇ 60 °, for example, and vapor deposition is performed up to the n-th stage (n ⁇ 2), the active material body 24 having n portions can be formed.
  • the negative electrode active material layer is formed using oblique vapor deposition, but lift-off as described in Patent Document 3 can be used instead.
  • a negative electrode active material layer having a columnar structure may be formed by depositing an active material film and then patterning.
  • ⁇ Separator 13> As the separator 13, a sheet or film having characteristics such as predetermined ion permeability, mechanical strength, and insulating properties are used. Specific examples of the separator 13 include porous sheets or films such as a microporous film, a woven fabric, and a non-woven fabric. The microporous film may be either a single layer film or a multilayer film. Although various resin materials can be used as the material of the separator 13, it is preferable to use polyolefins such as polyethylene and polypropylene in consideration of durability, shutdown function, battery safety, and the like.
  • the thickness of the separator 13 is generally 10 to 300 ⁇ m, preferably 10 to 40 ⁇ m, more preferably 10 to 30 ⁇ m, and further preferably 10 to 25 ⁇ m.
  • the porosity of the separator 13 is preferably 30 to 70%, more preferably 35 to 60%.
  • a nonaqueous electrolyte having lithium ion conductivity is suitably used as the electrolytic solution (nonaqueous electrolyte) used in the present embodiment.
  • the non-aqueous electrolyte may be, for example, a liquid non-aqueous electrolyte, a gel-like non-aqueous electrolyte, a solid electrolyte (for example, a polymer solid electrolyte), or the like.
  • the liquid non-aqueous electrolyte contains a solute (supporting salt) and a non-aqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents.
  • solute those commonly used in this field can be used.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBr, LiI, LiBCl 4 , borate salts, imide salts and the like can be mentioned.
  • borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid.
  • imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi) ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like.
  • One of the above solutes may be used alone, or two or more may be used in combination as necessary.
  • the amount of the solute dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 2.0 mol / L.
  • non-aqueous solvent those commonly used in this field can be used.
  • cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester and the like can be mentioned.
  • the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • One of the non-aqueous solvents may be used alone, or two or more may be used in combination as necessary.
  • the gel-like non-aqueous electrolyte includes a liquid non-aqueous electrolyte and a polymer material that holds the liquid non-aqueous electrolyte.
  • the polymer material used here is capable of gelling a liquid material.
  • the polymer material those commonly used in this field can be used. Examples thereof include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, and polyvinylidene fluoride.
  • the solid electrolyte includes, for example, a solute (supporting salt) and a polymer material. Solutes similar to those exemplified above can be used.
  • the polymer material include polyethylene oxide (PEO), polypropylene oxide (PPO), a copolymer of ethylene oxide and propylene oxide, and the like.
  • ⁇ Positive electrode and negative electrode lead, outer case> One end of the positive electrode lead 18 is connected to the positive electrode current collector 31, and the other end is led out from the opening 17 a of the outer case 17 to the outside of the lithium secondary battery 1.
  • One end of the negative electrode lead 19 is connected to the negative electrode current collector 12 a, and the other end is led out of the lithium secondary battery 1 from the opening 17 b of the outer case 17.
  • the openings 17 a and 17 b of the outer case 17 are sealed with a gasket 16.
  • the gasket 16 for example, various resin materials can be used.
  • the outer case 17 any one commonly used in the technical field of lithium secondary batteries can be used.
  • the openings 17a and 17b of the outer case 17 may be directly sealed by welding or the like.
  • the lithium secondary battery 200 can be manufactured, for example, as follows. Here, a case where the porous insulating layer 15 is integrally formed with the positive electrode 30 will be described as an example.
  • the negative electrode 20, the positive electrode 30, and the separator 13 are prepared.
  • the porous insulating layer 15 is integrally formed on the surface of the positive electrode active material layer 33 in the positive electrode 30.
  • one end of the positive electrode lead 18 is connected to a portion of the surface of the positive electrode current collector 31 of the positive electrode 30 where the positive electrode active material layer 33 is not formed.
  • one end of the negative electrode lead 19 is connected to a portion of the surface of the negative electrode current collector 21 of the negative electrode 20 where the negative electrode active material layer 23 is not formed.
  • the positive electrode 30 and the negative electrode 20 are laminated via the separator 13 to produce an electrode group.
  • the positive electrode 30, the negative electrode 20, and the separator 13 are disposed so that the positive electrode active material layer 33 and the negative electrode active material layer 23 face each other.
  • the obtained electrode group is inserted into the outer case 17 together with the electrolyte, and the other ends of the positive electrode lead 18 and the negative electrode lead 19 are led out of the outer case 17.
  • the openings 17 a and 17 b are welded through the gasket 16 while the inside of the outer case 17 is vacuum-depressurized. In this way, the lithium secondary battery 200 is obtained.
  • the structure and manufacturing method of the lithium secondary battery of this embodiment are not limited to the structure and method mentioned above.
  • FIG. 7 shows a lithium secondary battery having a stacked electrode group
  • the lithium secondary battery of this embodiment may be a cylindrical battery or a square battery having a wound electrode group. Good.
  • Example A Examples 1 to 5 and Comparative Examples 1 and 2
  • Examples 1 to 5 and Comparative Examples 1 and 2 Lithium secondary batteries having porous insulating layers (Examples 1 to 5) and lithium secondary batteries having no porous insulating layer (Comparative Examples 1 and 2) were produced. Characteristics were evaluated. Hereinafter, the production methods, evaluation methods, and evaluation results of the lithium secondary batteries of Examples and Comparative Examples will be described.
  • aqueous solution containing nickel sulfate at a concentration of 0.82 mol / liter, an aqueous solution containing cobalt sulfate at a concentration of 0.15 mol / liter, and an aqueous solution containing aluminum sulfate at a concentration of 0.03 mol / liter were prepared.
  • a mixed solution of these aqueous solutions was continuously supplied to the reaction vessel.
  • a precursor of the active material was synthesized while sodium hydroxide was dropped into the reaction tank so that the pH of the aqueous solution in the reaction tank was maintained between 10 and 13.
  • the obtained precursor was sufficiently washed with water and dried. In this way, a hydroxide made of Ni 0.82 Co 0.15 Al 0.03 (OH) 2 was obtained as a precursor.
  • the obtained precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, nickel and aluminum (Ni: Co: Ni: Al) was 1: 0.82: 0.15: 0.03 did.
  • the mixture was calcined in an oxygen atmosphere at a temperature of 500 ° C. for 7 hours and pulverized.
  • the pulverized fired product was fired again at a temperature of 800 ° C. for 15 hours.
  • the fired product was pulverized and classified to obtain a positive electrode active material having a composition represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 .
  • a positive electrode was produced by the following method.
  • the positive electrode active material powder 100 g of the positive electrode active material powder is sufficiently mixed with 2 g of acetylene black (conductive agent), 2 g of artificial graphite (conductive agent), 3 g of polyvinylidene fluoride powder (binder) and 50 ml of organic solvent (NMP).
  • a paste was prepared. This positive electrode mixture paste was applied to one side of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m. The mixture paste was dried to obtain a positive electrode active material layer.
  • the thickness of the positive electrode that is, the total thickness of the positive electrode current collector and the positive electrode active material layer was set to 128 ⁇ m.
  • Example 2 Formation of porous insulating layer
  • the porous insulating layer was formed on the surface of the positive electrode active material layer.
  • alumina powder manufactured by Sumitomo Chemical Co., Ltd., AKP3000
  • NMP solution BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd.
  • BM-720H trade name
  • a suitable amount of NMP was stirred with a double-arm kneader.
  • a slurry for forming a porous insulating layer was prepared.
  • the obtained slurry was applied over the entire surface of the positive electrode active material layer on the surface of the positive electrode active material layer.
  • the applied slurry was dried at 100 ° C. for 10 hours under vacuum and reduced pressure to form a porous heat-resistant layer.
  • the thickness of the porous heat-resistant layer was 1 ⁇ m. Further, the porosity of the porous heat-resistant layer was 49%.
  • Example 1 Production of Negative Electrode
  • a negative electrode current collector having irregularities on the surface was produced by a roller processing method.
  • chromium oxide was sprayed onto the surface of a cylindrical iron roller (diameter: 50 mm) to form a ceramic layer having a thickness of 100 ⁇ m.
  • a plurality of recesses having a depth of 8 ⁇ m were formed on the surface of the ceramic layer by laser processing.
  • Each recess was circular with a diameter of 12 ⁇ m when viewed from above the ceramic layer.
  • the central portion was substantially planar, and the peripheral edge of the bottom had a rounded shape.
  • the arrangement of these recesses was a close-packed arrangement in which the distance between the axes of adjacent recesses was 20 ⁇ m. In this way, a convex forming roller was obtained.
  • an alloy copper foil (trade name: HCL-02Z, thickness: 26 ⁇ m, manufactured by Hitachi Cable Ltd.) containing zirconia at a ratio of 0.03% by weight with respect to the total amount was placed at 600 ° C. in an argon gas atmosphere. Heating was performed for 30 minutes at a temperature, and annealing was performed.
  • This alloy copper foil was passed at a pressure of 2 t / cm through a pressure contact portion where two convex forming rollers were pressure contacted. Thereby, both surfaces of alloy copper foil were pressure-molded, and the negative electrode collector which has a some convex part on both surfaces was obtained.
  • a cross section perpendicular to the surface of the negative electrode current collector was observed with a scanning electron microscope, a plurality of convex portions having an average height of about 8 ⁇ m were formed on both surfaces of the negative electrode current collector.
  • a negative electrode active material layer was formed on the surface of the obtained negative electrode current collector by oblique vapor deposition using an electron beam vapor deposition apparatus 50 shown in FIG.
  • the conditions for vapor deposition are as follows.
  • a negative electrode current collector having a size of 30 mm ⁇ 30 mm was fixed to a fixed base.
  • Negative electrode active material raw material silicon, purity 99.9999%, manufactured by High Purity Chemical Laboratory Co., Ltd.
  • Oxygen released from nozzle purity 99.7%, manufactured by Nippon Oxygen Co., Ltd.
  • Emission 500mA
  • Deposition time 3 minutes ⁇ 40 times This formed a negative electrode active material layer containing a plurality of active material bodies on one surface of the negative electrode current collector.
  • Each of the active material bodies had a structure in which 40 columnar lumps were laminated, and was arranged on the corresponding convex part of the negative electrode current collector. Moreover, it grew from the top part of the convex part and the side surface near the top part in the direction in which the convex part extends.
  • the thickness of the negative electrode active material layer was determined.
  • a cross section perpendicular to the negative electrode current collector in the obtained negative electrode is observed with a scanning electron microscope, and for 10 active material bodies formed on the surface of the convex portion, from the vertex of the convex portion to the vertex of the active material body. The length of each was measured. The average of these was calculated as “the thickness of the negative electrode active material layer”.
  • the thickness of each negative electrode active material layer was 15 ⁇ m.
  • the composition of the compound constituting the negative electrode active material layer was all SiO 0.4 .
  • lithium metal was deposited on the surface of these negative electrode active material layers. This is because lithium metal is deposited to supplement lithium corresponding to the irreversible capacity stored in the negative electrode active material layer during the first charge / discharge.
  • the vapor deposition of lithium metal was performed using a resistance heating vapor deposition apparatus (manufactured by ULVAC, Inc.) in an argon atmosphere.
  • a resistance heating vapor deposition apparatus manufactured by ULVAC, Inc.
  • lithium metal was loaded into a tantalum boat in a resistance heating vapor deposition apparatus.
  • the negative electrode was fixed so that one of the negative electrode active material layers formed on both surfaces of the negative electrode current collector faced the tantalum boat.
  • a 50 A current was passed through the tantalum boat in an argon atmosphere to deposit lithium metal.
  • the deposition time was 10 minutes.
  • lithium metal was deposited on the other negative electrode active material layer in the same manner.
  • the positive electrode having a porous insulating layer formed on the surface was cut out so that the planar shape of the positive electrode active material layer was a square of 20 mm ⁇ 20 mm.
  • the positive electrode lead was welded to the portion of the surface of the positive electrode current collector where the positive electrode active material layer was not formed to obtain a positive electrode plate.
  • the negative electrode after the lithium metal was deposited was cut out so that the planar shape of the negative electrode active material layer was a square of 21 mm ⁇ 21 mm and a tab portion of 5 mm ⁇ 5 mm was formed at one corner where two sides intersected.
  • the negative electrode active material layer located in the tab portion was peeled off, and the negative electrode lead was welded to the surface of the current collector exposed by peeling of the negative electrode active material layer. In this way, a negative electrode plate was obtained.
  • the positive electrode plate, the negative electrode plate, and the separator were arranged so that the positive electrode active material layer and the negative electrode active material layer faced each other with the separator interposed therebetween, thereby preparing an electrode group.
  • the negative electrode plate was set as the center, and the separator and the positive electrode plate were laminated in this order on both surfaces.
  • a polyethylene microporous membrane (trade name: Hypore, thickness: 16 ⁇ m, porosity: 40%, manufactured by Asahi Kasei Co., Ltd.) was used as the separator.
  • the structure of the electrode group obtained in this example is shown in FIG. In FIG. 13, the same reference numerals are given to the same components as those in FIG.
  • the obtained electrode group was inserted into an outer case made of an aluminum laminate together with 0.5 g of an electrolyte.
  • LiPF 6 was dissolved at a concentration of 1.4 mol / L in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 2: 3: 5 as an electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte was used.
  • the ionic conductivity was 6.5 mS / cm, and the viscosity was 6.2 cP.
  • Example 1 a lithium secondary battery of Example 1 was obtained.
  • Example 2 A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 2 ⁇ m. The porosity of the porous insulating layer was 48%.
  • Example 3 A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 4 ⁇ m. The porosity of the porous insulating layer was 47%.
  • Example 4 A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 6 ⁇ m. The porosity of the porous insulating layer was 47%.
  • Example 5 In Example 5, instead of forming a porous insulating layer on the positive electrode active material layer, a porous insulating layer was formed on the separator. Other configurations and manufacturing methods of the lithium secondary battery are the same as those of the first embodiment.
  • Example 5 a porous insulating layer containing a heat resistant resin and an inorganic oxide was formed on a polyolefin separator. A forming method will be described below.
  • the aramid resin was completely heated and dissolved in NMP to obtain an aramid resin solution.
  • 6.5 g of dry anhydrous calcium chloride was added per 100 g of NMP.
  • PPD paraphenylenediamine
  • the reaction vessel was placed in a constant temperature bath at 20 ° C., and terephthalic acid dichloride (manufactured by Mitsui Chemicals, Inc.) (hereinafter referred to as TPC) was added dropwise little by little over 1 hour. Phenylene terephthalamide (hereinafter referred to as PPTA) was synthesized. At this time, 5.8 g of TPC was added per 100 g of an aramid resin solution containing anhydrous calcium chloride and PPD. Thereafter, the reaction was completed by leaving it in a thermostatic bath for 1 hour, and then replaced with a vacuum bath and stirred for 30 minutes under reduced pressure to deaerate to obtain a polymerization solution.
  • TPC terephthalic acid dichloride
  • PPTA Phenylene terephthalamide
  • the obtained polymerization solution was further diluted with an NMP solution containing calcium chloride to obtain an aramid resin solution having a PPTA concentration of 1.4 wt%.
  • an NMP solution containing calcium chloride to obtain an aramid resin solution having a PPTA concentration of 1.4 wt%.
  • 200 g of alumina particles having an average particle size of 0.1 ⁇ m was added per 100 g of aramid resin solid component.
  • an aramid resin solution after adding alumina particles was thinly applied to one side of a porous polyethylene (polyethylene microporous film) having a thickness of 16 ⁇ m with a bar coater. Thereafter, hot air at 80 ° C. was applied to the coated surface to dry the aramid resin solution to obtain a resin film. Subsequently, the resin film was sufficiently washed with pure water to remove calcium chloride and then dried. As a result, a 20 ⁇ m thick laminate having a structure in which a porous insulating layer having a thickness of 4 ⁇ m and a separator (polyethylene microporous film) having a thickness of 16 ⁇ m was laminated was obtained. The average porosity of the porous insulator was 48%.
  • the above laminate was disposed between the positive electrode plate and the negative electrode plate so that the porous insulating layer and the positive electrode active material layer were opposed to each other to constitute an electrode group.
  • the structure of the electrode group in the lithium secondary battery of Example 5 is shown in FIG.
  • FIG. 14 the same components as those in FIG. Using this electrode group, a lithium secondary battery was produced in the same manner as in Example 1.
  • ⁇ Comparative Example 2> A method similar to Comparative Example 1 except that a polyethylene microporous membrane (separator, trade name: hypopore, thickness: 20 ⁇ m, porosity: 42%, manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 ⁇ m is used as the separator. Thus, a lithium secondary battery having the same configuration (FIG. 15) was produced.
  • Examples 1 to 5 and Comparative Examples 1 and 2 a plurality of lithium secondary batteries including cells for safety evaluation and charge / discharge cycle characteristic evaluation were manufactured.
  • an iron nail (diameter: 2 mm) was inserted into the lithium secondary battery at a speed of 0.1 mm / second. Penetrated. The nail penetrated the electrode group along the normal direction of the negative electrode plate, and as a result, a short circuit occurred between the positive electrode and the negative electrode.
  • the volume change (expansion coefficient) due to charging / discharging of the negative electrode active material body was determined, and both were 290%.
  • the volume change of the active material body was (Vc ⁇ Vd) / Vd ⁇ 100 (%), where Vd is the volume of the active material body during discharge and Vc is the volume of the active material body during charging.
  • the volume Vd of the active material body at the time of discharge is obtained from the thickness and porosity of the negative electrode active material layer at the time of discharge (ratio of the volume occupied by the gap between the active material bodies in the entire negative electrode active material layer).
  • the volume Vc of the negative electrode active material layer during charging was determined from the thickness of the negative electrode active material layer (the porosity of the negative electrode active material layer during charging was zero).
  • the amount of heat generated by the lithium secondary battery when an internal short-circuit occurred was determined by providing a porous insulating layer of 1 ⁇ m or more on the positive electrode surface (Examples 1 to 5). It turned out that it can reduce from 1 and 2. This is presumably because in the lithium secondary batteries of Examples 1 to 5, the progress of short circuit is suppressed by the porous insulating layer, and the oxidation reaction of the negative electrode is suppressed. Moreover, when the porous insulating layer was thickened, the amount of heat generation tended to be further reduced. Furthermore, it has been found that even when a porous insulating layer is provided on the separator, the amount of heat generation can be reduced.
  • the lithium secondary batteries of the comparative example and the example were disassembled, and in the comparative example, it was confirmed by visual observation that the positive electrode active material was dropped. On the other hand, in the Examples, the positive electrode active material was hardly removed. Therefore, in the examples, as described above with reference to FIG. 2 and FIG. 3, the porous insulating layer suppresses the falling off of the positive electrode active material due to the volume change of the negative electrode, thereby improving the cycle life. It is thought that. In addition, as described above with reference to FIG. 6, in Examples 1 to 5, it is considered that the decrease in the electrolyte solution on the positive electrode side due to repeated charge and discharge was suppressed by the porous insulating layer. Moreover, when the porous insulating layer was thickened, the charge / discharge cycle characteristics could be further improved. Furthermore, it was confirmed that the same effect was obtained regardless of the position of the porous insulating layer.
  • the thickness of the separator in Comparative Example 2 is equal to the total thickness of the separator and the porous insulating layer in Examples 3 and 5 (20 ⁇ m). Therefore, it is considered that the capacities of Comparative Example 2 and Examples 3 and 5 are substantially equal. From this, it was also found that by providing the porous insulating layer, the amount of heat generated by an internal short circuit can be suppressed and the charge / discharge cycle characteristics can be improved without reducing the capacity.
  • the wettability was evaluated as follows. First, a drop of the electrolyte was dropped on the surface of the test body (positive electrode plate or separator), and the time change rate of the contact angle was measured. The time change rate of the contact angle was calculated from the contact angle immediately after dropping of the electrolytic solution and the contact angle 10 seconds after dropping. Here, the contact angle was measured twice, and the average value was obtained. As the electrolytic solution used in this evaluation test, the electrolytic solution used in Example 3 and Comparative Example 1 was used. In addition, this evaluation test was performed at a temperature of 25 ° C.
  • the porous insulating layer had higher wettability than the positive electrode active material layer. Therefore, in the lithium secondary battery of Example 3, by providing the porous insulating layer on the positive electrode active material layer, the effect of holding the electrolyte solution on the positive electrode side is enhanced as compared with the lithium secondary battery of Comparative Example 1. It was confirmed.
  • Example B Examples 6 and 7, Comparative Example 3
  • Example B a lithium secondary battery was produced using an electrolyte different from the electrolyte used in Example A described above, and the charge / discharge cycle characteristics were evaluated.
  • LiPF 6 As an electrolytic solution, LiPF 6 was dissolved at a concentration of 1.4 mol / L in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DMC) were mixed at a volume ratio of 1: 1: 8. A non-aqueous electrolyte was used. The ionic conductivity was 10.7 mS / cm and the viscosity was 2.9 cP.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC diethyl carbonate
  • a lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except for the thickness of the electrolytic solution and the porous insulating layer.
  • Example 7 A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 6 except that the thickness of the porous insulating layer was 4 ⁇ m.
  • the wettability of the porous insulating layer is higher than the wettability of the positive electrode active material layer, as in the previous examples. Therefore, it was found that charge / discharge cycle characteristics can be improved by providing a porous insulating layer having high wettability with respect to the electrolyte regardless of the type of the electrolyte.
  • Examples 6 and 7 were higher than those of Examples 1 to 5. This is because the electrolytes used in Examples 6 and 7 have higher ionic conductivity and lower viscosity than the electrolytes used in Examples 1 to 5, and thus lithium ions can be moved more easily. it is conceivable that.
  • the lithium secondary battery of the present invention can be used for the same applications as conventional lithium secondary batteries.
  • it is useful as a power source for portable electronic devices such as personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, and video cameras.
  • PDAs personal digital assistants
  • it is expected to be used as a secondary battery for assisting an electric motor, a power tool, a cleaner, a power source for driving a robot, a power source for a plug-in HEV, etc. in a hybrid electric vehicle, a fuel cell vehicle and the like.
  • Negative electrode current collector 100, 200 Lithium secondary battery 30 Positive electrode 31 Positive electrode current collector 33 Positive electrode active material layer 20 Negative electrode 21 Negative electrode current collector 21a Surface of negative electrode current collector (portion where convex portions are not formed) 22 Protrusions 23 Negative electrode active material layer 24 Active material body 13 Separator 15, 15a, 15b Porous insulating layer 18 Positive electrode lead 19 Negative electrode lead 16 Gasket 17 Exterior case 24 Columnar body 50 Electron beam deposition apparatus 51 Chamber 52 First piping 53 Fixed base 54 Nozzle 55 Target 56 Power supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium secondary battery (100) comprising a positive electrode (30), a negative electrode (20), a separator (13) arranged between the positive electrode (30) and the negative electrode (20), and an electrolytic solution having lithium ion conductivity, wherein the negative electrode (20) comprises a negative electrode current collector (21) having multiple convex parts (22) on the surface thereof and a negative electrode active material layer (23) formed on the negative electrode current collector (21) and containing multiple active material bodies (24), wherein the multiple active material bodies (24) are respectively placed on the convex parts (22) in the negative electrode current collector (21) and contain an alloy active material containing silicon or tin as a negative electrode active material, and wherein a porous insulating layer (15) mainly composed of an inorganic oxide is provided between the positive electrode (30) and the negative electrode (20).

Description

リチウム二次電池Lithium secondary battery
 本発明は、リチウム二次電池、特に合金系活物質を含むリチウム二次電池に関する。 The present invention relates to a lithium secondary battery, particularly a lithium secondary battery containing an alloy-based active material.
 リチウム二次電池は、高容量および高エネルギー密度を有し、小型化および軽量化が容易なことから、たとえば携帯電話、携帯情報端末(PDA)、ノート型パーソナルコンピュータ、ビデオカメラ、携帯ゲーム機などの携帯用小型電子機器の電源として汎用されている。近年、携帯用小型電子機器では、一層の多機能化が進められ、かつ、連続使用可能時間の延長が求められている。また、リチウム二次電池は、小型電子機器の電源としてだけでなく、例えばハイブリッドカー、電気自動車、電動工具などの大型機器の電源としても期待されている。これらの要望に対応するためには、電源として使用されるリチウム二次電池のさらなる高容量化が必要である。 Lithium secondary batteries have high capacity and high energy density, and can be easily reduced in size and weight. For example, mobile phones, personal digital assistants (PDAs), notebook personal computers, video cameras, portable game machines, etc. It is widely used as a power source for portable electronic devices. In recent years, in portable small electronic devices, further multi-functionalization has been promoted, and continuous use time has been required to be extended. In addition, lithium secondary batteries are expected not only as a power source for small electronic devices but also as a power source for large devices such as hybrid cars, electric vehicles, and electric tools. In order to meet these demands, it is necessary to further increase the capacity of lithium secondary batteries used as power sources.
 一般に、リチウム二次電池は、基板(集電体)と、基板上に形成された負極活物質を含む層(負極活物質層)とから構成される負極と、基板(集電体)と、基板上に形成された正極活物質を含む層(正極活物質層)とから構成される正極と、正極と負極との間に配置されるセパレータとを備えている。 Generally, a lithium secondary battery includes a substrate (current collector), a negative electrode including a negative electrode active material layer (negative electrode active material layer) formed on the substrate, a substrate (current collector), The positive electrode comprised from the layer (positive electrode active material layer) containing the positive electrode active material formed on the board | substrate, and the separator arrange | positioned between a positive electrode and a negative electrode are provided.
 リチウム二次電池のさらなる高容量化のために、たとえば高容量の負極活物質を用いた負極の開発が進められている。例えば特許文献1は、高容量の負極活物質として、ケイ素、スズ、これらの酸化物、これらの窒化物、これらを含有する化合物、合金などを用いることを開示している。また、エネルギー密度が高くなることによる発熱量の増大を抑制するため、多孔質耐熱層を含むセパレータを設けることを提案している。 In order to further increase the capacity of the lithium secondary battery, for example, development of a negative electrode using a high-capacity negative electrode active material is underway. For example, Patent Document 1 discloses the use of silicon, tin, oxides thereof, nitrides thereof, compounds containing them, alloys, and the like as a high-capacity negative electrode active material. In addition, in order to suppress an increase in the amount of heat generated due to an increase in energy density, it is proposed to provide a separator including a porous heat-resistant layer.
 しかしながら、ケイ素またはスズを含む合金を負極活物質として用いると、次のような課題がある。合金系活物質は、リチウムイオンの吸蔵・放出に伴う体積膨張・収縮が大きい。このため、充放電を繰り返すと、基板と負極活物質層との間で集電不良が生じたり、負極に皺、破断などが生じるおそれがある。これらは、リチウム二次電池の充放電サイクル特性を低下させる要因となる。 However, when an alloy containing silicon or tin is used as the negative electrode active material, there are the following problems. The alloy-based active material has a large volume expansion / contraction due to insertion / extraction of lithium ions. For this reason, if charging / discharging is repeated, there is a possibility that current collection failure may occur between the substrate and the negative electrode active material layer, or the negative electrode may be flawed or broken. These are factors that deteriorate the charge / discharge cycle characteristics of the lithium secondary battery.
 これに対し、充放電サイクル特性の低下を抑制する負極の構造として、複数の凸部を有する基板を用い、柱状の活物質体を各凸部上に配置する構造(柱状構造)が提案されている(特許文献2、3参照)。 On the other hand, a structure (columnar structure) in which a columnar active material body is arranged on each convex portion using a substrate having a plurality of convex portions as a negative electrode structure that suppresses deterioration of charge / discharge cycle characteristics has been proposed. (See Patent Documents 2 and 3).
 特許文献2には、表面に凹凸を有する基板上に、スパッタなどの気相法によって負極活物質を直接堆積させて負極活物質膜を形成することが提案されている。負極活物質膜は、充放電によって、基板との集電性を維持しながら複数の柱状の活物質体に分離する。この結果、活物質体間に空間が自己形成される。この空間によって、膨張・収縮による応力を緩和させることができるので、充放電サイクル特性を改善できる。特許文献3には、複数の凸部を有する基板を用い、凸部上にのみ負極活物質を形成することが提案されている。特許文献3では、基板上に複数のレジストパターンを形成し、その上に銅および負極活物質を堆積させる。次いで、レジストパターンおよびその上の銅および負極活物質をリフトオフによって除去する。これにより、基板上に、銅からなる凸部を形成するとともに、凸部上にのみ負極活物質を形成できる。特許文献3によると、負極活物質間に予め空間が形成されるので、充放電によって空間が形成される場合(特許文献2の負極)よりも効果的に集電性を維持しつつ膨張応力を緩和できる。 Patent Document 2 proposes that a negative electrode active material film is formed by directly depositing a negative electrode active material on a substrate having an uneven surface by a vapor phase method such as sputtering. The negative electrode active material film is separated into a plurality of columnar active material bodies by charging and discharging while maintaining the current collecting property with the substrate. As a result, a space is self-formed between the active material members. Since this space can relieve stress due to expansion / contraction, the charge / discharge cycle characteristics can be improved. Patent Document 3 proposes using a substrate having a plurality of convex portions and forming a negative electrode active material only on the convex portions. In Patent Document 3, a plurality of resist patterns are formed on a substrate, and copper and a negative electrode active material are deposited thereon. Next, the resist pattern and the copper and negative electrode active material thereon are removed by lift-off. Thereby, while forming the convex part which consists of copper on a board | substrate, a negative electrode active material can be formed only on a convex part. According to Patent Document 3, since a space is previously formed between the negative electrode active materials, the expansion stress is effectively maintained while maintaining the current collecting ability more effectively than when the space is formed by charging and discharging (the negative electrode of Patent Document 2). Can be relaxed.
国際公開第2006/134684号International Publication No. 2006/134684 特開2002-83594号公報JP 2002-83594 A 特開2007-12421号公報JP 2007-12421 A
 本発明者が検討したところ、ケイ素などの高容量の負極活物質を用いると、負極自体の劣化に加えて、従来の負極活物質(例えば炭素)を用いる場合よりも、正極の劣化が大きくなることを見出した。この正極の劣化は、負極が特許文献2および3に提案されているような柱状構造を有していると特に顕著である。これは、充放電の繰り返しに伴う負極活物質層の体積変化によって、正極活物質層にストレスが加わり、正極活物質の脱落が生じて正極容量が低下するためと考えられる。正極の劣化が大きくなる理由については、後で詳しく説明する。 As a result of studies by the present inventor, when a high-capacity negative electrode active material such as silicon is used, in addition to the deterioration of the negative electrode itself, the deterioration of the positive electrode is larger than when a conventional negative electrode active material (for example, carbon) is used. I found out. This deterioration of the positive electrode is particularly remarkable when the negative electrode has a columnar structure as proposed in Patent Documents 2 and 3. This is presumably because the positive electrode active material layer is stressed due to the volume change of the negative electrode active material layer due to repeated charge and discharge, and the positive electrode active material falls off, thereby reducing the positive electrode capacity. The reason why the deterioration of the positive electrode becomes large will be described in detail later.
 従って、特許文献2、3に提案された構造によると、負極活物質の体積変化に伴う負極の劣化は抑えられるものの、正極の劣化が従来よりも大きくなるため、結果的に十分な充放電サイクル特性が得られない可能性がある。 Therefore, according to the structures proposed in Patent Documents 2 and 3, although the deterioration of the negative electrode due to the volume change of the negative electrode active material can be suppressed, the deterioration of the positive electrode becomes larger than the conventional one. Characteristics may not be obtained.
 本発明は、上記事情を鑑みてなされたものであり、その目的は、負極活物質としてケイ素またはスズを含む合金を用いたリチウム二次電池において、充放電の繰り返しによる負極および正極の劣化を抑制して、充放電サイクル特性を向上させることにある。 The present invention has been made in view of the above circumstances, and an object thereof is to suppress deterioration of the negative electrode and the positive electrode due to repeated charge and discharge in a lithium secondary battery using an alloy containing silicon or tin as a negative electrode active material. Thus, the charge / discharge cycle characteristics are improved.
 本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解液とを含むリチウム二次電池であって、前記負極は、表面に複数の凸部を有する負極集電体と、前記負極集電体上に形成された複数の活物質体を含む負極活物質層とを有し、前記複数の活物質体は、それぞれ、前記負極集電体の各凸部上に配置され、前記負極活物質としてケイ素またはスズを含む合金系活物質を含んでおり、前記正極と前記負極との間に、無機酸化物を主体とする多孔質絶縁層をさらに備える。 The lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and a gap between the positive electrode and the negative electrode. A lithium secondary battery comprising a separator disposed and an electrolyte having lithium ion conductivity, wherein the negative electrode has a negative electrode current collector having a plurality of protrusions on the surface, and the negative electrode current collector. A negative electrode active material layer including a plurality of active material bodies formed, and each of the plurality of active material bodies is disposed on each convex portion of the negative electrode current collector, and silicon or An alloy-based active material containing tin is included, and a porous insulating layer mainly composed of an inorganic oxide is further provided between the positive electrode and the negative electrode.
 本発明のリチウム二次電池は、ケイ素またはスズを含む合金系活物質を負極活物質として用いているので、エネルギー密度が高い。また、負極では、負極活物質を含む複数の活物質体が集電体表面の各凸部上に配置されているので、負極活物質の膨張・収縮に伴う応力を緩和できる。さらに、正極と負極との間に無機酸化物を主体とする多孔質絶縁層を設けているので、負極の体積変化によって正極活物質層に生じるストレスを低減でき、正極活物質の脱落を抑えることができる。従って、正極活物質の脱落による正極容量の低下を抑制できる。 Since the lithium secondary battery of the present invention uses an alloy-based active material containing silicon or tin as a negative electrode active material, the energy density is high. In the negative electrode, since the plurality of active material bodies including the negative electrode active material are disposed on the respective convex portions on the surface of the current collector, the stress accompanying expansion and contraction of the negative electrode active material can be relaxed. Furthermore, since a porous insulating layer mainly composed of an inorganic oxide is provided between the positive electrode and the negative electrode, the stress generated in the positive electrode active material layer due to the volume change of the negative electrode can be reduced, and the positive electrode active material can be prevented from falling off. Can do. Therefore, it is possible to suppress a decrease in the positive electrode capacity due to the falling off of the positive electrode active material.
 このように、本発明によると、負極の劣化だけでなく、負極活物質の体積変化によって引き起こされる正極の劣化も抑制できるので、充放電サイクル特性を向上できる。 Thus, according to the present invention, not only the deterioration of the negative electrode but also the deterioration of the positive electrode caused by the volume change of the negative electrode active material can be suppressed, so that the charge / discharge cycle characteristics can be improved.
本発明による実施形態のリチウム二次電池100における電極群を模式的に示す断面図である。It is sectional drawing which shows typically the electrode group in the lithium secondary battery 100 of embodiment by this invention. (a)および(b)は、柱状構造を有する負極を用いた従来のリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図であり、(a)は充電を行う前(放電時)、(b)は充電時の状態をそれぞれ示している。(A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the conventional lithium secondary battery using the negative electrode which has a columnar structure, (a) is before charging. (During discharging), (b) shows the state during charging. (a)および(b)は、本発明による第1の実施形態の負極を用いたリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図であり、(a)は充電を行う前(放電時)、(b)は充電時の状態をそれぞれ示している。(A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the lithium secondary battery using the negative electrode of 1st Embodiment by this invention, (a) is charge. Before performing (when discharging), (b) shows the state during charging. (a)および(b)は、柱状構造を有しない負極を用いた従来のリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図であり、(a)は充電を行う前(放電時)、(b)は充電時の状態をそれぞれ示している。(A) And (b) is typical sectional drawing for demonstrating the stress concerning a positive electrode in the conventional lithium secondary battery using the negative electrode which does not have a columnar structure, (a) performs charge. The previous (during discharging) and (b) show the state during charging, respectively. (a)~(c)は、それぞれ、柱状構造を有する負極を備えた従来のリチウム二次電池において、充放電によって電解液が減少するメカニズムを説明するための模式的な断面図である。(A)-(c) is typical sectional drawing for demonstrating the mechanism in which electrolyte solution reduces by charging / discharging in the conventional lithium secondary battery provided with the negative electrode which has a columnar structure, respectively. (a)~(c)は、それぞれ、本発明による実施形態のリチウム二次電池100において、多孔質絶縁層15を配置することによって得られる効果を説明するための模式的な断面図である。(A)-(c) is typical sectional drawing for demonstrating the effect acquired by arrange | positioning the porous insulating layer 15 in the lithium secondary battery 100 of embodiment by this invention, respectively. 本発明による第1の実施形態のリチウム二次電池200の一例を示す断面図である。It is sectional drawing which shows an example of the lithium secondary battery 200 of 1st Embodiment by this invention. リチウム二次電池200における負極活物質層に含まれる活物質体を模式的に示す拡大断面図である。3 is an enlarged cross-sectional view schematically showing an active material body included in a negative electrode active material layer in a lithium secondary battery 200. FIG. リチウム二次電池200における負極集電体の一例を模式的に示す斜視図である。3 is a perspective view schematically showing an example of a negative electrode current collector in a lithium secondary battery 200. FIG. リチウム二次電池200における他の負極活物質層に含まれる活物質体を模式的に示す拡大断面図である。4 is an enlarged cross-sectional view schematically showing an active material body included in another negative electrode active material layer in the lithium secondary battery 200. FIG. 電子ビーム式蒸着装置50の構成を模式的に示す断面図である。2 is a cross-sectional view schematically showing a configuration of an electron beam evaporation apparatus 50. FIG. 本発明による第1の実施形態の他のリチウム二次電池を示す断面図である。It is sectional drawing which shows the other lithium secondary battery of 1st Embodiment by this invention. 実施例1~4、6および7のリチウム二次電池における電極群(正極表面に多孔質絶縁層が形成されている)の構成を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration of an electrode group (a porous insulating layer is formed on the surface of a positive electrode) in the lithium secondary batteries of Examples 1 to 4, 6, and 7. 実施例5のリチウム二次電池における電極群(セパレータ表面に多孔質絶縁層が形成されている)の構成を示す模式的な断面図である。6 is a schematic cross-sectional view showing a configuration of an electrode group (a porous insulating layer is formed on a separator surface) in a lithium secondary battery of Example 5. FIG. 比較例1~3のリチウム二次電池における電極群(多孔質絶縁層を有していない)の構成を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing a configuration of an electrode group (having no porous insulating layer) in lithium secondary batteries of Comparative Examples 1 to 3. (a)および(b)は、従来のリチウム二次電池の充放電サイクル特性を説明するための図である。(A) And (b) is a figure for demonstrating the charging / discharging cycling characteristics of the conventional lithium secondary battery.
 本発明者は、柱状構造を有する負極を備えた従来のリチウム二次電池において、充放電サイクル特性をさらに向上させようとして鋭意検討を繰り返した。この結果、充放電の繰り返しによって、負極だけでなく正極も劣化することが分かった。特に、正極については、柱状構造を有していない負極を用いる場合よりも、大きく劣化する場合があることも分かった。 The present inventor repeated diligent studies to further improve the charge / discharge cycle characteristics in a conventional lithium secondary battery including a negative electrode having a columnar structure. As a result, it was found that not only the negative electrode but also the positive electrode deteriorated by repeated charge and discharge. In particular, it has also been found that the positive electrode may be greatly deteriorated as compared with the case where a negative electrode having no columnar structure is used.
 図16(a)および(b)は、従来のリチウム二次電池の充放電サイクル特性を測定した結果を例示する図である。図16(a)において、グラフ71は、負極活物質として炭素(C)を用いたリチウム二次電池(「電池II」とする)の充放電サイクル特性を示し、グラフ72は、負極活物質としてケイ素酸化物(SiOx)を用いたリチウム二次電池(「電池I」とする)の充放電サイクル特性を示す。正極活物質としては何れも、ニッケル酸系正極材料を用いている。また、図16(b)において、グラフ73およびグラフ75は、それぞれ、電池IIにおいて、負極および正極の充放電サイクル特性(充放電サイクルに伴う負極容量および正極容量の変化)を示す。同様に、グラフ74およびグラフ76は、それぞれ、電池Iにおいて、負極および正極の充放電サイクル特性を示す。 16 (a) and 16 (b) are diagrams illustrating results of measuring charge / discharge cycle characteristics of a conventional lithium secondary battery. In FIG. 16A, a graph 71 shows charge / discharge cycle characteristics of a lithium secondary battery (referred to as “battery II”) using carbon (C) as a negative electrode active material, and a graph 72 shows a negative electrode active material. The charge / discharge cycle characteristics of a lithium secondary battery (referred to as “battery I”) using silicon oxide (SiOx) are shown. As the positive electrode active material, a nickel acid positive electrode material is used. In FIG. 16B, graph 73 and graph 75 show the charge / discharge cycle characteristics of the negative electrode and the positive electrode (changes in negative electrode capacity and positive electrode capacity accompanying the charge / discharge cycle), respectively, in the battery II. Similarly, graph 74 and graph 76 show the charge / discharge cycle characteristics of the negative electrode and the positive electrode in Battery I, respectively.
 図16(a)および(b)からわかるように、負極活物質として、リチウムの吸蔵・放出に伴う体積変化の大きいケイ素酸化物を用いた電池Iでは、炭素を用いた電池IIよりも、電池の充放電サイクル特性が低下している(グラフ71、72)。また、電池Iでは、充放電サイクルの繰り返しに伴い、負極の劣化に加えて、正極も劣化していることがわかる(グラフ74、76)。電池Iの負極の劣化は、電池IIの負極の劣化よりも大きい。これは、電池Iの負極は、ケイ素酸化物の体積変化に起因してより劣化しやすいからと考えられる。また、電池Iの正極の劣化も、電池IIの正極の劣化よりも大きいことが分かる。 As can be seen from FIGS. 16 (a) and 16 (b), the battery I using silicon oxide having a large volume change associated with insertion and extraction of lithium as the negative electrode active material is more effective than the battery II using carbon. The charge / discharge cycle characteristics of the graph are degraded (graphs 71 and 72). In addition, in Battery I, it can be seen that the positive electrode is deteriorated in addition to the negative electrode as the charge / discharge cycle is repeated (graphs 74 and 76). The deterioration of the negative electrode of the battery I is larger than the deterioration of the negative electrode of the battery II. This is considered because the negative electrode of the battery I is more easily deteriorated due to the volume change of the silicon oxide. Moreover, it turns out that the deterioration of the positive electrode of the battery I is larger than the deterioration of the positive electrode of the battery II.
 このように、ケイ素酸化物を用いた電池Iでは、炭素を用いた電池IIよりも、負極の劣化が大きいだけでなく、正極の劣化も大きい。このため、充放電サイクル特性に伴い、負極容量のみでなく正極容量も低下し、その結果、電池容量が低下すると考えられる。 Thus, in the battery I using silicon oxide, not only the deterioration of the negative electrode but also the deterioration of the positive electrode is larger than in the battery II using carbon. For this reason, it is considered that not only the negative electrode capacity but also the positive electrode capacity is reduced with the charge / discharge cycle characteristics, and as a result, the battery capacity is reduced.
 本発明者が検討したところ、電池Iの正極の劣化の原因は次のように考えられる。ケイ素酸化物などの高容量の負極活物質を用いると、充放電に伴い負極活物質は大きく膨張・収縮する。特に負極が柱状構造を有する場合、各活物質体の体積変化はさらに大きくなる。この活物体の体積変化が正極活物質層に局所的なストレスを与え、その結果、正極活物質層が部分的に脱落しやすくなる。その上、正極活物質は、一般に、負極活物質よりも強度の小さい材料によって構成されていることが多く、脱落や変形しやすい。正極活物質層が脱落すると、正極容量が低下するので、電池容量の低下の要因となる。 As a result of examination by the present inventors, the cause of the deterioration of the positive electrode of the battery I is considered as follows. When a high-capacity negative electrode active material such as silicon oxide is used, the negative electrode active material greatly expands and contracts with charge and discharge. In particular, when the negative electrode has a columnar structure, the volume change of each active material body is further increased. This volume change of the active object gives local stress to the positive electrode active material layer, and as a result, the positive electrode active material layer is likely to fall off partially. In addition, the positive electrode active material is generally composed of a material having a lower strength than the negative electrode active material, and is easily dropped or deformed. When the positive electrode active material layer falls off, the positive electrode capacity decreases, which causes a decrease in battery capacity.
 なお、負極が柱状構造を有していない場合、負極の劣化(負極容量の低下)が大きいために、電池の充放電サイクル特性の低下は主に負極容量の低下によるものであり、正極の劣化はほとんど問題にならない。これに対し、負極が柱状構造を有していると、負極の劣化がある程度抑えられる上に、負極の体積変化の増加に応じて正極容量がより大きく低下する。このため、正極の劣化が顕在化し、電池の充放電サイクル特性を低下させる主な要因の1つになる可能性が高くなる。従って、電池の充放電サイクル特性を向上させるためには、正極容量の低下を抑制することがより重要になる。 In addition, when the negative electrode does not have a columnar structure, the deterioration of the negative electrode capacity (decrease in the negative electrode capacity) is large, so the decrease in charge / discharge cycle characteristics of the battery is mainly due to the decrease in the negative electrode capacity. Is hardly a problem. On the other hand, when the negative electrode has a columnar structure, the deterioration of the negative electrode is suppressed to some extent, and the positive electrode capacity is greatly reduced as the volume change of the negative electrode increases. For this reason, the deterioration of the positive electrode becomes obvious, and the possibility of becoming one of the main factors that deteriorate the charge / discharge cycle characteristics of the battery increases. Therefore, in order to improve the charge / discharge cycle characteristics of the battery, it is more important to suppress the decrease in the positive electrode capacity.
 本発明者は、上記知見に基づいて、正極の劣化を抑制する電池構造について検討を重ねた。その結果、正極と負極との間に無機酸化物を主体とする多孔質絶縁層を設けることにより、負極の体積変化によって正極活物質層にかかるストレス(応力)を低減できることを見出し、本願発明に至った。 Based on the above findings, the present inventor has repeatedly studied a battery structure that suppresses deterioration of the positive electrode. As a result, it has been found that by providing a porous insulating layer mainly composed of an inorganic oxide between the positive electrode and the negative electrode, the stress applied to the positive electrode active material layer due to the volume change of the negative electrode can be reduced. It came.
 以下、図面を参照しながら、本発明によるリチウム二次電池の実施形態をより具体的に説明する。 Hereinafter, embodiments of the lithium secondary battery according to the present invention will be described more specifically with reference to the drawings.
 (第1の実施形態)
 本発明によるリチウム二次電池の第1の実施形態を説明する。図1は、本実施形態のリチウム二次電池100の模式的な断面図である。
(First embodiment)
A first embodiment of a lithium secondary battery according to the present invention will be described. FIG. 1 is a schematic cross-sectional view of a lithium secondary battery 100 of the present embodiment.
 本実施形態のリチウム二次電池100は、負極20と、正極30と、負極20と正極30との間に配置されたセパレータ13と、多孔質絶縁層15と、リチウムイオン伝導性を有する電解液(図示せず)とを備えている。負極20は、表面に複数の凸部22を有する負極集電体21と、負極集電体21の表面に形成された負極活物質層23とを有している。正極30は、正極集電体31と、正極集電体31の表面に形成された正極活物質層33とを有している。正極30および負極20は、負極活物質層23と正極活物質層33とがセパレータ13を介して互いに対向するように配置されている。 The lithium secondary battery 100 of this embodiment includes a negative electrode 20, a positive electrode 30, a separator 13 disposed between the negative electrode 20 and the positive electrode 30, a porous insulating layer 15, and an electrolytic solution having lithium ion conductivity. (Not shown). The negative electrode 20 includes a negative electrode current collector 21 having a plurality of protrusions 22 on the surface, and a negative electrode active material layer 23 formed on the surface of the negative electrode current collector 21. The positive electrode 30 includes a positive electrode current collector 31 and a positive electrode active material layer 33 formed on the surface of the positive electrode current collector 31. The positive electrode 30 and the negative electrode 20 are disposed so that the negative electrode active material layer 23 and the positive electrode active material layer 33 are opposed to each other with the separator 13 interposed therebetween.
 多孔質絶縁層15は、正極活物質層33と負極活物質層23との間に設けられている。多孔質絶縁層15は、無機酸化物を主体として含んでおり、リチウム二次電池の通常使用時に、リチウムイオン透過性および絶縁性を有する。 The porous insulating layer 15 is provided between the positive electrode active material layer 33 and the negative electrode active material layer 23. The porous insulating layer 15 contains an inorganic oxide as a main component, and has lithium ion permeability and insulating properties during normal use of a lithium secondary battery.
 負極活物質層23は、負極集電体21の凸部22上にそれぞれ配置された複数の柱状の活物質体24を有している。活物質体24は、負極活物質としてケイ素またはスズを含む合金系活物質を含んでいる。活物質体24は、放電時には互いに間隔(空間26)を空けて配置されていることが好ましい。なお、充電によって各活物質体24が膨張すると、活物質体24間の空間26が小さくなる。この結果、隣接する活物質体24同士が接触したり、空間26がほとんどなくなって負極活物質層23が連続膜となる場合もある。 The negative electrode active material layer 23 has a plurality of columnar active material bodies 24 arranged on the convex portions 22 of the negative electrode current collector 21. The active material body 24 includes an alloy-based active material containing silicon or tin as a negative electrode active material. It is preferable that the active material bodies 24 are arranged at intervals (spaces 26) from each other during discharge. In addition, when each active material body 24 expand | swells by charge, the space 26 between the active material bodies 24 will become small. As a result, the adjacent active material bodies 24 may come into contact with each other, or the space 26 may be almost lost, and the negative electrode active material layer 23 may become a continuous film.
 <多孔質絶縁層15による効果>
 ・多孔質絶縁層15の応力緩衝効果
 本実施形態における多孔質絶縁層15は、無機酸化物を主体としているので十分に硬く、負極活物質の体積変化によって正極活物質層33にかかる応力を低減する緩衝層として機能する。従って、本実施形態によると、負極の体積変化による正極の劣化を抑制できる。
<Effects of porous insulating layer 15>
-Stress buffering effect of porous insulating layer 15 The porous insulating layer 15 in this embodiment is sufficiently hard because it is mainly composed of an inorganic oxide, and reduces the stress applied to the positive electrode active material layer 33 by the volume change of the negative electrode active material. Functions as a buffer layer. Therefore, according to this embodiment, it is possible to suppress the deterioration of the positive electrode due to the volume change of the negative electrode.
 以下、図2~図4を参照しながら、多孔質絶縁層15を配置することによる効果をより詳しく説明する。 Hereinafter, the effects of disposing the porous insulating layer 15 will be described in more detail with reference to FIGS.
 図2は、柱状構造を有する負極を用いた従来のリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図である。また、図3は、本実施形態のリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図である。各図の(a)は充電を行う前(放電時)、各図の(b)は充電時の状態をそれぞれ示している。簡単のため、図1と同様の構成要素には同じ参照符号を付し、説明を省略する。 FIG. 2 is a schematic cross-sectional view for explaining the stress applied to the positive electrode in a conventional lithium secondary battery using a negative electrode having a columnar structure. FIG. 3 is a schematic cross-sectional view for explaining the stress applied to the positive electrode in the lithium secondary battery of this embodiment. (A) in each figure shows a state before charging (during discharging), and (b) in each figure shows a state during charging. For simplicity, the same components as those in FIG.
 図2(a)および(b)からわかるように、柱状構造を有する従来のリチウム二次電池では、充電を開始すると、各活物質体24はリチウムを吸蔵して膨張し、隣接する活物質体24同士が接触する。また、各活物質体24は厚さ方向にも膨張し、セパレータ13に機械的な応力を加える。このような活物質体24の膨張応力は、セパレータ13を介して正極活物質層33に伝わる。この結果、正極活物質層33のうち活物質体24の上方に位置する部分33pが押圧されて、応力(機械的ストレス)s1が生じる。このように、正極活物質層33に部分的に大きな応力s1がかかるために、正極活物質の脱落が生じやすくなる。 As can be seen from FIGS. 2A and 2B, in the conventional lithium secondary battery having a columnar structure, when charging is started, each active material body 24 absorbs lithium and expands, and adjacent active material bodies. 24 come into contact with each other. Each active material body 24 also expands in the thickness direction and applies mechanical stress to the separator 13. Such expansion stress of the active material body 24 is transmitted to the positive electrode active material layer 33 through the separator 13. As a result, the portion 33p located above the active material body 24 in the positive electrode active material layer 33 is pressed, and stress (mechanical stress) s1 is generated. As described above, since the large stress s1 is partially applied to the positive electrode active material layer 33, the positive electrode active material is likely to fall off.
 これに対し、本実施形態では、図3(a)および(b)に示すように、正極30とセパレータ13との間に多孔質絶縁層15が配置されている。充電時に各活物質体24が膨張すると、その膨張応力は、セパレータ13を介して多孔質絶縁層15に伝わる。多孔質絶縁層15は無機酸化物を主体としており十分に硬いので、負極20側からの膨張応力は、多孔質絶縁層15によって分散される。この結果、正極活物質層33に伝わる応力s2は、従来のリチウム二次電池で正極活物質層33に伝わる応力s1よりも小さくなる。従って、負極20の体積変化に起因する正極活物質の脱落を従来よりも抑制でき、正極活物質の脱落による正極容量の低下を抑えることができる。 In contrast, in the present embodiment, as shown in FIGS. 3A and 3B, the porous insulating layer 15 is disposed between the positive electrode 30 and the separator 13. When each active material body 24 expands during charging, the expansion stress is transmitted to the porous insulating layer 15 via the separator 13. Since the porous insulating layer 15 is mainly composed of an inorganic oxide and is sufficiently hard, the expansion stress from the negative electrode 20 side is dispersed by the porous insulating layer 15. As a result, the stress s2 transmitted to the positive electrode active material layer 33 is smaller than the stress s1 transmitted to the positive electrode active material layer 33 in the conventional lithium secondary battery. Accordingly, it is possible to suppress the loss of the positive electrode active material due to the volume change of the negative electrode 20 as compared with the conventional case, and it is possible to suppress the decrease in the positive electrode capacity due to the drop of the positive electrode active material.
 このように、本実施形態によると、多孔質絶縁層15を設けることにより、負極活物質の体積変化によって正極活物質層33にかかる応力を低減できる。従って、充放電の繰り返しに起因する正極30の劣化を従来よりも抑制できるので、充放電サイクル特性を向上できる。 As described above, according to the present embodiment, by providing the porous insulating layer 15, the stress applied to the positive electrode active material layer 33 due to the volume change of the negative electrode active material can be reduced. Therefore, since the deterioration of the positive electrode 30 due to repeated charge / discharge can be suppressed as compared with the conventional case, the charge / discharge cycle characteristics can be improved.
 なお、参考のため、柱状構造を有していない負極を用いた従来のリチウム二次電池において、正極にかかる応力を説明するための模式的な断面図を図4(a)および(b)に示す。 For reference, FIGS. 4A and 4B are schematic cross-sectional views for explaining the stress applied to the positive electrode in a conventional lithium secondary battery using a negative electrode having no columnar structure. Show.
 図4(a)および(b)からわかるように、柱状構造を有していない従来のリチウム二次電池(例えば特許文献1など)では、充電を開始すると、負極121上に形成された負極活物質層123は、リチウムを吸蔵して厚さ方向に膨張する。ケイ素やスズを含む負極活物質を用いていると、負極活物質層123は大きく膨張し、その機械的なストレスが正極活物質層33にかかる。この機械的なストレス(応力)は、図2および図3に示す応力s1、s2とは異なり、正極活物質層33の表面全体に略均一にかかる。正極活物質層33は部分的に押圧(不均一に押圧)されないので、正極活物質の脱落は起こりにくいと考えられる。また、柱状構造を有していないと、負極活物質の膨張による負極20自体の劣化が大きいので、正極30の劣化という問題が顕在化しない。一方、負極活物質として炭素系材料を用いる場合には、負極活物質層123の膨張率が小さいため、負極活物質の膨張応力による負極20や正極30の劣化という問題自体が生じない。このことから、負極活物質の体積変化による正極30の劣化は、ケイ素またはスズを含む負極活物質を含み、かつ、柱状構造を有する負極20を備えたリチウム二次電池に特有の問題であることが分かる。 As can be seen from FIGS. 4A and 4B, in a conventional lithium secondary battery having no columnar structure (for example, Patent Document 1), the negative electrode active formed on the negative electrode 121 is started when charging is started. The material layer 123 absorbs lithium and expands in the thickness direction. When a negative electrode active material containing silicon or tin is used, the negative electrode active material layer 123 expands greatly, and the mechanical stress is applied to the positive electrode active material layer 33. This mechanical stress (stress) is substantially uniformly applied to the entire surface of the positive electrode active material layer 33, unlike the stresses s1 and s2 shown in FIGS. Since the positive electrode active material layer 33 is not partially pressed (unevenly pressed), it is considered that the positive electrode active material does not easily fall off. Further, if the columnar structure is not provided, the negative electrode 20 itself is largely deteriorated due to the expansion of the negative electrode active material, so that the problem of deterioration of the positive electrode 30 does not become obvious. On the other hand, when a carbon-based material is used as the negative electrode active material, the negative electrode active material layer 123 has a small expansion coefficient, so that the problem of deterioration of the negative electrode 20 and the positive electrode 30 due to the expansion stress of the negative electrode active material does not occur. From this, the deterioration of the positive electrode 30 due to the volume change of the negative electrode active material is a problem peculiar to the lithium secondary battery including the negative electrode 20 including the negative electrode active material containing silicon or tin and having the columnar structure. I understand.
 多孔質絶縁層15は、セパレータ13よりも硬いことが好ましい。これにより、緩衝層としての機能をより効果的に発揮できる。 The porous insulating layer 15 is preferably harder than the separator 13. Thereby, the function as a buffer layer can be exhibited more effectively.
 本実施形態では、多孔質絶縁層15を正極活物質層33とセパレータ13との間に配置しているが、多孔質絶縁層15の位置は図示する位置に限定されない。多孔質絶縁層15が正極活物質層33と負極活物質層23との間に配置されていれば、上記効果を得ることができる。また、多孔質絶縁層15は、負極集電体21に平行な面内において、正極活物質層33と負極活物質層23との間に位置する部分の少なくとも一部に形成されていればよい。ただし、上記部分の全体に亘って形成されていると、正極活物質層33からの正極活物質の脱落をより効果的に抑制できるので好ましい。 In the present embodiment, the porous insulating layer 15 is disposed between the positive electrode active material layer 33 and the separator 13, but the position of the porous insulating layer 15 is not limited to the illustrated position. If the porous insulating layer 15 is disposed between the positive electrode active material layer 33 and the negative electrode active material layer 23, the above effect can be obtained. In addition, the porous insulating layer 15 may be formed on at least a part of a portion located between the positive electrode active material layer 33 and the negative electrode active material layer 23 in a plane parallel to the negative electrode current collector 21. . However, it is preferable to be formed over the entire portion because dropping of the positive electrode active material from the positive electrode active material layer 33 can be more effectively suppressed.
 多孔質絶縁層15の厚さは1μm以上であることが好ましい。厚さが1μm以上であれば、負極側からの応力をより確実に緩和できるので、充放電サイクル寿命をより効果的に向上できる。一方、多孔質絶縁層15の厚さは10μm以下であることが好ましい。厚さが10μmを超えると、セパレータ13と多孔質絶縁層15との合計厚さが増大するので、容量を低下させるおそれがある。この場合、高い容量を維持するために、セパレータ13を多孔質絶縁層15の厚さの分だけ薄くし、セパレータ13と多孔質絶縁層15との合計厚さの増大を抑えることもできる。しかしながら、多孔質絶縁層15が厚いと(例えば10μm超)、セパレータ13の厚さを十分に確保できなくなり、絶縁性が維持できなくなるおそれがある。 The thickness of the porous insulating layer 15 is preferably 1 μm or more. If thickness is 1 micrometer or more, since the stress from a negative electrode side can be relieve | moderated more reliably, charging / discharging cycle life can be improved more effectively. On the other hand, the thickness of the porous insulating layer 15 is preferably 10 μm or less. When the thickness exceeds 10 μm, the total thickness of the separator 13 and the porous insulating layer 15 increases, and thus the capacity may be reduced. In this case, in order to maintain a high capacity, the separator 13 can be made thinner by the thickness of the porous insulating layer 15 to suppress an increase in the total thickness of the separator 13 and the porous insulating layer 15. However, if the porous insulating layer 15 is thick (for example, more than 10 μm), the thickness of the separator 13 cannot be sufficiently secured, and there is a possibility that the insulating property cannot be maintained.
 負極活物質層23は、集電体21の各凸部22上に形成された活物質体24から構成されていればよい。ただし、図示するように、放電時には、隣接する活物質体24の間に空間が形成されることが好ましい。これにより、各活物質体24がリチウムの吸蔵によって膨張する空間を確保できるので、充電の際に、活物質体24の膨張応力による負極活物質の剥離や負極20の変形を抑制できる。また、充電時、各活物質体24が横方向に膨張する分だけ厚さ方向への膨張を小さくできるので、正極活物質層33にかかるストレスを低減できる。 The negative electrode active material layer 23 should just be comprised from the active material body 24 formed on each convex part 22 of the electrical power collector 21. FIG. However, as shown in the figure, it is preferable that a space is formed between the adjacent active material bodies 24 during discharge. Thereby, since the space which each active material body 24 expand | swells by occlusion of lithium can be ensured, the peeling of the negative electrode active material and the deformation | transformation of the negative electrode 20 by the expansion stress of the active material body 24 can be suppressed at the time of charge. Further, since the expansion in the thickness direction can be reduced by the amount that each active material body 24 expands in the lateral direction during charging, the stress applied to the positive electrode active material layer 33 can be reduced.
 多孔質絶縁層15を配置することによる応力の緩衝効果は、活物質体24の充放電による体積変化が大きいほど顕著である。本明細書では、活物質体24の体積変化は、(充電時の活物質体の体積-放電時の活物質体の体積)/放電時の活物質体の体積(%)を意味する。活物質体24の体積変化は例えば200%以上であることが好ましい。これにより、高容量を確保しつつ、体積変化によって生じる正極30の劣化を抑制できるので、充放電サイクル特性をより効果的に改善できる。 The buffering effect of stress by disposing the porous insulating layer 15 becomes more prominent as the volume change due to charging / discharging of the active material body 24 becomes larger. In the present specification, the volume change of the active material body 24 means (volume of active material body during charging−volume of active material body during discharge) / volume (%) of active material body during discharge. The volume change of the active material body 24 is preferably 200% or more, for example. Thereby, since the deterioration of the positive electrode 30 caused by the volume change can be suppressed while securing a high capacity, the charge / discharge cycle characteristics can be improved more effectively.
 なお、多孔質絶縁層15は、セパレータ(樹脂セパレータ)13より劣るものの絶縁性が高く、かつ、イオン透過性に優れているので、セパレータとしての機能も有する。従って、多孔質絶縁層15を正極30と負極20との間に配置しても、電解液の移動を妨げることがないので、電池性能を維持しつつ、上述したような効果を得ることができる。 Although the porous insulating layer 15 is inferior to the separator (resin separator) 13, it has a high insulating property and an excellent ion permeability, and thus has a function as a separator. Therefore, even if the porous insulating layer 15 is disposed between the positive electrode 30 and the negative electrode 20, the movement of the electrolytic solution is not hindered, so that the effects as described above can be obtained while maintaining the battery performance. .
 ・多孔質絶縁層15によるセパレータ13の酸化防止効果
 多孔質絶縁層15がセパレータ(樹脂セパレータ)13の正極側に配置されていると、無機酸化物は化学的安定性が高いことから、セパレータ13の正極側の表面が酸化されることを防止できる。従って、セパレータ13の表面変質に起因して抵抗が高くなることを抑制できる。
Antioxidation effect of the separator 13 by the porous insulating layer 15 When the porous insulating layer 15 is disposed on the positive electrode side of the separator (resin separator) 13, the inorganic oxide has high chemical stability. It is possible to prevent the surface of the positive electrode side from being oxidized. Accordingly, it is possible to suppress an increase in resistance due to the surface alteration of the separator 13.
 ・多孔質絶縁層15の電解液保持効果
 多孔質絶縁層15の表面は、正極30の表面(ここでは正極活物質層33の表面)よりも、電解液に対して高い濡れ性を有していることが好ましい。これにより、電解液を保持し、かつ浸透させる機能を有する。従って、正極側の電解液の減少に伴う容量低下を抑制できる。
Electrolytic solution retention effect of porous insulating layer 15 The surface of the porous insulating layer 15 has higher wettability with respect to the electrolytic solution than the surface of the positive electrode 30 (here, the surface of the positive electrode active material layer 33). Preferably it is. Thereby, it has the function to hold | maintain and osmose | permeate electrolyte solution. Therefore, the capacity | capacitance fall accompanying the reduction | decrease of the electrolyte solution on the positive electrode side can be suppressed.
 以下、図面を参照しながら、従来のリチウム二次電池における課題とともに、多孔質絶縁層15によって電解液の減少を抑制できる理由を詳しく説明する。 Hereinafter, the reason why the porous insulating layer 15 can suppress the decrease in the electrolyte along with the problems in the conventional lithium secondary battery will be described in detail with reference to the drawings.
 本発明者は、従来のリチウム二次電池では、充放電の繰り返しによって、正極側の電解液が徐々に減少して容量が低下し、充放電サイクル特性の低下を引き起こすという課題があることを見出した。これは、充放電を繰り返すと、正極側の電解液が徐々に減少する現象が生じているからと推定される。この現象は、柱状構造を有する負極を用いたリチウム二次電池に特に顕著に見られ、充放電サイクル特性のさらなる向上を困難にする要因の1つであると考えられる。 The present inventor has found that the conventional lithium secondary battery has a problem that the electrolyte solution on the positive electrode side gradually decreases due to repeated charge and discharge, resulting in a decrease in capacity and a decrease in charge / discharge cycle characteristics. It was. This is presumably because a phenomenon occurs in which the electrolyte solution on the positive electrode side gradually decreases when charging and discharging are repeated. This phenomenon is particularly noticeable in a lithium secondary battery using a negative electrode having a columnar structure, and is considered to be one of the factors that make it difficult to further improve the charge / discharge cycle characteristics.
 以下、図面を参照しながら、従来のリチウム二次電池において、充放電の繰り返しに伴って正極側の電解液が減少する理由を説明する。 Hereinafter, the reason why the electrolyte solution on the positive electrode side decreases with repeated charge and discharge in the conventional lithium secondary battery will be described with reference to the drawings.
 図5(a)は、充電を行う前のリチウム二次電池の状態を示す断面図である。リチウム二次電池は、負極20と、セパレータ13と、セパレータ13を介して負極20と対向して配置された正極30とを備えている。負極20は、集電体21と、集電体21の表面に形成された負極活物質層23とを有している。負極活物質層23は、複数の柱状の活物質体(活物質体)24から構成されている。また、正極30と負極20との間には電解液(図示せず)が存在している。 FIG. 5A is a cross-sectional view showing a state of the lithium secondary battery before charging. The lithium secondary battery includes a negative electrode 20, a separator 13, and a positive electrode 30 disposed to face the negative electrode 20 with the separator 13 interposed therebetween. The negative electrode 20 includes a current collector 21 and a negative electrode active material layer 23 formed on the surface of the current collector 21. The negative electrode active material layer 23 is composed of a plurality of columnar active material bodies (active material bodies) 24. In addition, an electrolyte solution (not shown) exists between the positive electrode 30 and the negative electrode 20.
 図5(a)に示すように、充電前の状態では、複数の活物質体24は間隔を空けて配置されている。このため、電解液は、活物質体24の間の空間26に入り込んでいる。 As shown in FIG. 5A, in the state before charging, the plurality of active material bodies 24 are arranged at intervals. For this reason, the electrolytic solution enters the space 26 between the active material bodies 24.
 この後、充電を開始すると、図5(b)に示すように、各活物質体24はリチウムを吸蔵して膨張し、隣接する活物質体24同士が接触する。この結果、活物質体24間の空間はほとんどなくなり、負極活物質層23は連続膜のようになる。各活物質体24は、活物質体24の幅方向のみでなく高さ方向にも膨張するので、負極活物質層23の厚さも大きくなる。このため、活物質体24の空間26に入り込んでいた電解液の一部は系外に排出される(矢印45)。 Thereafter, when charging is started, as shown in FIG. 5B, each active material member 24 expands by absorbing lithium, and adjacent active material members 24 come into contact with each other. As a result, there is almost no space between the active material bodies 24, and the negative electrode active material layer 23 becomes a continuous film. Since each active material body 24 expands not only in the width direction of the active material body 24 but also in the height direction, the thickness of the negative electrode active material layer 23 also increases. For this reason, a part of the electrolytic solution that has entered the space 26 of the active material body 24 is discharged out of the system (arrow 45).
 本明細書では、正極活物質層33と負極活物質層23とによって挟まれた領域を「系内」、リチウム二次電池内部において、上記領域以外の領域を「系外」と呼ぶ。 In this specification, a region sandwiched between the positive electrode active material layer 33 and the negative electrode active material layer 23 is referred to as “inside system”, and a region other than the above region in the lithium secondary battery is referred to as “outside system”.
 この後、再び放電を開始すると、図5(c)に示すように、各活物質体24が収縮し、隣接する活物質体24間に空間26が形成される。このとき、負極側の電解液の量は、前回の放電時(図5(a))よりも減少している。充電時に系外に排出された電解液は、放電を行っても系内に戻りにくいからである。また、負極側の電解液は、負極20の副反応によって消費されるので、さらに減少する。 Thereafter, when the discharge is started again, as shown in FIG. 5C, each active material body 24 contracts, and a space 26 is formed between the adjacent active material bodies 24. At this time, the amount of the electrolyte solution on the negative electrode side is smaller than that during the previous discharge (FIG. 5A). This is because the electrolyte discharged outside the system at the time of charging is difficult to return to the system even after discharging. Moreover, since the electrolyte solution on the negative electrode side is consumed by the side reaction of the negative electrode 20, it further decreases.
 なお、負極活物質の膨張・収縮によって負極活物質層に「割れ」が生じると、割れた部分に新生面が露出する。上述した「副反応」は、割れによって露出した新生面で電解液が還元分解する反応を含む。また、負極活物質自体と電解液とが直接反応し、負極活物質に変質(酸化など)が生じる反応をも含むものとする。 In addition, when a “crack” occurs in the negative electrode active material layer due to expansion / contraction of the negative electrode active material, a new surface is exposed at the cracked portion. The above-mentioned “side reaction” includes a reaction in which the electrolytic solution undergoes reductive decomposition on a new surface exposed by cracking. In addition, the negative electrode active material itself and the electrolytic solution directly react with each other to include a reaction in which the negative electrode active material is altered (oxidation or the like).
 負極側の電解液の量が減少した状態で空間26が形成されると、矢印47に示すように、正極側の電解液の一部がセパレータ13を介して負極側へ移動する。これは、負極20の表面(すなわち負極活物質層23の表面)の濡れ性が正極30の表面(正極活物質層の表面)の濡れ性よりも高いからと考えられる。 When the space 26 is formed in a state where the amount of the electrolyte solution on the negative electrode side is reduced, a part of the electrolyte solution on the positive electrode side moves to the negative electrode side via the separator 13 as indicated by an arrow 47. This is presumably because the wettability of the surface of the negative electrode 20 (namely, the surface of the negative electrode active material layer 23) is higher than the wettability of the surface of the positive electrode 30 (the surface of the positive electrode active material layer).
 この後、さらに充放電を繰り返すと、系内の電解液の量、特に正極側の電解液が徐々に減少する。正極側の電解液が減少すると、正極30内で反応が不均一に生じるようになり、劣化が進行する。 Thereafter, when charging and discharging are further repeated, the amount of the electrolytic solution in the system, particularly the electrolytic solution on the positive electrode side, gradually decreases. When the electrolyte solution on the positive electrode side decreases, the reaction occurs non-uniformly in the positive electrode 30 and the deterioration proceeds.
 このように、充放電を繰り返すにつれて、負極20が劣化し、負極20の劣化によって正極の劣化が加速される。このため、充放電サイクル特性をさらに高めることは困難である。 Thus, as charging / discharging is repeated, the negative electrode 20 deteriorates, and the deterioration of the positive electrode is accelerated by the deterioration of the negative electrode 20. For this reason, it is difficult to further improve the charge / discharge cycle characteristics.
 これに対し、本実施形態では、正極30と負極20との間に濡れ性の高い多孔質絶縁層15を配置するので、電解液は正極30から負極20へ移動しにくくなり、その結果、正極側の電解液の減少を抑制できる。 On the other hand, in this embodiment, since the porous insulating layer 15 having high wettability is disposed between the positive electrode 30 and the negative electrode 20, the electrolytic solution is difficult to move from the positive electrode 30 to the negative electrode 20, and as a result, the positive electrode The decrease of the electrolyte solution on the side can be suppressed.
 図6(a)~(c)は、本発明によるある実施形態のリチウム二次電池を示す模式的な断面図であり、図6(a)は充電を行う前(放電時)、図6(b)は充電時、図6(c)は、図6(b)に示す充電を行った後、再び放電を行った状態をそれぞれ示している。図6では、負極集電体21の表面の凸部を省略している。 6A to 6C are schematic cross-sectional views showing a lithium secondary battery according to an embodiment of the present invention. FIG. 6A shows a state before charging (during discharging), and FIG. FIG. 6 (c) shows a state where the battery is discharged again after being charged as shown in FIG. 6 (b). In FIG. 6, convex portions on the surface of the negative electrode current collector 21 are omitted.
 図6(a)に示すように、充電を行う前の状態では、図5(a)に示す従来のリチウム二次電池と同様に、負極20では、活物質体24の間の空間26に電解液が入り込んでいる。 As shown in FIG. 6A, in the state before charging, in the negative electrode 20, the space 26 between the active material bodies 24 is electrolyzed in the same manner as the conventional lithium secondary battery shown in FIG. Liquid has entered.
 この後、充電を開始すると、図6(b)に示すように、各活物質体24はリチウムを吸蔵して膨張する。この結果、負極活物質層23では、隣接する活物質体24同士が接触する。また、負極活物質層23の厚さも増大する。充電前の負極活物質層23の厚さをtとすると、充電により負極活物質層23の厚さはt+Δtとなる。このとき、活物質体24の空間26に入り込んでいた電解液の一部は、矢印41に示すように、系外に流出する。このため、負極側の電解液は、系外に流出した分だけ減少する。 Thereafter, when charging is started, as shown in FIG. 6B, each active material member 24 absorbs lithium and expands. As a result, in the negative electrode active material layer 23, adjacent active material bodies 24 are in contact with each other. Moreover, the thickness of the negative electrode active material layer 23 also increases. When the thickness of the negative electrode active material layer 23 before charging is t, the thickness of the negative electrode active material layer 23 is t + Δt by charging. At this time, a part of the electrolytic solution that has entered the space 26 of the active material body 24 flows out of the system as indicated by an arrow 41. For this reason, the electrolyte solution on the negative electrode side decreases by the amount that flows out of the system.
 この後、図6(c)に示すように、負極側の電解液が不足した状態で次の放電が開始され、活物質体24間に再び空間26が形成される。本実施形態では、正極30と負極20との間に、正極30の表面よりも濡れ性の高い表面を有する多孔質絶縁層15が配置されている。このため、負極側の電解液が減少した状態で空間26が形成されても、正極側の電解液が多孔質絶縁層15によって保持され、負極側へ移動し難い。従って、従来のリチウム二次電池(図5(b))と比べて、正極側の電解液の減少を抑制することができる。また、本実施形態では、正極側からの電解液の移動が抑制されているので、矢印43で示すように、系外に流出した電解液の一部が活物質体24の空間26に戻され易くなる。 Thereafter, as shown in FIG. 6C, the next discharge is started in a state where the electrolyte solution on the negative electrode side is insufficient, and a space 26 is formed again between the active material bodies 24. In the present embodiment, the porous insulating layer 15 having a surface with higher wettability than the surface of the positive electrode 30 is disposed between the positive electrode 30 and the negative electrode 20. For this reason, even if the space 26 is formed in a state where the electrolyte solution on the negative electrode side is reduced, the electrolyte solution on the positive electrode side is held by the porous insulating layer 15 and hardly moves to the negative electrode side. Accordingly, it is possible to suppress the decrease in the electrolyte solution on the positive electrode side as compared with the conventional lithium secondary battery (FIG. 5B). In this embodiment, since the movement of the electrolytic solution from the positive electrode side is suppressed, a part of the electrolytic solution flowing out of the system is returned to the space 26 of the active material body 24 as indicated by an arrow 43. It becomes easy.
 このように、本実施形態によると、多孔質絶縁層15を設けることにより、正極側から負極側への電解液の移動を抑制できるので、充放電に伴う正極側の電解液の減少を抑えることができる。従って、充放電の繰り返しに起因する正極の劣化を従来よりも抑制できる。また、充電の際に系外へ流出した電解液の一部が、系内に戻され易くなるので、系内の電解液の量の減少も抑制される。従って、従来よりもさらに充放電サイクル特性を向上できる。 As described above, according to the present embodiment, by providing the porous insulating layer 15, it is possible to suppress the movement of the electrolyte solution from the positive electrode side to the negative electrode side, thereby suppressing the decrease in the electrolyte solution on the positive electrode side due to charge / discharge. Can do. Therefore, the deterioration of the positive electrode due to repeated charge / discharge can be suppressed more than before. In addition, since a part of the electrolytic solution that flows out of the system during charging is easily returned to the system, a decrease in the amount of the electrolytic solution in the system is also suppressed. Therefore, the charge / discharge cycle characteristics can be further improved as compared with the prior art.
 多孔質絶縁層15は、セパレータ13よりも高い多孔度(空孔率)を有することが好ましい。図5に示す従来のリチウム二次電池におけるセパレータ13の厚さT’と、本実施形態におけるセパレータ13および多孔質絶縁層15の合計厚さTとが等しいとすると、多孔質絶縁層15の空孔率をセパレータ13の空孔率よりも高くすることにより、充電時に系外に流出する電解液の量を低減できる。従って、系内の電解液の減少をより効果的に抑制できる。 The porous insulating layer 15 preferably has a higher porosity (porosity) than the separator 13. Assuming that the thickness T ′ of the separator 13 in the conventional lithium secondary battery shown in FIG. 5 is equal to the total thickness T of the separator 13 and the porous insulating layer 15 in the present embodiment, the porous insulating layer 15 is empty. By making the porosity higher than the porosity of the separator 13, it is possible to reduce the amount of the electrolyte flowing out of the system during charging. Therefore, it is possible to more effectively suppress the decrease in the electrolyte solution in the system.
 また、セパレータ13の厚さに対する多孔質絶縁層15の厚さの割合は、例えば5%以上であることが好ましい。これにより、正極側から負極側への電解液の移動をより確実に抑制できるので、充放電サイクル寿命をより効果的に向上できる。また、上記割合は、例えば40%以下であることが好ましい。これにより、容量の低下を抑制でき、さらに絶縁性を十分に維持できる。 Further, the ratio of the thickness of the porous insulating layer 15 to the thickness of the separator 13 is preferably 5% or more, for example. Thereby, since the movement of the electrolyte solution from the positive electrode side to the negative electrode side can be more reliably suppressed, the charge / discharge cycle life can be improved more effectively. Moreover, it is preferable that the said ratio is 40% or less, for example. Thereby, the capacity | capacitance fall can be suppressed and also insulation can fully be maintained.
 ・多孔質絶縁層15による短絡防止効果
 無機酸化物を主体とする多孔質絶縁層15は、セパレータ13よりも高い融点を有するので、高温でも安定である。このため、セパレータ13よりも溶解し難いので、発熱が生じた場合であっても、正極活物質層33と負極活物質層23とが物理的に接触することを防止できる。
-Short-circuit prevention effect by the porous insulating layer 15 Since the porous insulating layer 15 mainly composed of inorganic oxide has a melting point higher than that of the separator 13, it is stable even at a high temperature. For this reason, since it is harder to dissolve than the separator 13, it is possible to prevent physical contact between the positive electrode active material layer 33 and the negative electrode active material layer 23 even when heat is generated.
 <多孔質絶縁層15の材料>
 多孔質絶縁層15は、無機酸化物を主体とし、絶縁性を有する多孔層であればよい。例えば、無機酸化物および結着剤を用いて形成されていてもよい。
<Material of porous insulating layer 15>
The porous insulating layer 15 may be a porous layer mainly composed of an inorganic oxide and having insulating properties. For example, it may be formed using an inorganic oxide and a binder.
 多孔質絶縁層15は、耐熱性を有していてもよい。そのような多孔質絶縁層15は、例えば無機酸化物および耐熱性樹脂を用いて形成され得る。本発明者が検討したところ、ケイ素やスズを含む合金系の負極活物質を用いたリチウム二次電池では、内部短絡が生じると、内部短絡時のジュール熱によって過熱された正極30から発生する酸素と、合金系の負極活物質との反応が、従来の負極活物質(炭素材料)との反応よりも激しいことがわかった。このため、上記反応によって急激に発熱し、電池の安全性を低下させるおそれがあることが懸念される。また、負極が柱状構造を有していると、負極活物質の比表面積が大きいため、発熱速度をさらに増加させるおそれもある。これに対し、多孔質絶縁層15が耐熱性を有していると、電解液の移動を抑制するだけでなく、内部短絡が生じた場合に、内部短絡の進行を抑制することができる。従って、リチウム二次電池の充放電サイクル特性に加えて、安全性をより効果的に高めることができる。 The porous insulating layer 15 may have heat resistance. Such a porous insulating layer 15 can be formed using, for example, an inorganic oxide and a heat resistant resin. When the present inventor examined, in a lithium secondary battery using an alloy-based negative electrode active material containing silicon or tin, when an internal short circuit occurs, oxygen generated from the positive electrode 30 overheated by Joule heat at the time of the internal short circuit It was found that the reaction with the alloy-based negative electrode active material was more intense than the reaction with the conventional negative electrode active material (carbon material). For this reason, there is a concern that the above reaction may generate heat rapidly and may reduce the safety of the battery. In addition, when the negative electrode has a columnar structure, the specific surface area of the negative electrode active material is large, which may further increase the heat generation rate. On the other hand, when the porous insulating layer 15 has heat resistance, not only the movement of the electrolytic solution can be suppressed, but also the progress of the internal short circuit can be suppressed when an internal short circuit occurs. Therefore, in addition to the charge / discharge cycle characteristics of the lithium secondary battery, safety can be improved more effectively.
 <リチウム二次電池の構成>
 次に、本実施形態のリチウム二次電池のより具体的な構成を説明する。
<Configuration of lithium secondary battery>
Next, a more specific configuration of the lithium secondary battery of this embodiment will be described.
 図7は、本実施形態のリチウム二次電池の一例を模式的に示す断面図である。図示する例は、コイン型のリチウム二次電池である。簡単のため、図1と同様の構成要素には同じ参照符号を付し、説明を省略する。 FIG. 7 is a cross-sectional view schematically showing an example of the lithium secondary battery of the present embodiment. The illustrated example is a coin-type lithium secondary battery. For simplicity, the same components as those in FIG.
 リチウム二次電池200は、正極30、多孔質絶縁層15、セパレータ13および負極20が積層されてなる電極群と、正極30に接続された正極リード18と、負極20に接続された負極リード19と、ガスケット16と、外装ケース17とを備える。 The lithium secondary battery 200 includes an electrode group in which a positive electrode 30, a porous insulating layer 15, a separator 13, and a negative electrode 20 are stacked, a positive electrode lead 18 connected to the positive electrode 30, and a negative electrode lead 19 connected to the negative electrode 20. A gasket 16 and an outer case 17.
 以下、リチウム二次電池200の各構成要素について、その構成および作製方法を説明する。 Hereinafter, the configuration and manufacturing method of each component of the lithium secondary battery 200 will be described.
 <正極30の構成および作製方法>
 正極30は、正極集電体31と正極活物質層33とを含む。正極集電体31には、この分野で常用されるものを使用できる。例えばステンレス鋼、チタン、アルミニウムなどの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板を用いることができる。多孔性導電性基板としては、例えばメッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体(不織布など)などが挙げられる。無孔の導電性基板としては、例えば箔、シート、フィルムなどが挙げられる。多孔性または無孔の導電性基板の厚さは特に制限されないが、例えば1~500μm、好ましくは1~50μm、さらに好ましくは10~40μm、特に好ましくは10~30μmである。
<Configuration and manufacturing method of positive electrode 30>
The positive electrode 30 includes a positive electrode current collector 31 and a positive electrode active material layer 33. As the positive electrode current collector 31, those commonly used in this field can be used. For example, a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, or aluminum or a conductive resin can be used. Examples of the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, a fiber group molded body (nonwoven fabric, etc.), and the like. Examples of the non-porous conductive substrate include a foil, a sheet, and a film. The thickness of the porous or non-porous conductive substrate is not particularly limited, but is, for example, 1 to 500 μm, preferably 1 to 50 μm, more preferably 10 to 40 μm, and particularly preferably 10 to 30 μm.
 正極活物質層33は正極活物質を含んでいる。また、必要に応じて導電剤、結着剤が含まれていてもよい。 The positive electrode active material layer 33 contains a positive electrode active material. Moreover, the electrically conductive agent and the binder may be contained as needed.
 正極活物質としては、リチウムイオンを吸蔵および放出することができる物質であれば特に制限されないが、リチウム含有複合金属酸化物、オリビン型リン酸リチウムなどを好ましく使用できる。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物または該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、たとえば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bなどが挙げられる。これらの中でも、Mn、Al、Co、Ni、Mgなどが好ましい。異種元素は1種でもよくまたは2種以上でもよい。リチウム含有複合金属酸化物の具体例としては、たとえば、LixCoO2、LixNiO2、LixMnO2、LixComNi1-m2、LixCom1-mn、LixNi1-mmn、LixMn24、LixMn2-mm4、LiMPO4、Li2MPO4F(式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる少なくとも1種の元素を示す。x=0~1.2、m=0~0.9、n=2.0~2.3である。)などが挙げられる。ここで、リチウムのモル比を示すm値は正極活物質作製直後の値であり、充放電により増減する。これらの中でも、一般式LixNi1-mmn(式中、M、x、mおよびnは上記に同じ。)で表されるリチウム含有複合金属酸化物が好ましい。 The positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions, but lithium-containing composite metal oxides, olivine-type lithium phosphate, and the like can be preferably used. The lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. Among these, Mn, Al, Co, Ni, Mg, etc. are preferable. One kind or two or more kinds of different elements may be used. Specific examples of the lithium-containing composite metal oxide, for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co m Ni 1-m O 2, Li x Co m M 1-m O n , Li x Ni 1-m M m O n, Li x Mn 2 O 4, Li x Mn 2-m M m O 4, LiMPO 4, Li 2 in MPO 4 F (wherein, M is Na, Mg, Sc, It represents at least one element selected from the group consisting of Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B. x = 0 to 1.2, m = 0 to 0 .9, n = 2.0 to 2.3). Here, m value which shows the molar ratio of lithium is a value immediately after positive electrode active material preparation, and increases / decreases by charging / discharging. Among these, (wherein, M, x, m and n are the same. Above) the general formula Li x Ni 1-m M m O n lithium-containing composite metal oxide represented by are preferred.
 リチウム含有複合金属酸化物は、公知の方法に従って製造できる。例えば次のようにして製造され得る。まず、リチウム以外の金属を含む複合金属水酸化物を、水酸化ナトリウムなどのアルカリ剤を用いる共沈法によって調製する。次いで、この複合金属水酸化物に熱処理を施して複合金属酸化物を得る。続いて、複合金属酸化物に水酸化リチウムなどのリチウム化合物を加えてさらに熱処理を施す。これにより、リチウム含有複合金属酸化物が得られる。オリビン型リン酸リチウムの具体例としては、たとえば、LiXPO4(式中、XはCo、Ni、MnおよびFeよりなる群から選ばれる少なくとも1つである)などが挙げられる。正極活物質として、上述した活物質のうち1種を単独で使用してもよいし、または必要に応じて2種以上を組み合わせて用いてもよい。 The lithium-containing composite metal oxide can be produced according to a known method. For example, it can be manufactured as follows. First, a composite metal hydroxide containing a metal other than lithium is prepared by a coprecipitation method using an alkali agent such as sodium hydroxide. Next, the composite metal hydroxide is subjected to a heat treatment to obtain a composite metal oxide. Subsequently, a lithium compound such as lithium hydroxide is added to the composite metal oxide and further heat-treated. Thereby, a lithium-containing composite metal oxide is obtained. Specific examples of the olivine type lithium phosphate include LiXPO 4 (wherein X is at least one selected from the group consisting of Co, Ni, Mn and Fe). As the positive electrode active material, one of the above-described active materials may be used alone, or two or more of them may be used in combination as necessary.
 導電剤としては、リチウム二次電池の分野で常用されるものを使用できる。たとえば、天然黒鉛、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類などが挙げられる。これらの導電剤のうち一種を単独で用いてもよいし、必要に応じて2種以上を組み合わせて用いてもよい。 As the conductive agent, those commonly used in the field of lithium secondary batteries can be used. Examples include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive fibers such as carbon fiber and metal fiber. It is done. One of these conductive agents may be used alone, or two or more may be used in combination as necessary.
 結着剤としても、リチウム二次電池の分野で常用されるものを使用できる。たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、アクリル系ゴム、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、変性アクリルゴム、カルボキシメチルセルロースなどが挙げられる。これらの結着剤のうち1種を単独で用いてもよいし、必要に応じて2種以上を組み合わせて用いてもよい。 As the binder, those commonly used in the field of lithium secondary batteries can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, acrylic rubber, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber, modified acrylic Examples thereof include rubber and carboxymethyl cellulose. Among these binders, one kind may be used alone, or two or more kinds may be used in combination as necessary.
 正極活物質層33は、例えば次のようにして形成される。まず、正極活物質を含み、必要に応じて導電剤、結着剤などを有機溶媒に溶解または分散させた正極合剤スラリーを調整する。次いで、正極合剤スラリーを正極集電体31の表面に塗布し、乾燥させる。有機溶媒としては、たとえば、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、N-メチル-2-ピロリドン(NMP)、ジメチルアミン、アセトン、シクロヘキサノンなどを使用できる。正極合剤スラリーの調製には、粉末と液体とを混合させる一般的な混合機、分散機などを使用できる。 The positive electrode active material layer 33 is formed as follows, for example. First, a positive electrode mixture slurry containing a positive electrode active material and having a conductive agent, a binder or the like dissolved or dispersed in an organic solvent is prepared as necessary. Next, the positive electrode mixture slurry is applied to the surface of the positive electrode current collector 31 and dried. As the organic solvent, for example, dimethylformamide, dimethylacetamide, methylformamide, N-methyl-2-pyrrolidone (NMP), dimethylamine, acetone, cyclohexanone and the like can be used. For the preparation of the positive electrode mixture slurry, a general mixer, a disperser, or the like that mixes powder and liquid can be used.
 正極活物質層33の厚さは、リチウム二次電池200の設計性能、用途などの各種条件に応じて適宜選択される、正極活物質層33を正極集電体31の両面に設ける場合は、両面にそれぞれ形成された正極活物質層33の合計厚さは50~150μm程度であることが好ましい。 The thickness of the positive electrode active material layer 33 is appropriately selected according to various conditions such as the design performance and application of the lithium secondary battery 200. When the positive electrode active material layer 33 is provided on both surfaces of the positive electrode current collector 31, The total thickness of the positive electrode active material layers 33 formed on both surfaces is preferably about 50 to 150 μm.
 <多孔質絶縁層15の構成および製造方法>
 前述したように、多孔質絶縁層15は、無機酸化物を主体として含んでおり、リチウム二次電池の通常使用時に、リチウムイオン透過性および絶縁性を有する。多孔質絶縁層15は、無機酸化物と結着剤とから構成されていてもよいし、無機酸化物と耐熱性樹脂とから構成されていてもよい。
<Configuration and manufacturing method of porous insulating layer 15>
As described above, the porous insulating layer 15 contains an inorganic oxide as a main component, and has lithium ion permeability and insulating properties during normal use of the lithium secondary battery. The porous insulating layer 15 may be composed of an inorganic oxide and a binder, or may be composed of an inorganic oxide and a heat resistant resin.
 多孔質絶縁層15に含まれる無機酸化物は、電池の発熱時にも絶縁性を維持でき、電池内部の環境で化学的に安定であれば、特に限定されない。また、高い融点を有していれば、正極30と負極20との内部短絡の継続を防止する効果も得られるので好ましい。無機酸化物として、例えば、アルミナ(Al23)、シリカ(SiO2)、チタニア(TiO2)、ジルコニア(ZrO2)、マグネシア(MgO)、イットリア(Y23)などを用いることができる。これらの無機酸化物のうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。無機酸化物のメディアン径は、0.05μm以上10μm以下であることが好ましい。 The inorganic oxide contained in the porous insulating layer 15 is not particularly limited as long as it can maintain insulation even when the battery generates heat and is chemically stable in the environment inside the battery. Moreover, if it has a high melting | fusing point, since the effect which prevents the continuation of the internal short circuit with the positive electrode 30 and the negative electrode 20 is also acquired, it is preferable. Examples of the inorganic oxide include alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), magnesia (MgO), and yttria (Y 2 O 3 ). it can. Among these inorganic oxides, one kind may be used alone, or two or more kinds may be used in combination. The median diameter of the inorganic oxide is preferably 0.05 μm or more and 10 μm or less.
 多孔質絶縁層15に用いられる結着剤として、PVDF、アクリル系ゴム粒子、PTFEなどを用いることができる。PTFEやアクリル系ゴム粒子を用いる場合、ペーストもしくはスラリーの増粘剤として、カルボキシメチルセルロース、ポリエチレンオキシド、変性アクリロニトリルゴムなどと組み合わせて用いることが好ましい。これらの結着剤および増粘剤のうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the binder used for the porous insulating layer 15, PVDF, acrylic rubber particles, PTFE or the like can be used. When PTFE or acrylic rubber particles are used, it is preferably used in combination with carboxymethyl cellulose, polyethylene oxide, modified acrylonitrile rubber or the like as a thickener for paste or slurry. One of these binders and thickeners may be used alone, or two or more thereof may be used in combination.
 多孔質絶縁層15を構成する耐熱性樹脂は、特に限定されないが、アラミド、ポリアミドイミド、セルロースなどを用いることができる。耐熱性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、耐熱性樹脂と、他の樹脂とを組み合わせて用いてもよい。 The heat-resistant resin constituting the porous insulating layer 15 is not particularly limited, but aramid, polyamideimide, cellulose and the like can be used. A heat resistant resin may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use combining a heat resistant resin and other resin.
 多孔質絶縁層15の空孔率は、イオン透過度、機械的強度、絶縁性の観点を考慮し、30%以上70%以下であることが好ましく、より好ましくは40%以上70%以下である。「空孔率」とは、多孔質絶縁層15の体積に占める、多孔質絶縁層15中に存在する細孔容積の比率である。多孔質絶縁層15の空孔率は、後述するセパレータ13の空孔率と同程度以上であることが好ましい。より好ましくは、セパレータ13の空孔率よりも高い。これにより、多孔質絶縁層15により多くの電解液を保持できるので、充電によって系外に排出される電解液の量を低減できる。 The porosity of the porous insulating layer 15 is preferably 30% or more and 70% or less, more preferably 40% or more and 70% or less, in view of ion permeability, mechanical strength, and insulation. . “Porosity” is the ratio of the volume of pores existing in the porous insulating layer 15 to the volume of the porous insulating layer 15. It is preferable that the porosity of the porous insulating layer 15 be equal to or higher than the porosity of the separator 13 described later. More preferably, it is higher than the porosity of the separator 13. Thereby, since more electrolyte solution can be hold | maintained at the porous insulating layer 15, the quantity of the electrolyte solution discharged | emitted out of the system by charge can be reduced.
 無機酸化物および結着剤を含む多孔質絶縁層15では、機械強度が比較的高いので、耐久性が高い。多孔質絶縁層15における無機酸化物の含有比率は、例えば80~95重量%以上である。 Since the porous insulating layer 15 containing an inorganic oxide and a binder has a relatively high mechanical strength, the durability is high. The content ratio of the inorganic oxide in the porous insulating layer 15 is, for example, 80 to 95% by weight or more.
 多孔質絶縁層15は、例えば20重量%を超える比率で耐熱性樹脂を含んでもよい。耐熱性樹脂と無機酸化物(例えば80重量%未満)とを含む多孔質絶縁層15は、柔軟性と耐久性とを良好なバランスで有することができる。このような多孔質絶縁層15では、耐熱性樹脂は柔軟性に寄与し、機械的強度の高い無機酸化物は耐久性に寄与する。 The porous insulating layer 15 may contain a heat resistant resin in a ratio exceeding 20% by weight, for example. The porous insulating layer 15 containing a heat resistant resin and an inorganic oxide (for example, less than 80% by weight) can have a good balance between flexibility and durability. In such a porous insulating layer 15, the heat-resistant resin contributes to flexibility, and the inorganic oxide having high mechanical strength contributes to durability.
 本実施形態における多孔質絶縁層15は、正極30の正極活物質層33、負極20の負極活物質層23、およびセパレータ13となる樹脂多孔膜のうち何れか1つの表面上に、多孔質絶縁層の原料をキャストすることによって形成できる。上記のうち何れか2以上の表面に多孔質絶縁層の原料をキャストして、複数の多孔質絶縁層が形成してもよい。例えば正極活物質層33およびセパレータ13の表面に多孔質絶縁層を形成すると、図12に示すように、正極30と負極20との間に2層の多孔質絶縁層15a、15bを設けることができる。 In the present embodiment, the porous insulating layer 15 is formed on the surface of any one of the positive electrode active material layer 33 of the positive electrode 30, the negative electrode active material layer 23 of the negative electrode 20, and the resin porous film serving as the separator 13. It can be formed by casting the raw material of the layer. A plurality of porous insulating layers may be formed by casting the raw material of the porous insulating layer on any two or more of the above surfaces. For example, when a porous insulating layer is formed on the surfaces of the positive electrode active material layer 33 and the separator 13, two porous insulating layers 15a and 15b are provided between the positive electrode 30 and the negative electrode 20, as shown in FIG. it can.
 多孔質絶縁層15は独立したシート状であってもよい。その場合には、多孔性のシートに上記原料をキャストすることによって形成され得る。独立したシート状の多孔質絶縁層15は、正極30と樹脂多孔膜(セパレータ13)との間または負極20と樹脂多孔膜(セパレータ13)との間に配置される。正極30と負極20との間に、複数の多孔質絶縁層15を配置してもよい。 The porous insulating layer 15 may be an independent sheet. In that case, it can be formed by casting the raw material on a porous sheet. The independent sheet-like porous insulating layer 15 is disposed between the positive electrode 30 and the resin porous film (separator 13) or between the negative electrode 20 and the resin porous film (separator 13). A plurality of porous insulating layers 15 may be disposed between the positive electrode 30 and the negative electrode 20.
 多孔質絶縁層15は、正極30と負極20との間に配置されればよいが、好ましくは、セパレータ13と正極30との間に配置される。これにより、多孔質絶縁層15と負極20との間にセパレータ13が存在し、多孔質絶縁層15が負極活物質の膨張・収縮の影響を受け難いので、充放電の繰り返しによって変形したり剥離することを防止できる。また、正極活物質層33と隣接して多孔質絶縁層15が配置されるので、正極活物質層33にかかる応力をより確実に低減できる。 The porous insulating layer 15 may be disposed between the positive electrode 30 and the negative electrode 20, but is preferably disposed between the separator 13 and the positive electrode 30. Thereby, the separator 13 exists between the porous insulating layer 15 and the negative electrode 20, and the porous insulating layer 15 is hardly affected by the expansion / contraction of the negative electrode active material. Can be prevented. Further, since the porous insulating layer 15 is disposed adjacent to the positive electrode active material layer 33, the stress applied to the positive electrode active material layer 33 can be more reliably reduced.
 多孔質絶縁層15は、セパレータ13の正極側または負極側の表面上、あるいは正極30の表面上に配置されることが好ましい。この場合、多孔質絶縁層15は、セパレータ13上に一体的に形成されているか、正極活物質層33の表面にコーティングされて一体的に形成されていることが好ましい。これにより、多孔質絶縁層15を独立して形成する場合よりも、製造プロセスを簡略化できる。 The porous insulating layer 15 is preferably disposed on the surface of the separator 13 on the positive electrode side or the negative electrode side, or on the surface of the positive electrode 30. In this case, it is preferable that the porous insulating layer 15 is integrally formed on the separator 13 or is integrally formed by coating the surface of the positive electrode active material layer 33. Thereby, a manufacturing process can be simplified rather than the case where the porous insulating layer 15 is formed independently.
 なお、多孔質絶縁層15は、負極活物質層23の表面上に一体的に形成されていてもよい。しかしながら、多孔質絶縁層15は、負極活物質層23の表面に形成されていると、合金系活物質の膨張・収縮によって機械的物性を維持できなくなる場合がある。また、負極活物質層23内の空間(活物質体間の空間)に多孔質絶縁層15の一部が入り込み、当初の機能を損なうおそれがある。 The porous insulating layer 15 may be integrally formed on the surface of the negative electrode active material layer 23. However, if the porous insulating layer 15 is formed on the surface of the negative electrode active material layer 23, the mechanical properties may not be maintained due to expansion / contraction of the alloy-based active material. In addition, a part of the porous insulating layer 15 may enter the space in the negative electrode active material layer 23 (the space between the active material bodies), thereby impairing the original function.
 以下、多孔質絶縁層15の形成方法をより具体的に説明する。 Hereinafter, a method for forming the porous insulating layer 15 will be described more specifically.
 まず、無機酸化物および結着剤を、液状成分と混合してペーストもしくはスラリーを調製する。結着剤は、無機酸化物100重量部あたり、0.5~10重量部が好適であるが、特に限定されない。無機酸化物、結着剤および液状成分の混合は、例えば双椀式練合機を用いて行う。得られたペーストもしくはスラリーを、正極30、負極20、およびセパレータ13となる樹脂多孔膜の少なくとも1つの表面上に塗布する。ペーストもしくはスラリーの塗布は、例えばドクターブレードやダイコートを用いて行うことができる。この後、ペーストもしくはスラリーに含まれる液状成分を乾燥により除去する。このようにして、多孔質絶縁層15を得る。 First, an inorganic oxide and a binder are mixed with a liquid component to prepare a paste or slurry. The binder is preferably 0.5 to 10 parts by weight per 100 parts by weight of the inorganic oxide, but is not particularly limited. The inorganic oxide, the binder and the liquid component are mixed using, for example, a double kneader. The obtained paste or slurry is applied onto at least one surface of the porous resin film that becomes the positive electrode 30, the negative electrode 20, and the separator 13. The paste or slurry can be applied using, for example, a doctor blade or a die coat. Thereafter, the liquid component contained in the paste or slurry is removed by drying. In this way, the porous insulating layer 15 is obtained.
 あるいは、無機酸化物および耐熱性樹脂を用いて多孔質絶縁層15を形成してもよい。この場合には、まず、耐熱性樹脂を溶媒に溶解させた樹脂溶液を調整する。耐熱性樹脂を溶解させる溶媒は、特に限定されないが、N-メチル-2-ピロリドン(以下、NMPと略記)などの極性溶媒であることが好ましい。樹脂溶液には、耐熱性樹脂100gあたり、500g以下(好ましくは33g~300g)の無機酸化物を分散させてもよい。次いで、樹脂溶液を、正極30、負極20および樹脂多孔膜の少なくとも1つの表面上に塗布する。この後、溶媒を乾燥により除去し、耐熱性樹脂を含む多孔質絶縁層15を得る。 Alternatively, the porous insulating layer 15 may be formed using an inorganic oxide and a heat resistant resin. In this case, first, a resin solution in which a heat resistant resin is dissolved in a solvent is prepared. The solvent for dissolving the heat-resistant resin is not particularly limited, but is preferably a polar solvent such as N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). In the resin solution, 500 g or less (preferably 33 g to 300 g) of inorganic oxide may be dispersed per 100 g of heat resistant resin. Next, the resin solution is applied on at least one surface of the positive electrode 30, the negative electrode 20, and the porous resin film. Thereafter, the solvent is removed by drying to obtain a porous insulating layer 15 containing a heat resistant resin.
 <負極20の構成および作製方法>
 負極20は、負極集電体21と負極活物質層23とを含む。負極集電体21には、リチウム二次電池の分野で常用されるものを使用できる。たとえば、ステンレス鋼、チタン、ニッケル、銅などの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板が挙げられる。多孔性導電性基板としては、たとえば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体(不織布など)などが挙げられる。無孔の導電性基板としては、たとえば、箔、シート、フィルムなどが挙げられる。多孔性または無孔の導電性基板の厚さは特に制限されないが、通常は1~500μm、好ましくは1~50μm、さらに好ましくは10~40μm、特に好ましくは10~30μmである。また、後述するように、負極集電体21の表面には、複数の凸部が設けられている。
<Configuration and Production Method of Negative Electrode 20>
The negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 23. As the negative electrode current collector 21, those commonly used in the field of lithium secondary batteries can be used. For example, a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, nickel, copper, or a conductive resin can be used. Examples of the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, a fiber group molded body (nonwoven fabric, etc.), and the like. Examples of the non-porous conductive substrate include a foil, a sheet, and a film. The thickness of the porous or non-porous conductive substrate is not particularly limited, but is usually 1 to 500 μm, preferably 1 to 50 μm, more preferably 10 to 40 μm, and particularly preferably 10 to 30 μm. Further, as will be described later, the surface of the negative electrode current collector 21 is provided with a plurality of convex portions.
 負極活物質層23は合金系活物質を含有し、負極集電体21の片面または両面に、薄膜状に形成される。また、負極活物質層23は、合金系活物質とともに、その特性を損なわない範囲で、公知の負極活物質、添加物などを含んでいてもよい。さらに、負極活物質層23の厚さ(負極活物質層23を形成した時点での厚さ)は3~50μmであることが好ましい。また、負極活物質層23は、非晶質または低結晶性であることが好ましい。 The negative electrode active material layer 23 contains an alloy-based active material and is formed in a thin film on one or both surfaces of the negative electrode current collector 21. Moreover, the negative electrode active material layer 23 may contain a well-known negative electrode active material, an additive, etc. in the range which does not impair the characteristic with an alloy type active material. Furthermore, the thickness of the negative electrode active material layer 23 (thickness when the negative electrode active material layer 23 is formed) is preferably 3 to 50 μm. The negative electrode active material layer 23 is preferably amorphous or low crystalline.
 合金系活物質は、充電時にリチウムと合金化することによりリチウムを吸蔵し、かつ放電時にリチウムを放出する負極活物質である。合金系活物質としては特に制限されず、公知のものを使用できる。たとえばケイ素含有化合物、スズ含有化合物などが挙げられる。ケイ素含有化合物としては、たとえばケイ素、ケイ素酸化物、ケイ素窒化物、ケイ素含有合金、ケイ素化合物とその固溶体などが挙げられる。ケイ素酸化物としては、たとえば組成式:SiOα(0<α<2)で表される酸化ケイ素が挙げられる。ケイ素炭化物としては、たとえば、組成式:SiCβ(0<β<1)で表される炭化ケイ素が挙げられる。ケイ素窒化物としては、たとえば組成式:SiNγ(0<γ<4/3)で表される窒化ケイ素が挙げられる。ケイ素含有合金としては、たとえばケイ素とFe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、SnおよびTiよりなる群から選ばれる1または2以上の元素を含む合金が挙げられる。また、ケイ素の一部がB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、NおよびSnよりなる群から選ばれる1または2以上の元素で置換されていてもよい。これらの中でも、充放電の可逆性に優れるSiOα(0<α<2)を用いることが特に好ましい。 The alloy-based active material is a negative electrode active material that occludes lithium by alloying with lithium during charging and releases lithium during discharging. It does not restrict | limit especially as an alloy type active material, A well-known thing can be used. For example, a silicon containing compound, a tin containing compound, etc. are mentioned. Examples of the silicon-containing compound include silicon, silicon oxide, silicon nitride, silicon-containing alloy, silicon compound and its solid solution. Examples of the silicon oxide include silicon oxide represented by the composition formula: SiOα (0 <α <2). Examples of silicon carbide include silicon carbide represented by the composition formula: SiCβ (0 <β <1). Examples of the silicon nitride include silicon nitride represented by the composition formula: SiNγ (0 <γ <4/3). Examples of the silicon-containing alloy include an alloy containing silicon and one or more elements selected from the group consisting of Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. . Further, a part of silicon is selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. It may be substituted with one or more elements. Among these, it is particularly preferable to use SiOα (0 <α <2) which is excellent in reversibility of charge / discharge.
 スズ含有化合物としては、たとえば、スズ、スズ酸化物、スズ窒化物、スズ含有合金、スズ化合物とその固溶体などが挙げられる。スズ含有化合物としては、たとえば、スズ、SnOδ(0<δ<2)、SnO2などのスズ酸化物、Ni-Sn合金、Mg-Sn合金、Fe-Sn合金、Cu-Sn合金、Ti-Sn合金などのスズ含有合金、SnSiO3、Ni2Sn4、Mg2Snなどのスズ化合物などを好ましく使用できる。これらの中でも、スズ、およびSnOβ(0<β<2)、SnO2などのスズ酸化物が特に好ましい。 Examples of the tin-containing compound include tin, tin oxide, tin nitride, tin-containing alloy, tin compound and its solid solution, and the like. Examples of tin-containing compounds include tin, tin oxides such as SnOδ (0 <δ <2), SnO 2 , Ni—Sn alloys, Mg—Sn alloys, Fe—Sn alloys, Cu—Sn alloys, and Ti—Sn. Tin-containing alloys such as alloys, tin compounds such as SnSiO 3 , Ni 2 Sn 4 and Mg 2 Sn can be preferably used. Among these, tin and tin oxides such as SnOβ (0 <β <2) and SnO 2 are particularly preferable.
 また、負極活物質層23は、合金系活物質を含む複数の柱状体(活物質体)の集合体である。これらの活物質体は、図1を参照しながら前述したように、合金系活物質を含有し、かつ、互いに間隔を空けて負極集電体21の表面に配置されている。また、各活物質体は、負極集電体21の表面から、負極集電体21の表面から離れる方向に向かって延びている。好ましくは、複数の活物質体は同じ方向に延びるように形成されている。このような負極活物質層23は、負極集電体21の表面に複数の凸部を設け、これらの凸部上に、それぞれ、活物質体を形成することによって製造され得る。 The negative electrode active material layer 23 is an aggregate of a plurality of columnar bodies (active material bodies) containing an alloy-based active material. As described above with reference to FIG. 1, these active material bodies contain an alloy-based active material and are arranged on the surface of the negative electrode current collector 21 with a space therebetween. Each active material body extends from the surface of the negative electrode current collector 21 in a direction away from the surface of the negative electrode current collector 21. Preferably, the plurality of active material bodies are formed to extend in the same direction. Such a negative electrode active material layer 23 can be manufactured by providing a plurality of convex portions on the surface of the negative electrode current collector 21 and forming an active material body on each of the convex portions.
 ここで、図8および図9を参照しながら、負極20のより詳しい構成を説明する。図8は、負極20の一部を例示する拡大断面図である。簡単のため、図8では、1個の活物質体のみを示す。図9は、負極集電体21の模式的な斜視図である。 Here, a more detailed configuration of the negative electrode 20 will be described with reference to FIGS. 8 and 9. FIG. 8 is an enlarged cross-sectional view illustrating a part of the negative electrode 20. For simplicity, FIG. 8 shows only one active material body. FIG. 9 is a schematic perspective view of the negative electrode current collector 21.
 図9に示すように、負極集電体21の表面(負極活物質層を形成しようとする表面)21aに複数の凸部22を有している。図示しないが、表面21aと反対側の表面にも、同様に凸部22が設けられていてもよい。 As shown in FIG. 9, the negative electrode current collector 21 has a plurality of convex portions 22 on the surface (surface on which the negative electrode active material layer is to be formed) 21a. Although not shown, the convex portion 22 may be similarly provided on the surface opposite to the surface 21a.
 凸部22は、負極集電体21の表面21aから、負極集電体21から離れる方向に向かって延びる突起である。凸部22はランダムに配置されていてもよいし、図示するように規則的に配置されていてもよい。凸部22が規則的に配置されていると、凸部22のピッチや大きさ等によって、活物質体24間に形成される空間の大きさを容易に制御できるので好ましい。 The convex portion 22 is a protrusion that extends from the surface 21 a of the negative electrode current collector 21 in a direction away from the negative electrode current collector 21. The convex portions 22 may be randomly arranged, or may be regularly arranged as illustrated. It is preferable that the convex portions 22 are regularly arranged because the size of the space formed between the active material bodies 24 can be easily controlled by the pitch and size of the convex portions 22.
 凸部22の高さ(平均高さ)hは特に制限されないが、3μm以上であることが好ましい。3μm以上であれば、後述する斜め蒸着によって活物質体24を形成する際に、シャドウイング効果を利用して、より確実に、凸部22の上に選択的に活物質体24を配置できる。従って、活物質体24の間に十分な空隙を確保できる。一方、凸部22の高さhは10μm以下であることが好ましい。凸部22が10μm以下であれば、電極に占める集電体11の体積割合を小さく抑えることができるので、高いエネルギー密度を得ることが可能になる。なお、本明細書では、凸部22の高さ(平均高さ)hは、負極集電体21の表面21aに垂直であり且つ凸部22の頂点を含む断面において、負極集電体21の表面21aから凸部22の頂点までの高さ、すなわち凸部22の頂点から表面21aに降ろした垂線の長さを指すものとする。「凸部22の頂点」は、負極集電体21の表面21aに対して最も高い点をいう。また、「表面21a」は、負極集電体21の表面のうち凸部22が形成されていない部分の表面をいう。凸部22の平均高さは、たとえば、負極20の、負極集電体21の表面に垂直な断面を走査型電子顕微鏡(SEM)で観察し、100個の凸部22の高さを測定し、それらの平均値を算出することによって求められる。 The height (average height) h of the convex portion 22 is not particularly limited, but is preferably 3 μm or more. If it is 3 micrometers or more, when forming the active material body 24 by the oblique vapor deposition mentioned later, the active material body 24 can be selectively arrange | positioned on the convex part 22 more reliably using a shadowing effect. Therefore, a sufficient space can be secured between the active material members 24. On the other hand, the height h of the convex portion 22 is preferably 10 μm or less. If the convex part 22 is 10 micrometers or less, since the volume ratio of the electrical power collector 11 which occupies for an electrode can be restrained small, it becomes possible to obtain a high energy density. In the present specification, the height (average height) h of the convex portion 22 is perpendicular to the surface 21 a of the negative electrode current collector 21 and includes a vertex of the convex portion 22. The height from the surface 21a to the apex of the convex part 22, that is, the length of the perpendicular dropped from the apex of the convex part 22 to the surface 21a. “A vertex of the convex portion 22” refers to the highest point with respect to the surface 21 a of the negative electrode current collector 21. The “surface 21a” refers to the surface of the surface of the negative electrode current collector 21 where the convex portions 22 are not formed. The average height of the convex portions 22 is obtained by, for example, observing a cross section of the negative electrode 20 perpendicular to the surface of the negative electrode current collector 21 with a scanning electron microscope (SEM), and measuring the height of the 100 convex portions 22. , By calculating an average value thereof.
 また、凸部22の断面径rは特に制限されないが、たとえば1μm以上であることが好ましい。これにより、凸部22と活物質体24との接触面積を十分に確保できる。一方、断面径rは50μm以下であることが好ましい。断面径rが50μmよりも大きくなると、活物質体24間に十分な空隙を形成できなくなる場合がある。なお、凸部22の断面径rは、負極集電体21の表面に垂直であり且つ凸部22の頂点を含む断面において、表面21aに平行な方向における凸部22の最大幅を指す。凸部22の断面径rも、凸部22の高さhと同様に、100個の凸部22の幅を測定し、これらの測定値の平均値を算出することによって求めることができる。なお、複数の凸部22は全て同じ高さhまたは同じ断面径rを有していなくてもよい。 Further, the cross-sectional diameter r of the convex portion 22 is not particularly limited, but is preferably 1 μm or more, for example. Thereby, the contact area of the convex part 22 and the active material body 24 is fully securable. On the other hand, the cross-sectional diameter r is preferably 50 μm or less. When the cross-sectional diameter r is larger than 50 μm, there may be a case where sufficient voids cannot be formed between the active material bodies 24. Note that the cross-sectional diameter r of the convex portion 22 indicates the maximum width of the convex portion 22 in a direction parallel to the surface 21 a in a cross section that is perpendicular to the surface of the negative electrode current collector 21 and includes the apex of the convex portion 22. Similarly to the height h of the convex portion 22, the cross-sectional diameter r of the convex portion 22 can also be obtained by measuring the width of 100 convex portions 22 and calculating the average value of these measured values. The plurality of convex portions 22 may not all have the same height h or the same cross-sectional diameter r.
 図8に示す例では、負極20の法線方向から見た凸部22の形状は円形である。ここでいう凸部22の形状は、負極集電体21の表面21aとは反対側の表面が水平面と一致するように集電体21を載置した場合に、鉛直方向上方から見た凸部22の形状をいう。なお、凸部22の形状は円形に限定されず、たとえば、多角形、楕円形、平行四辺形、台形、菱形などであってもよい。 In the example shown in FIG. 8, the shape of the convex part 22 seen from the normal line direction of the negative electrode 20 is circular. The shape of the convex part 22 here is a convex part as viewed from above in the vertical direction when the current collector 21 is placed so that the surface opposite to the surface 21a of the negative electrode current collector 21 coincides with the horizontal plane. 22 shapes. In addition, the shape of the convex part 22 is not limited to a circle, For example, a polygon, an ellipse, a parallelogram, a trapezoid, a rhombus, etc. may be sufficient.
 凸部22は、その延びる方向の先端部分にほぼ平面状の頂部pを有することが好ましい。図示する例では、凸部22は円形の頂部pを有している。凸部22が平面状の頂部pを有していると、凸部22と活物質体24との接合性が向上する。平面状の頂部pが表面21aに対してほぼ平行であれば、凸部22と活物質体24との接合強度をより高めることができるのでさらに好ましい。 The convex portion 22 preferably has a substantially planar apex p at the tip portion in the extending direction. In the illustrated example, the convex portion 22 has a circular top portion p. When the convex part 22 has the planar top part p, the bondability of the convex part 22 and the active material body 24 will improve. It is further preferable that the planar apex p is substantially parallel to the surface 21a, since the bonding strength between the convex portion 22 and the active material body 24 can be further increased.
 凸部22の単位面積当りの個数、凸部22同士の間隔などは特に制限されず、凸部22の大きさ(高さ、断面径など)、凸部22の表面に設けられる活物質体24の大きさなどに応じて適宜選択される。凸部22の単位面積当りの個数は、例えば1万~1000万個/cm2程度である。また、隣り合う凸部22の軸線間距離dは、例えば2μm以上100μm程度であることが好ましい。 The number of protrusions 22 per unit area, the interval between the protrusions 22, and the like are not particularly limited, and the size (height, cross-sectional diameter, etc.) of the protrusions 22 and the active material body 24 provided on the surface of the protrusions 22. It is appropriately selected according to the size of the. The number of convex portions 22 per unit area is, for example, about 10,000 to 10 million pieces / cm 2 . Moreover, it is preferable that the inter-axis distance d of the adjacent convex part 22 is about 2 micrometers or more and about 100 micrometers, for example.
 凸部22は、所定の配列ピッチで規則的に配列されていることが好ましく、例えば千鳥格子状、碁盤目状などのパターンで配列されていてもよい。凸部22の配列ピッチ(隣接する凸部22の中心間の距離)は例えば10μm以上100μm以下である。ここで、「凸部22の中心」とは、凸部22の上面(頂部)における最大幅の中心点を指す。配列ピッチが10μm以上であれば、隣接する活物質体24の間に、活物質体24が膨張するための空間をより確実に確保できる。一方、配列ピッチが100μm以下であれば、活物質体24の高さを増大させることなく、高い容量を確保できる。 The convex portions 22 are preferably arranged regularly at a predetermined arrangement pitch, and may be arranged in a pattern such as a houndstooth pattern or a grid pattern. The arrangement pitch of the protrusions 22 (the distance between the centers of the adjacent protrusions 22) is, for example, not less than 10 μm and not more than 100 μm. Here, the “center of the convex portion 22” refers to the center point of the maximum width on the upper surface (top portion) of the convex portion 22. If the arrangement pitch is 10 μm or more, a space for expanding the active material members 24 can be more reliably secured between the adjacent active material members 24. On the other hand, when the arrangement pitch is 100 μm or less, a high capacity can be secured without increasing the height of the active material body 24.
 また、凸部22の配列ピッチに対する凸部22の間隔の割合は1/3以上2/3以下であることが好ましい。間隔の割合が1/3以上であれば、各凸部22の上にそれぞれ活物質体24を形成したときに、凸部22の各配列方向における活物質体24の空隙の幅をより確実に確保できる。一方、間隔の割合が2/3よりも大きくなると、斜め蒸着によって活物質体を形成する際に、凸部22の間の間隔(「凹部」または「溝」ともいう。)にも活物質が蒸着されてしまい、負極集電体21にかかる膨張応力が増大するおそれがある。 Further, it is preferable that the ratio of the interval between the protrusions 22 to the arrangement pitch of the protrusions 22 is 1/3 or more and 2/3 or less. If the spacing ratio is 1/3 or more, when the active material bodies 24 are formed on the respective convex portions 22, the widths of the gaps in the active material bodies 24 in the respective arrangement directions of the convex portions 22 are more reliably ensured. It can be secured. On the other hand, when the proportion of the spacing is larger than 2/3, the active material is also present in the spacing (also referred to as “concave portion” or “groove”) between the convex portions 22 when forming the active material body by oblique deposition. As a result, the expansion stress applied to the negative electrode current collector 21 may increase.
 さらに、凸部22が、負極集電体21の表面に垂直な側面を有する柱状体である場合には、負極20の断面図において、隣接する凸部22の間隔が、凸部22の幅の30%以上であることが好ましい。これにより、活物質体24の間に十分な空隙を確保して膨張応力を大幅に緩和できる。一方、隣接する凸部22の間の距離が大きすぎると、容量を確保するために負極活物質層23の厚さが増大してしまう。従って、負極20の断面において、凸部22の間隔は、凸部22の幅の250%以下であることが好ましい。 Furthermore, when the convex portion 22 is a columnar body having a side surface perpendicular to the surface of the negative electrode current collector 21, in the cross-sectional view of the negative electrode 20, the interval between the adjacent convex portions 22 is the width of the convex portion 22. It is preferable that it is 30% or more. As a result, a sufficient gap can be secured between the active material members 24 to significantly relieve the expansion stress. On the other hand, if the distance between the adjacent convex portions 22 is too large, the thickness of the negative electrode active material layer 23 increases in order to ensure capacity. Therefore, in the cross section of the negative electrode 20, the interval between the protrusions 22 is preferably 250% or less of the width of the protrusions 22.
 凸部22の表面に、めっきなどによって突起(図示せず)を形成してもよい。これにより、凸部22と活物質体24との接合性を効果的に向上できるので、活物質体24の凸部22からの剥離や剥離伝播などをより確実に防止できる。突起は、凸部22表面から凸部22の外方に突出するように設けられる。突起の幅および高さは、凸部22の幅および高さよりも小さく、各凸部22の表面に複数の突起が形成されてもよい。さらに、凸部22の側面もに、周方向および/または凸部22の成長方向に延びるように突起が形成されていてもよい。また、凸部22が平面状の頂部を有する場合は、各頂部に、凸部22よりも小さな突起が1個または複数個形成されていてもよい。頂部に形成される突起は一方向に延びていてもよい。 A protrusion (not shown) may be formed on the surface of the convex portion 22 by plating or the like. Thereby, since the joining property of the convex part 22 and the active material body 24 can be improved effectively, peeling from the convex part 22 of the active material body 24, peeling propagation, etc. can be prevented more reliably. The protrusion is provided so as to protrude from the surface of the protrusion 22 to the outside of the protrusion 22. The width and height of the protrusions are smaller than the width and height of the protrusions 22, and a plurality of protrusions may be formed on the surface of each protrusion 22. Furthermore, protrusions may be formed on the side surfaces of the protrusions 22 so as to extend in the circumferential direction and / or the growth direction of the protrusions 22. Moreover, when the convex part 22 has a planar top part, one or more protrusions smaller than the convex part 22 may be formed in each top part. The protrusion formed on the top may extend in one direction.
 凸部22の上面は平坦であってもよいが、凹凸を有することが好ましい。凹凸は、例えば上記のように凸部22の上面に突起を形成することによって形成され得る。凸部22の上面の表面粗さRaは、0.3μm以上5.0μm以下であることが好ましい。これにより、凸部22と活物質体24との付着力を十分に確保できるので、活物質体24の剥離を防止できる。ここでいう「表面粗さRa」とは、日本工業規格(JISB0601―1994)に定められた「算術平均粗さRa」を指し、例えば表面粗さ計などを用いて測定できる。 The upper surface of the convex portion 22 may be flat, but preferably has irregularities. The unevenness can be formed, for example, by forming a protrusion on the upper surface of the convex portion 22 as described above. The surface roughness Ra of the upper surface of the convex portion 22 is preferably 0.3 μm or more and 5.0 μm or less. As a result, a sufficient adhesion force between the convex portion 22 and the active material body 24 can be ensured, so that the active material body 24 can be prevented from peeling off. “Surface roughness Ra” here refers to “arithmetic average roughness Ra” defined in Japanese Industrial Standards (JISB0601-1994), and can be measured using, for example, a surface roughness meter.
 なお、負極集電体21の表面の形成された凹凸パターンの断面が曲線形状を有する場合など、凸部22と凸部以外の部分(「溝」、「凹部」)との境界が明確でなくてもよい。このような場合には、凹凸パターンを有する表面全体の平均高さ以上の部分を「凸部22」とし、平均高さ未満の部分を「溝」または「凹部」とする。また、凹部の底点を含む平面を「表面21a」とする。 In addition, when the cross section of the concavo-convex pattern formed on the surface of the negative electrode current collector 21 has a curved shape, the boundary between the convex portion 22 and portions other than the convex portion (“groove”, “concave portion”) is not clear. May be. In such a case, a portion having an average height or more of the entire surface having the concavo-convex pattern is referred to as a “projection 22”, and a portion less than the average height is referred to as a “groove” or “concave”. In addition, a plane including the bottom of the recess is referred to as “surface 21a”.
 本実施形態における負極集電体21は、たとえば金属箔、金属シートなどの集電体用原料シートに凹凸を形成することによって作製できる。凹凸を形成する方法としては、表面に複数の凹部が形成されたローラの表面を転写する方法(以下「ローラ加工法」とする。)、フォトレジスト法などが挙げられる。 The negative electrode current collector 21 in the present embodiment can be produced by forming irregularities on a current collector material sheet such as a metal foil or a metal sheet. Examples of the method for forming the unevenness include a method of transferring the surface of a roller having a plurality of recesses formed on the surface (hereinafter referred to as “roller processing method”), a photoresist method, and the like.
 ローラ加工法では、表面に凹部が形成されたローラ(以下「凸部形成用ローラ」とする)を用いて、集電体用原料シートを機械的にプレス加工する。これにより、集電体用原料シートの少なくとも一方の面に、複数の凸部22を形成することができる。集電体用原料シートとしては、負極集電体21の材料として上述したような材料を含むシートを用いることができる。 In the roller processing method, a current collector raw material sheet is mechanically pressed using a roller having a recess formed on the surface (hereinafter referred to as a “projection forming roller”). Thereby, the some convex part 22 can be formed in the at least one surface of the raw material sheet | seat for collectors. As the material sheet for the current collector, a sheet containing the material as described above as the material of the negative electrode current collector 21 can be used.
 負極活物質層23は、図8に示すように、凸部22の表面から負極集電体21の外方に向けて延びる複数の柱状の活物質体24を含んでいる。各活物質体24は、負極集電体21の表面21aの法線方向Dに延びていてもよい。あるいは、法線方向Dに対して傾斜した方向に延びていてもよい。また、各活物質体24は、成長方向の異なる複数の柱状塊が積み重ねられた構造を有していてもよい。 As shown in FIG. 8, the negative electrode active material layer 23 includes a plurality of columnar active material bodies 24 extending from the surface of the convex portion 22 toward the outside of the negative electrode current collector 21. Each active material body 24 may extend in the normal direction D of the surface 21 a of the negative electrode current collector 21. Alternatively, it may extend in a direction inclined with respect to the normal direction D. Each active material body 24 may have a structure in which a plurality of columnar lumps having different growth directions are stacked.
 各活物質体24は、少なくとも充電が行われる前には、隣接する活物質体24との間に間隙を有していることが好ましい。この間隙によって、充放電の際の膨張および収縮による応力を緩和できるので、活物質体24が凸部22から剥離し難い。この結果、負極集電体21や負極20の変形を抑制できる。 Each active material member 24 preferably has a gap between adjacent active material members 24 at least before charging. This gap can relieve stress due to expansion and contraction during charging / discharging, so that the active material body 24 is difficult to peel off from the convex portion 22. As a result, deformation of the negative electrode current collector 21 and the negative electrode 20 can be suppressed.
 活物質体24間の間隙の幅は、凸部22の配列ピッチや大きさ等によって調整され得る。また、これらの活物質体24は、負極活物質層23の形成直後や放電時には互いに間隔を空けて配置されていても、充電時には、隣接する活物質体24同士が接触する場合もある。 The width of the gap between the active material bodies 24 can be adjusted by the arrangement pitch or size of the protrusions 22. Further, these active material bodies 24 may be arranged immediately after the formation of the negative electrode active material layer 23 or at intervals during discharging, but adjacent active material bodies 24 may come into contact with each other during charging.
 活物質体24は、n個(n≧2)の層(柱状塊)が積み重ねられた構造を有していてもよい。個数nは大きい方がより好ましい。たとえば、図10に示すように、8個の柱状塊24a、24b、24c、24d、24e、24f、24g、24hが積層された柱状物であってもよい。 The active material body 24 may have a structure in which n (n ≧ 2) layers (columnar blocks) are stacked. A larger number n is more preferable. For example, as shown in FIG. 10, it may be a columnar product in which eight columnar chunks 24a, 24b, 24c, 24d, 24e, 24f, 24g, and 24h are laminated.
 このような活物質体24を含む負極活物質層23は、次のようにして形成される。まず、凸部22の頂部およびそれに続く側面の一部を被覆するように柱状塊24aを形成する。次に、凸部22の残りの側面および柱状塊24aの頂部表面の一部を被覆するように柱状塊24bを形成する。すなわち、図10に示す断面図において、柱状塊24aは凸部22の頂部を含む一方の端部に形成され、柱状塊24bは部分的には柱状塊24aに重なるが、残りの部分は凸部22の他方の端部に形成される。さらに、柱状塊24aの頂部表面の残りおよび柱状塊24bの頂部表面の一部を被覆するように柱状塊24cが形成される。すなわち、柱状塊24cは主に柱状塊24aに接するように形成される。さらに、柱状塊24dは主に柱状塊24bに接するように形成される。以下同様にして、柱状塊24e、24f、24g、24hを交互に積層することによって、活物質体24が形成される。 The negative electrode active material layer 23 including such an active material body 24 is formed as follows. First, the columnar chunk 24a is formed so as to cover the top of the convex portion 22 and a part of the side surface following the top. Next, the columnar chunk 24b is formed so as to cover the remaining side surface of the convex portion 22 and a part of the top surface of the columnar chunk 24a. That is, in the cross-sectional view shown in FIG. 10, the columnar chunk 24a is formed at one end including the top of the convex portion 22, the columnar chunk 24b partially overlaps the columnar chunk 24a, but the remaining portion is the convex portion. 22 is formed at the other end. Further, the columnar chunk 24c is formed so as to cover the rest of the top surface of the columnar chunk 24a and a part of the top surface of the columnar chunk 24b. That is, the columnar chunk 24c is formed so as to mainly contact the columnar chunk 24a. Further, the columnar chunk 24d is formed mainly in contact with the columnar chunk 24b. Similarly, the active material body 24 is formed by alternately stacking the columnar chunks 24e, 24f, 24g, and 24h.
 次に、負極活物質層23の作製方法をより具体的に説明する。ここでは、斜め蒸着によって負極活物質層23を形成する方法を説明する。 Next, a method for producing the negative electrode active material layer 23 will be described more specifically. Here, a method of forming the negative electrode active material layer 23 by oblique deposition will be described.
 図11は、負極活物質層23の形成に使用する電子ビーム式蒸着装置50を例示する断面図である。図11では、蒸着装置50内部の各部材も実線で示している。 FIG. 11 is a cross-sectional view illustrating an electron beam evaporation apparatus 50 used for forming the negative electrode active material layer 23. In FIG. 11, each member inside the vapor deposition apparatus 50 is also indicated by a solid line.
 蒸着装置50は、チャンバー51、第1の配管52、固定台53、ノズル54、ターゲット(蒸発源)55、図示しない電子ビーム発生装置、電源56、および図示しない第2の配管を含む。チャンバー51は内部空間を有する耐圧性の容器状部材であり、その内部に第1の配管52、固定台53、ノズル54およびターゲット55が収容されている。第1の配管52は、ノズル54に原料ガスを供給する。第1の配管52の一端はノズル54に接続されている。第1の配管52の他端は、チャンバー51の外側に延びて、マスフローコントローラ(図示せず)を介して、原料ガスボンベまたは原料ガス製造装置(図示せず)に接続される。原料ガスとしては、たとえば酸素、窒素などを用いることができる。 The vapor deposition apparatus 50 includes a chamber 51, a first pipe 52, a fixing base 53, a nozzle 54, a target (evaporation source) 55, an electron beam generator not shown, a power source 56, and a second pipe not shown. The chamber 51 is a pressure-resistant container-like member having an internal space, and a first pipe 52, a fixing base 53, a nozzle 54, and a target 55 are accommodated therein. The first pipe 52 supplies the source gas to the nozzle 54. One end of the first pipe 52 is connected to the nozzle 54. The other end of the first pipe 52 extends to the outside of the chamber 51 and is connected to a source gas cylinder or a source gas manufacturing apparatus (not shown) via a mass flow controller (not shown). As source gas, oxygen, nitrogen, etc. can be used, for example.
 固定台53は板状部材であり、水平面60に対して、角変位または回転自在に支持されている。固定台53の一方の表面には、負極集電体21が固定される。固定台53の位置は、例えば図11において、実線で示される第1の位置と一点破線で示される第2の位置との間で切り替えられ、これによって、蒸着角度を切り替えることが可能となる。 The fixing base 53 is a plate-like member, and is supported so as to be angularly displaced or rotatable with respect to the horizontal plane 60. The negative electrode current collector 21 is fixed to one surface of the fixing base 53. For example, in FIG. 11, the position of the fixing base 53 is switched between a first position indicated by a solid line and a second position indicated by a one-dot broken line, whereby the deposition angle can be switched.
 第1の位置は、固定台53の負極集電体21を固定する側の面が、鉛直方向下方のノズル54に対向し、かつ、固定台53と水平面60とのなす角度がα°となる位置である。第2の位置は、固定台53の負極集電体21を固定する側の面が鉛直方向下方のノズル54と対向し、かつ、固定台53と水平面60とのなす角度が(180-α)°となる位置である。角度α°は、形成しようとする活物質体24の寸法などに応じて適宜選択される。 The first position is that the surface of the fixing base 53 on the side where the negative electrode current collector 21 is fixed is opposed to the nozzle 54 below in the vertical direction, and the angle between the fixing base 53 and the horizontal plane 60 is α °. Position. The second position is such that the surface of the fixing base 53 on the side where the negative electrode current collector 21 is fixed is opposed to the nozzle 54 below in the vertical direction, and the angle formed by the fixing base 53 and the horizontal plane 60 is (180−α). It is a position that becomes °. The angle α ° is appropriately selected according to the dimensions of the active material body 24 to be formed.
 ノズル54は、鉛直方向において固定台53とターゲット55との間に設けられている。ノズル54は、ターゲット55から蒸発し、鉛直方向上方に上昇してくる合金系活物質などの蒸発材料の蒸気と、第1の配管52から供給される原料ガスとを混合し、固定台53表面に固定される負極集電体21表面に供給する。 The nozzle 54 is provided between the fixed base 53 and the target 55 in the vertical direction. The nozzle 54 mixes the vapor of evaporation material such as an alloy-based active material that evaporates from the target 55 and rises upward in the vertical direction, and the raw material gas supplied from the first pipe 52, and the surface of the fixed base 53. To the surface of the negative electrode current collector 21 fixed to the surface.
 ターゲット55は合金系負極活物質またはその原料を収容する。電子ビーム発生装置は、ターゲット55に収容される合金系活物質またはその原料に電子ビームを照射して加熱し、これらの蒸気を発生させる。電源56はチャンバー51の外部に設けられて、電子ビーム発生装置に電気的に接続され、電子ビームを発生させるための電圧を電子ビーム発生装置に印加する。第2の配管は、チャンバー51内の雰囲気ガスとなるガスを導入する。 The target 55 accommodates an alloy-based negative electrode active material or its raw material. The electron beam generator irradiates and heats an alloy-based active material accommodated in the target 55 or its raw material with an electron beam to generate these vapors. The power source 56 is provided outside the chamber 51 and is electrically connected to the electron beam generator, and applies a voltage for generating an electron beam to the electron beam generator. The second pipe introduces a gas that becomes the atmospheric gas in the chamber 51.
 図11に示す電子ビーム式蒸着装置50を用いて、負極活物質層23を形成する方法を説明する。 A method for forming the negative electrode active material layer 23 using the electron beam evaporation apparatus 50 shown in FIG. 11 will be described.
 まず、負極集電体21を固定台53に固定し、固定台53を第1の位置に設定する。チャンバー51の内部に、第2の配管52およびノズル54を用いて酸素ガスを導入する。この状態で、ターゲット55の合金系負極活物質またはその原料に電子ビームを照射して加熱し、その蒸気を発生させる。本実施形態では、合金系活物質としてSiOα(0<α<2)を使用する。発生したケイ素蒸気は鉛直方向上方に上昇し、ノズル54を通過する際に、ノズル54から供給される酸素と混合される。この後、ケイ素蒸気および酸素は、さらに上昇して固定台53に固定された負極集電体21の表面に供給される。 First, the negative electrode current collector 21 is fixed to the fixing base 53, and the fixing base 53 is set to the first position. Oxygen gas is introduced into the chamber 51 using the second pipe 52 and the nozzle 54. In this state, the alloy-based negative electrode active material of the target 55 or its raw material is irradiated with an electron beam and heated to generate its vapor. In the present embodiment, SiOα (0 <α <2) is used as the alloy-based active material. The generated silicon vapor rises upward in the vertical direction, and is mixed with oxygen supplied from the nozzle 54 when passing through the nozzle 54. Thereafter, the silicon vapor and oxygen are further raised and supplied to the surface of the negative electrode current collector 21 fixed to the fixed base 53.
 負極集電体21の表面では、ケイ素蒸気と酸素ガスとが反応してケイ素酸化物が成長する。本実施形態では、ケイ素原子は、負極集電体21の法線方向に対して角度ω1(蒸着角度)だけ傾斜した方向から負極集電体21の表面に向かって飛来し、負極集電体21の表面近傍でノズル54から供給された酸素と結合する。これにより、負極集電体21の表面にケイ素酸化物が堆積する。蒸着角度ω1は、固定台53と水平面60とがなす角度αと等しくなる。酸素の供給される方向は特に限定しない。ここでは、酸素は、ノズル54によって図11の紙面の奥から手前に向かって負極集電体21の表面に供給される。 On the surface of the negative electrode current collector 21, silicon vapor and oxygen gas react to grow silicon oxide. In the present embodiment, silicon atoms fly toward the surface of the negative electrode current collector 21 from a direction inclined by an angle ω 1 (deposition angle) with respect to the normal direction of the negative electrode current collector 21. The oxygen is supplied from the nozzle 54 near the surface of 21. Thereby, silicon oxide is deposited on the surface of the negative electrode current collector 21. The vapor deposition angle ω 1 is equal to the angle α formed by the fixed base 53 and the horizontal plane 60. The direction in which oxygen is supplied is not particularly limited. Here, oxygen is supplied to the surface of the negative electrode current collector 21 from the back of the sheet of FIG.
 蒸発源の材料(ケイ素)を負極集電体21の法線方向に対して傾斜した方向から入射させると(斜め蒸着)、負極集電体21の表面における凸部上に蒸着しやすく、凸部上でのみ選択的にケイ素酸化物が柱状に成長する。一方、負極集電体21の表面のうち柱状に成長していくケイ素酸化物の影となる部分では、ケイ素原子が入射せず、ケイ素酸化物は蒸着しにくい(シャドウイング効果)。このようにして、図10に示す活物質体の柱状塊24aが形成される。 When the material of the evaporation source (silicon) is incident from a direction inclined with respect to the normal direction of the negative electrode current collector 21 (oblique deposition), it is easy to deposit on the convex portion on the surface of the negative electrode current collector 21, and the convex portion The silicon oxide grows in a columnar shape selectively only on the top. On the other hand, silicon atoms do not enter the portion of the surface of the negative electrode current collector 21 that is shadowed by the silicon oxide that grows in a columnar shape, and silicon oxide is difficult to deposit (shadowing effect). In this way, the columnar mass 24a of the active material body shown in FIG. 10 is formed.
 次に、固定台53を回転させて第2の位置に設定し、上記と同様にして、ケイ素酸化物を成長させる。このとき、ケイ素原子および酸素ガスは、負極集電体21の法線方向に対して、柱状塊24aを形成する際の蒸着方向と反対側に傾斜した方向から、負極集電体21の表面に入射する。負極集電体21の法線方向に対する蒸着角度をω2とすると、ω1=-ω2となる。これにより、柱状塊24aの上に柱状塊24b(図10)が形成される。 Next, the fixed base 53 is rotated and set to the second position, and silicon oxide is grown in the same manner as described above. At this time, silicon atoms and oxygen gas are introduced to the surface of the negative electrode current collector 21 from a direction inclined to the opposite side of the vapor deposition direction when forming the columnar mass 24 a with respect to the normal direction of the negative electrode current collector 21. Incident. When the deposition angle with respect to the normal direction of the negative electrode current collector 21 is ω 2 , ω 1 = −ω 2 . Thereby, the columnar chunk 24b (FIG. 10) is formed on the columnar chunk 24a.
 このように固定台53の位置を、第1の位置と第2の位置との間で交互に切り替えることによって、図10に示すように、複数の柱状塊24a~24hから構成される活物質体24を含む負極活物質層23を形成できる。 In this way, by alternately switching the position of the fixing base 53 between the first position and the second position, as shown in FIG. 10, an active material body composed of a plurality of columnar chunks 24a to 24h The negative electrode active material layer 23 containing 24 can be formed.
 上記方法によって形成された活物質体24では、柱状塊24aの成長方向は、負極集電体21の法線方向Dに対して角度θ1だけ傾斜している。この傾斜角度θ1は、蒸着角度(ケイ素の入射角度)ω1によって決まる。具体的には、成長方向の傾斜角度θ1とケイ素の蒸着角度ω1とは2tanθ1=tanω1の関係を満たすことが経験的に知られている。また、酸素導入量を変えることで真空槽内の圧力を制御することにより、上記関係式から計算される傾斜角度から低くなることも知られている。従って、傾斜角度θ1は蒸着角度ω1および真空槽内圧を変えることによって制御され得る。また、柱状塊24bの成長方向は、負極集電体21の法線方向Dに対して、柱状塊24aの成長方向と反対の方向に角度θ2だけ傾斜している。このように、蒸着時に、負極集電体21の法線方向Dに対して交互に反対側から蒸着材料が入射するように蒸着方向を切り替えると、複数の柱状塊24a~24hのそれぞれの成長方向は、負極集電体21の法線方向Dに対して交互に反対方向に傾斜する。 In the active material body 24 formed by the above method, the growth direction of the columnar mass 24 a is inclined by the angle θ 1 with respect to the normal direction D of the negative electrode current collector 21. The inclination angle θ 1 is determined by the deposition angle (silicon incident angle) ω 1 . Specifically, it is empirically known that the inclination angle θ 1 in the growth direction and the deposition angle ω 1 of silicon satisfy the relationship of 2 tan θ 1 = tan ω 1 . It is also known that the inclination angle calculated from the above relational expression is lowered by controlling the pressure in the vacuum chamber by changing the oxygen introduction amount. Therefore, the inclination angle θ 1 can be controlled by changing the deposition angle ω 1 and the vacuum chamber internal pressure. The growth direction of the columnar chunk 24 b is inclined by an angle θ 2 in the direction opposite to the growth direction of the columnar chunk 24 a with respect to the normal direction D of the negative electrode current collector 21. As described above, when the deposition direction is switched so that the deposition material is alternately incident from the opposite side with respect to the normal direction D of the negative electrode current collector 21 during the deposition, the growth directions of the plurality of columnar chunks 24a to 24h are changed. Are alternately inclined in the opposite direction with respect to the normal direction D of the negative electrode current collector 21.
 上記方法で形成された活物質体24は、SiOxの化学組成を有する。ケイ素量に対する酸素量のモル比xの平均値は0より大きく2未満である。なお、活物質体24の厚さ方向に酸素の濃度勾配ができるように、活物質体24を形成してもよい。具体的には、負極集電体21に近接する部分で酸素の含有率を高くし、負極集電体21から離れるに従って、酸素の含有率を減らしてもよい。一般に、ケイ素酸化物を含む活物質では、酸素の含有率が高いほど、すなわち上記xが2に近づくほど、リチウムの吸蔵による活物質の体積膨張率が小さくなる。一方、酸素の含有率が低いほど、すなわち上記xがゼロに近づくほど、体積容量密度(mAh/cm3)を高めることができるが、体積膨張率は大きくなる。従って、上記のような酸素の濃度勾配を有する活物質体24では、負極集電体21に近接する部分で活物質の膨張・収縮が抑えられるので、凸部22と活物質体24との接合性をさらに向上できる。また、負極集電体21から離れた部分では、酸素の含有率が小さいので、高い体積容量密度になる。 The active material body 24 formed by the above method has a chemical composition of SiO x . The average value of the molar ratio x of the oxygen amount to the silicon amount is greater than 0 and less than 2. Note that the active material body 24 may be formed so that an oxygen concentration gradient is formed in the thickness direction of the active material body 24. Specifically, the oxygen content may be increased in a portion close to the negative electrode current collector 21, and the oxygen content may be reduced as the distance from the negative electrode current collector 21 increases. In general, in an active material containing silicon oxide, the higher the oxygen content, that is, the closer x is to 2, the smaller the volume expansion coefficient of the active material due to occlusion of lithium. On the other hand, the volume capacity density (mAh / cm 3 ) can be increased as the oxygen content is lower, that is, as x is closer to zero, but the volume expansion coefficient is increased. Therefore, in the active material body 24 having the oxygen concentration gradient as described above, the expansion / shrinkage of the active material can be suppressed in the portion close to the negative electrode current collector 21, so that the bonding between the convex portion 22 and the active material body 24 is performed. The sex can be further improved. Moreover, in the part away from the negative electrode collector 21, since the oxygen content is small, the volume capacity density is high.
 なお、活物質体24の形成方法は、上述した方法に限定されない。例えばノズル54から原料ガスを供給せず、ケイ素またはスズ単体を主成分とする活物質体24を形成してもよい。また、蒸着角度を切り替えずに一定にして蒸着を行ってもよい。これにより、一方向に沿って成長した活物質体24が得られる。また、蒸着を行っている間に、固定台53を回転軸に沿って回転させて負極集電体21の設置方向を変えることにより、蒸着角度を変化させてもよい。 In addition, the formation method of the active material body 24 is not limited to the method mentioned above. For example, the raw material gas may not be supplied from the nozzle 54 and the active material body 24 mainly composed of silicon or tin may be formed. Further, vapor deposition may be performed with a constant deposition angle without switching. Thereby, the active material body 24 grown along one direction is obtained. Further, during the vapor deposition, the vapor deposition angle may be changed by rotating the fixed base 53 along the rotation axis to change the installation direction of the negative electrode current collector 21.
 さらに、上記方法では、蒸着角度を切り替えながら8回の蒸着を行っているが、蒸着の回数は特に限定されない。例えば蒸着角度を例えば60°と-60°との間で交互に切り替えて、例えば第n段目(n≧2)まで蒸着を行うと、n個の部分を有する活物質体24を形成できる。 Furthermore, in the above method, eight times of vapor deposition are performed while switching the vapor deposition angle, but the number of times of vapor deposition is not particularly limited. For example, when the vapor deposition angle is alternately switched between 60 ° and −60 °, for example, and vapor deposition is performed up to the n-th stage (n ≧ 2), the active material body 24 having n portions can be formed.
 なお、本実施形態では、斜め蒸着を利用して負極活物質層を形成しているが、代わりに特許文献3に記載されているようなリフトオフを利用することもできる。あるいは、活物質膜を堆積させた後、パターニングすることによって、柱状構造を有する負極活物質層を形成してもよい。 In this embodiment, the negative electrode active material layer is formed using oblique vapor deposition, but lift-off as described in Patent Document 3 can be used instead. Alternatively, a negative electrode active material layer having a columnar structure may be formed by depositing an active material film and then patterning.
 <セパレータ13>
 セパレータ13には、所定のイオン透過度、機械的強度、絶縁性などの特性を併せ持つシートまたはフィルムが用いられる。セパレータ13の具体例として、たとえば微多孔膜、織布、不織布などの多孔性のシートまたはフィルムが挙げられる。微多孔膜は単層膜および多層膜のいずれであってもよい。セパレータ13の材料として各種樹脂材料を使用できるが、耐久性、シャットダウン機能、電池の安全性などを考慮すると、ポリエチレン、ポリプロピレンなどのポリオレフィンを用いることが好ましい。セパレータ13の厚さは一般的には10~300μmであるが、好ましくは10~40μm、より好ましくは10~30μm、さらに好ましくは10~25μmである。セパレータ13の空孔率は好ましくは30~70%、より好ましくは35~60%である。
<Separator 13>
As the separator 13, a sheet or film having characteristics such as predetermined ion permeability, mechanical strength, and insulating properties are used. Specific examples of the separator 13 include porous sheets or films such as a microporous film, a woven fabric, and a non-woven fabric. The microporous film may be either a single layer film or a multilayer film. Although various resin materials can be used as the material of the separator 13, it is preferable to use polyolefins such as polyethylene and polypropylene in consideration of durability, shutdown function, battery safety, and the like. The thickness of the separator 13 is generally 10 to 300 μm, preferably 10 to 40 μm, more preferably 10 to 30 μm, and further preferably 10 to 25 μm. The porosity of the separator 13 is preferably 30 to 70%, more preferably 35 to 60%.
 <電解液>
 本実施形態で用いる電解液(非水電解質)として、リチウムイオン伝導性を有する非水電解質が好適に用いられる。非水電解質は、たとえば液状非水電解質、ゲル状非水電解質、固体状電解質(たとえば高分子固体電解質)などであってもよい。
<Electrolyte>
As the electrolytic solution (nonaqueous electrolyte) used in the present embodiment, a nonaqueous electrolyte having lithium ion conductivity is suitably used. The non-aqueous electrolyte may be, for example, a liquid non-aqueous electrolyte, a gel-like non-aqueous electrolyte, a solid electrolyte (for example, a polymer solid electrolyte), or the like.
 液状非水電解質は、溶質(支持塩)と非水溶媒とを含み、さらに必要に応じて各種添加剤を含む。溶質は通常非水溶媒中に溶解する。 The liquid non-aqueous electrolyte contains a solute (supporting salt) and a non-aqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents.
 溶質としては、この分野で常用されるものを使用できる。たとえば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiBr、LiI、LiBCl4、ホウ酸塩類、イミド塩類などが挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウムなどが挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム((CF3SO2)(C49SO2)NLi)、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)などが挙げられる。上記の溶質のうち1種を単独で用いてもよく、または必要に応じて2種以上を組み合わせて用いてもよい。溶質の非水溶媒に対する溶解量は、0.5~2.0mol/Lの範囲内であることが望ましい。 As the solute, those commonly used in this field can be used. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBr, LiI, LiBCl 4 , borate salts, imide salts and the like can be mentioned. Examples of borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid. Lithium, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O ′) lithium borate Etc. Examples of imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi) ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like. One of the above solutes may be used alone, or two or more may be used in combination as necessary. The amount of the solute dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 2.0 mol / L.
 非水溶媒としては、この分野で常用されるものを使用できる。たとえば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが挙げられる。環状炭酸エステルとしては、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、たとえば、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、たとえば、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。上記非水溶媒のうち1種を単独で用いてもよく、また必要に応じて2種以上を組み合わせて用いてもよい。 As the non-aqueous solvent, those commonly used in this field can be used. For example, cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester and the like can be mentioned. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). One of the non-aqueous solvents may be used alone, or two or more may be used in combination as necessary.
 ゲル状非水電解質は、液状非水電解質と液状非水電解質を保持する高分子材料とを含む。ここで用いる高分子材料は液状物をゲル化させ得るものである。高分子材料としてはこの分野で常用されるものを使用できる。たとえば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、ポリビニリデンフルオライドなどが挙げられる。 The gel-like non-aqueous electrolyte includes a liquid non-aqueous electrolyte and a polymer material that holds the liquid non-aqueous electrolyte. The polymer material used here is capable of gelling a liquid material. As the polymer material, those commonly used in this field can be used. Examples thereof include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, and polyvinylidene fluoride.
 固体状電解質は、たとえば、溶質(支持塩)と高分子材料とを含む。溶質は上記で例示したものと同様のものを使用できる。高分子材料としては、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、エチレンオキシドとプロピレンオキシドとの共重合体などが挙げられる。 The solid electrolyte includes, for example, a solute (supporting salt) and a polymer material. Solutes similar to those exemplified above can be used. Examples of the polymer material include polyethylene oxide (PEO), polypropylene oxide (PPO), a copolymer of ethylene oxide and propylene oxide, and the like.
 <正極および負極リード、外装ケース>
 正極リード18は、一端が正極集電体31に接続され、他端が外装ケース17の開口部17aからリチウム二次電池1の外部に導出されている。負極リード19は、一端が負極集電体12aに接続され、他端が外装ケース17の開口部17bからリチウム二次電池1の外部に導出されている。正極リード14および負極リード19としては、リチウム二次電池の技術分野で常用されるものをいずれも使用できる。また、外装ケース17の開口部17a、17bはガスケット16によって封止されている。ガスケット16には、たとえば、各種樹脂材料を使用できる。外装ケース17についても、リチウム二次電池の技術分野で常用されるものをいずれも使用できる。なお、ガスケット16を使用せずに、外装ケース17の開口部17a、17bを溶着などによって直接封止してもよい。
<Positive electrode and negative electrode lead, outer case>
One end of the positive electrode lead 18 is connected to the positive electrode current collector 31, and the other end is led out from the opening 17 a of the outer case 17 to the outside of the lithium secondary battery 1. One end of the negative electrode lead 19 is connected to the negative electrode current collector 12 a, and the other end is led out of the lithium secondary battery 1 from the opening 17 b of the outer case 17. As the positive electrode lead 14 and the negative electrode lead 19, any one commonly used in the technical field of lithium secondary batteries can be used. Further, the openings 17 a and 17 b of the outer case 17 are sealed with a gasket 16. For the gasket 16, for example, various resin materials can be used. As the outer case 17, any one commonly used in the technical field of lithium secondary batteries can be used. Instead of using the gasket 16, the openings 17a and 17b of the outer case 17 may be directly sealed by welding or the like.
 <リチウム二次電池200の作製方法>
 リチウム二次電池200は、たとえば、次のようにして製造できる。ここでは、多孔質絶縁層15が正極30に一体的に形成されている場合を例に説明する。
<Method for Manufacturing Lithium Secondary Battery 200>
The lithium secondary battery 200 can be manufactured, for example, as follows. Here, a case where the porous insulating layer 15 is integrally formed with the positive electrode 30 will be described as an example.
 まず、負極20、正極30、およびセパレータ13を準備する。正極30における正極活物質層33の表面に、多孔質絶縁層15を一体的に形成する。 First, the negative electrode 20, the positive electrode 30, and the separator 13 are prepared. The porous insulating layer 15 is integrally formed on the surface of the positive electrode active material layer 33 in the positive electrode 30.
 次いで、正極30の正極集電体31の表面のうち、正極活物質層33が形成されていない部分に正極リード18の一端を接続する。同様に、負極20の負極集電体21の表面にのうち負極活物質層23が形成されていない部分に負極リード19の一端を接続する。 Next, one end of the positive electrode lead 18 is connected to a portion of the surface of the positive electrode current collector 31 of the positive electrode 30 where the positive electrode active material layer 33 is not formed. Similarly, one end of the negative electrode lead 19 is connected to a portion of the surface of the negative electrode current collector 21 of the negative electrode 20 where the negative electrode active material layer 23 is not formed.
 この後、正極30と負極20とをセパレータ13を介して積層し、電極群を作製する。このとき、正極活物質層33と負極活物質層23とが対向するように、正極30、負極20およびセパレータ13を配置する。 Thereafter, the positive electrode 30 and the negative electrode 20 are laminated via the separator 13 to produce an electrode group. At this time, the positive electrode 30, the negative electrode 20, and the separator 13 are disposed so that the positive electrode active material layer 33 and the negative electrode active material layer 23 face each other.
 得られた電極群を電解質とともに外装ケース17内に挿入し、正極リード18および負極リード19の他端を外装ケース17の外部に導出させる。この状態で、外装ケース17の内部を真空減圧しながら開口部17a、17bを、ガスケット16を介して溶着させる。このようにして、リチウム二次電池200を得る。 The obtained electrode group is inserted into the outer case 17 together with the electrolyte, and the other ends of the positive electrode lead 18 and the negative electrode lead 19 are led out of the outer case 17. In this state, the openings 17 a and 17 b are welded through the gasket 16 while the inside of the outer case 17 is vacuum-depressurized. In this way, the lithium secondary battery 200 is obtained.
 なお、本実施形態のリチウム二次電池の構成および製造方法は、上述した構成および方法に限定されない。図7では、積層型の電極群を有するリチウム二次電池を示したが、本実施形態のリチウム二次電池は、捲回型の電極群を有する円筒型電池や角型電池などであってもよい。 In addition, the structure and manufacturing method of the lithium secondary battery of this embodiment are not limited to the structure and method mentioned above. Although FIG. 7 shows a lithium secondary battery having a stacked electrode group, the lithium secondary battery of this embodiment may be a cylindrical battery or a square battery having a wound electrode group. Good.
 (実施例A:実施例1~5および比較例1および2)
 多孔質絶縁層を備えたリチウム二次電池(実施例1~5)および多孔質絶縁層を有していないリチウム二次電池(比較例1、2)を作製し、これらのリチウム二次電池の特性を評価した。以下、実施例および比較例のリチウム二次電池の作製方法、評価方法および評価結果を説明する。
(Example A: Examples 1 to 5 and Comparative Examples 1 and 2)
Lithium secondary batteries having porous insulating layers (Examples 1 to 5) and lithium secondary batteries having no porous insulating layer (Comparative Examples 1 and 2) were produced. Characteristics were evaluated. Hereinafter, the production methods, evaluation methods, and evaluation results of the lithium secondary batteries of Examples and Comparative Examples will be described.
 (A―1)実施例1~5および比較例1および2のリチウム二次電池の作製
 <実施例1>
 (a)正極の作製
 まず、以下の方法で正極活物質を作製した。
(A-1) Preparation of lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 and 2 <Example 1>
(A) Production of positive electrode First, a positive electrode active material was produced by the following method.
 0.82mol/リットルの濃度で硫酸ニッケルを含む水溶液、0.15mol/リットルの濃度で硫酸コバルトを含む水溶液、および0.03mol/リットルの濃度で硫酸アルミニウムを含む水溶液を調整した。次いで、これらの水溶液の混合液を反応槽に連続して供給した。この後、反応槽中の水溶液のpHが10~13の間で維持されるように、反応槽に水酸化ナトリウムを滴下しながら、活物質の前駆体を合成した。得られた前駆体を十分に水洗し乾燥させた。このようにして、前駆体として、Ni0.82Co0.15Al0.03(OH)2からなる水酸化物を得た。 An aqueous solution containing nickel sulfate at a concentration of 0.82 mol / liter, an aqueous solution containing cobalt sulfate at a concentration of 0.15 mol / liter, and an aqueous solution containing aluminum sulfate at a concentration of 0.03 mol / liter were prepared. Next, a mixed solution of these aqueous solutions was continuously supplied to the reaction vessel. Thereafter, a precursor of the active material was synthesized while sodium hydroxide was dropped into the reaction tank so that the pH of the aqueous solution in the reaction tank was maintained between 10 and 13. The obtained precursor was sufficiently washed with water and dried. In this way, a hydroxide made of Ni 0.82 Co 0.15 Al 0.03 (OH) 2 was obtained as a precursor.
 得られた前駆体と炭酸リチウムとを、リチウム、コバルト、ニッケルおよびアルミニウムのモル比(Ni:Co:Ni:Al)が、1:0.82:0.15:0.03になるように混合した。混合物を酸素雰囲気下、500℃の温度で7時間仮焼成し、粉砕した。次いで、粉砕された焼成物を、800℃の温度で再度15時間焼成した。焼成物を粉砕した後、分級することにより、LiNi0.82Co0.15Al0.032で表される組成を有する正極活物質を得た。 The obtained precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, nickel and aluminum (Ni: Co: Ni: Al) was 1: 0.82: 0.15: 0.03 did. The mixture was calcined in an oxygen atmosphere at a temperature of 500 ° C. for 7 hours and pulverized. Next, the pulverized fired product was fired again at a temperature of 800 ° C. for 15 hours. The fired product was pulverized and classified to obtain a positive electrode active material having a composition represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 .
 次に、上記方法で得られた正極活物質を用いて、以下の方法により正極を作製した。 Next, using the positive electrode active material obtained by the above method, a positive electrode was produced by the following method.
 正極活物質の粉末100gに、アセチレンブラック(導電剤)2g、人造黒鉛(導電剤)2g、ポリフッ化ビニリデン粉末(結着剤)3gおよび有機溶媒(NMP)50mlを充分に混合して正極合剤ペーストを調製した。この正極合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。 100 g of the positive electrode active material powder is sufficiently mixed with 2 g of acetylene black (conductive agent), 2 g of artificial graphite (conductive agent), 3 g of polyvinylidene fluoride powder (binder) and 50 ml of organic solvent (NMP). A paste was prepared. This positive electrode mixture paste was applied to one side of an aluminum foil (positive electrode current collector) having a thickness of 15 μm. The mixture paste was dried to obtain a positive electrode active material layer.
 この後、正極活物質層が形成されたアルミニウム箔を圧延し、正極を得た。正極の厚さ、すなわち正極集電体および正極活物質層の合計厚さを128μmとした。 Thereafter, the aluminum foil on which the positive electrode active material layer was formed was rolled to obtain a positive electrode. The thickness of the positive electrode, that is, the total thickness of the positive electrode current collector and the positive electrode active material layer was set to 128 μm.
 (b)多孔質絶縁層の形成
 実施例1では、正極活物質層の表面に多孔質絶縁層を形成した。まず、アルミナ粉末(住友化学製、AKP3000)940gと、結着剤であるポリアクリロニトリル変性ゴムを8重量%含むNMP溶液(日本ゼオン株式会社製のBM-720H(商品名))750gと、分散媒である適量のNMPとを、双腕式練合機で攪拌した。これにより、多孔質絶縁層形成用のスラリーを調製した。次いで、得られたスラリーを、正極活物質層の表面上に、正極活物質層の表面全体に亘って塗布した。塗布されたスラリーを、真空減圧下、100℃の温度で10時間乾燥し、多孔質耐熱層を形成した。多孔質耐熱層の厚さは1μmとした。また、多孔質耐熱層の空孔率は49%であった。
(B) Formation of porous insulating layer In Example 1, the porous insulating layer was formed on the surface of the positive electrode active material layer. First, 940 g of alumina powder (manufactured by Sumitomo Chemical Co., Ltd., AKP3000), 750 g of NMP solution (BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd.) containing 8% by weight of polyacrylonitrile modified rubber as a binder, and a dispersion medium A suitable amount of NMP was stirred with a double-arm kneader. Thus, a slurry for forming a porous insulating layer was prepared. Next, the obtained slurry was applied over the entire surface of the positive electrode active material layer on the surface of the positive electrode active material layer. The applied slurry was dried at 100 ° C. for 10 hours under vacuum and reduced pressure to form a porous heat-resistant layer. The thickness of the porous heat-resistant layer was 1 μm. Further, the porosity of the porous heat-resistant layer was 49%.
 (c)負極の作製
 実施例1では、ローラ加工法により、表面に凹凸を有する負極集電体を作製した。
(C) Production of Negative Electrode In Example 1, a negative electrode current collector having irregularities on the surface was produced by a roller processing method.
 まず、円筒形の鉄製ローラ(直径:50mm)の表面に酸化クロムを溶射して、厚さが100μmのセラミック層を形成した。このセラミック層の表面に、レーザー加工によって、深さが8μmの複数の凹部を形成した。各凹部は、セラミック層の上方から見て、直径が12μmの円形とした。各凹部の底部では、中央部はほぼ平面状であり、底部の周縁部は丸みを帯びた形状を有していた。また、これらの凹部の配置は、隣接する凹部の軸線間距離が20μmである最密充填配置とした。このようにして、凸部形成用ローラを得た。 First, chromium oxide was sprayed onto the surface of a cylindrical iron roller (diameter: 50 mm) to form a ceramic layer having a thickness of 100 μm. A plurality of recesses having a depth of 8 μm were formed on the surface of the ceramic layer by laser processing. Each recess was circular with a diameter of 12 μm when viewed from above the ceramic layer. At the bottom of each recess, the central portion was substantially planar, and the peripheral edge of the bottom had a rounded shape. In addition, the arrangement of these recesses was a close-packed arrangement in which the distance between the axes of adjacent recesses was 20 μm. In this way, a convex forming roller was obtained.
 次いで、全量に対して0.03重量%の割合でジルコニアを含有する合金銅箔(商品名:HCL-02Z、厚さ26μm、日立電線(株)製)を、アルゴンガス雰囲気中、600℃の温度で30分間加熱し、焼き鈍しを行った。 Next, an alloy copper foil (trade name: HCL-02Z, thickness: 26 μm, manufactured by Hitachi Cable Ltd.) containing zirconia at a ratio of 0.03% by weight with respect to the total amount was placed at 600 ° C. in an argon gas atmosphere. Heating was performed for 30 minutes at a temperature, and annealing was performed.
 この合金銅箔を、2本の凸部形成用ローラを圧接させた圧接部に線圧2t/cmで通過させた。これにより、合金銅箔の両面が加圧成形されて、両面に複数の凸部を有する負極集電体が得られた。負極集電体の表面に垂直な断面を走査型電子顕微鏡で観察したところ、負極集電体の両面には、平均高さが約8μmの複数の凸部が形成されていた。 This alloy copper foil was passed at a pressure of 2 t / cm through a pressure contact portion where two convex forming rollers were pressure contacted. Thereby, both surfaces of alloy copper foil were pressure-molded, and the negative electrode collector which has a some convex part on both surfaces was obtained. When a cross section perpendicular to the surface of the negative electrode current collector was observed with a scanning electron microscope, a plurality of convex portions having an average height of about 8 μm were formed on both surfaces of the negative electrode current collector.
 次に、得られた負極集電体の表面に、図11に示す電子ビーム式蒸着装置50を用いて、斜め蒸着により負極活物質層を形成した。蒸着の条件は次の通りである。 Next, a negative electrode active material layer was formed on the surface of the obtained negative electrode current collector by oblique vapor deposition using an electron beam vapor deposition apparatus 50 shown in FIG. The conditions for vapor deposition are as follows.
 まず、寸法30mm×30mmの負極集電体を固定台に固定した。固定台を、水平面に対する角度が60°(α=60°)である第1の位置(図11に示す実線の位置)と、水平面に対する角度が120°(180-α=120°)である第2の位置(図11に示す一点破線の位置)との間で切り替え可能に設定した。 First, a negative electrode current collector having a size of 30 mm × 30 mm was fixed to a fixed base. The fixing table has a first position (solid line position shown in FIG. 11) at an angle with respect to the horizontal plane of 60 ° (α = 60 °) and an angle with respect to the horizontal plane of 120 ° (180−α = 120 °) It was set to be switchable between the two positions (the position indicated by the one-dot broken line shown in FIG. 11).
 この後、固定台の位置を第1の位置と第2の位置との間で交互に切り替えながら、40回の蒸着工程を行った。蒸着条件を以下に示す。
 負極活物質原料(蒸発源):ケイ素、純度99.9999%、(株)高純度化学研究所製
 ノズルから放出される酸素:純度99.7%、日本酸素(株)製、
 ノズルからの酸素放出流量:40sccm
 固定台の角度α:60°
 電子ビームの加速電圧:-8kV
 エミッション:500mA
 蒸着時間:3分×40回
これにより、負極集電体の一方の表面に、複数の活物質体を含む負極活物質層を形成した。活物質体のそれぞれは、40個の柱状塊が積層された構造を有しており、負極集電体の対応する凸部上に配置されていた。また、凸部の頂部および頂部近傍の側面から、凸部の延びる方向に成長していた。
Then, the vapor deposition process was performed 40 times, changing the position of a fixed base alternately between the 1st position and the 2nd position. Deposition conditions are shown below.
Negative electrode active material raw material (evaporation source): silicon, purity 99.9999%, manufactured by High Purity Chemical Laboratory Co., Ltd. Oxygen released from nozzle: purity 99.7%, manufactured by Nippon Oxygen Co., Ltd.
Oxygen release flow rate from nozzle: 40 sccm
Fixing table angle α: 60 °
Electron beam acceleration voltage: -8 kV
Emission: 500mA
Deposition time: 3 minutes × 40 times This formed a negative electrode active material layer containing a plurality of active material bodies on one surface of the negative electrode current collector. Each of the active material bodies had a structure in which 40 columnar lumps were laminated, and was arranged on the corresponding convex part of the negative electrode current collector. Moreover, it grew from the top part of the convex part and the side surface near the top part in the direction in which the convex part extends.
 この後、負極集電体の反対側の表面にも、同様の方法で斜め蒸着を行い、複数の活物質体を含む負極活物質層を形成した。このようにして、負極集電体の両面に負極活物質層を有する負極を得た。 Thereafter, oblique deposition was performed on the opposite surface of the negative electrode current collector in the same manner to form a negative electrode active material layer containing a plurality of active material bodies. Thus, the negative electrode which has a negative electrode active material layer on both surfaces of a negative electrode collector was obtained.
 次いで、負極活物質層の厚さを求めた。ここでは、得られた負極における負極集電体に垂直な断面を走査型電子顕微鏡で観察し、凸部表面に形成された活物質体10個について、凸部の頂点から活物質体の頂点までの長さをそれぞれ測定した。これらの平均を算出して「負極活物質層の厚さ」とした。この結果、負極活物質層の厚さは、それぞれ、15μmであった。また、負極活物質層の組成を分析したところ、負極活物質層を構成する化合物の組成は、何れもSiO0.4であった。 Next, the thickness of the negative electrode active material layer was determined. Here, a cross section perpendicular to the negative electrode current collector in the obtained negative electrode is observed with a scanning electron microscope, and for 10 active material bodies formed on the surface of the convex portion, from the vertex of the convex portion to the vertex of the active material body. The length of each was measured. The average of these was calculated as “the thickness of the negative electrode active material layer”. As a result, the thickness of each negative electrode active material layer was 15 μm. Moreover, when the composition of the negative electrode active material layer was analyzed, the composition of the compound constituting the negative electrode active material layer was all SiO 0.4 .
 次に、これらの負極活物質層の表面にリチウム金属を蒸着した。リチウム金属を蒸着することによって、負極活物質層に初回充放電時に蓄えられる不可逆容量に相当するリチウムを補填するためである。 Next, lithium metal was deposited on the surface of these negative electrode active material layers. This is because lithium metal is deposited to supplement lithium corresponding to the irreversible capacity stored in the negative electrode active material layer during the first charge / discharge.
 リチウム金属の蒸着は、アルゴン雰囲気下にて、抵抗加熱蒸着装置((株)アルバック製)を用いて行った。まず、抵抗加熱蒸着装置内のタンタル製ボートにリチウム金属を装填した。次いで、負極集電体の両面に形成された負極活物質層のうち一方がタンタル製ボートを臨むように負極を固定した。この後、アルゴン雰囲気内にて、タンタル製ボートに50Aの電流を通電して、リチウム金属を蒸着した。蒸着時間は10分間とした。続いて、他方の負極活物質層にも、同様の方法でリチウム金属の蒸着を行った。 The vapor deposition of lithium metal was performed using a resistance heating vapor deposition apparatus (manufactured by ULVAC, Inc.) in an argon atmosphere. First, lithium metal was loaded into a tantalum boat in a resistance heating vapor deposition apparatus. Next, the negative electrode was fixed so that one of the negative electrode active material layers formed on both surfaces of the negative electrode current collector faced the tantalum boat. Thereafter, a 50 A current was passed through the tantalum boat in an argon atmosphere to deposit lithium metal. The deposition time was 10 minutes. Subsequently, lithium metal was deposited on the other negative electrode active material layer in the same manner.
 (d)積層型電池の作製
 次いで、上記方法で得られた正極および負極を用いて、積層型のリチウム二次電池を作製した。
(D) Production of laminated battery Next, a laminated lithium secondary battery was produced using the positive electrode and the negative electrode obtained by the above method.
 表面に多孔質絶縁層が形成された正極を、正極活物質層の平面形状が20mm×20mmの正方形となるように切り出した。切り出した正極において、正極集電体の表面のうち正極活物質層が形成されていない部分に正極リードを溶接し、正極板を得た。 The positive electrode having a porous insulating layer formed on the surface was cut out so that the planar shape of the positive electrode active material layer was a square of 20 mm × 20 mm. In the cut out positive electrode, the positive electrode lead was welded to the portion of the surface of the positive electrode current collector where the positive electrode active material layer was not formed to obtain a positive electrode plate.
 また、リチウム金属が蒸着された後の負極を、負極活物質層の平面形状が21mm×21mmの正方形となり、さらに2辺の交差する1角に5mm×5mmのタブ部ができるように切り出した。切り出した負極において、タブ部に位置する負極活物質層を剥離し、負極活物質層の剥離によって露出した集電体の表面に負極リードを溶接した。このようにして、負極板を得た。 Further, the negative electrode after the lithium metal was deposited was cut out so that the planar shape of the negative electrode active material layer was a square of 21 mm × 21 mm and a tab portion of 5 mm × 5 mm was formed at one corner where two sides intersected. In the cut-out negative electrode, the negative electrode active material layer located in the tab portion was peeled off, and the negative electrode lead was welded to the surface of the current collector exposed by peeling of the negative electrode active material layer. In this way, a negative electrode plate was obtained.
 次いで、セパレータを介して正極活物質層と負極活物質層とが対向するように、正極板、負極板およびセパレータを配置して、電極群を作製した。具体的には、負極板を中央とし、その両面に、それぞれ、セパレータおよび正極板をこの順で積層した。セパレータとして、ポリエチレン微多孔膜(商品名:ハイポア、厚さ:16μm、空孔率:40%、旭化成(株)製)を用いた。本実施例で得られた電極群の構成を図13に示す。図13では、図1と同様の構成要素に同じ参照符号を付している。 Next, the positive electrode plate, the negative electrode plate, and the separator were arranged so that the positive electrode active material layer and the negative electrode active material layer faced each other with the separator interposed therebetween, thereby preparing an electrode group. Specifically, the negative electrode plate was set as the center, and the separator and the positive electrode plate were laminated in this order on both surfaces. A polyethylene microporous membrane (trade name: Hypore, thickness: 16 μm, porosity: 40%, manufactured by Asahi Kasei Co., Ltd.) was used as the separator. The structure of the electrode group obtained in this example is shown in FIG. In FIG. 13, the same reference numerals are given to the same components as those in FIG.
 得られた電極群を、電解質0.5gとともに、アルミニウムラミネートからなる外装ケースに挿入した。電解質として、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)を2:3:5の体積比で混合した溶媒に、LiPF6を1.4mol/Lの濃度で溶解させた非水電解液を用いた。イオン伝導度は6.5mS/cm、粘度は6.2cPであった。 The obtained electrode group was inserted into an outer case made of an aluminum laminate together with 0.5 g of an electrolyte. LiPF 6 was dissolved at a concentration of 1.4 mol / L in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 2: 3: 5 as an electrolyte. A non-aqueous electrolyte was used. The ionic conductivity was 6.5 mS / cm, and the viscosity was 6.2 cP.
 次に、正極リードおよび負極リードを外装ケースの開口部から外装ケースの外部に導出した。この後、外装ケース内部を真空減圧しながら、外装ケースの開口部を溶着した。このようにして、実施例1のリチウム二次電池を得た。 Next, the positive electrode lead and the negative electrode lead were led out of the outer case from the opening of the outer case. Then, the opening part of the exterior case was welded, vacuum-reducing the inside of the exterior case. In this way, a lithium secondary battery of Example 1 was obtained.
 <実施例2>
 多孔質絶縁層の厚さを2μmとしたこと以外は、実施例1と同様の方法で、同様の構成(図13)を有するリチウム二次電池を作製した。多孔質絶縁層の空孔率は48%であった。
<Example 2>
A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 2 μm. The porosity of the porous insulating layer was 48%.
 <実施例3>
 多孔質絶縁層の厚さを4μmとしたこと以外は、実施例1と同様の方法で、同様の構成(図13)を有するリチウム二次電池を作製した。多孔質絶縁層の空孔率は47%であった。
<Example 3>
A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 4 μm. The porosity of the porous insulating layer was 47%.
 <実施例4>
 多孔質絶縁層の厚さを6μmとしたこと以外は、実施例1と同様の方法で、同様の構成(図13)を有するリチウム二次電池を作製した。多孔質絶縁層の空孔率は47%であった。
<Example 4>
A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 6 μm. The porosity of the porous insulating layer was 47%.
 <実施例5>
 実施例5では、正極活物質層上に多孔質絶縁層を形成する代わりに、セパレータ上に多孔質絶縁層を形成した。その他のリチウム二次電池の構成および作製方法は、実施例1の構成および作製方法と同様である。
<Example 5>
In Example 5, instead of forming a porous insulating layer on the positive electrode active material layer, a porous insulating layer was formed on the separator. Other configurations and manufacturing methods of the lithium secondary battery are the same as those of the first embodiment.
 実施例5では、ポリオレフィン製のセパレータ上に、耐熱樹脂と無機酸化物とを含む多孔質絶縁層を形成した。形成方法を以下に説明する。 In Example 5, a porous insulating layer containing a heat resistant resin and an inorganic oxide was formed on a polyolefin separator. A forming method will be described below.
 まず、反応槽内において、アラミド樹脂をNMPに完全に加熱溶解させ、アラミド樹脂溶液を得た。このとき、NMP100gあたり、乾燥した無水塩化カルシウムを6.5g添加した。このアラミド樹脂溶液を常温に戻した後、このアラミド樹脂溶液100gあたり、パラフェニレンジアミン(三井化学(株)製)(以下、PPDと表す)を3.2g添加し、アラミド樹脂溶液中に完全に溶解させた。反応槽を、20℃の恒温槽に入れ、反応槽中にテレフタル酸ジクロライド(三井化学(株)製)(以下、TPCと表す)を、少しずつ1時間かけて滴下し、重合反応によりポリパラフェニレンテレフタルアミド(以下、PPTAと表す)を合成した。このとき、無水塩化カルシウムおよびPPDを含むアラミド樹脂溶液100gあたりTPCを5.8g添加した。その後、恒温槽内に1時間放置して反応が終了した後、真空槽に入れ替え、減圧下で30分撹拌して脱気し、重合液を得た。得られた重合液を、さらに、塩化カルシウムを含むNMP溶液にて、希釈し、PPTAの濃度が1.4wt%であるアラミド樹脂溶液を得た。この溶液に、平均粒径0.1μmのアルミナ粒子を、アラミド樹脂固形成分100gあたり200g添加した。 First, in the reaction vessel, the aramid resin was completely heated and dissolved in NMP to obtain an aramid resin solution. At this time, 6.5 g of dry anhydrous calcium chloride was added per 100 g of NMP. After returning the aramid resin solution to room temperature, 3.2 g of paraphenylenediamine (manufactured by Mitsui Chemicals, Inc.) (hereinafter referred to as PPD) is added per 100 g of the aramid resin solution. Dissolved. The reaction vessel was placed in a constant temperature bath at 20 ° C., and terephthalic acid dichloride (manufactured by Mitsui Chemicals, Inc.) (hereinafter referred to as TPC) was added dropwise little by little over 1 hour. Phenylene terephthalamide (hereinafter referred to as PPTA) was synthesized. At this time, 5.8 g of TPC was added per 100 g of an aramid resin solution containing anhydrous calcium chloride and PPD. Thereafter, the reaction was completed by leaving it in a thermostatic bath for 1 hour, and then replaced with a vacuum bath and stirred for 30 minutes under reduced pressure to deaerate to obtain a polymerization solution. The obtained polymerization solution was further diluted with an NMP solution containing calcium chloride to obtain an aramid resin solution having a PPTA concentration of 1.4 wt%. To this solution, 200 g of alumina particles having an average particle size of 0.1 μm was added per 100 g of aramid resin solid component.
 次に、厚さが16μmの多孔質ポリエチレン(ポリエチレン微多孔膜)の片面に、アルミナ粒子を添加した後のアラミド樹脂溶液をバーコーターにより薄く塗布した。この後、塗布面に80℃の熱風を当てて、アラミド樹脂溶液を乾燥させて樹脂膜を得た。続いて、この樹脂膜を純水で十分に水洗して、塩化カルシウムを除去した後、乾燥させた。これにより、厚さが4μmの多孔質絶縁層と、厚さが16μmのセパレータ(ポリエチレン微多孔膜)とを積層した構造を有する、厚さが20μmの積層体を得た。多孔質絶縁体の空孔率は平均で48%であった。 Next, an aramid resin solution after adding alumina particles was thinly applied to one side of a porous polyethylene (polyethylene microporous film) having a thickness of 16 μm with a bar coater. Thereafter, hot air at 80 ° C. was applied to the coated surface to dry the aramid resin solution to obtain a resin film. Subsequently, the resin film was sufficiently washed with pure water to remove calcium chloride and then dried. As a result, a 20 μm thick laminate having a structure in which a porous insulating layer having a thickness of 4 μm and a separator (polyethylene microporous film) having a thickness of 16 μm was laminated was obtained. The average porosity of the porous insulator was 48%.
 上記の積層体を、多孔質絶縁層と正極活物質層とが対向するように、正極板および負極板の間に配置して、電極群を構成した。実施例5のリチウム二次電池における電極群の構成を図14に示す。簡単のため、図14では、図1と同様の構成要素に同じ参照符号を付している。この電極群を用い、実施例1と同様の方法でリチウム二次電池を作製した。 The above laminate was disposed between the positive electrode plate and the negative electrode plate so that the porous insulating layer and the positive electrode active material layer were opposed to each other to constitute an electrode group. The structure of the electrode group in the lithium secondary battery of Example 5 is shown in FIG. For the sake of simplicity, in FIG. 14, the same components as those in FIG. Using this electrode group, a lithium secondary battery was produced in the same manner as in Example 1.
 <比較例1>
 多孔質絶縁層を設けないこと以外は、実施例1と同じ方法でリチウム二次電池を作製した。比較例1のリチウム二次電池における電極群を図15に示す。
<Comparative Example 1>
A lithium secondary battery was produced in the same manner as in Example 1 except that the porous insulating layer was not provided. An electrode group in the lithium secondary battery of Comparative Example 1 is shown in FIG.
 <比較例2>
 セパレータとして厚さが20μmのポリエチレン微多孔膜(セパレータ、商品名:ハイポア、厚さ:20μm、空孔率:42%、旭化成(株)製)を用いること以外は、比較例1と同様の方法で、同様の構成(図15)を有するリチウム二次電池を作製した。
<Comparative Example 2>
A method similar to Comparative Example 1 except that a polyethylene microporous membrane (separator, trade name: hypopore, thickness: 20 μm, porosity: 42%, manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 μm is used as the separator. Thus, a lithium secondary battery having the same configuration (FIG. 15) was produced.
 なお、実施例1~5および比較例1、2では、安全性評価用および充放電サイクル特性評価用のセルを含む複数個のリチウム二次電池を作製した。 In Examples 1 to 5 and Comparative Examples 1 and 2, a plurality of lithium secondary batteries including cells for safety evaluation and charge / discharge cycle characteristic evaluation were manufactured.
 (A-2)実施例1~5および比較例1および2のリチウム二次電池の評価
 <評価前充放電>
 実施例1~5および比較例1、2の安全性評価用のリチウム二次電池に対し、評価のための充放電試験を行う前に、以下の条件で充放電を行って容量を測定した。
定電流充電:6mA、終止電圧4.15V
定電圧充電:終止電流1.5mA、休止時間20分
定電流放電:6mA、終止電圧2.0V、休止時間20分
環境温度:25℃
(A-2) Evaluation of lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 and 2 <Charging / Discharging Before Evaluation>
Before the charge / discharge test for evaluation was performed on the lithium secondary batteries for safety evaluation of Examples 1 to 5 and Comparative Examples 1 and 2, the capacity was measured by performing charge / discharge under the following conditions.
Constant current charging: 6mA, end voltage 4.15V
Constant voltage charging: End current 1.5 mA, downtime 20 minutes Constant current discharge: 6 mA, End voltage 2.0 V, downtime 20 minutes Ambient temperature: 25 ° C.
 <擬似内部短絡試験>
 容量を測定した後の実施例1~5および比較例1、2の安全性評価用のリチウム二次電池に対し、上記容量測定と同条件で充電を行った後、以下の条件で擬似内部短絡試験を行った。
<Pseudo internal short circuit test>
After charging the lithium secondary batteries for safety evaluation of Examples 1 to 5 and Comparative Examples 1 and 2 after measuring the capacity under the same conditions as the above capacity measurement, the pseudo internal short circuit was performed under the following conditions: A test was conducted.
 25℃に設定された温度槽の中で、4.2Vの外部電圧をリチウム二次電池に印加しながら、鉄製の釘(直径:2mm)を、0.1mm/秒の速度でリチウム二次電池を貫通させた。釘は、負極板の法線方向に沿って電極群を貫通し、その結果、正極と負極との間で短絡が生じた。 While applying an external voltage of 4.2 V to the lithium secondary battery in a temperature bath set at 25 ° C., an iron nail (diameter: 2 mm) was inserted into the lithium secondary battery at a speed of 0.1 mm / second. Penetrated. The nail penetrated the electrode group along the normal direction of the negative electrode plate, and as a result, a short circuit occurred between the positive electrode and the negative electrode.
 擬似内部短絡試験では、電池電圧と電流とをモニタリングし、短絡発生から0.5秒間の発熱量(J)を求めた。この結果から、比較例1のリチウム二次電池の発熱量を100とした場合の、実施例1~5のリチウム二次電池の発熱量を算出した。結果を表1に示す。 In the pseudo internal short circuit test, the battery voltage and current were monitored, and the calorific value (J) for 0.5 seconds from the occurrence of the short circuit was obtained. From the results, the calorific values of the lithium secondary batteries of Examples 1 to 5 when the calorific value of the lithium secondary battery of Comparative Example 1 was set to 100 were calculated. The results are shown in Table 1.
 <充放電サイクル寿命試験>
 実施例1~5および比較例1、2の充放電サイクル特性評価用のリチウム二次電池に対して、以下の条件で充放電サイクル寿命試験を行い、容量維持率を求めた。ここでは、容量維持率として、リチウム二次電池の400サイクル目の容量の1サイクル目の容量に対する比率を求めた。結果を表1に示す。
定電流充電:21mA、終止電圧4.15V
定電圧充電:終止電流1.5mA、休止時間20分
定電流放電:30mA、終止電圧2.0V、休止時間20分
環境温度:25℃
<Charge / discharge cycle life test>
The lithium secondary batteries for charge / discharge cycle characteristics evaluation of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to a charge / discharge cycle life test under the following conditions to determine the capacity retention rate. Here, the ratio of the capacity at the 400th cycle of the lithium secondary battery to the capacity at the first cycle was determined as the capacity maintenance rate. The results are shown in Table 1.
Constant current charging: 21 mA, end voltage 4.15 V
Constant voltage charging: End current 1.5 mA, downtime 20 minutes Constant current discharge: 30 mA, End voltage 2.0 V, downtime 20 minutes Ambient temperature: 25 ° C.
 また、実施例および比較例のリチウム二次電池において、負極の活物質体の充放電による体積変化(膨張率)を求めたところ、何れも290%であった。活物質体の体積変化は、放電時の活物質体の体積をVd、充電時の活物質体の体積をVcとすると、(Vc-Vd)/Vd×100(%)とした。なお、ここでは、放電時の活物質体の体積Vdを、放電時の負極活物質層の厚さおよび空隙率(活物質体間の空隙が負極活物質層全体に占める体積の割合)から求め、充電時の負極活物質層の体積Vcを、負極活物質層の厚さから求めた(充電時の負極活物質層の空隙率はゼロとした)。 Further, in the lithium secondary batteries of Examples and Comparative Examples, the volume change (expansion coefficient) due to charging / discharging of the negative electrode active material body was determined, and both were 290%. The volume change of the active material body was (Vc−Vd) / Vd × 100 (%), where Vd is the volume of the active material body during discharge and Vc is the volume of the active material body during charging. Here, the volume Vd of the active material body at the time of discharge is obtained from the thickness and porosity of the negative electrode active material layer at the time of discharge (ratio of the volume occupied by the gap between the active material bodies in the entire negative electrode active material layer). The volume Vc of the negative electrode active material layer during charging was determined from the thickness of the negative electrode active material layer (the porosity of the negative electrode active material layer during charging was zero).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す擬似内部短絡試験の結果から、正極表面上に多孔質絶縁層を1μm以上設けることによって(実施例1~5)、内部短絡発生時のリチウム二次電池の発熱量を、比較例1、2よりも低減できることがわかった。これは、実施例1~5のリチウム二次電池では、多孔質絶縁層によって短絡の進行が抑制され、負極の酸化反応を抑制しているからと推測される。また、多孔質絶縁層を厚くすると、発熱量がより低減される傾向が見られた。さらに、セパレータ上に多孔質絶縁層を設けても、発熱量を低減できることがわかった。 From the results of the pseudo internal short-circuit test shown in Table 1, the amount of heat generated by the lithium secondary battery when an internal short-circuit occurred was determined by providing a porous insulating layer of 1 μm or more on the positive electrode surface (Examples 1 to 5). It turned out that it can reduce from 1 and 2. This is presumably because in the lithium secondary batteries of Examples 1 to 5, the progress of short circuit is suppressed by the porous insulating layer, and the oxidation reaction of the negative electrode is suppressed. Moreover, when the porous insulating layer was thickened, the amount of heat generation tended to be further reduced. Furthermore, it has been found that even when a porous insulating layer is provided on the separator, the amount of heat generation can be reduced.
 また、表1に示す容量維持率の測定結果から、実施例1~5のリチウム二次電池では、比較例1、2よりも充放電サイクル特性が高いことがわかった。よって、厚さが1μm以上の多孔質絶縁層を設けることによって、リチウム二次電池のサイクル寿命を向上できることが確認された。 Further, from the measurement results of the capacity retention ratio shown in Table 1, it was found that the lithium secondary batteries of Examples 1 to 5 had higher charge / discharge cycle characteristics than Comparative Examples 1 and 2. Therefore, it was confirmed that the cycle life of the lithium secondary battery can be improved by providing a porous insulating layer having a thickness of 1 μm or more.
 充放電サイクル試験後、比較例および実施例のリチウム二次電池を分解したところ、比較例では、正極活物質の脱落が生じていることが目視により確認された。これに対し、実施例では、正極活物質の脱落はほとんど生じていなかった。このことから、実施例では、図2および図3を参照しながら前述したように、多孔質絶縁層によって、負極の体積変化に起因する正極活物質の脱落が抑制され、その結果サイクル寿命が向上したと考えられる。これに加えて、図6を参照しながら前述したように、実施例1~5では、多孔質絶縁層によって、充放電の繰り返しによる正極側の電解液の減少が抑制されたからと考えられる。また、多孔質絶縁層を厚くすると、充放電サイクル特性をより高めることができた。さらに、多孔質絶縁層の位置にかかわらず、同様の効果が得られることを確認した。 After the charge / discharge cycle test, the lithium secondary batteries of the comparative example and the example were disassembled, and in the comparative example, it was confirmed by visual observation that the positive electrode active material was dropped. On the other hand, in the Examples, the positive electrode active material was hardly removed. Therefore, in the examples, as described above with reference to FIG. 2 and FIG. 3, the porous insulating layer suppresses the falling off of the positive electrode active material due to the volume change of the negative electrode, thereby improving the cycle life. It is thought that. In addition, as described above with reference to FIG. 6, in Examples 1 to 5, it is considered that the decrease in the electrolyte solution on the positive electrode side due to repeated charge and discharge was suppressed by the porous insulating layer. Moreover, when the porous insulating layer was thickened, the charge / discharge cycle characteristics could be further improved. Furthermore, it was confirmed that the same effect was obtained regardless of the position of the porous insulating layer.
 なお、比較例2におけるセパレータの厚さと、実施例3および5におけるセパレータと多孔質絶縁層との合計厚さとは等しい(20μm)。従って、比較例2、実施例3および5の容量は何れも略等しいと考えられる。このことから、多孔質絶縁層を設けることにより、容量を低下させることなく、内部短絡による発熱量を抑え、かつ、充放電サイクル特性を向上できることもわかった。 In addition, the thickness of the separator in Comparative Example 2 is equal to the total thickness of the separator and the porous insulating layer in Examples 3 and 5 (20 μm). Therefore, it is considered that the capacities of Comparative Example 2 and Examples 3 and 5 are substantially equal. From this, it was also found that by providing the porous insulating layer, the amount of heat generated by an internal short circuit can be suppressed and the charge / discharge cycle characteristics can be improved without reducing the capacity.
 <電解液に対する濡れ性の評価>
 実施例3のリチウム二次電池における多孔質絶縁層の表面、および、比較例1のリチウム二次電池における正極板の表面(正極活物質層の表面)の電解液に対する濡れ性(以下、単に「濡れ性」と略する。)をそれぞれ求めた。また、実施例3および比較例1のリチウム二次電池におけるセパレータ表面の濡れ性を求めた。
<Evaluation of wettability to electrolyte>
The wettability of the surface of the porous insulating layer in the lithium secondary battery of Example 3 and the surface of the positive electrode plate (surface of the positive electrode active material layer) in the lithium secondary battery of Comparative Example 1 (hereinafter simply referred to as “ Abbreviated as “wetability”). Moreover, the wettability of the separator surface in the lithium secondary battery of Example 3 and Comparative Example 1 was determined.
 濡れ性の評価は、次のようにして行った。まず、試験体(正極板またはセパレータ)の表面に電解液の液滴を落とし、接触角の時間変化率を測定した。接触角の時間変化率は、電解液の滴下直後の接触角と、滴下10秒後の接触角とから算出した。ここでは、接触角の測定を2回行い、その平均値を求めた。本評価試験で使用する電解液としては、実施例3および比較例1で用いた電解液を用いた。また、本評価試験は25℃の温度で行った。 The wettability was evaluated as follows. First, a drop of the electrolyte was dropped on the surface of the test body (positive electrode plate or separator), and the time change rate of the contact angle was measured. The time change rate of the contact angle was calculated from the contact angle immediately after dropping of the electrolytic solution and the contact angle 10 seconds after dropping. Here, the contact angle was measured twice, and the average value was obtained. As the electrolytic solution used in this evaluation test, the electrolytic solution used in Example 3 and Comparative Example 1 was used. In addition, this evaluation test was performed at a temperature of 25 ° C.
 なお、負極活物質層の表面の濡れ性の測定も行ったが、負極活物質層の濡れ性は極めて高く、上記の方法では定量化できなかった。 Although the wettability of the surface of the negative electrode active material layer was also measured, the wettability of the negative electrode active material layer was extremely high and could not be quantified by the above method.
 測定結果を表2に示す。 Table 2 shows the measurement results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 接触角の時間変化率が大きいほど、電解液の浸透性が高い(すなわち電解液に対する濡れ性が大きい)と考えられる。 It is considered that the greater the rate of change of the contact angle with time, the higher the electrolyte permeability (ie, the greater the wettability with respect to the electrolyte).
 表2に示す結果から、セパレータの濡れ性は、正極活物質層および多孔質絶縁層の濡れ性よりも低かった。このことから、実施例3および比較例1のリチウム二次電池では、セパレータによって電解液を保持する作用は、多孔質絶縁層または正極活物質層よりも小さいことがわかった。このため、これらの電池では、正極側の電解液を保持する能力は、主に多孔質絶縁層(実施例3)または正極活物質層(比較例1)の濡れ性によって決まると考えられる。 From the results shown in Table 2, the wettability of the separator was lower than the wettability of the positive electrode active material layer and the porous insulating layer. From this, it was found that in the lithium secondary batteries of Example 3 and Comparative Example 1, the action of holding the electrolytic solution by the separator was smaller than that of the porous insulating layer or the positive electrode active material layer. For this reason, in these batteries, the ability to hold the electrolyte solution on the positive electrode side is considered to be determined mainly by the wettability of the porous insulating layer (Example 3) or the positive electrode active material layer (Comparative Example 1).
 表2に示すように、多孔質絶縁層は、正極活物質層よりも高い濡れ性を有していることがわかった。従って、実施例3のリチウム二次電池では、正極活物質層上に多孔質絶縁層を設けることにより、比較例1のリチウム二次電池よりも、正極側の電解液を保持する効果が高められることが確認された。 As shown in Table 2, it was found that the porous insulating layer had higher wettability than the positive electrode active material layer. Therefore, in the lithium secondary battery of Example 3, by providing the porous insulating layer on the positive electrode active material layer, the effect of holding the electrolyte solution on the positive electrode side is enhanced as compared with the lithium secondary battery of Comparative Example 1. It was confirmed.
 (実施例B:実施例6および7、比較例3)
 実施例Bでは、上述した実施例Aで使用した電解液とは異なる電解液を用いてリチウム二次電池を作製し、充放電サイクル特性の評価を行った。
(Example B: Examples 6 and 7, Comparative Example 3)
In Example B, a lithium secondary battery was produced using an electrolyte different from the electrolyte used in Example A described above, and the charge / discharge cycle characteristics were evaluated.
 <実施例6>
 電解液として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DMC)とを体積比1:1:8で混合した溶媒に、LiPF6を1.4mol/Lの濃度で溶解させた非水電解液を用いた。イオン伝導度は10.7mS/cm、粘度は2.9cPであった。
<Example 6>
As an electrolytic solution, LiPF 6 was dissolved at a concentration of 1.4 mol / L in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DMC) were mixed at a volume ratio of 1: 1: 8. A non-aqueous electrolyte was used. The ionic conductivity was 10.7 mS / cm and the viscosity was 2.9 cP.
 また、正極活物質表面上に、厚さが2μmの多孔質絶縁層を形成した。電解液および多孔質絶縁層の厚さ以外は、実施例1と同様の方法で、同様の構成(図13)を有するリチウム二次電池を作製した。 Further, a porous insulating layer having a thickness of 2 μm was formed on the surface of the positive electrode active material. A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 1 except for the thickness of the electrolytic solution and the porous insulating layer.
 <実施例7>
 多孔質絶縁層の厚さを4μmとしたこと以外は、実施例6と同様の方法で、同様の構成(図13)を有するリチウム二次電池を作製した。
<Example 7>
A lithium secondary battery having the same configuration (FIG. 13) was produced in the same manner as in Example 6 except that the thickness of the porous insulating layer was 4 μm.
 <比較例3>
 多孔質絶縁層を設けないこと以外は、実施例6と同じ方法でリチウム二次電池を作製した。比較例3における電極群の構成は、図15に示す構成と同様である。
<Comparative Example 3>
A lithium secondary battery was produced in the same manner as in Example 6 except that the porous insulating layer was not provided. The configuration of the electrode group in Comparative Example 3 is the same as the configuration shown in FIG.
 <充放電サイクル特性の評価>
 実施例6、実施例7と比較例3のリチウム二次電池に対して、前述の実施例Aで行った条件と同じ条件で、充放電サイクル特性の評価を行った。結果を表3に示す。
<Evaluation of charge / discharge cycle characteristics>
For the lithium secondary batteries of Examples 6, 7 and Comparative Example 3, the charge / discharge cycle characteristics were evaluated under the same conditions as those in Example A described above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、電解液の種類にかかわらず、多孔質絶縁層を設けることによって、充放電サイクル寿命を向上できることがわかった。 From the results shown in Table 3, it was found that the charge / discharge cycle life can be improved by providing a porous insulating layer regardless of the type of electrolyte.
 実施例6および7のリチウム二次電池でも、前述の実施例と同様に、多孔質絶縁層の濡れ性は、正極活物質層の濡れ性よりも高い。従って、電解液の種類にかかわらず、その電解液に対する濡れ性の高い多孔質絶縁層を設けることによって、充放電サイクル特性を向上できることがわかった。 Also in the lithium secondary batteries of Examples 6 and 7, the wettability of the porous insulating layer is higher than the wettability of the positive electrode active material layer, as in the previous examples. Therefore, it was found that charge / discharge cycle characteristics can be improved by providing a porous insulating layer having high wettability with respect to the electrolyte regardless of the type of the electrolyte.
 また、実施例6および7の容量維持率は、実施例1~5の容量維持率よりも高かった。これは、実施例6および7で使用した電解液では、実施例1~5で用いた電解液よりもイオン伝導度が高く、且つ粘度が低いために、リチウムイオンの移動がより容易であるからと考えられる。 Further, the capacity retention rates of Examples 6 and 7 were higher than those of Examples 1 to 5. This is because the electrolytes used in Examples 6 and 7 have higher ionic conductivity and lower viscosity than the electrolytes used in Examples 1 to 5, and thus lithium ions can be moved more easily. it is conceivable that.
 本発明のリチウム二次電池は、従来のリチウム二次電池と同様の用途に使用できる。特に、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラなどの携帯用電子機器の電源として有用である。また、ハイブリッド電気自動車、燃料電池自動車などにおいて電気モーターを補助する二次電池、電動工具、掃除機、ロボットなどの駆動用電源、プラグインHEVの動力源などとしての利用も期待される。 The lithium secondary battery of the present invention can be used for the same applications as conventional lithium secondary batteries. In particular, it is useful as a power source for portable electronic devices such as personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, and video cameras. In addition, it is expected to be used as a secondary battery for assisting an electric motor, a power tool, a cleaner, a power source for driving a robot, a power source for a plug-in HEV, etc. in a hybrid electric vehicle, a fuel cell vehicle and the like.
 100、200 リチウム二次電池
 30 正極
 31 正極集電体
 33 正極活物質層
 20 負極
 21 負極集電体
 21a 負極集電体の表面(凸部が形成されていない部分)
 22 凸部
 23 負極活物質層
 24 活物質体
 13 セパレータ
 15、15a、15b 多孔質絶縁層
 18 正極リード
 19 負極リード
 16 ガスケット
 17 外装ケース
 24 柱状体
 50 電子ビーム式蒸着装置
 51 チャンバー
 52 第1の配管
 53 固定台
 54 ノズル
 55 ターゲット
 56 電源
100, 200 Lithium secondary battery 30 Positive electrode 31 Positive electrode current collector 33 Positive electrode active material layer 20 Negative electrode 21 Negative electrode current collector 21a Surface of negative electrode current collector (portion where convex portions are not formed)
22 Protrusions 23 Negative electrode active material layer 24 Active material body 13 Separator 15, 15a, 15b Porous insulating layer 18 Positive electrode lead 19 Negative electrode lead 16 Gasket 17 Exterior case 24 Columnar body 50 Electron beam deposition apparatus 51 Chamber 52 First piping 53 Fixed base 54 Nozzle 55 Target 56 Power supply

Claims (11)

  1.  リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、
     リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、
     前記正極と前記負極との間に配置されたセパレータと、
     リチウムイオン伝導性を有する電解液と
    を含むリチウム二次電池であって、
     前記負極は、表面に複数の凸部を有する負極集電体と、前記負極集電体上に形成された複数の活物質体を含む負極活物質層とを有し、
     前記複数の活物質体は、それぞれ、前記負極集電体の各凸部上に配置され、前記負極活物質としてケイ素またはスズを含む合金系活物質を含んでおり、
     前記正極と前記負極との間に、無機酸化物を主体とする多孔質絶縁層をさらに備えるリチウム二次電池。
    A positive electrode having a positive electrode active material capable of inserting and extracting lithium ions;
    A negative electrode having a negative electrode active material capable of inserting and extracting lithium ions;
    A separator disposed between the positive electrode and the negative electrode;
    A lithium secondary battery comprising an electrolyte solution having lithium ion conductivity,
    The negative electrode has a negative electrode current collector having a plurality of convex portions on the surface, and a negative electrode active material layer including a plurality of active material bodies formed on the negative electrode current collector,
    Each of the plurality of active material bodies is disposed on each convex portion of the negative electrode current collector, and includes an alloy-based active material containing silicon or tin as the negative electrode active material,
    A lithium secondary battery further comprising a porous insulating layer mainly composed of an inorganic oxide between the positive electrode and the negative electrode.
  2.  前記リチウム二次電池の放電時には、各活物質体と隣接する活物質体との間には空間形成される請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein a space is formed between each active material body and an adjacent active material body when the lithium secondary battery is discharged.
  3.  前記多孔質絶縁層は、前記正極と前記セパレータとの間に配置されている請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1 or 2, wherein the porous insulating layer is disposed between the positive electrode and the separator.
  4.  前記複数の活物質体の充放電による体積変化は200%以上である請求項1から3のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 3, wherein a volume change due to charging / discharging of the plurality of active material bodies is 200% or more.
  5.  前記多孔質絶縁層の厚さは1μm以上10μm以下である請求項1から4のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 4, wherein the porous insulating layer has a thickness of 1 µm to 10 µm.
  6.  前記多孔質絶縁層の表面の前記電解液に対する濡れ性は、前記正極の表面の前記電解液に対する濡れ性よりも高い請求項1から5のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 5, wherein wettability of the surface of the porous insulating layer with respect to the electrolytic solution is higher than wettability of the surface of the positive electrode with respect to the electrolytic solution.
  7.  前記多孔質絶縁層の空孔率は、前記セパレータの空孔率よりも高い請求項1から6のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 6, wherein a porosity of the porous insulating layer is higher than a porosity of the separator.
  8.  前記セパレータの厚さに対する前記多孔質絶縁層の厚さの割合は5%以上40%以下である請求項1から7のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 7, wherein a ratio of a thickness of the porous insulating layer to a thickness of the separator is 5% or more and 40% or less.
  9.  前記多孔質絶縁層は、前記正極の表面および前記セパレータの表面のうちの少なくとも一方に形成されている請求項1から8の何れかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 8, wherein the porous insulating layer is formed on at least one of a surface of the positive electrode and a surface of the separator.
  10.  前記合金系活物質はSiOα(0<α<2)である請求項1から9のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 9, wherein the alloy-based active material is SiOα (0 <α <2).
  11.  前記活物質体は、前記負極集電体の各凸部上に積み重ねられた複数の層を有し、前記複数の層のそれぞれの成長方向は、前記負極集電体の法線方向に対して交互に反対方向に傾斜している請求項1から10のいずれかに記載のリチウム二次電池。 The active material body has a plurality of layers stacked on each convex portion of the negative electrode current collector, and a growth direction of each of the plurality of layers is relative to a normal direction of the negative electrode current collector. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is alternately inclined in opposite directions.
PCT/JP2011/001502 2010-03-18 2011-03-15 Lithium secondary battery WO2011114709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062499 2010-03-18
JP2010-062499 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114709A1 true WO2011114709A1 (en) 2011-09-22

Family

ID=44648821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001502 WO2011114709A1 (en) 2010-03-18 2011-03-15 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2011114709A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194589A1 (en) * 2015-05-29 2016-12-08 日立マクセル株式会社 Lithium ion secondary battery
CN109478631A (en) * 2016-07-28 2019-03-15 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
CN110247102A (en) * 2018-03-09 2019-09-17 松下知识产权经营株式会社 Lithium secondary battery
CN110556564A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN110556567A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN112673504A (en) * 2018-09-28 2021-04-16 松下知识产权经营株式会社 Lithium secondary battery
CN112913050A (en) * 2018-10-30 2021-06-04 日本碍子株式会社 Button type secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012421A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion battery and lithium ion battery using it
JP2008258154A (en) * 2007-03-13 2008-10-23 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method thereof, as well as lithium secondary battery equipped with negative electrode for lithium secondary battery
JP2008255202A (en) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp Composite microporous membrane, separator for battery, and method for producing composite microporous membrane
JP2009238752A (en) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd Electrode assembly and secondary battery having the same
JP2009272153A (en) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012421A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion battery and lithium ion battery using it
JP2008258154A (en) * 2007-03-13 2008-10-23 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method thereof, as well as lithium secondary battery equipped with negative electrode for lithium secondary battery
JP2008255202A (en) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp Composite microporous membrane, separator for battery, and method for producing composite microporous membrane
JP2009238752A (en) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd Electrode assembly and secondary battery having the same
JP2009272153A (en) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194589A1 (en) * 2015-05-29 2016-12-08 日立マクセル株式会社 Lithium ion secondary battery
CN109478631A (en) * 2016-07-28 2019-03-15 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
CN110247102A (en) * 2018-03-09 2019-09-17 松下知识产权经营株式会社 Lithium secondary battery
CN110247102B (en) * 2018-03-09 2024-03-08 松下知识产权经营株式会社 Lithium secondary battery
CN110556564A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN110556567A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN112673504A (en) * 2018-09-28 2021-04-16 松下知识产权经营株式会社 Lithium secondary battery
CN112673504B (en) * 2018-09-28 2024-03-01 松下知识产权经营株式会社 Lithium secondary battery
CN112913050A (en) * 2018-10-30 2021-06-04 日本碍子株式会社 Button type secondary battery

Similar Documents

Publication Publication Date Title
JP5231557B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5313761B2 (en) Lithium ion battery
JP5378720B2 (en) Lithium ion secondary battery
WO2010092815A1 (en) Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100901048B1 (en) Nonaqueous electrolyte secondary battery
JP5315665B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010097843A (en) Lithium-ion secondary battery
JP2010250968A (en) Lithium ion secondary battery
JP2008218125A (en) Negative electrode for lithium ion secondary battery and lithium-ion secondary battery
WO2011114709A1 (en) Lithium secondary battery
JP2010073571A (en) Lithium ion secondary battery and method of manufacturing the same
JP2007220452A (en) Nonaqueous electrolytic solution secondary battery and separator fabricated therefore
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2008023733A1 (en) Non-aqueous electrolyte secondary battery negative electrode, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2011028883A (en) Nonaqueous electrolyte secondary battery
JP2009266737A (en) Lithium ion secondary battery and its manufacturing method
JP2009295289A (en) Lithium-ion secondary battery and method of manufacturing the same
JP2009301945A (en) Anode and lithium-ion secondary battery
JP2009016310A (en) Current collector, electrode, and nonaqueous electrolyte secondary battery
JP4594965B2 (en) Negative electrode current collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016184484A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4563478B2 (en) Lithium ion secondary battery
JP2010287466A (en) Nonaqueous electrolyte secondary battery
JP2010049968A (en) Solid electrolyte secondary cell
JP2011014426A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755900

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP