JP2007010958A - 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ - Google Patents

有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ Download PDF

Info

Publication number
JP2007010958A
JP2007010958A JP2005191379A JP2005191379A JP2007010958A JP 2007010958 A JP2007010958 A JP 2007010958A JP 2005191379 A JP2005191379 A JP 2005191379A JP 2005191379 A JP2005191379 A JP 2005191379A JP 2007010958 A JP2007010958 A JP 2007010958A
Authority
JP
Japan
Prior art keywords
image
group
charge
charge transport
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005191379A
Other languages
English (en)
Inventor
Chigusa Yamane
千草 山根
Keiichi Inagaki
圭一 稲垣
Hiroko Yamaguchi
裕子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005191379A priority Critical patent/JP2007010958A/ja
Publication of JP2007010958A publication Critical patent/JP2007010958A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】高速特性を有し且つ耐活性ガス特性を有し、良好な電子写真画像を作製できる有機感光体、プロセスカートリッジ、画像形成方法及び画像形成装置を提供する。
【解決手段】感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有する有機感光体。
Figure 2007010958

【選択図】なし

Description

本発明は、電子写真方式の複写機やプリンターに適用できる有機感光体、画像形成方法及び画像形成装置に関するものであり、高速で電子写真画像を作製できる有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジに関する発明である。
従来、電子写真法として最も代表的なカールソン法での複写機においては、感光体を一様に帯電させた後、露光によって電荷を像様に消去せしめ、静電荷潜像を形成する。この静電荷潜像をトナーによって現像して可視化し、次いでそのトナーを紙などに転写してから定着することにより画像形成が行われてきた。
これまで電子写真感光体としては、セレン、酸化亜鉛、カドミウムなどの無機光導電性物質を感光層の主成分とする無機感光体が、広く使用されてきた。しかし、これらの無機感光体は有害なものが多く、環境対策上問題がある。
従って近年、無公害である有機物を用いた有機感光体の開発が盛んであり、広く実用化されてきている。なかでも電荷発生機能と電荷輸送機能とを異なる物質に分担させ、所望の特性を有する化合物を広い範囲から選択できる機能分離型の感光体が盛んに開発されている。
又、近年、電子写真方式を用いた画像形成方法は、デジタル信号処理による書き込みで、高速化が進展し、カット紙を用いた複写機やプリンターでは分速100枚以上の印刷速度を持つ複写機やプリンターが開発されている。
しかしながら、このような複写機やプリンターに適用する有機感光体は、例えば100万枚を印刷可能な電子写真特性、即ち、高速の感度特性と帯電安定性等の高速で且つ安定した電子写真特性が求められる。
このような高速で安定した電子写真特性を達成する技術とて、PM3パラメータを使った半経験的分子軌道計算を用いて構造最適化計算を行い、分極率及び双極子モーメントを特定の範囲に規定した電荷輸送物質を用いた電子写真感光体が提案されている(特許文献1及び特許文献2)。
しかしながら、高速特性を追求していくと、電荷輸送物質の化学構造は化学的に不安定となりやすく、中でも、電子写真画像を作製する際に、帯電部材等から発生するNOxやオゾン等の活性ガスによる特性低下が発生しやすく、これらの特性劣化により、画像ボケが発生したり、残留電位が増加し、画像濃度が低下したりすると云った問題が発生している。
これらの活性ガスによる特性劣化を防止する技術としては、酸化防止剤を電荷輸送層に添加する技術が知られているが、高速特性を追求して開発する電荷輸送物質への酸化防止剤の効果は必ずしも十分に発揮されず、高速特性を有する有機感光体で画像ボケが発生したり、残留電位が増加し、画像濃度が低下したりすると云った問題を十分に解決しえていない。
特開平10−312071号公報 特開2001−305763号公報
本発明の目的は、高速特性を有し且つ耐活性ガス特性を有する電荷輸送物質を用い、良好な電子写真画像を作製できる有機感光体を提供することであり、高速で、且つ耐活性ガス特性に優れた有機感光体を提供することである。又、高速のプロセススピードで、安定した感度と安定した電位特性を維持できる有機感光体を提供することであり、該有機感光体を用いたプロセスカートリッジ、画像形成方法及び画像形成装置を提供することである。
本発明者等は、上記課題について、詳細に検討した結果、電荷輸送物質の化学構造と電子密度分布の間に、高速特性と耐ガス特性を両立できる特異的な関係を見出し、本発明を完成した。即ち、電子雲の広がりが大きいと同時に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布がある特定の関係を有する電荷輸送性物質と下記一般式(1)で示される化合物を併用することにより高速特性を維持しながら、しかも耐ガス性が優れた有機感光体が得られることを見出し、本発明を完成した。即ち、本発明の上記目的は、以下の構成を用いることにより達成される。
(請求項1)
有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程で静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体において、導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする有機感光体。
Figure 2007010958
(一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
(請求項2)
前記炭素環基がフェニル基であることを特徴とする請求項1に記載の有機感光体。
(請求項3)
前記感光層が電荷発生物質を含有する電荷発生層とその上に積層された電荷輸送物質を含有する電荷輸送層を積層した構成を有することを特徴とする請求項1又は2に記載の有機感光体。
(請求項4)
前記電荷発生物質がY型チタニルフタロシアニン顔料であることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
(請求項5)
前記電荷輸送物質のイオン化ポテンシャルが7.6〜7.9eVであることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
(請求項6)
有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程で静電潜像をトナー像に顕像化する画像形成方法において、該有機感光体が導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする画像形成方法。
Figure 2007010958
(一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
(請求項7)
プロセススピードが400mm/sec以上であることを特徴とする請求項6に記載の画像形成方法。
(請求項8)
有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、該静電潜像をトナー像に顕像化する現像器を有する画像形成装置において、該有機感光体が導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする画像形成装置。
Figure 2007010958
(一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
(請求項9)
プロセススピードが400mm/sec以上であることを特徴とする請求項8に記載の画像形成装置。
(請求項10)
有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、該静電潜像をトナー像に顕像化する現像器を有する画像形成装置に用いられるプロセスカートリッジにおいて、導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有する有機感光体と帯電手段、潜像形成手段、現像手段、転写手段、除電手段及びクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
Figure 2007010958
(一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
本発明の有機感光体を用いることにより、高速複写機に十分適応でき、且つ耐活性ガス特性に優れた有機感光体を提供でき、画像濃度が十分で鮮鋭性が良好な電子写真画像を提供することができ、且つ該有機感光体を用いた画像形成方法、画像形成装置及びプロセスカートリッジを提供することができる。
本発明の有機感光体は、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程で静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体において、導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と前記一般式(1)で表される化合物を含有することを特徴とする。
有機感光体が上記のような構成を有することにより、プロセススピードが400mm/sec以上で、多数枚のプリントやコピーを行なっても、高速の感度特性と安定した電位特性を示し、NOx等の活性ガスによる残留電位の上昇が小さく、画像ボケの発生や画像濃度の低下を防止でき、鮮鋭性のが良好な電子写真画像を安定して作製できる。
以下、本発明の有機感光体の構成を記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能のいずれか一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。
本発明の有機感光体の層構成は、導電性支持体上に電荷発生層及び電荷輸送層を有し、該電荷輸送層は複数層から形成されることが好ましい。又、導電性支持体と電荷発生層の間には、該支持体からのフリーキャリアの進入をブロックできる中間層を設置することが好ましい。以下、本発明の有機感光体の好ましい構成を示す。
導電性支持体
本発明の感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真円度及び振れの範囲を超えると、良好な画像形成が困難になる。
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
中間層
本発明においては導電性支持体と感光層の間に、支持体からのフリーキャリアの進入をブロックできる中間層を設置することが好ましい。
本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。
又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。
又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。
N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。
前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。
本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。
数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。
前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。
本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。
N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。
尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。
この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。
感光層
本発明の有機感光体の感光層構成は導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有する。該感光層は電荷発生物質と電荷輸送物質が同一層に存在する感光層で構成されてもよいが、より好ましくは、導電性支持体上に電荷発生物質を含有する電荷発生層(CGL)及び電荷輸送層を含有する電荷輸送層(CTL)の積層構成が好ましい。以下、該積層構成の層構成を中心に本発明の有機感光体を説明する。
電荷発生層
電荷発生層:電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる立体、電位構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。
電荷輸送層
本発明に係わる電荷輸送層は、トリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、前記計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質を前記一般式(1)の化合物と併用して含有する。即ち、本発明の電荷輸送物質は上記HOMO電子密度分布の値が前記トリアリールアミン基のN原子と間接的に連結し且つ最も遠くに存在する炭素環基上に0.009以上の炭素原子をが少なくとも1つ以上有する。更に、上記HOMO電子密度分布の値は0.009〜0.03の範囲が化学的に最も安定し(NOx等の攻撃サイトになりにくい化学的に安定した構造であり)且つ電荷キャリアの高速輸送特性を同時に満足した化学構造を獲得できる。
ここで、トリアリールアミン基を有する化合物とは、分子構造中に少なくともトリアリールアミン基を有する化合物であり、例えば、下記一般式(2)で示されるような化合物が好ましく用いられる。
Figure 2007010958
〔一般式(2)中、R1、R2、R3、R4、R5は各々水素原子、炭素原子数1〜4のアルキル基又はアルコキシ基である。Ar1は水素原子又は置換、無置換の芳香族基、Ar2は置換、無置換の芳香族基を示す。〕
尚、一般式(2)中、トリアリールアミン基の構造は、N原子に連結している3個のフェニール基で構成されている。
上記、一般式(2)で示される化合物はシス−シス、シス−トランス、トランスートランスの立体異性構造を取る化合物が多いが、この中で、前記HOMO電子密度及び双極子モーメントの条件を満足する化合物はトランスートランスの立体異性構造を取る化合物の多く、本発明の電荷輸送物質として上記一般式(2)の化合物を用いる場合は、トランス−トランスの立体異性構造を有する化合物を用いることが好ましい。
これらの立体構造を有する化合物は、これらの立体構造を一旦分離した後、HOMO及び双極子モーメントの前記条件を満たす立体構造を有する化合物を全体として50質量%以上含有させることが好ましい。
又、一般式(2)の化合物の合成例とその分離方法(シス−シス、シス−トランス、トランスートランスの立体異性構造の分離方法)については、特開2003−280221号公報に記載の下記の液体クロマトグラフィの測定条件(分離条件)で、分離することができ、これから分離して、前記トリアリールアミン基のN原子と間接的に連結し且つ最も遠くに存在する炭素環基上に0.009以上の炭素原子が少なくとも1つ以上存在し、前記計算により求められた双極子モーメントが0.7デバイ以下である化合物である化合物を選択することが好ましい。
測定機:島津LC6A(島津製作所製)
カラム:CLC−SIL(島津製作所製)
検出波長:290nm
移動相:n−ヘキサン/ジオキサン=10〜500/1
移動相の流速:約1ml/min
サンプル溶媒:n−ヘキサン/ジオキサン=10/1
サンプル:3mg/溶媒10ml
又、N原子と間接的に連結し且つ最も遠くに存在する炭素環基とは、トリアリールアミン基のN原子に他の基を挟んで間接的に接続している炭素環基であり、且つN原子を中心として、N原子から分子内の距離が最も遠くに存在する炭素環基を示し、下記化合物(CTM−2)では、P1、P2の円で囲まれたフェニル基に相当する。
Figure 2007010958
又、前記炭素環基としては、単環炭素環基(飽和炭素環基及び芳香族炭素環基)、縮合多環炭素環基等が挙げられるが、本発明にはフェニル基等の炭素環基が好ましく用いられる。
AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布及び双極子モーメントは、以下のようにして、半経験的分子軌道計算により求めた。
即ち、分子軌道法ではシュレディンガー方程式で用いる波動関数を、原子軌道の線形結合で表される分子軌道からなるスレーター行列式で近似し、その波動関数を構成する分子軌道をつじつまの合った場(self−consistent field、略してSCF)の近似を用いて求めることにより全エネルギー、波動関数および波動関数の期待値として種々の物理量を計算できる。つじつまの合った場の近似により分子軌道を求める際、計算時間のかかる積分計算を種々の実験値を使ってパラメータし近似することにより計算時間を短縮するのが半経験的分子軌道法である。本発明では半経験的パラメータとしてAM1パラメータセットを用い半経験的分子軌道計算プログラムMOPACのバージョンMOPAC93を用いて計算した(PM3及びMOPACに関してはJ.J.P Stewart,Journal of Computer−Aided Molecular Design,4,1(1990)ならびにその中の引用文献を参照)。
トリアリールアミン基を有する化合物であり且つAM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布で、前記トリアリールアミン基のN原子と間接的に連結し且つ最も遠くに存在する炭素環基上に0.009以上の炭素原子が少なくとも1つ以上存在し、前記計算により求められた双極子モーメントが0.7デバイ以下である化合物の具体例としては、以下のような化合物が挙げられる。
Figure 2007010958
Figure 2007010958
上記、具体例で示した化合物は、前記一般式(2)で示される化合物から、選択することができるが、これら一般式(2)の化合物が全て、上記電子密度分布及び双極子モーメントの条件を満たすものではなく、これら一般式(2)の化合物から、上記条件を満たす化合物を選択することが必要である。
前記一般式(2)で示される化合物の内、R1〜R5の少なくとも1つの基に炭素原子数1〜4のアルキル基を有する化合物が上記電子密度分布及び双極子モーメントの条件を満たす上で好ましく、特に、R2に炭素原子数1〜4のアルキル基を有する化合物が上記条件を満たす上で好ましい。
本発明に係わる電荷輸送物質としては、上記の化合物を用いることが必要条件であるが、これらの化合物と共に、上記条件を満たさない電荷輸送物質と併用することもできる。しかし、併用する場合にも上記条件を満たした電荷輸送物質を主たる電荷輸送物質(全電荷輸送物質の質量比で50%以上)として用いることが好ましい。
本発明に係わる前記電荷輸送物質のイオン化ポテンシャル(前記AM1パラメーターを用いた半経験的分子軌道計算により求められたイオン化ポテンシャル)が7.6〜7.9eVであることが好ましい。
特に、電荷発生物質にCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン顔料を用いた場合に、上記範囲のイオン化ポテンシャルを有する化合物を電荷輸送物質として適用するとにより、400mm/sec以上の高速プロセスにおいても、残留電位の増加が小さく抑えられ、高濃度で且つ鮮鋭性の良好な電子写真画像を作製することができる。
又、本発明に係わる電荷輸送層には前記一般式(1)の化合物を含有させる。該一般式(1)において、Aは2価の連結基であるが、下記構造で示される連結基が最も好ましい。
Figure 2007010958
又、R1、R2は各々炭素数1〜5のアルキル基であるが、特にt−ブチル基が好ましい。
本発明に係わる前記一般式(1)の化合物としては、下記のような化合物が挙げられる。
Figure 2007010958
上記化合物の中でも、AO−1のペンタエリスリチルテトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕が、表面層中に吸着されやすい活性ガスを効果的に消尽することができ、特に好ましく用いられる。
本発明に係わる電荷輸送層は1層で構成しても、上下2層で構成してもよい。電荷輸送層を2層で構成する場合、上層の電荷輸送層に、本発明の電荷輸送物質を用いることが好ましい。即ち、表面層を構成する電荷輸送層に本発明の電荷輸送物質を用いることにより、高速特性と耐活性ガス性の両方を満足させた有機感光体を得ることができる。電荷輸送層の電荷輸送物質の含有量はバインダー樹脂100質量部に対し、50〜200質量部と、高濃度で含有させることが好ましい。
第一電荷輸送層の膜厚は合計で10〜25μmが好ましくい。
本発明に係わる電荷輸送層を作製する場合、電荷輸送層の分散液を作製する。この電荷輸送層分散液の溶媒としては、環境負荷が小さい非ハロゲン溶媒を用いる。非ハロゲン溶媒としては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ、等が挙げられる。
電荷輸送層分散液の溶媒としては、これらに限定されるものではないが、特に、トルエン、テトラヒドロフラン(THF)、ジオキソラン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
本発明の有機感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお前記スプレー塗布については例えば特開平3−90250号及び特開平3−269238号公報に詳細に記載され、前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
以下、この発明に係る画像形成装置の実施形態を添付の図面に基づいて具体的に説明すると共に、実施形態の画像形成装置、現像装置を用いて作像を行なう具体的な実施例を挙げて説明し、本発明の現像方法により、黒ポチやカブリの発生もなく、階調性、画像濃度も十分な良好な画像が得られることを明らかにする。
図1は本発明の画像形成方法の1例としての画像形成装置の断面図である。
図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した本発明の感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。
感光体への一様帯電の後、像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザーダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。
ここで、本発明の感光体の未露光部電位とは帯電器52により、感光体表面を一様に帯電し、像露光が行われない領域の感光体表面電位を意味する。又、露光部電位とは像露光が行われた領域の感光体表面電位を意味する。電位測定は電位センサー547を図1のように現像位置に設けて行う。
その静電潜像は次いで現像工程で現像器54を用いて現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像器54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される有機電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cm2の範囲である。
現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と本発明の低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は現像スリーブ541に直流バイアス電圧、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。
記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。
転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写器)58が圧接され、給紙された記録紙Pを挟着して転写される。
次いで記録紙Pは転写ローラーとほぼ同時に圧接状態とされた分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後感光体ドラム50の周面より退避離間して次なるトナー像の形成に備える。
一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。
尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。
図2は前記図1の感光体ドラム50の帯電電位制御の構成を拡大した図である。
以下に、未露光部電位の測定法と未露光部電位の修正を目的とした帯電電位調整プロセスを図2を用いて説明する。
まず、感光体50上に帯電器(帯電工程)52により一様に帯電する。帯電された感光体上にレーザーダイオードの像露光器(像露光工程)53によりデジタル露光されない未露光領域を形成する。該未露光領域の表面電位(未露光部電位)を電位センサー547により検出し、この検出された電位信号は図2中のプロセス制御部63に伝達する。プロセス制御部63は電位センサー547からの電位信号に基づいて帯電極を制御するプロセス制御器である。該制御器は電位センサーからの電位信号と目標電位信号とを比較し、その差を修正し、目標電位を達成する修正信号を決定する。高圧制御ユニット64はプロセス制御部63の制御信号を受け帯電器52に電流、電圧を供給する高圧制御ユニットである。前記決定された修正信号に基づきプロセス制御器から帯電電流、帯電グリット電圧の修正信号が高圧制御ユニットに出され、続いて高圧制御ユニットから帯電器52のコロナワイヤー521、スコロトロングリット522へそれぞれ修正された帯電電流、帯電グリット電圧が出力される。このプロセスを数回繰り返すことにより、電位センサー位置の感光体電位(未露光部電位)を目標電位に修正する事ができる。
本発明の有機感光体は、プロセススピード(画像形成中の感光体の線速)が400mm/sec以上の画像形成方法に適用することが好ましい。プロセススピードが400mm/sec以上では、画像形成の為に繰り返し回転させる感光体では、帯電電位や残留電位等の電位安定性が不安定になりやすいが、本発明に係わる電荷輸送物質及び一般式(1)の化合物を併用することにより、これらの問題が解決されると同時に、高速の電荷輸送物質(CTM)を用いる場合に発生しやすい耐活性ガス性の劣化を防止でき、画像ボケも防止することができる。
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。
実施例
以下のようにして、評価に用いる感光体を作製した。
感光体1の作製
中間層
洗浄済み円筒状アルミニウム基体(切削加工によりJISB−0601規定の十点表面粗さRz:0.81μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚1.0μmの中間層を形成した。
下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。
(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部(1.00体積部)
ルチル形酸化チタンA1(一次粒径35nm;メチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)を用い、酸化チタン全質量の5質量%の量で表面処理したもの) 3.5部(1.0体積部)
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
電荷発生層
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.3μmの電荷発生層を形成した。
チタニルフタロシアニン顔料(Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも27.3°に最大回折ピークを有するチタニルフタロシアニン顔料) 20部
シリコーン変性ポリビニルブチラール 10部
4−メトキシ−4−メチル−2−ペンタノン 700部
t−ブチルアセテート 300部
〈電荷輸送層(CTL)〉
電荷輸送物質(CTM−1) 100部
ポリカーボネート(Z300:三菱ガス化学社製) 100部
酸化防止剤(例示化合物AO−1) 6部
THF/トルエン(質量比:7/3) 1000部
シリコンオイル(KF−54:信越化学社製) 1部
を混合し、溶解して電荷輸送層塗布液1を調製した。この塗布液を前記電荷発生層の上に円形スライドホッパ型塗布機で塗布し、110℃70分の乾燥を行い、乾燥膜厚22.0μmの電荷輸送層を形成した。
感光体2〜7の作製
電荷輸送層の電荷輸送物質の種類を表1のように変化させた以外は感光体1と同様にして感光体2〜7を作製した。
Figure 2007010958
表1中、
最大電子密度とは、AM1パラメーターを用いた半経験的分子軌道計算により求められた各CTMのHOMO電子密度分布で、前記トリアリールアミン基のN原子と間接的に連結し且つ最も遠くに存在する炭素環基上の炭素原子の最大電子密度を意味する。
又、双極子モーメント及びIP(イオン化ポテンシャル)も、上記と同様AM1パラメーターを用いた半経験的分子軌道計算により求めた。
表1中、CTMR−1及びCTMR−2は下記の化合物を表す。
Figure 2007010958
AOR−1、AOR−2及びAOR−3は下記の化合物を表す。
Figure 2007010958
《評価1》
上記感光体を図1及び図2の構造を基本的に有するデジタル複写機Konica「Sitios」7085((コニカミノルタビジネステクノロジーズ(株)社製)スコロトロン帯電器、半導体レーザー像露光器、反転現像手段を有する)に設定し、複写実験を行った。
《画像評価》
上記デジタル複写機に各感光体を取り付け、高温高湿(30℃、80%RH)環境でA4紙、100万枚の文字画像、白べた画像、黒べた画像を有するオリジナル画像の複写を行い、スタート時及び10万枚コピー毎に複写画像を取り出し、下記の画像評価を行った。
画像形成のその他の条件
プロセススピード:420mm/sec
帯電条件:帯電極に、スコロトロン帯電極を用い、該帯電極のグリット電圧を650Vに設定した。
現像剤:キャリア及びトナーを含有する二成分現像剤を用いた。
(電位安定性)
スタート時及び10万枚コピー毎に上記デジタル複写画像の現像器の位置に電位センサーを設置し、感光体の電位保持性及び残留電位を評価した。
◎:スタートから100万枚まで、帯電電位の変化が650±50V未満の範囲で推移し、帯電電位の安定性が良好であり、残留電位の増加も50V未満で良好である。
○:スタートから100万枚まで、帯電電位の変化が650±100V以内の範囲で推移し、残留電位の増加も50V以上100V以下である。(実用性あり)
×:スタートから100万枚まで、帯電電位の変化が650±100Vより大きく、残留電位の増加も100Vより大きい。(実用性には、問題有り)
(画像濃度)
複写画像の黒ベタ画像をマクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した
(画像濃度)
◎:スタートから100万枚まで、黒ベタ画像濃度が1.3以上で画像濃度が高い。
○:スタートから100万枚まで、黒ベタ画像濃度が1.0以上で実用的に十分な画像濃度である。
△:スタートから100万枚までの間に、黒ベタ画像濃度が0.7〜1.0未満が発生(実用性には、再検討要)
×:スタートから100万枚までの間に、黒ベタ画像濃度が0.7未満が発生(実用性には、問題有り)
(カブリ)
マクベス反射濃度計「RD−918」を用いて、複写用紙(白紙)の濃度を20カ所、絶対画像濃度で測定し、その平均値を白紙濃度とする。次に、複写画像の白べた画像を同様に20カ所、絶対画像濃度で測定し、その平均濃度から前記白紙濃度を引いた値をカブリ濃度として評価した。
◎:スタートから100万枚まで、白ベタ画像濃度が0.005以下(良好)
○:スタートから100万枚まで、白ベタ画像濃度が、0.01以下(実用上問題ないレベル)
×:スタートから100万枚までの間に、白ベタ画像濃度が0.01より大のカブリ発生(明らかに、実用上問題あり)
(耐活性ガス性)
上記デジタル複写機Konica「Sitios」7085を低温低湿(10℃、10%RH)の環境下に設置し、1000枚の連続複写後、20分間停止、その後、ハーフトーン画像を複写し、帯電極直下に発生する画像ボケの発生を観察し、下記の評価基準で評価した。
◎:ハーフトーン画像に画像ボケの発生は全く見られない(良好)
○:ハーフトーン画像に濃度差が0.15未満の画像ムラが発生しているが、ハーフトーン画像中で、該濃度差があまり目立たない。(実用上問題ないレベル)
×:ハーフトーン画像に濃度差が0.15以上の画像ボケが発生しており、ハーフトーン画像中で、該濃度差がはっきりしている。(実用上問題あり)
Figure 2007010958
表2から明らかなように、電荷輸送層に、本発明の条件を満たした電荷輸送物質及び一般式(1)の化合物を併用した感光体1〜5は、電位安定性が良好で、その結果、画像濃度、カブリのいずれの評価も良好な結果を得ている。又、耐活性ガスの評価も良好であり、その結果、画像ボケの発生も防止され、鮮鋭性の良好な電子写真画像を形成することができる。
一方、本発明外の電荷輸送物質を用いた感光体6は、耐活性ガスの劣化が大きく、感光体7は、電位安定性及び画像濃度の劣化が大きい。
又、一般式(1)以外の酸化防止剤を用いた感光体8〜10はいずれも電位安定性及び画像濃度が劣化しており、感光体9ではカブリの評価も劣化している。
本発明の画像形成方法の1例としての画像形成装置の断面図。 図1の感光体ドラムの帯電電位制御の構成を拡大した図。
符号の説明
50 感光体ドラム(又は感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
542 搬送量規制部材
543 現像剤攪拌搬送部材
544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ

Claims (10)

  1. 有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程で静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体において、導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする有機感光体。
    Figure 2007010958
    (一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
  2. 前記炭素環基がフェニル基であることを特徴とする請求項1に記載の有機感光体。
  3. 前記感光層が電荷発生物質を含有する電荷発生層とその上に積層された電荷輸送物質を含有する電荷輸送層を積層した構成を有することを特徴とする請求項1又は2に記載の有機感光体。
  4. 前記電荷発生物質がY型チタニルフタロシアニン顔料であることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
  5. 前記電荷輸送物質のイオン化ポテンシャルが7.6〜7.9eVであることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
  6. 有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程で静電潜像をトナー像に顕像化する画像形成方法において、該有機感光体が導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする画像形成方法。
    Figure 2007010958
    (一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
  7. プロセススピードが400mm/sec以上であることを特徴とする請求項6に記載の画像形成方法。
  8. 有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、該静電潜像をトナー像に顕像化する現像器を有する画像形成装置において、該有機感光体が導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有することを特徴とする画像形成装置。
    Figure 2007010958
    (一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
  9. プロセススピードが400mm/sec以上であることを特徴とする請求項8に記載の画像形成装置。
  10. 有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、該静電潜像をトナー像に顕像化する現像器を有する画像形成装置に用いられるプロセスカートリッジにおいて、導電性基体上に少なくとも電荷発生物質と電荷輸送物質を含有する感光層を有し、該感光層がトリアリールアミン基を有し且つ前記トリアリールアミン基のN原子と間接的に連結し、しかも、最も遠くに存在する炭素環基上に、AM1パラメーターを用いた半経験的分子軌道計算により求められたHOMO電子密度分布の値が0.009以上の炭素原子を少なくとも1つ以上有し、且つ前記半経験的分子軌道計算により求められた双極子モーメントが0.7デバイ以下の化合物の電荷輸送物質と下記一般式(1)で表される化合物を含有する有機感光体と帯電手段、潜像形成手段、現像手段、転写手段、除電手段及びクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
    Figure 2007010958
    (一般式(1)において、Aは2価の連結基、R1、R2は各々炭素数1〜5のアルキル基を表す)
JP2005191379A 2005-06-30 2005-06-30 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ Withdrawn JP2007010958A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191379A JP2007010958A (ja) 2005-06-30 2005-06-30 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191379A JP2007010958A (ja) 2005-06-30 2005-06-30 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Publications (1)

Publication Number Publication Date
JP2007010958A true JP2007010958A (ja) 2007-01-18

Family

ID=37749562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191379A Withdrawn JP2007010958A (ja) 2005-06-30 2005-06-30 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP2007010958A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020177A (ja) * 2007-07-10 2009-01-29 Mitsubishi Chemicals Corp 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020177A (ja) * 2007-07-10 2009-01-29 Mitsubishi Chemicals Corp 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置

Similar Documents

Publication Publication Date Title
JP6333629B2 (ja) 電子写真感光体およびそれを備えた画像形成装置
JP2007108482A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2004302032A (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2007147824A (ja) 電子写真感光体及び画像形成装置
JP3952990B2 (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2014219430A (ja) 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP2003307861A (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP3991929B2 (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP3876667B2 (ja) 有機感光体、画像形成装置、画像形成方法、及びプロセスカートリッジ
JP2005017580A (ja) 有機感光体、プロセスカートリッジ、画像形成方法及び画像形成装置
JP2004302033A (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2007010958A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2007114649A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2007011253A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2007057576A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2003280223A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2005292821A (ja) 電子写真感光体、該感光体を用いた画像形成装置、およびカートリッジ
JP2004347854A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP5718413B2 (ja) 電子写真感光体及びそれを用いた画像形成装置
JP2007010960A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2007010959A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2007010961A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP3952833B2 (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP7346974B2 (ja) 電子写真用感光体、その製造方法およびそれを搭載した電子写真装置
JP2009288401A (ja) 電子写真感光体の製造方法、電子写真感光体

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20090603

Free format text: JAPANESE INTERMEDIATE CODE: A761