JP2006352942A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2006352942A
JP2006352942A JP2005172162A JP2005172162A JP2006352942A JP 2006352942 A JP2006352942 A JP 2006352942A JP 2005172162 A JP2005172162 A JP 2005172162A JP 2005172162 A JP2005172162 A JP 2005172162A JP 2006352942 A JP2006352942 A JP 2006352942A
Authority
JP
Japan
Prior art keywords
conversion
soft switching
switch
circuit
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005172162A
Other languages
English (en)
Inventor
Koichi Morita
浩一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2005172162A priority Critical patent/JP2006352942A/ja
Publication of JP2006352942A publication Critical patent/JP2006352942A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】 ハイブリッド自動車のモータ駆動装置の高効率化が要求されている。
【解決手段】 第1及び第2の直流導体1a,1bに回生動作可能なインバータから成る第1の変換回路3を介して電動機を接続し、更にインバータ機能も有する整流回路から成る第2の変換回路5を介して発電機10を接続する。蓄電池6と第1及び第2の直流導体1a,1bとの間に降圧及び昇圧可能な第3の変換回路7を接続する。第1及び第2の直流導体1a,1b間に共通のソフトスイッチング回路8を接続する。
【選択図】図1

Description

本発明は、ハイブリッド自動車のモータ駆動装置に好適な電力変換装置に関する。
ハイブリッド自動車のモータ駆動装置は、例えば特許文献1に開示されているように、蓄電池と、車の駆動源としての回生動作可能な交流電動機と、電動機機能を有する交流発電機と、この交流発電機を駆動するためのエンジンと、蓄電池の電圧を昇圧して交流電動機に供給し且つ交流電動機及び/又は交流発電機の出力電圧を降圧して蓄電池に供給するコンバータと、コンバータと交流電動機との間に接続されたインバータと、交流発電機とコンバータ及びインバータとの間に接続されたインバータ動作可能な整流回路とから成る。
一般的に、車の発進及び低速走行時には、エンジンを停止して電動機のみで車軸が駆動される。また、通常走行時には、エンジンと電動機との両方で車軸が駆動され、同時に発電機がエンジンで駆動され、発電機の出力で電動機が駆動される。加速時には、最高出力が得られるようにエンジンを駆動すると共に蓄電池からも電動機に電力を供給する。減速及び制動時には、エンジンを空回り又は停止させ、車輪によって電動機及び発電機を回転させ、回生されたエネルギーで蓄電池を充電する。従って、減速及び制動時のエネルギー損失が低減し、燃料を低減することができる。
ところで、モータ駆動装置におけるコンバータ、インバータ及び整流回路は、周知のPWM(パルス幅変調)制御のために例えばIGBT(絶縁ゲート型バイポーラトランジスタ)から成る変換用スイッチとここに並列に接続された帰還用ダイオードとを含み、変換用スイッチは比較的高い周波数でオン・オフ制御される。しかし、変換用スイッチがハードスイッチングされると、比較的大きな電力損失及びノイズが生じる。また、IGBTを使用する場合には、これに並列接続するための個別の帰還用ダイオードが必要になるのみでなく、ここでの損失も生じる。
インバータ、コンバータ等の電力変換装置において変換用スイッチをソフトスイッチングさせることは、例えば特許文献2等で既に知られている。しかし、インバータ又はコンバータのソフトスイッチング回路を例えばハイブリッド自動車のように、蓄電池、電動機及び発電機を含む装置に単に適用しても目的とするソフトスイッチングを達成することができない。
特開2004−274945号公報 特開2001−238467号公報
本発明が解決しようとする課題は、蓄電池、電動機、発電機のための複数の変換回路を含むシステムにおいて、スイッチング損失を容易に低減することが困難なことである。
上記課題を解決するための本発明は、
第1及び第2の直流導体と、
交流電動機又は回生動作可能な交流電動機から成る第1の交流機器を接続するための複数の第1の交流導体と、
前記第1及び第2の直流導体と前記複数の第1の交流導体との間に接続され、且つ直流−交流変換又は直流−交流変換と交流−直流変換との両方を行うための複数の変換用スイッチを含んでいる第1の変換回路と、
交流発電機又は交流電動機機能を有する交流発電機から成る第2の交流機器を接続するための複数の第2の交流導体と、
前記第1及び第2の直流導体と前記複数の第2の交流導体との間に接続され且つ交流−直流変換又は交流−直流変換と直流−交流変換との両方を行うための複数の変換用スイッチを含んでいる第2の変換回路と、
蓄電池と、
前記蓄電池と前記第1及び第2の直流導体との間に接続され且つ前記蓄電池の電圧を昇圧して前記第1及び第2の直流導体間に供給する機能と前記第1及び第2の直流導体間の電圧を降圧して前記蓄電池に供給する機能とを有し且つ複数の変換用スイッチを含んでいる第3の変換回路と、
前記第1の変換回路の前記変換用スイッチと前記第2の変換回路の前記変換用スイッチと前記第3の変換回路の前記変換用スイッチとの内の少なくとも2つにそれぞれ並列に接続された個別又は寄生のスナバ用コンデンサと、
前記第1及び第2の直流導体間に接続され且つソフトスイッチング用リアクトルを含み且つ前記第1、第2及び第3の変換回路の前記複数の変換用スイッチ内の少なくとも1つのターンオンの直前に前記スナバ用コンデンサの電荷を前記ソフトスイッチング用リアクトルに基づく共振動作で放出させる機能を有しているソフトスイッチング回路と、
を備えていることを特徴とする電力変換装置に係わるものである。
なお、請求項2に示すように、前記第1の変換回路は、前記第1及び第2の直流導体間に接続された少なくとも、第1及び第2の変換用スイッチの直列回路と第3及び第4の変換用スイッチの直列回路とを含み、前記複数の第1の交流導体の1つは、前記第1及び第2の変換用スイッチの相互接続点に接続され、前記複数の第1の交流導体の別の1つは前記第3及び第4の変換用スイッチの相互接続点に接続されていることが望ましい。
また、請求項3に示すように、前記第1、第2、第3及び第4の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに対して並列に接続された個別又は寄生のダイオードとから成り、前記ダイオードは前記第1の交流機器の交流出力を直流に変換することができる方向性を有していることが望ましい。
また、請求項4に示すように、前記第2の変換回路は、前記第1及び第2の直流導体間に接続された少なくとも第5及び第6の変換用スイッチの直列回路と、第7及び第8の変換用スイッチの直列回路とを含み、前記複数の第2の交流導体の1つは前記第5及び第6の変換用スイッチの相互接続点に接続され、前記複数の第2の交流導体の別の1つは前記第7及び第8の変換用スイッチの相互接続点に接続されることが望ましい。
また、請求項5に示すように、前記第5、第6、第7及び第8の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに対して並列に接続された個別又は寄生のダイオードとから成り、前記ダイオードは前記第2の交流機器の交流出力を直流に変換することができる方向性を有していることが望ましい。
また、請求項6に示すように、前記第3の変換回路は、前記第1の直流導体に接続された一端を有する第9の変換用スイッチと、前記第9の変換用スイッチと前記第2の直流導体との間に接続された第10の変換用スイッチと、前記第10の変換用スイッチに対して前記蓄電池を介して並列に接続された電圧変換用リアクトルとから成ることが望ましい。
また、請求項7に示すように、前記第9及び第10の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに並列に接続された個別又は寄生のダイオードとを有し、前記ダイオードは前記第2の直流導体から前記第1の直流導体側に向って順方向電流が流れることを許す方向性を有していることが望ましい。
また、請求項8に示すように、前記ソフトスイッチング回路は、前記第1及び第2の直流導体間に第1のソフトスイッチング用スイッチ手段を介して接続され且つ前記蓄電池よりも高い電圧になる第1のソフトスイッチング用コンデンサ又は第1の補助直流電源と、前記第1及び第2の直流導体間に第2のソフトスイッチング用スイッチ手段と第2のソフトスイッチング用コンデンサ又は第2の補助直流電源又は前記蓄電池とを介して接続されたソフトスイッチング用リアクトルと、前記ソフトスイッチング回路によるソフトスイッチング対象の前記変換用スイッチのターンオン時点よりも前に前記第2のソフトスイッチング用スイッチ手段をオン制御し、前記スナバ用コンデンサの電荷の放出後に前記第2のソフトスイッチング用スイッチ手段をオフ制御し、前記第2のソフトスイッチング用スイッチ手段のターンオン時点又は前記スナバ用コンデンサの放電開始時点又は前記第2のソフトスイッチング用スイッチ手段のターンオン時点から前記スナバ用コンデンサの放電開始時点までの期間内に前記第1のソフトスイッチング用スイッチ手段をターンオフ制御し、前記第2のソフトスイッチング用スイッチ手段のターンオフ時点又はこれよりも後の時点で前記第1のソフトスイッチング用スイッチ手段をターンオン制御するスイッチ制御手段とから成ることが望ましい。
また、請求項9に示すように、前記第1のソフトスイッチング用スイッチ手段は、制御可能な半導体スイッチと、この半導体スイッチに並列に接続されたダイオードとから成ることが望ましい。
また、請求項10に示すように、更に、前記第1のソフトスイッチング用スイッチ手段に並列に接続された個別又は寄生のスナバ用コンデンサを有することが望ましい。
また、請求項11に示すように、前記第2のソフトスイッチング用スイッチ手段は制御可能な半導体スイッチと、この半導体スイッチに並列に接続されたダイオードとから成り、前記ダイオードは前記第2の直流導体から前記ソフトスイッチング用リアクトルを介して前記第1の直流導体の方向に順方向電流が流れることを許す方向性を有していることが望ましい。
また、請求項12に示すように、前記第2のソフトスイッチング用スイッチ手段は、4個のスイッチのブリッジ接続回路から成り、前記ソフトスイッチング用リアクトルは前記ブリッジ接続回路の対の相互接続点間に接続されていることが望ましい。
また、請求項13に示すように、前記第2のソフトスイッチング用スイッチ手段は、2つの半導体スイッチを互いに逆方向に並列接続した交流スイッチ回路であることが望ましい。
本発明によれば、蓄電池、第1及び第2の交流機器を相互に関係づけるための第1、第2及び第3の変換回路の内の少なくとも2つ好ましくは全部のソフトスイッチングを共通のソフトスイッチング回路によって達成することができる。従って、変換用スイッチの電力損失の低減を容易に達成できる。
次に、図1〜20を参照して本発明の実施形態を説明する。
図1の本発明の実施例1に従うハイブリッド自動車のモータ駆動装置は、第1及び第2の直流導体1a、1bと3相の第1の交流導体2a、2b、2cとの間に接続されたDC−AC変換及びAC−DC変換可能な第1の変換回路3と、第1及び第2の直流導体1a、1bと3相の第2の交流導体4a、4b、4cとの間に接続されたAC−DC変換及びDC−AC変換可能な第2の変換回路5と、蓄電池(バッテリ)6と、この蓄電池6と第1及び第2の直流導体1a、1bとの間に接続された降圧変換及び昇圧変換可能な第3の変換回路7と、第1及び第2の直流導体1a、1b間に接続されたソフトスイッチング転流回路と呼ぶこともできるソフトスイッチング回路8とを有する。
3相の第1の交流導体2a、2b、2cに接続された第1の交流機器としての3相交流電動機(以下、単に電動機と言う。)は、図示されていない車軸に結合され、例えば3相交流同期電動機又は3相永久磁石モータから成り、第1の変換回路3又は発電機10から電力が供給された時に車軸を駆動し、車軸が慣性で回転している時に発電機として機能するものである。即ち電動機9は回生動作可能なモータである。
3相の第2の交流導体4a、4b、4cに接続された第2の交流機器としての3相交流発電機(以下、単に発電機と言う。)は、エンジン11に結合されていると共に図示されていない車軸にも結合され、例えば3相交流同期発電機から成り、エンジン11によって駆動されている時又は車軸の慣性で駆動されている時に3相交流電圧を出力し、第2の変換回路5から3相電力の供給を受けた時に電動機として動作するものである。
第1の変換回路3はインバータ回路とも呼ぶことができるものであって、寄生ダイオードを内蔵している絶縁ゲート型電界効果トランジスタ(以下、単にFETと言う。)から成る第1〜第6の変換用スイッチQ1 〜Q6 の3相ブリッジ回路から成る。即ち第1の変換回路3は、第1及び第2の直流導体1a、1b間に接続された第1及び第2の変換用スイッチQ1 、Q2 の直列回路と、第3及び第4の変換用スイッチQ3 、Q4 の直列回路と、第5及び第6の変換用スイッチQ5 、Q6 の直列回路とを有する。なお、第1〜第4の変換用スイッチQ1〜Q4は、特許請求の範囲における第1〜第4の変換用スイッチに相当する。3相の第1の交流導体2a、2b、2cは、各直列回路の変換用スイッチの相互接続点に接続されている。第1〜第6の変換用スイッチQ1 〜Q6 には第1〜第6のスナバ用コンデンサCq1〜Cq6が並列接続されている。なお、第1〜第6のスナバ用コンデンサCq1〜Cq6を第1〜第6の変換用スイッチQ1 〜Q6 の寄生容量とすることもできる。
FETから成る第1〜第6の変換用スイッチQ1 〜Q6 のそれぞれは、図2に等価的に示すように制御可能な半導体スイッチとしてのnチャネル型FETスイッチQとダイオードDとの並列回路で示すことができる。ダイオードDは寄生ダイオードと呼ばれるものであって、FETスイッチQと同一の半導体基板に内蔵されている。このダイオードDのアノードはFETスイッチQのソースSに接続され、カソードはドレインdに接続されている。従って、図1の第1の変換回路3において第1〜第6の変換用スイッチQ1 〜Q6 に寄生するダイオードDは第2の直流導体1bから第1の直流導体1aに向って順方向電流を流すことができる方向性(極性)を有する。後述する図1の第7〜第14の変換用スイッチQ7 〜Q14、第1及び第2のソフトスイッチング用スイッチQa 、Qb も第1〜第6の変換用スイッチQ1 〜Q6 と同様に図2に示すように構成されている。なお、図2のダイオードDをFETスイッチQの寄生ダイオードとする代りに個別のダイオードとすることができる。この場合、寄生ダイオードを含むFETスイッチに対して個別ダイオードを追加して並列接続することもできる。
第1の変換回路3は、電動機9を駆動する時に第1及び第2の直流導体1a、1b間の直流電圧を3相交流電圧に変換し、電動機9が回生動作している時に電動機9から得られる3相交流電圧を直流電圧に変換する。従って、第1の変換回路3は、DC−AC変換機能(インバータ機能)の他にAC−DC変換機能(整流機能)を有する。第1の変換回路3の第1〜第6の変換用スイッチQ1 〜Q6 のゲート(制御端子)は、図1のスイッチ制御回路12の第1〜第6の端子T1 〜T6 に接続され、第1〜第6の端子T1 〜T6 から供給される周知の第1〜第6の制御信号G1 〜G6 によってオン・オフ制御される。第1〜第6の変換用スイッチQ1 〜Q6 の制御の詳細は後述する。
第2の変換回路5は、インバータ動作(DC−AC変換)可能な3相整流回路(AC−DC変換回路)であって、第1の変換回路3の第1〜第6の変換用スイッチQ1 〜Q6 と同一構成の第7〜第12の変換用スイッチQ7 〜Q12の3相ブリッジ回路から成る。即ち第2の変換回路5は、第1及び第2の直流導体1a、1b間に接続された第7及び第8の変換用スイッチQ7 、Q8 の直列回路と、第9及び第10の変換用スイッチQ9 、Q10の直列回路と、第11及び第12の変換用スイッチQ11、Q12の直列回路とを有する。なお、第7〜第10の変換用スイッチQ7 〜Q10は、特許請求の範囲における第5〜第8の変換用スイッチに相当する。3相の第2の交流導体4a、4b、4cは、各直列回路の変換用スイッチの相互接続点に接続されている。第7〜第12の変換用スイッチQ7 〜Q12には第7〜第12のスナバ用コンデンサCq7〜Cq12 が並列接続されている。なお、第7〜第12のスナバ用コンデンサCq7 〜Cq12を第7〜第12の変換用スイッチQ7〜Q12の寄生容量とすることもできる。
FETから成る第7〜第12の変換用スイッチQ7 〜Q12のそれぞれは、図2に等価的に示すように制御可能な半導体スイッチとしてのnチャネル型FETスイッチQとダイオードDとの並列回路で示すことができる。図1の第2の変換回路5において第7〜第12の変換用スイッチQ7 〜Q12に寄生するダイオードDは第2の直流導体1bから第1の直流導体1aに向って順方向電流を流すことができる方向性(極性)を有する。従って、発電機10から3相交流電圧が発生している時には、第2の変換回路5は3相交流電圧を直流に変換して第1及び第2の直流導体1a、1bに出力する。また、発電機10を電動機として駆動する時には、第1及び第2の直流導体1a、1b間の直流電圧を第1の変換回路3と同様に3相交流電圧に変換して発電機10に供給する。第2の変換回路5の第7〜第12の変換用スイッチQ7 〜Q12のゲート(制御端子)Gは、図1のスイッチ制御回路12の第7〜第12の端子T7 〜T12に接続され、第7〜第12の端子T7 〜T12から供給される周知の第7〜第12の制御信号G7 〜G12によってオン・オフ制御される。第7〜第12の変換用スイッチQ7 〜Q12の制御の詳細は後述する。
第3の変換回路7は、双方向DC−DC変換回路と呼ぶこともできるものであって、第1及び第2の直流導体1a、1b間に接続された第13及び第14の変換用スイッチQ13、Q14の直列回路と、電圧変換用リアクトルL1 とから成る。第13の変換用スイッチQ13の一端(ドレイン)は第1の直流導体1aに接続され、第13の変換用スイッチQ13の他端(ソース)は第14の変換用スイッチQ14の一端(ドレイン)に接続され、第14の変換用スイッチQ14の他端(ソース)は第2の直流導体1bに接続されている。電圧変換用リアクトルL1 は蓄電池6を介して第14の変換用スイッチQ14に並列に接続されている。第13及び第14の変換用スイッチQ13、Q14のそれぞれは、第1〜第12の変換用スイッチQ1 〜Q12と同様に図2に示すように形成され、寄生ダイオードを含む。第13及び第14の変換用スイッチQ13 、Q14の寄生ダイオードは第2の直流導体1bから第1の直流導体1aに向って順方向電流を流すことができる方向性(極性)を有する。なお、第13及び第14の変換用スイッチQ13、Q14は、特許請求の範囲で第9及び第10の変換用スイッチと呼ばれているものに対応している。
第13及び第14の変換用スイッチQ13、Q14のゲート(制御端子)はスイッチ制御回路12の第13及び第14の端子T13、T14に接続され、ここから供給される第13及び第14の制御信号G13、G14によってオン・オフ制御される。即ち、発電機10の出力又は発電機10と電動機9の回生出力に基づいて第1及び第2の直流導体1a、1b間に得られた直流電圧によって蓄電池6を充電する時には、第13の変換用スイッチQ13がオン・オフ制御されて降圧した直流電圧が形成され、これによって蓄電池6が充電される。蓄電池6の出力で電動機9又は電動機9と発電機10とを駆動する時には、第14の変換用スイッチQ14がオン・オフ制御されて蓄電池6の電圧Vb よりも高い電圧が第1及び第2の直流導体1a、1b間に得られる。第13及び第14の変換用スイッチQ13、Q14の制御の詳細は後述する。
ソフトスイッチング回路8は、第1〜第14の変換用スイッチQ1 〜Q14から選択されたもののターンオン時のソフトスイッチングを達成するためのものであって、第1及び第2のソフトスイッチング用スイッチ手段としての第1及び第2のソフトスイッチング用FETスイッチQa、Qbと、第1及び第2の直流導体1a、1b間に第1のソフトスイッチング用FETスイッチQa を介して接続された第1のソフトスイッチング用コンデンサC1 と、第1及び第2の直流導体1a、1b間に第2のソフトスイッチング用FETスイッチQb を介して接続されたソフトスイッチング用リアクトルL2 と第2のソフトスイッチング用コンデンサC2 との直列回路とから成る。
第1〜第14の変換用スイッチQ1 〜Q14と同様に図2に示すように構成されているnチャネル型の第1のソフトスイッチング用FETスイッチQa のソースは第1の直流導体1aに接続され、このドレインは第1のソフトスイッチング用コンデンサC1 を介して第2の直流導体1bに接続されている。なお、第1のソフトスイッチング用FETスイッチQa のドレインを第1の直流導体1aに接続し、このソースを第1のソフトスイッチング用コンデンサC1 を介して第2の直流導体1bに接続することもできる。また、第1のソフトスイッチング用FETスイッチQa を第1のソフトスイッチング用コンデンサC1 と第2の直流導体1bとの間に移すこともできる。図1の第1のソフトスイッチング用FETスイッチQa の寄生ダイオードは、第1の直流導体1aから第2の直流導体1bに向ってその順方向電流を流すことができる方向性(極性)を有する。
第1のソフトスイッチング用コンデンサC1 は第1及び第2の直流導体1a、1b間の最も高い電圧に充電され、この電圧Vc1は蓄電池6の電圧Vb よりも高い値を有する。第1のソフトスイッチング用コンデンサC1 は第1、第2及び第3の変換回路3、5、7の相互間の直流リンクコンデンサとしての機能も有するので、第1のソフトスイッチング用FETスイッチQa は本発明に従うソフトスイッチング即ちZVS(零電圧スイッチング)及び/又はZCS(零電流スイッチング)を実行する期間以外はオン状態に制御される。第1のソフトスイッチング用FETスイッチQa に対して並列にスナバ用コンデンサCa が接続されている。このスナバ用コンデンサCa を第1のソフトスイッチング用FETスイッチQa の寄生容量とすることもできる。
第1〜第14の変換用スイッチQ1 〜Q14と同様に図2に示すように構成されている第2のソフトスイッチング用FETスイッチQb の一端(ドレイン)は第1の直流導体1aに接続され、他端(ソース)はソフトスイッチング用リアクトルL2 及び第2のソフトスイッチング用コンデンサC2 を介して第2の直流導体1bに接続されている。従って、第2のソフトスイッチング用FETスイッチQb に含まれている寄生ダイオードは、第2の直流導体1bから第1の直流導体1aに向って順方向電流を流すことができる方向性(極性)を有する。第2のソフトスイッチング用FETスイッチQb とソフトスイッチング用リアクトルL2 と第2のソフトスイッチング用コンデンサC2 との接続の順番は任意に変えることが可能であり、例えば第2のソフトスイッチング用FETスイッチQb をソフトスイッチング用リアクトルL2 と第2のソフトスイッチング用コンデンサC2 との間に配置することもできる。第2のソフトスイッチング用コンデンサC2は第1のソフトスイッチング用コンデンサC1よりも低い電圧に充電される。
第2のソフトスイッチング用FETスイッチQb は、本発明に従って第1〜第14の変換用スイッチQ1 〜Q14から選択されたもののターンオン時のソフトスイッチング即ちZVSを実行する期間のみオン制御される。第2のソフトスイッチング用FETスイッチQb がオン状態の期間にソフトスイッチング用リアクトルL2 を含むLC共振回路が形成され、第1〜第14の変換用スイッチQ1 〜Q14から選択されたもののスナバ用コンデンサの電荷が放出され、このスナバ用コンデンサが接続されている変換用スイッチをソフトスイッチング即ちZVSすることができる。
第1及び第2のソフトスイッチング用FETスイッチQa 、Qb のゲート(制御端子)は、スイッチ制御回路12の第15及び第16の端子T15 、T16に接続され、ここから供給される第1及び第2のソフトスイッチング制御信号Ga 、Gb によってオン・オフ制御される。第1及び第2のソフトスイッチング用FETスイッチQa 、Qb の制御の詳細は後述する。
第1、第2及び第3の変換回路3、5、7及びソフトスイッチング制御回路8を制御するために、スイッチ制御回路12が設けられている他に、第1及び第2の電圧検出器13、14と第1及び第2の電流検出器15、16が設けられ、これ等がライン17、18、19a〜19c、20a〜20cによってスイッチ制御回路12に接続されている。
第1の電圧検出器13は、図示が省略されている対の導体によって蓄電池6の両端に接続され、蓄電池6の電圧Vb を示す信号をライン17に送出する。なお、この実施例では説明を容易にするために第1の電圧検出器13の入力電圧と出力電圧との両方を蓄電池電圧Vb として示すことにする。
第2の電圧検出器14は、図示が省略されている対の導体によって第1及び第2の直流導体1a、1bに接続され、第1及び第2の直流導体1a、1b間の直流電圧Vdcを示す信号をライン18に出力する。なお、説明を容易にするために図1において第2の電圧検出器14の入力電圧と出力電圧との両方を同一の直流電圧Vdcで示すことにする。
第1の電流検出器15は、CT又はホール素子等から成り、3相の第1の交流導体2a、2b、2cに電磁結合又は磁気結合され、電動機9の第1、第2及び第3相の電流Ima、Imb、Imcを示す信号をライン19a、19b、19cに出力する。なお、説明を容易にするために、電動機9に流れる実際の電流と第1の電流検出器15の出力とが同一のIma、Imb、Imcで示されている。
第2の電流検出器16は、3相の第2の交流導体4a、4b、4cに電磁結合又は磁気結合され、発電機10に流れる第1、第2及び第3相の電流Iga、Igb、Igcを示す信号をライン20a、20b、20cに出力する。なお、説明を容易にするために発電機10の電流と第2の電流検出器16の出力とが同一のIga、Igb、Igcで示されている。また、3相の第2の交流導体4a、4b、4cを流れる電流Iga、Igb、Igcの向きが、発電機10を電動機駆動する時の状態で示されている。
スイッチ制御回路12には、更に、電動機9と発電機10との一方又は両方のトルク指令等の情報を与えるための信号バス21が接続されている。
図1のスイッチ制御回路12は、図3に概略的に示すように、第1、第2及び第3の変換制御手段31、32、33とソフトスイッチング制御手段34とから成る。図3では、第1〜第14の制御信号G1 〜G14、及び第1及び第2のソフトスイッチング制御信号Qa 、Qb を形成するために必要な共通の鋸波発生回路が第1の変換制御手段31に含まれているものとして示されている。従って、第1の変換制御手段31の鋸波出力ライン35が第2及び第3の変換制御手段32、33とソフトスイッチング制御手段34とに接続されている。なお、図3の第1、第2及び第3の変換制御手段31、32、33を図1の第1、第2及び第3の変換回路に含めて示すこと、及びソフトスイッチング制御制御手段34をソフトスイッチング制御回路8に含めて示すこともできる。
図4に図3の第1の変換制御手段31が詳しく示されている。第1の変換制御手段31は、3相正弦波発生回路40と、振幅調整回路41と、鋸波発生回路42と、鋸波補正回路43と、3つの比較器44a、44b、44cと、駆動回路45とを有し、周知の方法でPWMパルスから成る第1〜第6の制御信号G1 〜G6 を形成して第1〜第6の変換用スイッチQ1 〜Q6 に供給する。
3相正弦波発生回路40は、第1の変換回路3から出力する3相交流電圧の目標とする波形及び周波数を有する第1、第2及び第3相の正弦波電圧Va 、Vb 、Vc を発生する。この第1、第2及び第3相の正弦波電圧Va 、Vb 、Vc の周波数は信号バス21から与えられる周波数指令によって任意に調整される。
3相正弦波発生回路40に接続された振幅調整回路41は、ここに接続されている信号バス21、電動機9の電流Ima、Imb、Imcを検出する第1の電流検出器15の出力ライン19a、19b、19cの信号に応答して目標とする3相交流電圧を示す第1、第2及び第3相の電圧指令信号Vu 、Vv 、Vw を出力する。即ち、振幅調整回路41は第1、第2及び第3相の正弦波電圧Va 、Vb 、Vc の振幅を目標とする駆動トルクを得ることができるように調整して図7に示す第1、第2及び第3相の電圧指令信号Vu 、Vv 、Vw を形成する。目標とする駆動トルクの指令は信号バス21から与える。電動機9のトルクは電動機9の電流Ima、Imb、Imcに基づいて求める。
鋸波発生回路42は、キャリア(搬送波)発生回路と呼ぶこともできるものであって、電動機9に供給する3相交流電圧の周波数よりも十分に高い一定の周波数(例えば5〜50kHz )で図7(A)に示す鋸波電圧Vt を発生する。この実施例の鋸波電圧Vt は振幅が急峻に立上った後に徐々に低下する波形を有する。勿論、鋸波電圧Vt を、振幅が所定レベルまで徐々に立上った後に急峻に低下する鋸波電圧又は三角波電圧に変形することができる。この実施例では、1つの鋸波発生回路42を第1、第2、及び第3の変換制御手段31、32及び33、更にソフトスイッチング制御手段34で兼用しているが、互いに同期動作する鋸波発生回路をそれぞれの手段に独立して設けることもできる。
鋸波発生回路42に接続された鋸波補正回路43は、第1の変換回路3の第1相、第2相及び第3相の交流導体2a、2b、2cを流れる電流Ima、Imb、Imcの向きによって鋸波電圧Vt の傾斜の向きを変えて図7(B)(C)(D)に示す第1相、第2相及び第3相の補正鋸波電圧Vta、Vtb、Vtcを出力する。この実施例では、図7(H)に示す電流Ima、Imb、Imcの正の半波の期間即ち電動機9に電流が流れ込む期間に図7(A)の基準の鋸波電圧Vt と逆の傾きを有する補正鋸波電圧を発生し、電流Ima、Imb、Imcの負の半波期間即ち電動機9から第1の変換回路3に電流が流れ込む期間に基準の鋸波電圧Vt と同じ傾きを有する鋸波電圧を発生する。
第1、第2及び第3相のPWMパルスVpa、Vpb、Vpcを形成するための比較器44a、44b、44bの一方の入力端子(負入力端子)は振幅調整回路41に接続され、他方の入力端子(正入力端子)は鋸波補正回路43に接続されている。この実施例では、比較器44a、44b、44cが第1の変換回路3の第2、第4及び第6の変換用スイッチQ2 、Q4 、Q6 のための第2、第4及び第6の制御信号G2 、G4 、G6に相当するPWMパルスVpa、Vpb、Vpcを形成する。即ち、第1相の比較器44aは、図7(B)に示すように補正鋸波電圧Vtaと第1相の電圧指令信号Vu とを比較して図7(E)に示す第1の制御信号G1を反転したものに相当するPWMパルスVpaを出力する。第2相及び第3相の比較器44b、44cも第1相の比較器44aと同様に動作し、図7(F)(G)に示す第3及び第5の制御信号G3、G5を反転したものに相当するPWMパルスVpb、Vpcを出力する。
駆動回路45は、第1相、第2相及び第3相の比較器44a、44b、44cと第2、第4及び第6の端子T2 、T4 、T6 との間に接続された駆動増幅器46、47、48と、第1相、第2相及び第3相の比較器44a、44b、44cと第1、第3及び第5の端子T1 、T3、T5 との間に遅延回路52、53、54を介して接続された反転駆動増幅器49、50、51とから成る。駆動増幅器46、47、48は第2、第4及び第6の制御信号G2、G4、G6を出力する。反転駆動増幅器49、50、51は、第1相、第2相及び第3相の比較器44a、44b、44cから得られた第1相、第2相及び第3相のPWMパルスVpa、Vpb、Vpcの位相反転信号を形成する。遅延回路52、53、54は反転駆動増幅器49、50、51の出力を時間TD だけ遅延させる。この遅延時間TD は、第1〜第6のスナバ用コンデンサCq1〜Cq6を第1及び第2の直流導体1a、1b間の直流電圧Vdcからゼロまで放電させるための所要時間及び第1〜第6のスナバ用コンデンサCq1〜Cq6をゼロから直流電圧Vdcまで充電させるための所要時間以上に設定することが望ましい。なお、遅延回路52、53、54を省くこともできる。この場合には図9(B)において破線で示す様に第1の制御信号G1の低レベル期間が図9(A)の第2の制御信号G2の高レベル期間に一致する。第1相の比較器44aから得られた第1相のPWMパルスVpaを第1相の反転駆動増幅器49と遅延回路52とを通すことによって図8(C)に示す第1の制御信号G1 が得られる。第3及び第5の制御信号G3 、G 5も第1の制御信号G1 と同様に形成される。なお、遅延回路52、53、54を反転駆動増幅器49、50、51の入力段に移すこともできる。また、遅延回路52、53、54を、第1、第3及び第5の制御信号G1 、G3 、G5 のパルスの立上り又は立下りのいずれか一方のみに遅延を与えるように変形することもできる。
電動機9の回生動作中には信号バス21からPWMパルス制御停止指令が発生し、第1の変換回路3のインバータ動作が停止し、第1〜第6の変換用スイッチQ1 〜Q6 の寄生ダイオードによる整流回路が形成される。なお、第1の変換回路3を整流回路として動作させる時に第1〜第6の変換用スイッチQ1 〜Q6 をPWM制御することもできる。
図5に示す第2の変換制御手段32は、図4の鋸波発生回路42を有さない点を除いて図4の第1の変換制御手段31と実質的に同一に形成されている。従って、図5において図4と実質的に同一の部分にはダッシュを伴なった同一の参照符号を付し、その詳しい説明を省略する。
図5の第2の変換制御手段32は、図4の3相正弦波発生回路40と振幅調整回路41と鋸波補正回路43と3つの比較器44a、44b、44cと駆動回路45と実質的に同一に構成された3相正弦波発生回路40′と振幅調整回路41′と鋸波補正回路43′と3つの比較器44a′、44b′、44c′とを有する。
3相正弦波発生回路40′は、信号バス21の周波数指令に従って変化する周波数を有する第1相、第2相及び第3相の正弦波電圧Va′、Vb′、Vc′ を発生する。振幅調整回路41′は発電機10を電動機駆動する時のトルク指令を信号バス21から受け取り且つ図1の第2の電流検出器16の出力ライン20a、20b、20cから電流Iga、Igb、Igcの検出信号を受け取り、所望の出力トルクを得るように第1相、第2相及び第3相の正弦波電圧Va′、Vb′、Vc′ の振幅を調整(変調)して第1相、第2相及び第3相の電圧指令信号Vu′、Vv′、Vw′ を形成する。鋸波補正回路43′は図4の鋸波発生回路42及び電流Iga、Igb、Igcのライン20a、20b、20cに接続され、電流Iga、Igb、Igcの向きに応じて図7(B)(C)(D)と同様に鋸波電圧の傾きを変える。第1相、第2相及び第3相の比較器44a′、44b′、44c′の一方の入力端子は振幅調整回路41′に接続され、他方の入力端子は鋸波補正回路43′に接続されている。第1相、第2相及び第3相の比較器44a′、44b′、44c′に接続された駆動回路45′は、3つの駆動増幅器46′、47′、48′と、3つの反転駆動増幅器49′、50′、51′と、遅延回路52′、53′、54′とから成り、第7〜第12の端子T7 〜T12に第7〜第12の制御信号G7 〜G12を出力する。なお、後述の実施例7から明らかなように遅延回路52´、53´、54´を省くこともできる。
発電機10が発電動作している時には、信号バス21からPWM制御を停止する信号が与えられ、第2の変換回路5のインバータ動作が停止し、第7〜第12の変換用スイッチQ7 〜Q12の寄生ダイオードによる整流回路が形成される。なお、第2の変換回路5の整流動作時に第7〜第12の変換用スイッチQ7 〜Q12をPWM制御することもできる。
第3の変換制御手段33は、図6に示すように降圧制御信号形成回路61と昇圧制御信号形成回路62と降圧用比較器63と昇圧用比較器64とから成り、第13及び第14の端子T13、T14に第13及び第14の変換用スイッチQ13、Q14をPWM制御するための図8(J)(K)に示す第13及び第14の制御信号G13、G14を出力する。
降圧制御信号形成回路61は、発電機10の出力、又は電動機9の出力と発電機10の出力との両方に基づく蓄電池6の充電を示す指令が信号バス21から与えられた時に、ライン17の蓄電池6の電圧Vb と所定基準電圧との誤差信号を形成し、これを降圧制御信号V61として出力するものである。
昇圧制御信号形成回路62は、蓄電池6の出力に基づいて電動機9、又は電動機9と発電機10との両方を駆動することを示す指令が信号バス21から与えられた時に、ライン18の直流電圧Vdcと所定基準電圧との誤差信号を作成し、これを昇圧制御信号V62として出力するものである。
降圧用比較器63は、蓄電池6の充電指令が発生している時に、降圧制御信号V61とライン35の鋸波電圧Vt とを図8(A)に示すように比較して図8(J)のt2 〜t8 期間に示すPWMパルスから成る第13の制御信号G13を形成し、これを第13の端子T13に出力するものである。第13の端子T13の第13の制御信号G13は図1の第13の変換用スイッチQ13をオン・オフ制御する。これにより、第1及び第2の直流導体1a、1b間の直流電圧Vdcがこれよりも低い直流電圧に変換され、蓄電池6は第1及び第2の直流導体1a、1b間の直流電圧Vdcよりも低い電圧Vb に充電される。なお、図8には図示の都合上、第13及び第14の制御信号G13、G14が第13及び第14の変換用スイッチQ13、Q14を同時にオンするように示されているが、実際には同時にオンせず、降圧動作期間中に第14の変換用スイッチQ14がオフに保たれ、昇圧動作中に第13の変換用スイッチQ13がオフに保たれる。
昇圧用比較器64は、蓄電池6からの電力供給指令が発生している時に、昇圧制御信号V62とライン35の鋸波電圧Vt とを比較してPWM信号から成る図8(L)のt2 〜t9 期間に示す第14の制御信号G14を形成し、これを第14の端子T14に出力するものである。第14の端子T14の第14の制御信号G14は、図1の第14の変換用スイッチQ14をオン・オフ制御する。これにより、蓄電池6の電圧Vb がこれよりも高い直流電圧Vdcに変換されて第1及び第2の直流導体1a、1b間に供給される。この昇圧動作期間には、第13の変換用スイッチQ13がオフ制御状態に保たれる。第13の変換用スイッチQ13がオフであってもこの寄生ダイオードを通って昇圧された電圧が第1及び第2の直流導体1a、1b間に供給され、直流リンクコンデンサの機能も有する第1ソフトスイッチング用コンデンサC1が高い電圧に充電される。
転流制御手段と呼ぶこともできるソフトスイッチング制御手段34は、図6に示すように第1、第2、第3及び第4の電圧レベルV1 、V2 、V3 、V4を設定するための第1、第2、第3及び第4の電圧レベル 設定回路71、72、73、74と、4つの比較器75、76、77、78と、第1及び第2のOR回路79、80と、NOT回路即ち反転回路81と、補正指令回路82とを有し、第15及び第16の端子T15、T16に図1の第1及び第2のソフトスイッチング用FETスイッチQa 、Qb を制御するための図8(D)(E)に示す第1及び第2のソフトスイッチング制御信号Ga 、Gb を出力する。
第1、第2、第3及び第4の電圧レベルV1 、V2 、V3 、V4 は図8(A)に示すように鋸波電圧Vt を横切るように設定されている。
比較器75は、第1の電圧レベル設定回路71に接続された正入力端子と鋸波電圧Vt のライン35に接続された負入力端子を有し、図8(F)のt1〜t2 期間に示すパルスV75を発生する。比較器76は、第2の電圧レベル 設定回路72に接続された正入力端子と鋸波電圧Vt のライン35に接続された負入力端子とを有し、図8(G)のt0 〜t2 期間に示すパルスV76を発生する。比較器77は、第3の電圧レベル設定回路73に接続された負入力端子と鋸波電圧Vt のライン35に接続された正入力端子とを有し、図8(H)のt2 〜t5 期間に示すパルスV77を発生する。比較器78は、第4の電圧レベル 設定回路74に接続された負入力端子と鋸波電圧Vt のライン35に接続された正入力端子とを有し、図8(I)のt2 〜t3 期間に示すパルスV78を発生する。
第1のOR回路79は2つの比較器75、77に接続されているので、図8(F)のパルスV75と図8(H)のパルスV77との和に相当するパルスを発生する。反転回路81は第1のOR回路79の出力パルスを反転して図8(D)のt1 〜t5 期間で低レベルになる第1のソフトスイッチング用制御信号Ga を第15の端子T15に出力する。第2のOR回路80は2つの比較器76、78に接続されているので、図8(G)に示すパルスV76と図8(I)に示すパルスV78との和に相当する図8(E)のt0 〜t3 期間に示す第2のソフトスイッチング制御信号Gb を第16の端子T16に出力する。
第1〜第4の電圧レベルV1 、V2 、V3 、V4 は、第1のソフトスイッチング制御信号Ga の低レベルのt1 〜t5 期間と第2のソフトスイッチング制御信号Gb の高レベルのt0 〜t3 期間を所定値にすることができるように設定される。もし、第1の変換回路3から電動機9に電力を供給しないように第1〜第6の変換用スイッチQ1〜Q6を制御している時に電動機9からの帰還電流(回生電流)から成る負荷電流Ioが流れないか又は一定に保たれていれば、第1、第2、第3及び第4の電圧レベルV1、V2、V3、V4を規定値とすることができる。しかし、負荷電流Ioが変化すると、第1〜第14の変換用スイッチQ1〜Q14のソフトスイッチング即ちZVS (零電圧スイッチング)を最適条件で実行することができない。そこで、本実施例では、補正指令回路82を設け、負荷電流Ioを示す補正指令Io*を第1〜第4の電圧レベル設定回路71〜74に与えている。補正指令回路82は図1の2つの電流検出器15,16の出力ライン19a、19b、19c、20a、20b、20cに接続されており、これ等のライン19a、19b、19c、20a、20b、20cの電流Ima、Imb、Imc、Iga、Igb、Igcの絶対値の総和を示す信号又はこの総和に所定の係数、例えば1/2を乗算した値を補正指令Io*として出力する。第1、第2、第3及び第4の電圧レベル設定回路71、72、73、74は補正指令Io*で補正された第1〜第4の電圧レベルV1、V2、V3、V4を作成する。第1、第2、第3及び第4の電圧レベル設定回路71、72、73、74で使用する補正用の演算式は実験的に決定するか、又は回路定数、鋸波電圧の周期Ts、鋸波電圧の高さh等を使用して決定する。
次に、図1の第1,第2及び第3の変換回路3,5,7のソフトスイッチング動作を図9を参照して説明する。第1,第2及び第3の変換回路3,5,7のそれぞれは複数の動作モードを有する。ここでは、代表的なモードのみを説明する。図9には、第1及び第2の変換回路3,5のそれぞれがインバータ動作即ちDC−AC変換動作し、第3の変換回路7が昇圧動作している時の図1のモータ駆動装置の各部の状態が示されている。なお、以下の説明において電流経路を回路要素の参照記号のみで示すことがある。
第1の変換回路3の第1〜第6の変換用スイッチQ1〜Q6の中の3個と、第2の変換回路5の第7〜第12の変換用スイッチQ7〜Q12の中の3個と、第3の変換回路7の第13及び第14の変換用スイッチQ13,Q14の中の1個とが同時にオン制御される。ここでは、1例として、電動機9及び発電機10に対して3相交流電流の負の半波が流れている期間であって、第2,第3,第5,第8,第9、第11、及び第14の変換用スイッチQ2,Q3,Q5,Q8, Q9,Q11,Q14が同時にオン制御される場合のソフトスイッチングを説明する。また、第1及び第2の変換回路3,5は3相変換回路であるので複数の電流経路に電流が流れるが、代表的な電流経路のみを説明する。また、第1及び第2の変換回路3,5は同様に動作するものとして、第1の変換回路3の動作のみを説明する。
図9のt1時点の直前までに第1のソフトスイッチング用コンデンサC1は蓄電池6の電圧Vbよりも高い電圧Vc1即ち第1及び第2の直流導体1a、1b間の直流電圧Vdcに充電される。また、図9のt2時点の直前において、第2の変換用スイッチQ2がオフ制御されているので、第2のスナバ用コンデンサCq2が第1及び第2の直流導体1a、1b間の直流電圧Vdcに充電されている。また、電動機9に対して第2の変換用スイッチQ2を介して第1相の負の半波の電流を供給する期間であり、第2の変換用スイッチQ2のオン期間が第1の変換用スイッチQ1のオン期間よりも十分に長いので、第2の変換用スイッチQ2のオン期間に電動機9のインダクタンスに蓄積されたエネルギーの放出に基づく帰還電流即ち回生電流又は遅れ電流が第2の変換用スイッチQ2のオフ期間に第1の変換用スイッチQ1の寄生ダイオードDを介して流れる。第2の変換回路5及び電動機動作中の発電機10においても第1の変換回路3及び電動機9と同様な電流が流れる。この様な電流を負荷電流Ioと呼ぶことにする。
図9(A)に示すように第2の変換用スイッチQ2の第2の制御信号G2がオフを示す低レベル、図9(B)に示すように第1の変換用スイッチQ2の第2の制御信号G1がオンを示す高レベル、図9(C)に示すように第13の変換用スイッチQ13の第13の制御信号G13がオフを示す低レベル、図9(D)に示すように第14の変換用スイッチQ14の第14の制御信号G14がオフを示す低レベルの状態にある図9のto時点で、図9(F)に示すように第2のソフトスイッチング用制御信号Gbを高レベル(オン)に転換させると、図9(G)に示すようにソフトスイッチング用リアクトルL2と第2のソフトスイッチング用コンデンサC2から成るLC回路にLC共振電流Irが流れ始める。この電流Irは、第1のソフトスイッチング用コンデンサC1、第1のソフトスイッチング用FETスイッチQa、第2のソフトスイッチング用FETスイッチQb、ソフトスイッチング用リアクトルL2及び第2のソフトスイッチング用コンデンサC2から成る経路、及び電動機9のインダクタンスに蓄積されたエネルギーの放出に基づく帰還電流として例えば9−Q1のD−Qb−L2−C2―Q6のDの経路で流れ、この振幅が徐々に増大する。第2のソフトスイッチング用FETスイッチQbのターンオンはZCS(零電流スイッチング)であり、ここでのスイッチングが抑制される。第2のソフトスイッチング用FETスイッチQbの電流の増大に応じて第1のソフトスイッチング用FETスイッチQaの電流が徐々に減少しt1時点で零になる。
t1時点は第1及び第2の変換回路3,5の負荷電流Ioを共振電流Irが横切る時点にほぼ相当する。図9(E)に示す様にt1時点で第1のソフトスイッチング用制御信号Gaを低レベル(オフ)に転換させる。これにより、第1のソフトスイッチング用FETスイッチQaのターンオフはZCS(零電流スイッチング)になる。第1のソフトスイッチング用FETスイッチQaがオフに成ると、L2−C2−−Cq2−Q1のD−Qbの経路に共振電流が流れて第2のスナバ用コンデンサCq2が放電し、図9(I)に示すように第2の変換用スイッチQ2のドレイン・ソース間電圧Vq2がt1〜t2に示すように徐々に低下する。また、L2−C2−Cq8−Q7のD−Qbの経路で第2の変換回路5の第8のスナバ用コンデンサCq8が放電し、第8の変換用スイッチQ8のドレイン・ソース間電圧がt1時点から徐々に低下する。また、L2−C2−Cq14−Q13のD−Qbの経路で第14のスナバ用コンデンサCq14が放電し、図9(K)に示すように第14の変換用スイッチQ14のドレイン・ソース間電圧Vq14が徐々に低下する。
第2,第8及び第14のスナバ用コンデンサCq2,Cq8,Cq14が放電し、これ等の電圧が図9のt2時点で零になると、第1及び第2の直流導体1a,1b間の直流電圧Vdcも図8(L)及び図9(H)に示すようにt2時点で零になる。そこで、t2時点で第2,第8及び第14の変換用スイッチQ2,Q8,Q14をターンオン制御する。即ち、図9(A)(D)に示すように第2及び第14の変換用制御信号G2,G14を高レベルに転換し、同時に第8の変換用制御信号G8も高レベルに転換する。なお、図9には示されていないが、第1の変換回路3において例えば第3及び第5の変換用スイッチQ3、Q5が第2の変換用スイッチQ2と同時にターンオン場合、及び第9及び第11の変換用スイッチQ9、Q1が第8の変換用スイッチQ8と同時にターンオンする場合には、第3、第5、第9及び第11のスナバ用コンデンサCq3,Cq5,Cq9、Cq11の放電が第2及び第8のスナバ用コンデンサCq2,Cq8の放電と同時に生じる。従って、t2時点又は直流電圧Vdcが零に保たれている期間t2〜t4に第2,第8及び第14の変換用スイッチQ2,Q8,Q14等をターンオン制御すれば、これ等のZVSが達成される。従って、複数個(例えば5個)の変換用スイッチを同時にソフトスイッチング即ちZVSでオン状態に転換することができる。第2,第8及び第14のスナバ用コンデンサCq2,Cq8,Cq14等の電荷はLC共振で放出されるので電力損失が発生しない。
共振電流Irは図9(G)のt0〜t3期間に正方向に流れ、その後に負方向に流れる。t3時点よりも後の共振電流Irが負方向に流れる期間には、共振電流Irが第2のソフトスイッチング用スイッチQbの寄生ダイオードを流れることができるので、図9(F)に示すようにt3で第2のソフトスイッチング制御信号Gbがオフを示す低レベルに転換されている。この時に第2のソフトスイッチング用スイッチQbは零電流でターンオフされ、ここでのスイッチング損失が実質的に生じない。負方向の共振電流Irは、例えばL2−Qbの寄生ダイオードD−Q1−Q2−C2の経路、L2−Qbの寄生ダイオードD−Q3−9−Q2−C2の経路等で流れる。図9では第1の変換用スイッチQ1のターンオフが第2の変換用スイッチQ2のターンオンよりも時間Tdだけ遅延しているが、第2の変換用スイッチQ2のターンオンに同時に第1の変換用スイッチQ1をターンオフしても、負方向の共振電流Irを例えばL2−Qbの寄生ダイオードD−Q3−9−Q2−C2の経路等で流すことができる。
第1及び第2の直流導体1a,1b間の直流電圧Vdcが零に保たれているt4時点で第1の変換用スイッチQ1をターンオフ制御することによって、第1の変換用スイッチQ1のZVSが達成される。図9のt4時点は共振電流Irの振幅が負荷電流Ioの振幅と等しくなる時点に対応し、第1の変換用スイッチQ1の寄生ダイオードDが逆バイアス状態に転換する時点に対応している。t4時点で第1の変換用スイッチQ1がターンオフ制御されると、第1のスナバ用コンデンサCq1が徐々に充電され、この電圧及び第1の変換用スイッチQ1のドレイン・ソース間電圧Vq1が図9(J)に示すように徐々に高くなり、第1及び第2の直流導体1a,1b間の直流電圧Vdcも高くなる。直流電圧Vdcが立上った後の時点t5で第1のソフトスイッチング用FETスイッチQaをターンオン制御すると、この零電圧スイッチングが達成される。
図9(A)に示すようにt6時点で第2の変換用スイッチQ2がターンオフ制御されると、第2のスナバ用コンデンサCq2が徐々に充電され、第2の変換用スイッチQ2のドレイン・ソース間電圧Vq2が図9(I)に示すようにt6時点から徐々に高くなり、ターンオフ時のソフトスイッチング即ちZVSが達成される。第2のスナバ用コンデンサCq2の電圧が徐々に高くなると、第1のスナバ用コンデンサCq1の電圧、即ち第1の変換用スイッチQ1のドレイン・ソース間電圧Vq1は、図9(J)に示すようにt6時点から徐々に低下する。この実施例では第1の変換用スイッチQ1がそのドレイン・ソース間電圧Vdcが零になった後のt7時点でターンオン制御されているので、第1の変換用スイッチQ1のターンオンをZVSで達成することができる。
第14の変換用スイッチQ14を図9のt2時点よりも後においてターンオフ制御すると、第14のスナバ用コンデンサCq14が徐々に充電されZVSが達成される。また、第1のソフトスイッチング用コンデンサC1が蓄電池6よりも高い電圧に充電される。
図9には第1及び第2の変換用スイッチQ1,Q2のターンオン及びターンオフ時のソフトスイッチングが示されているが、第3〜第12の変換用スイッチQ3〜Q12のターンオン及びターンオフ時のソフトスイッチングも第1及び第2の変換用スイッチQ1,Q2と同様に達成される。
図9は昇圧モードを示しているので、第13の変換用スイッチQ13がオフに保たれているが、蓄電池6を充電するための降圧動作時には、第14の変換用スイッチQ14がオフに保たれ、第13の変換用スイッチQ13がオン・オフ制御される。第13の変換用スイッチQ13のターンオンを例えば第2の変換用スイッチQ2のターンオンと同時に実行すれば、第2及び第13の変換用スイッチQ2,Q13のターンオフをZVSで達成できる。
実施例1は次の効果を有する。
(1) 第1の変換回路3の第1〜第6の変換用スイッチQ1〜Q6の内の3個と、第7〜第12の変換用スイッチQ7〜Q12の内の3個と、第13の変換用スイッチQ13又は第14の変換用スイッチQ14の1個との合計7個の変換用スイッチが同時にターンオン制御され、且つ共通のソフトスイッチング回路8によってソフトスイッチング即ちZVSされる。従って、第1〜第3の変換回路3,5,7のためのソフトスイッチング回路8の構成が簡単になるのみでなく、ソフトスイッチング回路8における電力損失が小さくなる。
(2) 第1〜第14の変換用スイッチQ1〜Q14がソフトスイッチングされるので、これ等のスイッチング損失が低減し、且つスイッチング時のノイズが抑制される。
(3) 第1及び第2のソフトスイッチング用FETスイッチQa,Qbもソフトスイッチングされるので、ここでのスイッチング損失が小さくなる。
(4) 第1〜第14の変換用スイッチQ1〜Q14と第1及び第2のソフトスイッチング用FETスイッチQa,Qbが寄生ダイオードを含むFETから成り、個別ダイオードが接続されていないので、第1〜第3の変換回路3,5,7及びソフトスイッチング回路8の構成が単純になる。
次に、図10に示す実施例2に従うモータ駆動装置を説明する。但し、図10及び後述する図11〜図20において、図1〜図6と実質的に同一の部分には同一の符号を付し、その説明を省略する。また、必要に応じて図1〜図9を実施例1以外の実施例においても参照する。
図10の実施例2のモータ駆動装置は、第2のソフトスイッチングFETスイッチQbとソフトスイッチング用リアクトルL2との直列回路を第1の直流導体1aと蓄電池6の一端とに接続し、この他は図1と同一に構成したものである。なお、図10では図1の第2のソフトスイッチング用コンデンサC2に相当するものを有しておらず、蓄電池6が図1の第2のソフトスイッチング用コンデンサC2と同様な働きをしているが、図10で点線で示すように追加して第2のソフトスイッチング用コンデンサC2を設けることもできる。
図10の蓄電池6は直流電源としての機能の他に、図1の第2のソフトスイッチング用コンデンサC2と同様な機能を有し、負方向に共振電流Irを流す時の電源として機能する。従って、図10のモータ駆動装置においても図1のモータ駆動装置と実質的に同一の動作が生じ、実施例1と同様な効果を得ることができる。
なお、蓄電池6と第1の直流導体1aとの間に第13の変換用スイッチQ13と第2のソフトスイッチング用FETスイッチQbとの両方が接続されているが、第2のソフトスイッチング用FETスイッチQbはソフトスイッチング用リアクトルL2に対して直列に接続され、且つ第13の変換用スイッチQ13と同時にオンになる時間は短いので、第3の変換回路7の動作を妨害しない。
図11に示すモータ駆動装置は、図1の第1及び第2のソフトスイッチング用コンデンサC1,C2を蓄電池又は整流平滑回路等の第1及び第2のソフトスイッチング用直流電源C1´,C2´に置き換え、この他は図1と同一に構成したものである。第2のソフトスイッチング用直流電源C2´の電圧は第1のソフトスイッチング用直流電源C1´の電圧よりも低く設定されている。図11に示す第1及び第2のソフトスイッチング用直流電源C1´,C2´は、図1の第1及び第2のソフトスイッチング用コンデンサC1,C2と同様に機能する。従って、図11の実施例3によっても図1の実施例1と同一の効果を得ることができる。なお、図11の第1のソフトスイッチング用直流電源C1´を図1の第1のソフトスイッチング用コンデンサC1にすること、又は第2のソフトスイッチング用直流電源C2´を図1の第2のソフトスイッチング用コンデンサC2にすることもできる。
図12は実施例4に従う第2のソフトスイッチング用スイッチ手段Qbaを示す。この第2のソフトスイッチング用スイッチ手段Qbaは、図1,図10,図11の第2のソフトスイッチング用FETスイッチQbの代りのものであって、第1,第2,第3及び第4のFETスイッチQb1,Qb2,Qb3,Qb4をブリッジ接続した回路から成る。このブリッジ回路は4つの接続点81,82,83,84を有し、ソフトスイッチング用リアクトルL2は対の接続点83,84間に接続されている。接続点81は一方の端子導体81aを介して第1の直流導体1aに接続され、接続点82は他方の端子導体82aと第2のソフトスイッチング用コンデンサC2又は蓄電池6又は直流電源C2´を介して第2の直流導体1bに接続される。
図12の第2のソフトスイッチング用スイッチ手段Qbaは、交流スイッチであって、第1及び第4のソフトスイッチング用FETスイッチQb1,Qb4をオンにすることによってソフトスイッチング用リアクトルL2に正方向電流を流し、第2及び第3のソフトスイッチング用FETスイッチQb2,Qb3をオンにすることによってソフトスイッチング用リアクトルL2に逆方向電流を流す。
図12の第1〜第4のソフトスイッチング用FETスイッチQb1〜Qb4は寄生ダイオードを有しているので、第1及び第4のソフトスイッチング用FETスイッチQb1,Qb4の第1の組、又は第2及び第3のソフトスイッチング用FETスイッチQb2,Qb3の第2の組のいずれか一方のみをオン制御して正方向電流をソフトスイッチング用リアクトルL2に流し、逆方向電流を寄生ダイオードを通して流すこともできる。また、上記第1の組と第2の組とのいずれか一方をダイオードで構成することができる。即ち、2つのFETスイッチと2つのダイオードとの組み合せによるブリッジ回路とすることもできる。また、第1〜第4のソフトスイッチング用FETスイッチQb1〜Qb4を寄生ダイオードを含まない半導体スイッチとすることもできる。
図12の第2のソフトスイッチング用スイッチ手段Qbaを使用しても実施例1〜3と同様な効果を得ることができる。
図13に示す実施例5に従う第2のソフトスイッチング用スイッチ手段Qbbは、図1,図10,図11の第2のソフトスイッチング用FETスイッチQbの代りのものであって、逆流阻止ダイオードDb1,Db2を伴った第1及び第2のソフトスイッチング用FETスイッチQb1,Qb2の並列回路から成る。 逆流阻止ダイオードDb1,Db2は第1及び第2のソフトスイッチング用FETスイッチQb1,Qb2に直列に接続されている。この第2のソフトスイッチング用スイッチ手段Qbbの一方の端子導体85は第1の直流導体1aに接続され、他方の端子導体86はソフトスイッチング用リアクトルL2と第2のソフトスイッチング用コンデンサC2又は蓄電池6又は直流電源C2´を介して第2の直流導体1bに接続される。
図13の第1のソフトスイッチング用FETスイッチQb1はソフトスイッチング用リアクトルL2に正方向電流を流す時にオン制御され、第2のソフトスイッチング用FETスイッチQb2は逆方向電流を流す時にオン制御される。
図13の第2のソフトスイッチング用スイッチ手段Qbbは、第2のソフトスイッチング用FETスイッチQbと同一の機能を有するので、実施例5によっても実施例1〜4と同一の効果を得ることができる。なお図13の第2のソフトスイッチング用スイッチ手段Qbbから第2のソフトスイッチング用FETスイッチQb2を省くこともできる。また、第1及び第2のソフトスイッチング用FETスイッチQb1,Qb2を別の半導体スイッチに置き換えることができる。
図14は実施例6に従う変形されたソフトスイッチ制御手段34aを示す。図14の変形されたソフトスイッチ制御手段34aは、図6の実施例1のソフトスイッチ制御手段34と同一の機能を有するものであって、第1,第2,第3及び第4のタイマ91,92,93,94を使用して図8(D)(E)と同一の図13(D)(E)の第1及び第2のソフトスイッチ制御信号Ga,Gbを作成する。
第1のタイマ91はライン35の図15(A)に示す鋸波電圧Vtの立上り時点t0に同期して時間幅TaのパルスV91を図15(B)に示すように形成する。時間幅Taの終了時点t1は、図8のt0時点又はt10時点に対応している。第2のタイマ92は第1のタイマ91から出力されたパルスV91の後縁時点t1に同期して図15(C)に示す時間幅TbのパルスV92を形成する。図13のt2時点は図8のt1時点に対応している。第3のタイマ93は第2のタイマ92から出力されたパルスV92の後縁に同期して図15(D)に示す時間幅Tcの低レベルパルスV93を形成する。この低レベルパルスV93の後縁時点t5は、図8のt5時点に対応している。従って、第3のタイマ93から出力される低レベルパルスV93を第1のソフトスイッチング用制御信号Gaとして使用することができる。第4のタイマ94は第1のタイマ91の出力パルスV91の後縁に同期して図15(E)に示す時間幅TdのパルスV94を形成する。このパルスV94の後縁時点図8のt3時点に対応している。従って、図15(E)のパルスV94を第2のソフトスイッチング用制御信号Gbとして使用することができる。なお、第1,第2,第3及び第4のタイマ91,92,93,94で設定する時間幅Ta,Tb,Tc,Tdは図6と同様に形成された補正指令回路82の補正指令Io*で調整される。
図15(D)(E)のパルスV93,V94は図8(D)(E)の第1及び第2のソフトスイッチ用制御信号Ga,Gbと同一のものであるので、実施例6によっても実施例1と同一の効果を得ることができる。なお、図14の第2のタイマ92を図15のt0時点からt2時点までの時間幅(Ta+Tb)を計測するタイマに置き変えることができる。
次に図16を参照して実施例7に従う変形された第1の変換制御手段3 1aを説明し、図17を参照して変形された第2の変換制御手段32aを説明し、図18を参照して変形された転流制御手段即ちソフトスイッチング制御手段34bを説明する。
図16の変形された第1の変換制御手段31aは、図4の第1の変換制御手段31から3つの遅延回路52、43、54を省き、この他は図4と同一に形成したものである。従って、図16の第1及び第2の端子T1、T2から得られる第1及び第2の制御信号G1、G2は、図19(B)(C)及び図20(A)(B) に示すように互いに位相反転した波形を有する。第3〜第6の制御信号G3〜G6も第1及び第2の制御信号G1、G2と同様に変形される。
図17の変形された第2の変換制御手段32aは図5の第2の変換制御手段32から遅延回路51´、53´、54´を省き、この他は図5と同一に形成したものである。
図18の変形されたソフトスイッチング制御回路34bは、図6のソフトスイッチング制御回路からV1及びV4設定回路71、74と比較器75、78とを省き、且つ図6の2つのOR 回路79、80の代わりに1つのOR回路80aを設け、この他は図6と実質的に同一に形成したものである。
図18の一方の比較器76の入力端子の接続は図6と同じであるが、図18の他方の比較器77の正入力端子は鋸波電圧Vtのライン35に接続され且つ負入力端子は第3の電圧レベル設定回路73に接続されている。OR回路80aの2つの入力端子は2つの比較器76、77の出力端子に接続されている。OR回路80aの出力端子は反転回路81aを介して第15の端子T15に接続されていると共に直接に第16の端子T16に接続されている。
図18の比較器76、77からは図19(F)(G)に示すパルスがV76、V77が得られ、OR回路80aからは図19(E)に示す第2のソフトスイッチ制御信号Gbが得られ、反転回路81aから図19(D)に示す第1のソフトスイッチ制御信号Gaが得られる。
なお、図19の(A)(B)(C)(D)(E)(F)(G)(H)(I)(J)は、図8の(A)(B)(C)(D)(E)(G)(H)(J)(K)(L)に対応する波形を示す。
図20は実施例7に従うソフトスイッチング制御を図9と同様に示すものである。図20(B)(E)(F)のG1、Ga、Gbの波形のみが図9と相違する。図20では第1の変換用スイッチQ1のターンオフと第2の変換用スイッチQ2のターンオンとが同時に行われ、第1の変換用スイッチQ1のターンオンと第2の変換用スイッチQ2のターンオフとが同時に行われている。残りの第3〜第12の変換用スイッチQ3〜Q12の上側の変換用スイッチと下側の変換用スイッチとのターンオンとターンオフとも同時に行われている。例えば、第1の変換用スイッチQ1を図20(B)に示すようにt2時点でターンオフ制御しても、第1の変換用スイッチQ1の寄生ダイオードDを通って電流が流れるので、ソフトスイッチングのための共振電流Irを流すことができる。図20では第1のソフトスイッチング用コンデンサCaがt0時点でオフに制御されている。しかし、電動機9の蓄積エネルギーの放出によって例えば、9−Q1のD−Qb−L2−C2−Q6のDからなる経路の電流でソフトスイッチング用リアクトルL2の電流Irを流すことができ、実施例1の場合と同様に例えば第2のスナバ用コンデンサCq2の電荷を共振で放出して第2の変換用スイッチQ2のZVSを達成することができる。
本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) 第1〜第14の変換用スイッチQ1〜Q14及び第1及び第2のソフトスイッチング用FETスイッチQa,Qbのそれぞれを、IGBT又は別の制御可能な半導体スイッチとここに並列に接続された個別又は寄生のダイオードとの組み合せに置き換えることができる。
また、図1,図10,図11等の各実施例において、第1のソフトスイッチング用FETスイッチQaの向きを図1と逆にすることができる。即ち、第1のソフトスイッチング用FETスイッチQaのドレインを第1の直流端子1aに接続し、ソースを第1のソフトスイッチング用コンデンサC1に接続することができる。この場合は、第1のソフトスイッチング用FETスイッチQaの寄生ダイオードDを通る電流が流れなくなった時点(t1時点)で第1のソフトスイッチング用FETスイッチQaをオフ制御する。
(2) 図20において第2のソフトスイッチング用FETスイッチQbのターンオフを図9と同一のt1時点とすることができる。
(3) スイッチ制御回路12の一部をディジタル回路で構成することができる。
(4) 第1及び第2の変換回路3,5を単相回路にすることができる。
(5) 第3の変換回路7を降圧及び昇圧可能な別の変換回路にすることができる。
(6) 第1及び第2のソフトスイッチング用FETスイッチQa,Qbのための第1及び第2のソフトスイッチング制御信号Ga,Gbのタイミングをソフトスイッチング用リアクトルの電流又は電圧の検出に基づいて決定することができる。
実施例1に従うハイブリッド自動車のモータ駆動装置を示す回路図である。 図1の第1〜第14の変換用スイッチ及び第1及び第2のソフトスイッチング用FETスイッチの等価回路図である。 図1のスイッチ制御回路を詳しく示すブロック図である。 図3の第1の変換制御手段を示す回路図である。 図3の第2の変換制御手段を示す回路図である。 図3の第3の変換制御手段及びソフトスイッチ制御手段を示す回路図である。 図4の各部の状態を示す波形図である。 図1、図4及び図6の各部の状態を示す波形図である。 図1の第1及び第2の変換用スイッチのソフトスイッチング動作を説明するための図1〜図6の各部の状態を示す波形図である。 実施例2のモータ駆動装置を示す回路図である。 実施例3のモータ駆動装置を示す回路図である。 実施例4の第2のソフトスイッチング用スイッチ手段を示す回路図である。 実施例5の第2の第2のソフトスイッチング用スイッチ手段を示す回路図である。 実施例6のソフトスイッチ制御手段を示すブロック図である。 図14の各部の状態を示す波形図である。 実施例7の第1の変換制御手段を示す回路図である。 実施例7の第2の変換制御手段を示す回路図である。 実施例7のソフトスイッチ制御手段を示す回路図である。 図16及び図18の各部の状態及び直流電圧Vdcの変化を示す波形図である。 実施例7に従うソフトスイッチング動作を説明するために図1の各部の状態を図9と同様に示す波形図である。
符号の説明
1a,1b 第1及び第2の直流導体
3 第1の変換回路
5 第2の変換回路
7 第3の変換回路
8 ソフトスイッチング回路
Qa,Qb 第1及び第2のソフトスイッチング用FETスイッチ
C1,C2 第1及び第2のソフトスイッチング用コンデンサ
L2 ソフトスイッチング用リアクトル

Claims (13)

  1. 第1及び第2の直流導体と、
    交流電動機又は回生動作可能な交流電動機から成る第1の交流機器を接続するための複数の第1の交流導体と、
    前記第1及び第2の直流導体と前記複数の第1の交流導体との間に接続され、且つ直流−交流変換又は直流−交流変換と交流−直流変換との両方を行うための複数の変換用スイッチを含んでいる第1の変換回路と、
    交流発電機又は交流電動機機能を有する交流発電機から成る第2の交流機器を接続するための複数の第2の交流導体と、
    前記第1及び第2の直流導体と前記複数の第2の交流導体との間に接続され且つ交流−直流変換又は交流−直流変換と直流−交流変換との両方を行うための複数の変換用スイッチを含んでいる第2の変換回路と、
    蓄電池と、
    前記蓄電池と前記第1及び第2の直流導体との間に接続され且つ前記蓄電池の電圧を昇圧して前記第1及び第2の直流導体間に供給する機能と前記第1及び第2の直流導体間の電圧を降圧して前記蓄電池に供給する機能とを有し且つ複数の変換用スイッチを含んでいる第3の変換回路と、
    前記第1の変換回路の前記変換用スイッチと前記第2の変換回路の前記変換用スイッチと前記第3の変換回路の前記変換用スイッチとの内の少なくとも2つにそれぞれ並列に接続された個別又は寄生のスナバ用コンデンサと、
    前記第1及び第2の直流導体間に接続され且つソフトスイッチング用リアクトルを含み且つ前記第1、第2及び第3の変換回路の前記複数の変換用スイッチ内の少なくとも1つのターンオンの直前に前記スナバ用コンデンサの電荷を前記ソフトスイッチング用リアクトルに基づく共振動作で放出させる機能を有しているソフトスイッチング回路と、
    を備えていることを特徴とする電力変換装置。
  2. 前記第1の変換回路は、前記第1及び第2の直流導体間に接続された少なくとも、第1及び第2の変換用スイッチの直列回路と第3及び第4の変換用スイッチの直列回路とを含み、
    前記複数の第1の交流導体の1つは、前記第1及び第2の変換用スイッチの相互接続点に接続され、前記複数の第1の交流導体の別の1つは前記第3及び第4の変換用スイッチの相互接続点に接続されていることを特徴とする請求項1記載の電力変換装置。
  3. 前記第1、第2、第3及び第4の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに対して並列に接続された個別又は寄生のダイオードとから成り、前記ダイオードは前記第1の交流機器の交流出力を直流に変換することができる方向性を有していることを特徴とする請求項2記載の電力変換装置。
  4. 前記第2の変換回路は、前記第1及び第2の直流導体間に接続された少なくとも第5及び第6の変換用スイッチの直列回路と、第7及び第8の変換用スイッチの直列回路とを含み、前記複数の第2の交流導体の1つは前記第5及び第6の変換用スイッチの相互接続点に接続され、前記複数の第2の交流導体の別の1つは前記第7及び第8の変換用スイッチの相互接続点に接続されることを特徴とする請求項1乃至3のいずれか1つに記載の電力変換装置。
  5. 前記第5、第6、第7及び第8の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに対して並列に接続された個別又は寄生のダイオードとから成り、前記ダイオードは前記第2の交流機器の交流出力を直流に変換することができる方向性を有していることを特徴とする請求項4記載の電流変換装置。
  6. 前記第3の変換回路は、前記第1の直流導体に接続された一端を有する第9の変換用スイッチと、前記第9の変換用スイッチと前記第2の直流導体との間に接続された第10の変換用スイッチと、前記第10の変換用スイッチに対して前記蓄電池を介して並列に接続された電圧変換用リアクトルとから成ることを特徴とする請求項1乃至5のいずれか1つに記載の電力変換装置。
  7. 前記第9及び第10の変換用スイッチのそれぞれは、制御可能な半導体スイッチとこの半導体スイッチに並列に接続された個別又は寄生のダイオードとを有し、前記ダイオードは前記第2の直流導体から前記第1の直流導体側に向って順方向電流が流れることを許す方向性を有していることを特徴とする請求項6記載の電力変換装置。
  8. 前記ソフトスイッチング回路は、
    前記第1及び第2の直流導体間に第1のソフトスイッチング用スイッチ手段を介して接続され且つ前記蓄電池よりも高い電圧になる第1のソフトスイッチング用コンデンサ又は第1の補助直流電源と、
    前記第1及び第2の直流導体間に第2のソフトスイッチング用スイッチ手段と第2のソフトスイッチング用コンデンサ又は第2の補助直流電源又は前記蓄電池とを介して接続されたソフトスイッチング用リアクトルと、
    前記ソフトスイッチング回路によるソフトスイッチング対象の前記変換用スイッチのターンオン時点よりも前に前記第2のソフトスイッチング用スイッチ手段をオン制御し、前記スナバ用コンデンサの電荷の放出後に前記第2のソフトスイッチング用スイッチ手段をオフ制御し、前記第2のソフトスイッチング用スイッチ手段のターンオン時点又は前記スナバ用コンデンサの放電開始時点又は前記第2のソフトスイッチング用スイッチ手段のターンオン時点から前記スナバ用コンデンサの放電開始時点までの期間内に前記第1のソフトスイッチング用スイッチ手段をターンオフ制御し、前記第2のソフトスイッチング用スイッチ手段のターンオフ時点又はこれよりも後の時点で前記第1のソフトスイッチング用スイッチ手段をターンオン制御するスイッチ制御手段と、
    から成ることを特徴とする請求項1記載の電力変換装置。
  9. 前記第1のソフトスイッチング用スイッチ手段は、制御可能な半導体スイッチと、この半導体スイッチに並列に接続されたダイオードとから成ることを特徴とする請求項8記載の電力変換装置。
  10. 更に、前記第1のソフトスイッチング用スイッチ手段に並列に接続された個別又は寄生のスナバ用コンデンサを有することを特徴とする請求項8又は9記載の電力変換装置。
  11. 前記第2のソフトスイッチング用スイッチ手段は制御可能な半導体スイッチと、この半導体スイッチに並列に接続されたダイオードとから成り、前記ダイオードは前記第2の直流導体から前記ソフトスイッチング用リアクトルを介して前記第1の直流導体の方向に順方向電流が流れることを許す方向性を有していることを特徴とする請求項8乃至10のいずれか1つに記載の電力変換装置。
  12. 前記第2のソフトスイッチング用スイッチ手段は、4個のスイッチのブリッジ接続回路から成り、前記ソフトスイッチング用リアクトルは前記ブリッジ接続回路の対の相互接続点間に接続されていることを特徴とする請求項8記載の電力変換装置。
  13. 前記第2のソフトスイッチング用スイッチ手段は、2つの半導体スイッチを互いに逆方向に並列接続した交流スイッチ回路であることを特徴とする請求項8記載の電力変換装置。
JP2005172162A 2005-06-13 2005-06-13 電力変換装置 Pending JP2006352942A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172162A JP2006352942A (ja) 2005-06-13 2005-06-13 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172162A JP2006352942A (ja) 2005-06-13 2005-06-13 電力変換装置

Publications (1)

Publication Number Publication Date
JP2006352942A true JP2006352942A (ja) 2006-12-28

Family

ID=37648182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172162A Pending JP2006352942A (ja) 2005-06-13 2005-06-13 電力変換装置

Country Status (1)

Country Link
JP (1) JP2006352942A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054379A1 (ja) * 2007-10-24 2009-04-30 Daikin Industries, Ltd. 電力変換装置
WO2010131644A1 (ja) * 2009-05-12 2010-11-18 ナブテスコ株式会社 ハイブリッド式作業機械の制御装置
JP2011024363A (ja) * 2009-07-17 2011-02-03 Toyota Motor Corp 電源システム
US10693392B2 (en) 2016-11-21 2020-06-23 Mitsubishi Electric Corporation Power conversion device and electric motor drive device using same
US11018574B2 (en) 2019-02-15 2021-05-25 Samsung Electronics Co., Ltd. Voltage converter with embedded snubber for suppressing switching harmonics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054379A1 (ja) * 2007-10-24 2009-04-30 Daikin Industries, Ltd. 電力変換装置
AU2008315011B2 (en) * 2007-10-24 2011-08-18 Daikin Industries, Ltd. Power conversion device
US8270186B2 (en) 2007-10-24 2012-09-18 Daikin Industries, Ltd. Power conversion device
WO2010131644A1 (ja) * 2009-05-12 2010-11-18 ナブテスコ株式会社 ハイブリッド式作業機械の制御装置
JP2011024363A (ja) * 2009-07-17 2011-02-03 Toyota Motor Corp 電源システム
US10693392B2 (en) 2016-11-21 2020-06-23 Mitsubishi Electric Corporation Power conversion device and electric motor drive device using same
US11018574B2 (en) 2019-02-15 2021-05-25 Samsung Electronics Co., Ltd. Voltage converter with embedded snubber for suppressing switching harmonics

Similar Documents

Publication Publication Date Title
US9007040B2 (en) DC-DC power conversion apparatus
US9819273B2 (en) Power conversion apparatus
US7869226B2 (en) Achieving ZVS in a two quadrant converter using a simplified auxiliary circuit
US9496794B2 (en) Regulation of powertrain converter circuit
JP6319824B2 (ja) マルチレベルインバータデバイスおよび動作方法
US9184674B2 (en) Power conversion apparatus that provides power conversion between AC and DC power
JP6706811B2 (ja) スナバ回路及びそれを用いた電力変換システム
JP5278298B2 (ja) 電力変換回路の制御装置
US10784797B1 (en) Bootstrap charging by PWM control
JP2018121473A (ja) 電力変換装置
JP2006352942A (ja) 電力変換装置
JP2007215381A (ja) 電圧変換装置
JP3324645B2 (ja) 交流−直流変換装置
JP4466798B2 (ja) 直流−直流変換器
Kohlhepp et al. Adaptive dead time in high frequency GaN-Inverters with LC output filter
WO2019167244A1 (ja) 電力変換装置および電動機システム
JP3296425B2 (ja) 電力変換装置
JP5480054B2 (ja) 電力変換器制御装置とその制御方法
JP6567234B1 (ja) 電力変換装置
JP3296424B2 (ja) 電力変換装置
JP5400956B2 (ja) 電力変換装置
JP5191270B2 (ja) デッドバンド補償方法および補償装置
US20240178739A1 (en) Control apparatus for an arcp inverter
JP7498456B2 (ja) 電力変換装置およびその制御方法ならびに交流電車用電源回路
JP2006149074A (ja) インバータ回路