JP2006149074A - インバータ回路 - Google Patents

インバータ回路 Download PDF

Info

Publication number
JP2006149074A
JP2006149074A JP2004335032A JP2004335032A JP2006149074A JP 2006149074 A JP2006149074 A JP 2006149074A JP 2004335032 A JP2004335032 A JP 2004335032A JP 2004335032 A JP2004335032 A JP 2004335032A JP 2006149074 A JP2006149074 A JP 2006149074A
Authority
JP
Japan
Prior art keywords
voltage
circuit
switching
switching element
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004335032A
Other languages
English (en)
Inventor
Shinichi Nino
仁野  新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004335032A priority Critical patent/JP2006149074A/ja
Publication of JP2006149074A publication Critical patent/JP2006149074A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】簡素な構成で効率が高く、昇降圧も容易インバータ回路を提供すること。
【解決手段】入力直流電圧を全波整流電圧波形の電圧に変換するチョッパ回路1と、チョッパ回路1が出力する全波整流電圧波形の電圧の方向を半波期間ごとに切り替えて単相交流電圧とする切り替え回路8とにより、任意波形の交流電圧を得ることができる。
【選択図】図1

Description

本発明はインバータ回路に関する。たとえば、本発明は、車両走行動力を発生する走行モータ駆動に採用できる。
ハイブリッド車や燃料電池車において、銅損やスイッチング損失の低減などのために電池電圧すなわち直流電源電圧を増大することは好適であるが種々の問題が派生することから現状では300V程度が限界となっている。そこで、この直流電源電圧をたとえばチョッパ型の昇圧型DCDCコンバータにより昇圧し、その後、たとえば三相のPWM制御ブリッジ回路からなるインバータ回路により交流電圧に得て更に高圧の交流モータに印加することが記載されされている。以下、この回路を昇圧インバータ回路とも称するものとする。
特開2001ー271729号公報
しかしながら、上記した昇圧インバータ回路の効率は、昇圧型DCDCコンバータの効率とインバータ回路との効率を掛けたものとなり、回路損失の増大とそれにより回路冷却の困難化が増大するという問題、及び、回路規模及び体格の増大による車両搭載性が悪化の問題が発生していた。
昇圧型DCDCコンバータを省略してたとえば三相ブリッジ回路からなるインバータ回路により電池電圧を直接交流化してモータに印加するする従来の三相ブリッジ方式を採用することは当然可能であるが、この三相ブリッジ方式は、電流増大による銅損及びスイッチング損失の増大、それに付随する冷却問題の困難化、並びに、走行モータを発電動作させる時の電流制御の困難化とった問題を本質的に有する不具合があった。
本発明は上記問題点に鑑みなされたものであり、簡素な構成で効率が高く、昇降圧も容易インバータ回路を提供することをその目的としている。
上記目的を達成する本発明は、入力直流電圧を交流電圧に変換するインバータ回路において、交流電圧を全波整流した波形をもつ全波整流電圧に入力直流電圧を変換するコンバータと、前記コンバータから入力される前記全波整流電圧の出力方向を半波ごとに逆転させて交流電圧を出力する切り替え回路と、前記全波整流電圧に基づいて前記切り替え回路の切り替えタイミングを設定する切り替え制御回路とを備えることを特徴としている。
すなわち、この発明では、直流電圧を全波整流電圧波形に変換した後、この全波整流電圧の出力方向を半波期間ごとに切り替えるという簡単な方法により任意半波波形の交流電圧を出力することができる。また、コンバータ出力の電流向きは決して反転することがないためスイッチングが容易であり、昇降圧も容易であり、コンバータを構成するスイッチング素子の選択も容易である。切り替え回路は、半波期間ごとに特に全波整流電圧の電圧が実質的に0となる一瞬だけスイッチングされるだけであるため、スイッチング損失を非常に小さくすることができる。結局、簡素な構成で効率が高く、昇降圧も容易インバータ回路を実現することができる。
好適な態様において、前記コンバータは、高電位側主電極端子が直流電源の正極端子に接続される上アームの電源側スイッチング素子と、それと直列接続されて低電位側主電極端子が前記直流電源の負極端子に接続される下アームの電源側スイッチング素子とからなる電源側ハーフブリッジ回路と、高電位側主電極端子が前記切り替え回路の高電位端子に接続される上アームの負荷側スイッチング素子と、それと直列接続されて低電位側主電極端子が前記切り替え回路の低電位端子及び前記直流電源の負極端子に接続される下アームの負荷側スイッチング素子とからなる負荷側ハーフブリッジ回路と、前記二つのハーフブリッジ回路の出力端を接続するリアクトルと、前記上アームの負荷側スイッチング素子を通じて前記切り替え回路に前記全波整流電圧を出力ために前記各スイッチング素子を運転モードに応じて断続制御する制御回路とを備えることを特徴としている。なお、このインバータ回路において、各スイッチング素子は、いわゆるスイッチング素子と電気的に並列接続されるフライホイルダイオードを有することができる。
以下、このコンバータについて説明する。このコンバータは、リアクトル(チョークコイル)への磁気エネルギーの蓄積と放出とを所定周期で交互に繰り返すいわゆるチョッパ回路が擬似的なブリッジ回路構成となっているため、直流電源から負荷への電力輸送(順送電とも言う)、及び、発電状態の負荷から直流電源への電力輸送(逆送電とも言う)において、直流電源電圧と負荷電圧との間のほぼ任意の相対電圧関係を実現することができる。
また、この発明のインバータ回路によれば、昇圧DCDCコンバータとそれにより昇圧された直流電圧を交流電圧に変換するインバータとからなる従来の昇圧型インバータ装置に比べてたとえば直流電源から走行モータに到る送電経路において直列に経由するスイッチング素子数を低減できるため、回路損失を低減でき、従来、懸案となっていた回路装置の冷却問題も軽減できるという利点も有する。更に、回路の出力電圧波形を正弦波電圧形状に近似させることが容易なため、モータの振動や騒音の低減を実現するのが容易となるという利点も有する。
なお、各スイッチング素子のスイッチングにおいて、従来公知のソフトスイッチング技術を採用することにより、ZVSやZCSを実現してスイッチングノイズの低減を図ってもよいことはもちろんである。また、本発明のインバータ回路から出力される出力電圧は、後述する電流平滑回路や位相ずらしスイッチングされる並列多重化方式の採用により、たとえば三相の略正弦波電圧を出力することもできることは当然であるが、これに限定されない。なお、車載用途では、直流電源を単相交流電圧とする場合には、単相商用交流電源電圧の形成に利用可能である。ただし、この場合において、直流電源電圧が、出力するべき単相商用交流電源電圧の最高瞬時値よりも高い場合にはこのインバータ回路は順方向降圧型チョッパ回路であればよいため、一部のスイッチング素子をダイオードに代替することもできる。
好適態様において、本発明のインバータ回路は、略正弦波波形の各相交流電圧、各相交流電流を発生する。これにより、負荷の力率を改善することができ、また、負荷としてのモータの騒音や振動を低減することができる。
好適な態様において、前記切り替え回路は、互いに直列接続される上アームのスイッチング素子及び下アームのスイッチング素子を有して前記全波整流電圧が電源電圧として印加される一対のハーブブリッジ回路からなるフルブリッジ回路を有し、前記一対のハーフブリッジ回路の各交流端子間に前記交流電圧を出力する。このようにすれば、簡単かつ少ないスイッチング損失にてインバータ回路から出力される全波整流電圧の方向を半波ごとに切り替えることができる。
本発明のインバータ回路の好適実施例を図面を参照して以下に説明する。なお、本発明は、以下の実施例に限定されるものではなく、本発明の構成要素をその他の公知の技術要素又はそれと同等の技術要素を用いて構成してもよい。図1はこの実施例のインバータ回路の回路図であり、図2は図1のインバータ回路の各部電圧波形図である。
(インバータ回路の構成)
この実施例のインバータ回路は、図1に示すようにチョッパ回路(本発明で言うコンバータ)1と、チョッパ回路1が出力する単相正弦波電圧を全波整流した波形の全波整流電圧の向きを半波ごとに反転させる切り替え回路8と、チョッパ回路1を制御する制御回路11と、切り替え回路8を制御する切り替え制御回路13とからなる。C1、C2はチョッパ回路1及び切り替え回路8の出力平滑コンデンサである。
(チョッパ回路1の構成)
チョッパ回路1は、電源側ハーフブリッジ回路2と、負荷側ハーフブリッジ回路3と、リアクトル4とからなる。電源側ハーフブリッジ回路2は、高電位側主電極端子が直流電源5の正極端子に接続される上アームの電源側スイッチング素子6と、それと直列接続されて低電位側主電極端子が直流電源5の負極端子に接続される下アームの電源側スイッチング素子7とからなる。負荷側ハーフブリッジ回路3は、高電位側主電極端子が切り替え回路8の高電位端子に接続される上アームの負荷側スイッチング素子9と、それと直列接続されて低電位側主電極端子が切り替え回路8の低電位端子及び直流電源5の負極端子に接続される下アームの負荷側スイッチング素子10とからなる。各スイッチング素子6、7、9、10は、IGBTとフライホイルダイオードとのペアにより構成されているが、高耐圧のNMOSパワートランジスタなどにより代替可能であることは言うまでもない。各スイッチング素子6、7、9、10は、制御回路11によりスイッチング制御される。制御回路11は、上アームの負荷側スイッチング素子9が全波整流電圧を出力するように各スイッチング素子6、7、9、10のPWMデューティ比を変化させるが、目標とする電圧波形と上アームの負荷側スイッチング素子9の出力電圧との偏差を0とするべく各スイッチング素子6、7、9、10をスイッチングする電圧フィードバック制御を採用してもよい。
この実施例では、上記目標電圧は、最高瞬時値電圧が直流電源5の電圧の2倍程度である正弦波電圧とされ、制御回路11はこの正弦波電圧波形をメモリしているものとする。平滑コンデンサC1、C2によるチョッパ回路1の各スイッチング素子6、7、9、10のスイッチングに伴う高周波ノイズ電圧低減効果自体は周知であり、説明を省略する。
(チョッパ回路1の動作説明)
(昇圧順送電モード)
チョッパ回路1の出力電圧(上アームの負荷側スイッチング素子9の出力電圧)V2が直流電源5の電圧V1より高くなる期間になされる期間の動作(昇圧順送電モード)を以下に説明する。スイッチング素子6を常時オンした状態にて、スイッチング素子10を所定のスイッチング周期(キャリア周波数の逆数)、全波整流電圧波形の一部に相当する変化を示すオンデューティ比(以下、単にデューティ比とも言う)で断続する。各スイッチング周期中のスイッチング素子10をオンする蓄勢期間において、直流電源5からスイッチング素子6、リアクトル4、スイッチング素子10の順に電流xが流れ、リアクトル4に蓄勢される。
各スイッチング周期中のスイッチング素子10をオフする消勢期間において、直流電源5からスイッチング素子6、リアクトル4、スイッチング素子9の寄生ダイオード(以下、フライホイルダイオード又は単にダイオードと呼ぶ)を通じて昇圧された電圧V2が出力される。しかし、上アームの負荷側スイッチング素子9から電流が流れ出すことによりリアクトル4の電圧が減少するため、チョッパ回路1の出力電圧V2は減少していく。したがって、上記した蓄勢期間と消勢期間とを所定のスイッチング期間ごとに所定のデューティ比で繰り返せば、直流電源5の電圧V1を昇圧して上アームの負荷側スイッチング素子9から出力することができる。
チョッパ回路1の出力電圧V2は直流電源5の電圧V1+リアクトル電圧ΔVとなり、リアクトル電圧ΔVは自己の磁気エネルギー蓄積量によるため、デューティ比を所定パターンに従って変更することによりこの昇圧順送電モードでは所定電圧所定電流範囲において任意の昇圧電圧波形を出力する得ることができる。なお、スイッチング素子9の損失低減のために、スイッチング素子10のオフ期間にスイッチング素子9をオンするいわゆる同期整流動作を実行してもよいことはもちろんである。なお、このモードにおいてスイッチング素子7は常時オフとされる。
(降圧順送電モード)
交流電圧V2が直流電源5の電圧V1より低くなる期間になされる降圧順送電モードを以下に説明する。この時の電流流れを図2に矢印で示す。スイッチング素子9を常時オンした状態にて、スイッチング素子6を所定のスイッチング周期(キャリア周波数の逆数)、所定のオンデューティ比(以下、単にデューティ比とも言う)で断続する。スイッチング素子6をオンする蓄勢期間において、直流電源5からスイッチング素子6、リアクトル4、スイッチング素子9の順に電流xが流れ、リアクトル4に蓄勢されるとともに、電圧V1ーリアクトル電圧ΔVに相当する残りの電圧V2が切り替え回路8に印加される。
各スイッチング周期中のスイッチング素子6をオフする消勢期間において、スイッチング素子7、リアクトル4、スイッチング素子9、切り替え回路8、スイッチング素子7をフライホイル電流yが循環し、リアクトル電圧ΔVが切り替え回路8に印加される。このリアクトル電圧ΔV=出力電圧V2は、リアクトル4の消勢ともに、減少していく。したがって、上記した蓄勢期間と消勢期間とを所定のスイッチング期間ごとに全波整流電圧波形のデューティ比で繰り返せば、直流電源5の電圧V1より小さい(降圧された)電圧範囲にて切り替え回路8を駆動することができる。デューティ比を所定パターンに従って変更することによりこの降圧順送電モードでは所定電圧所定電流範囲において任意の昇圧電圧波形を出力する得ることができる。なお、スイッチング素子9の損失低減のために、スイッチング素子6のオフ期間にスイッチング素子7をオンするいわゆる同期整流動作を実行してもよいことはもちろんである。なお、このモードにおいてスイッチング素子10は常時オフとされる。
以上は、直流電源5から切り替え回路8に送電する順送電モードである。切り替え回路8に全波整流電圧を印加するには、出力電圧V2が直流電源5の電圧V1より高い期間において上記昇圧順送電モードで出力がなされるようにスイッチング素子10をスイッチングすればよく、出力電圧V2が直流電源5の電圧V1より低い期間において上記降圧順送電モードで出力がなされるようにスイッチング素子6をスイッチングすればよい。
次に、切り替え回路8から直流電源5へ送電(たとえばモータの回生発電)する逆送電モードを説明する。この送電モードは、切り替え回路8がたとえば車両走行モードなど発電能力を有する負荷(図示せず)に給電する場合に用いられる。モータの回生発電により生じた交流電圧が切り替え回路8により全波整流電圧V2に変換される。
(昇圧逆送電モード)
この全波整流電圧V2が直流電源5の電圧V1より低くなる期間になされる昇圧逆送電モードを以下に説明する。スイッチング素子9を常時オンした状態にて、スイッチング素子7を断続する。各スイッチング周期中のスイッチング素子7をオンする蓄勢期間において、切り替え回路8からスイッチング素子9、リアクトル4、スイッチング素子7の順に電流xが流れ、リアクトル4に蓄勢される。各スイッチング周期中のスイッチング素子7をオフする消勢期間において、切り替え回路8からスイッチング素子9、リアクトル4、スイッチング素子6の寄生ダイオード(以下、フライホイルダイオード又は単にダイオードと呼ぶ)を通じて直流電源5に昇圧された電圧V1が印加され、直流電源5に電流yが流れ、電力が回生される。直流電源5が略一定電圧の電池である場合には、このチョッパ回路1は整流回路となるが、重要な点は、スイッチング素子7のデューティ比の制御により回生される電力の調整が可能となる。
すなわち、直流電源5への出力電流を検出し、この検出電流と目標電流との差を0とするようにスイッチング素子7のデューティ比をフィードバック制御すれば、常に目標電流での直流電源5への電力回生が可能となる。重要な点は、切り替え回路8が発生する交流電圧V2のレベルが直流電源5の電圧V1より低い場合や小さい期間でも問題なく、電力回生ができる点であり、その結果、走行モータは切り替え回路8を通じて常時一定の大きさの交流電流を出力でき、以前の回生制動のように発電電圧V2が直流電源5の電圧V1を超えると急激に電流が増大することができ、電流波形の歪みを防止することができる。なお、このモードにおいてスイッチング素子10は常時オフとされる。
(降圧逆送電モード)
切り替え回路8を通じてチョッパ回路1に出力される全波整流電圧V2が直流電源5の電圧V1より高くなる期間になされる降圧逆送電モードを以下に説明する。スイッチング素子6を常時オンした状態にて断続する。スイッチング素子9をオンする蓄勢期間において、切り替え回路8からスイッチング素子9、リアクトル4、スイッチング素子6の順に電流xが流れ、リアクトル4に蓄勢されるとともに、電圧V2ーリアクトル電圧ΔVに相当する残りの電圧V1が直流電源5に印加され、直流電源5に電流xが流される。
各スイッチング周期中のスイッチング素子9をオフする消勢期間において、スイッチング素子10、リアクトル4、スイッチング素子6、直流電源5、スイッチング素子10をフライホイル電流yが循環し、リアクトル電圧ΔVが直流電源5に印加される。このリアクトル電圧ΔV=出力電圧V1は、リアクトル4の消勢ともに減少していく。したがって、上記した蓄勢期間と消勢期間とを所定のスイッチング期間ごとに所定のデューティ比で繰り返せば、直流電源5の電圧V1より高い(昇圧された)電圧範囲にて切り替え回路8を通じて図示しないモータに発電動作させることができる。このモードにおいても、直流電源5に出力される電流をモニタして上記と同様にデューティ比をフィードバック制御することができ、目標電流で電力回生することができる。なお、スイッチング素子6の損失低減のために、スイッチング素子9のオフ期間にスイッチング素子6をオンするいわゆる同期整流動作を実行してもよいことはもちろんである。なお、このモードにおいてスイッチング素子7は常時オフとされる。
以上は、モータから切り替え回路8を通じて直流電源5に送電する逆送電モードである。上記説明からわかるように、このインバータ回路は、回生電力制御可能で、かつ、両側の電圧の大小にかかわらず双方向に送電可能な回路であり、デューティ比制御のための目標値の波形を調整することにより交流電圧波形を任意に選択可能な点である。
(切り替え回路8の構成)
切り替え回路8は、一対の交流端子80、81をもつフルブリッジ回路であって、互いに並列接続された第1ハーフブリッジ回路82と、第2ハーフブリッジ回路83とからなる。第1ハーフブリッジ回路82及び第2ハーフブリッジ回路83はそれぞれ、上アームのスイッチング素子と下アームのスイッチング素子とを直列接続してなる。第1ハーフブリッジ回路82及び第2ハーフブリッジ回路83にはチョッパ回路1が出力する単相正弦波電圧を全波整流した波形の全波整流電圧が印加される。第1ハーフブリッジ回路82の上アームのスイッチング素子と下アームのスイッチング素子との接続点は交流端子80をなし、第2ハーフブリッジ回路83の上アームのスイッチング素子と下アームのスイッチング素子との接続点は交流端子81をなす。たとえばインバータ回路として知られるフルブリッジ回路の構成自体は周知であるためこれ以上の説明は省略する。
(切り替え回路8の動作説明)
この切り替え回路8の動作を以下に説明する。
チョッパ回路1が奇数番目の半波波形の電圧を出力する期間において、第1ハーフブリッジ回路82の上アームのスイッチング素子と第2ハーフブリッジ回路83の下アームのスイッチング素子とをオンし、第1ハーフブリッジ回路82の下アームのスイッチング素子と第2ハーフブリッジ回路83の上アームのスイッチング素子とをオフする。また、チョッパ回路1が偶数番目の半波波形の電圧を出力する期間において、第1ハーフブリッジ回路82の上アームのスイッチング素子と第2ハーフブリッジ回路83の下アームのスイッチング素子とをオフし、第1ハーフブリッジ回路82の下アームのスイッチング素子と第2ハーフブリッジ回路83の上アームのスイッチング素子とをオンする。
これにより、チョッパ回路1が切り替え回路8に出力する全波整流電圧は交流電圧に変換されて電源12に出力される。電源12の両端は交流端子80、81に個別に接続される。電源12はモータの1相の電機子コイルに置換されることができる。この切り替え回路8の1つの利点は、切り替え回路8の各スイッチング素子の断続は、全波整流電圧が0Vとなる時点で実施するいわゆるZVSが可能なことである。この切り替え回路8の他の利点は、全波整流電圧がほぼ0Vでない時には切り替え回路8の各スイッチング素子がスイッチングされないためスイッチング損失を大幅に減らせる点にある。
(切り替え制御回路13の構成とその動作説明)
切り替え回路8の各スイッチング素子の断続による上記切り替えを制御する切り替え制御回路13の構成と動作を以下に説明する。切り替え制御回路13は、NOT回路14、バッファ回路15、16、コントローラ17からなる。
コントローラ17は、全波整流電圧V2が0Vとなるタイミングにて切り替わるパルス電圧である切り替え信号VSを、バッファ回路15を通じて第1ハーフブリッジ回路82の下アームのスイッチング素子と第2ハーフブリッジ回路83の上アームのスイッチング素子とに出力するとともに、NOT回路14により反転された反切り替え信号を、バッファ回路16を通じて第1ハーフブリッジ回路82の上アームのスイッチング素子と第2ハーフブリッジ回路83の下アームのスイッチング素子とに出力する。これにより、切り替え回路8は全波整流電圧の半波期間ごとに出力電圧方向を切り替えることができる。
結局、この実施例によれば、全波整流電圧波形の電圧を出力するチョッパ回路1とそれを半波期間ごとに切り替える切り替え回路8により直流電圧を正弦波交流電圧に双方向通電可能かつ昇降圧に変換することができる。チョッパ回路1の各スイッチング素子の耐圧はこの正弦波交流電圧の半波のピーク値に耐えることができればよい。この単相のインバータ回路を3個用いることにより、三相インバータ回路を構成できることは言うまでもない。
実施例のインバータ回路を示すブロック図である。 図1のインバータ回路の各部電圧波形を示すタイミングチャートである。
符号の説明
1 チョッパ回路
2 電源側ハーフブリッジ回路
3 負荷側ハーフブリッジ回路
4 リアクトル
5 直流電源
6 上アームの電源側スイッチング素子
7 下アームの電源側スイッチング素子
8 切り替え回路
9 上アームの負荷側スイッチング素子
10 下アームの負荷側スイッチング素子
11 制御回路
12 電源
13 切り替え制御回路
14 NOT回路
15 バッファ回路
16 バッファ回路
17 コントローラ
80 交流端子
81 交流端子
82 ハーフブリッジ回路
83 ハーフブリッジ回路

Claims (3)

  1. 入力直流電圧を交流電圧に変換するインバータ回路において、
    交流電圧を全波整流した波形をもつ全波整流電圧に入力直流電圧を変換するコンバータと、
    前記コンバータから入力される前記全波整流電圧の出力方向を半波ごとに逆転させて交流電圧を出力する切り替え回路と、
    前記全波整流電圧に基づいて前記切り替え回路の切り替えタイミングを設定する切り替え制御回路と、
    を備えることを特徴とするインバータ回路。
  2. 請求項1記載のインバータ回路において、
    前記コンバータは、
    高電位側主電極端子が直流電源の正極端子に接続される上アームの電源側スイッチング素子と、それと直列接続されて低電位側主電極端子が前記直流電源の負極端子に接続される下アームの電源側スイッチング素子とからなる電源側ハーフブリッジ回路と、
    高電位側主電極端子が前記切り替え回路の高電位端子に接続される上アームの負荷側スイッチング素子と、それと直列接続されて低電位側主電極端子が前記切り替え回路の低電位端子及び前記直流電源の負極端子に接続される下アームの負荷側スイッチング素子とからなる負荷側ハーフブリッジ回路と、
    前記二つのハーフブリッジ回路の出力端を接続するリアクトルと、
    前記上アームの負荷側スイッチング素子を通じて前記切り替え回路に前記全波整流電圧を出力ために前記各スイッチング素子を運転モードに応じて断続制御する制御回路と、
    を備えることを特徴とするインバータ回路。
  3. 請求項1記載のインバータ回路において、
    前記切り替え回路は、
    互いに直列接続される上アームのスイッチング素子及び下アームのスイッチング素子を有して前記全波整流電圧が電源電圧として印加される一対のハーブブリッジ回路からなるフルブリッジ回路を有し、前記一対のハーフブリッジ回路の各交流端子間に前記交流電圧を出力することを特徴とするインバータ回路。
JP2004335032A 2004-11-18 2004-11-18 インバータ回路 Pending JP2006149074A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335032A JP2006149074A (ja) 2004-11-18 2004-11-18 インバータ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335032A JP2006149074A (ja) 2004-11-18 2004-11-18 インバータ回路

Publications (1)

Publication Number Publication Date
JP2006149074A true JP2006149074A (ja) 2006-06-08

Family

ID=36628117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335032A Pending JP2006149074A (ja) 2004-11-18 2004-11-18 インバータ回路

Country Status (1)

Country Link
JP (1) JP2006149074A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502620A (ja) * 2008-09-11 2012-01-26 イートレックス・インコーポレーテッド 双方向インバータ・チャージャ
JP2012039786A (ja) * 2010-08-09 2012-02-23 Honda Motor Co Ltd 電力変換装置及びモータ駆動制御装置
JP2015525558A (ja) * 2012-06-13 2015-09-03 日本テキサス・インスツルメンツ株式会社 容量性負荷のためのドライバ
WO2015182211A1 (ja) * 2014-05-29 2015-12-03 住友電気工業株式会社 電力変換装置及び三相交流電源装置
JP2017536793A (ja) * 2014-10-01 2017-12-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 電気エネルギー蓄積器のための充電回路、電気駆動システム、および充電回路を作動する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284393U (ja) * 1985-11-12 1987-05-29
JPH05276762A (ja) * 1992-03-25 1993-10-22 Tokyo Gas Co Ltd 正弦波交流電源回路
JP2002272136A (ja) * 2001-03-09 2002-09-20 Tdk Corp 系統連系インバータ
JP2003189636A (ja) * 2001-12-12 2003-07-04 Tdk Corp 昇降圧コンバータ及びこれを用いた系統連系インバータ
JP2004242418A (ja) * 2003-02-05 2004-08-26 Honda Motor Co Ltd モータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284393U (ja) * 1985-11-12 1987-05-29
JPH05276762A (ja) * 1992-03-25 1993-10-22 Tokyo Gas Co Ltd 正弦波交流電源回路
JP2002272136A (ja) * 2001-03-09 2002-09-20 Tdk Corp 系統連系インバータ
JP2003189636A (ja) * 2001-12-12 2003-07-04 Tdk Corp 昇降圧コンバータ及びこれを用いた系統連系インバータ
JP2004242418A (ja) * 2003-02-05 2004-08-26 Honda Motor Co Ltd モータ駆動装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502620A (ja) * 2008-09-11 2012-01-26 イートレックス・インコーポレーテッド 双方向インバータ・チャージャ
JP2012039786A (ja) * 2010-08-09 2012-02-23 Honda Motor Co Ltd 電力変換装置及びモータ駆動制御装置
JP2015525558A (ja) * 2012-06-13 2015-09-03 日本テキサス・インスツルメンツ株式会社 容量性負荷のためのドライバ
WO2015182211A1 (ja) * 2014-05-29 2015-12-03 住友電気工業株式会社 電力変換装置及び三相交流電源装置
JP2015226427A (ja) * 2014-05-29 2015-12-14 住友電気工業株式会社 電力変換装置及び三相交流電源装置
US9831676B2 (en) 2014-05-29 2017-11-28 Sumitomo Electric Industries, Ltd. Power conversion device and three-phase AC power supply device
TWI667874B (zh) * 2014-05-29 2019-08-01 日商住友電氣工業股份有限公司 Power conversion device and three-phase AC power supply device
JP2017536793A (ja) * 2014-10-01 2017-12-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 電気エネルギー蓄積器のための充電回路、電気駆動システム、および充電回路を作動する方法
US10286786B2 (en) 2014-10-01 2019-05-14 Robert Bosch Gmbh Charging circuit for an electrical energy accumulator, electrical drive system and method for operating a charging circuit

Similar Documents

Publication Publication Date Title
JP4196867B2 (ja) 双方向昇降圧型チョッパ回路及びそれを用いたインバータ回路並びにdc−dcコンバータ回路
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US9166415B2 (en) AC link bidirectional DC-DC converter, hybrid power supply system using the same and hybrid vehicle
US9455641B2 (en) DC/DC converter
EP2506420B1 (en) Power conversion apparatus
RU2496218C2 (ru) Контроллер для системы запуска нагрузки
US9667159B2 (en) Power conversion apparatus including a transformer, an invertor circuit and a plurality of switching devices controlled by a controller
JP2004282828A (ja) 双方向dc−dcコンバータ
CN110707930B (zh) Dc/dc变换器
US11267351B2 (en) Power conversion device
US20180198401A1 (en) Variable voltage converter modulation obtaining lower minimum boost ratio
US10715042B2 (en) High gain DC-DC converter for electrified vehicles
Ahmed Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique
US8780598B2 (en) Inverter circuit, power converter circuit, and electric vehicle
EP4007146A1 (en) Power conversion device
JP7190664B2 (ja) 電力変換装置
Rehlaender et al. Dual interleaved 3.6 kW LLC converter operating in half-bridge, full-bridge and phase-shift mode as a single-stage architecture of an automotive on-board DC-DC converter
JP2006149074A (ja) インバータ回路
US20080037299A1 (en) Method for driving dc-ac converter
JP7035407B2 (ja) 電力変換装置
JP4764986B2 (ja) 三相可変速モータ駆動用モータ駆動装置
JP6171701B2 (ja) 電力変換装置
JP2014027750A (ja) 双方向dc−dcコンバータおよび双方向dc−dcコンバータの制御方法
JP2004173455A (ja) 電力変換装置
JP7262055B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101202

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110107