JP2006339638A - 単一のヒートシンク上にポンプレーザと共に結合された面発光レーザ - Google Patents

単一のヒートシンク上にポンプレーザと共に結合された面発光レーザ Download PDF

Info

Publication number
JP2006339638A
JP2006339638A JP2006143270A JP2006143270A JP2006339638A JP 2006339638 A JP2006339638 A JP 2006339638A JP 2006143270 A JP2006143270 A JP 2006143270A JP 2006143270 A JP2006143270 A JP 2006143270A JP 2006339638 A JP2006339638 A JP 2006339638A
Authority
JP
Japan
Prior art keywords
laser
laser chip
heat sink
light
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143270A
Other languages
English (en)
Inventor
Soo-Haeng Cho
秀 行 趙
Seong-Jin Lim
成 進 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006339638A publication Critical patent/JP2006339638A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

【課題】単一のヒートシンク上にポンプレーザと共に一体化された面発光レーザを提供する。
【解決手段】ヒートシンク(30)と、ヒートシンクの一方の面上に配置され、ヒートシンクの一方の面に対して所定の角度を持って所定の波長の光を放出するレーザチップ(31)と、レーザチップから光の照射方向に所定の距離離れて位置され、レーザチップで発生した光の一部を透過させて外部に出力すると共に、残りの一部をレーザチップに向けて反射させる外部ミラー(36)と、ヒートシンクの一方の面上のレーザチップの横側に配置されたものであって、レーザチップを発振させるための光ポンピング用の光をヒートシンクの一方の面に対して平行に放出するポンプレーザ(33)と、ヒートシンクの一方の面上にレーザチップを挟んでポンプレーザと対向するようにレーザチップの横側に配置されたものであって、ポンプレーザから放出された光ポンピング用の光をレーザチップに向けて反射する反射ミラー(35)と、を備えることを特徴とする面発光レーザである。
【選択図】図2

Description

本発明は、光ポンピング方式の垂直外部共振器型の面発光レーザ(Vertical External Cavity Surface Emitting Laser:VECSEL)に係り、さらに詳細には、単一のヒートシンク上にポンプレーザと共に一体に結合された垂直外部共振器型の面発光レーザに関する。
一般的に、半導体レーザには、発振されるビームが基板に水平な方向に放出される側面発光レーザと発振されるビームが基板に垂直な方向に放出される面発光レーザ(または、垂直共振器型の面発光レーザ(Vertical Cavity Surface Emitting Laser:VCSEL))とがある。これらのうちVCSELは、非常に狭いスペクトルの単一縦モードで発振するだけでなく、ビームの放射角が小さくて接続効率が高く、面発光の構造上、他の装置の集積が容易であるという長所がある。しかし、VCSELは、単一横モードの発振が側面発光レーザに比べて非常に難しく、単一横モードの動作のためには、発振領域の面積が狭くなければならず、したがって、出力が弱いという問題がある。
前述したVCSELの長所を生かすと同時に、高出力動作を具現するために提案されたレーザ素子として、VECSELがある。前記VECSELは、VCSELの上部ミラーを外部のミラーに代替して利得領域を増大させることによって、数〜数十W以上の高出力を得るようにしたものである。
図1は、従来の光ポンピング方式のVECSELの概略的な断面図である。図1を参照して従来の光ポンピング方式のVECSELの構造を説明すれば、レーザ発振のためのレーザチップ10がヒートシンク20上に接合層21を通じて付着されており、前記レーザチップ10と所定間隔をおいて外部ミラー22が配置されている。そして、前記レーザチップ10に光ポンピング用のレーザビームを提供するための二つのポンプレーザ25,26が両側に傾いて配置されている。前記レーザチップ10は、基板14上に分散ブラッグ反射器(Distributed Bragg Reflector:DBR)16、活性層18及び反射防止層12が順次に積層された構造を有する。公知のように、前記活性層18は、例えば、RPG(Resonant Periodic Gain)構造を有する多重量子ウェル構造であり、光ポンピング用のレーザビームによって励起されて所定の波長を有する光を放出する。ヒートシンク20は、前記レーザチップ10で発生する熱を放出して、前記レーザチップ10を冷却させる役割を行う。また、ポンプレーザ25,26は、前記レーザチップ10から放出される光の波長よりも短い波長の光をレンズ27,28を通じてレーザチップ10に入射させて、前記レーザチップ10内の活性層18を励起させる役割を行う。
このような構造において、ポンプレーザ25,26から放出された比較的短い波長の光がレンズ27,28を通じてレーザチップ10に入射すれば、前記レーザチップ10内の活性層18が励起されつつ、特定波長の光を放出する。このように発生した光は、レーザチップ10内のDBR層16と外部ミラー22との間で反射を繰り返しつつ、活性層18を往復する。したがって、前記VECSELの共振キャビティは、レーザチップ10内のDBR層16と凹状の外部ミラー22との間に形成される。このような過程を通じて前記レーザチップ10内で増幅された光の一部は、前記外部ミラー22を通じてレーザビームとして外部に出力され、残りは、再び前記レーザチップ10に反射されて光ポンピングに使われる。
しかし、前述した構造を有する従来のVECSELの場合、前記レーザチップ10を冷却させるためのヒートシンク20以外に、ポンプレーザ25,26を冷却させるための別途のヒートシンクが必要である。したがって、ポンプレーザ25,26とレーザチップ10とを一つのモジュール内に統合させられないので、VECSELの全体的なサイズを小型化するのに限界がある。さらに、ポンプレーザ25,26とレーザチップ10とを整列するための別途の工程が必要であり、これらを正確に整列することも非常に難しい。その結果、全体的なVECSELの製造工程が複雑になり、かつ製造時間が延長して量産が困難であるだけでなく、製造コストが上昇するという問題がある。
本発明は、前記従来の問題点を改善するためのものであって、本発明の目的は、単一のヒートシンク上にポンプレーザとレーザチップとを一体に結合させることによって、ポンプレーザの整列のための別途の工程を必要とせず、低コストで量産の可能な小型のVECSELを提供することである。
前記本発明の目的を達成するために、本発明の望ましい実施形態による面発光レーザは、ヒートシンクと、前記ヒートシンクの一方の面上に配置され、前記ヒートシンクの一方の面に対して所定の角度を持って所定の波長の光を放出するレーザチップと、前記レーザチップから前記光の照射方向に所定の距離離れて位置され、前記レーザチップで発生した光の一部を透過させて外部に出力すると共に、残りの一部をレーザチップに向けて反射させる外部ミラーと、前記ヒートシンクの前記一方の面上の前記レーザチップの横側に配置されたものであって、前記レーザチップを発振させるための光ポンピング用の光を前記ヒートシンクの一方の面に対して平行に放出するポンプレーザと、前記ヒートシンクの一方の面上に前記レーザチップを挟んで前記ポンプレーザと対向するように前記レーザチップの横側に配置されたものであって、前記ポンプレーザから放出された光ポンピング用の光を前記レーザチップに向けて反射する反射ミラーと、を備えることを特徴とする。
本発明の望ましい実施形態によれば、前記反射ミラーは、凹状の球面ミラーでありうる。このとき、前記レーザチップと球面ミラーとの距離は、球面ミラーの曲率半径の1/2よりも小さいことが適当であり、前記球面ミラーの曲率半径は、10mmないし100mmの範囲内にあることが適当である。
本発明によれば、前記ポンプレーザから放出された光ポンピング用光を平行光にするためのコリメーティングレンズを前記ポンプレーザと反射ミラーとの間にさらに備えうる。前記コリメーティングレンズは、前記ポンプレーザの光出射面に付着されていることが好適である。
また、本発明によれば、前記レーザチップから放出された光の周波数を2倍にする2次調和波発生(Second Harmonic Generation:SHG)結晶を前記レーザチップと外部ミラーとの間にさらに備えうる。
また、本発明によれば、前記ポンプレーザとヒートシンクとの間または前記レーザチップとヒートシンクとの間に熱電冷却器(Thermo Electric Cooler:TEC)をさらに配置することによって、前記ポンプレーザまたはレーザチップの温度を調節できる。
一方、本発明の他の実施形態による面発光レーザは、垂直に貫通する開口が形成されたヒートシンクと、前記ヒートシンクの開口を通過して所定の波長の光を放出するように前記ヒートシンクに配置されレーザチップと、前記ヒートシンクの一方の面から前記光の照射方向に所定の距離離れて位置され、前記レーザチップで発生した光の一部を透過させて外部に出力すると共に、残りの一部をレーザチップに向けて反射する外部ミラーと、前記ヒートシンクの他方の面上の前記レーザチップの横側に配置されたものであって、前記レーザチップを発振させるための光ポンピング用の光を前記ヒートシンクの他方の面に対して平行に放出するポンプレーザと、前記ヒートシンクの他方の面上に前記レーザチップを挟んで前記ポンプレーザと対向するように配置されたものであって、前記ポンプレーザから放出された光ポンピング用の光を前記レーザチップに向けて反射する反射ミラーと、を備えることを特徴とする。
本発明による面発光レーザの場合、単一のヒートシンク上にポンプレーザとレーザチップとが共に装着されている。したがって、従来のレーザ装置とは違って、ポンプレーザとレーザチップとにそれぞれ別途のヒートシンクを設ける必要がなくなり、ヒートシンクを節約でき、全体的な面発光レーザのサイズを小型化できる。また、一つのヒートシンク上にポンプレーザとレーザチップとを同時に装着するため、ポンプレーザとレーザチップとを正確に整列させるための別途の工程が必要なく、比較的簡単かつ容易にポンプレーザとレーザチップとを整列させることが可能である。その結果、製造工程及び時間が短縮されて低コストで量産が可能になる。特に、本発明によれば、レンズアレイの代わりに、凹状の球面ミラーを利用して光ポンピング用光をレーザチップ上にフォーカシングするため、複数のレンズを光が通過することで発生する光損失及び収差を最小化でき、光ポンピング用光のビームブラーを最小化できる。
以下、添付された図面を参照して本発明をさらに詳細に説明する。
図2は、本発明の第1実施形態によるVECSELの構造を概略的に示す側断面図である。
図2を参照して、本発明の第1実施形態による面発光レーザの構造を説明すれば、ヒートシンク30の上面の中心部には、レーザチップ31が配置されており、前記ヒートシンク30の上面の一側には、前記レーザチップ31を発振させるためのポンプレーザ33が配置されている。また、前記ヒートシンク30の上面の他側には、前記ポンプレーザ33から放出された光ポンピング用光を前記レーザチップ31に向かって反射するための反射ミラー35が配置されている。したがって、前記ポンプレーザ33と反射ミラー35とは、ヒートシンク30の上面で相互対向している。また、前記レーザチップ31から所定の距離ほど離隔された位置には、前記レーザチップ31で発生した光の一部を透過させてレーザビームとして外部に出力し、残りの一部をレーザチップ31に向かって再び反射する外部ミラー36が配置される。一方、前記レーザチップ31が、例えば、赤外線領域の光を放出する場合、可視光線領域のレーザビームを出力させるために、レーザチップ31から放出される光の周波数を2倍にする(すなわち、光の波長を1/2にする)SHG結晶38を前記レーザチップ31と外部ミラー36との間にさらに配置してもよい。
このような構造を有する本発明の面発光レーザは、次のように動作する。
まず、前記反射ミラー35と対向しているポンプレーザ33の側面から所定の波長を有する光ポンピング用レーザ光が水平に放出される。公知のように、レーザチップ31を発振させるためには、ポンプレーザ33から放出される光ポンピング用光の波長がレーザチップ31から放出される光の波長よりも短くなければならない。例えば、前記レーザチップ31が赤外線領域の光を放出する場合、約808nmの発振波長を有するポンプレーザを使用できる。一方、本発明の望ましい実施形態によれば、前記ポンプレーザ33から放出される光ポンピング用レーザ光を平行した光にするために、コリメーティングレンズ34が前記ポンプレーザ33と反射ミラー35との間に配置されうる。望ましくは、前記コリメーティングレンズ34は、前記ポンプレーザ33の光出射面に付着されていることが良い。
前記コリメーティングレンズ34によって平行になった光ポンピング用光は、前記ポンプレーザ33と対向している反射ミラー35によって反射されてレーザチップ31上にフォーカシングされる。このために、前記反射ミラー35は、凹状の反射面を有する球面ミラーであることが望ましい。この場合、最適の発振条件を維持するために、前記レーザチップ31は、球面を有する反射ミラー35の焦点距離以内に位置することが望ましい。すなわち、前記レーザチップ31と反射ミラー35との水平方向距離は、前記反射ミラー35の曲率半径の1/2よりも小さい方が良い。前記反射ミラー35の曲率半径は、製造しようとする面発光レーザのサイズ及び出力によって決定されるが、一般的に、10mmないし100mmの範囲内にあることが適当である。また、前記ポンプレーザ33から放出された光ポンピング用光がほとんど反射されてレーザチップ31に入射できるように、前記反射ミラー35の反射面は、反射率の高い金属または誘電体によってコーティングされていることが良い。
一方、一つの球面ミラー全体を前記反射ミラー35として使用してもよいが、一つの球面ミラーを数個に等分して使用してもよい。例えば、図4の正面図に示されているように、4等分した球面ミラーをヒートシンク30上に支持台37で固定して反射ミラー35として使用してもよい。光ポンピング用光ビームのビーム径が十分に小さく、球面ミラーのサイズが十分に大きい場合には、一つの球面ミラーをさらに多く分割して使用してもよい。この場合、一つの球面ミラーを分割して複数の面発光レーザを製造できる。
球面を有する前記反射ミラー35によって反射された光ポンピング用光がレーザチップ31上にフォーカシングされると、前記レーザチップ31内の活性層(図示せず)が励起されて、所定の波長を有する光を放出し始める。ここで、前記レーザチップ31の構造は、従来のVECSELで使用しているものと同一である。すなわち、前述したように、前記レーザチップ31は、基板(図示せず)上にDBR層(図示せず)、活性層(図示せず)及び反射防止層(図示せず)が連続して積層されている構造である。また、活性層は、例えば、RPG(Resonant Periodic Gain)構造のような多重量子ウェル構造の利得構造を有する。このように発生した光は、レーザチップ31内のDBR層と外部ミラー36との間で反射を繰り返しつつ増幅される。このような過程を通じて前記レーザチップ31内で増幅された光の一部は、前記外部ミラー36を通じてレーザビームとして外部に出力され、残りは、再び前記レーザチップ31に反射される。このとき、前記レーザチップ31と外部ミラー36との間にSHG結晶38が配置されている場合、外部ミラー36を通じて出力されるレーザビームの波長は、レーザチップ31から放出される光の波長の1/2となる。したがって、前記レーザチップ31が赤外線領域の光を放出する場合、可視光線領域のレーザビームが外部ミラー36を通じて出力されうる。
このように動作する間、ポンプレーザ33とレーザチップ31とでは、多くの熱が発生する。本発明による面発光レーザの場合、図2に示したように、前記ポンプレーザ33とレーザチップ31とで発生する熱を単に一つのヒートシンク30のみを通じて外部に放出される。このとき、前記ポンプレーザ33及びレーザチップ31の冷却効率を高めるために、TECを使用できる。すなわち、図2に示したように、ポンプレーザ33とヒートシンク30との間にTEC32をさらに設置できる。たとえ、図2でポンプレーザ33の下側にのみTECが設置されたことが示されていたとしても、レーザチップ31の下部にもTECを設置できる。TECは、電流の印加時に両側表面が一定の温度差を維持する素子である。図2に示したように、TEC32の一側面にポンプレーザ33を付着し、他の面にヒートシンク30を付着した後、例えば、水冷式で前記ヒートシンク30の温度を一定に維持すれば、前記ポンプレーザ33の温度を一定に調節することが可能である。
前述したように、本発明による面発光レーザの場合、一つの単一のヒートシンク上にポンプレーザとレーザチップとが共に装着されている。したがって、従来の技術とは違って、ポンプレーザとレーザチップとにそれぞれ別途のヒートシンクを設ける必要がないので、ヒートシンクを節約でき、全体的な面発光レーザのサイズを小型化できる。また、一つのヒートシンク上にポンプレーザとレーザチップとを同時に装着するため、ポンプレーザとレーザチップとを正確に整列させるための別途の工程が必要ではなく、比較的簡単かつ容易にポンプレーザとレーザチップとを整列させることが可能である。その結果、製造工程及び時間が短縮されて低コストで量産が可能になる。特に、本発明によれば、レンズアレイの代わりに、凹状の球面ミラーを利用して光ポンピング用光をレーザチップ上にフォーカシングするため、複数のレンズを光が通過しつつ発生する光損失及び収差を最小化でき、光ポンピング用光のビームボケ(不鮮明な状態)を最小化できる。
図5A及び図5Bは、前記ポンプレーザ33から放出されてレーザチップ31に入射する光ポンピング用レーザビームのビームプロファイルを示すグラフであって、図5Aは、x軸についての断面を表す図面であり、図5Bは、y軸についての断面を表す図面である。図5A及び図5Bを通じて分かるように、凹状の球面ミラー形態の反射ミラー35で反射された光ポンピング用レーザビームの半値幅は、x軸に約111.4μmであり、y軸に約136.6μmである。図2に示したように、光ポンピング用レーザビームがレーザチップ31に傾いて入射するため、前記レーザチップ31に入射する光ポンピング用レーザビームは、x軸及びy軸方向にビーム径が若干異なる楕円形になる。しかし、図5A及び図5Bに示したように、それぞれの軸方向には、ほとんど対称的な光分布をしていることが分かる。また、一般的にVECSELで要求される光ポンピング用レーザビームのビーム径が50〜500μmであるので、このような条件を十分に満足させうる。
一方、図3は、本発明の第2実施形態によるVECSELの構造を概略的に示す断面図である。図2に示した面発光レーザの場合、前端ポンピング構造であった。しかし、図3に示したように、さらに効率的なレーザ発振のために後端ポンピング構造を使用してもよい。図3を参照すれば、本発明の第2実施形態による面発光レーザの場合、ヒートシンク40の下面にポンプレーザ43と反射ミラー45とが相互対向するように設置されている。前記ヒートシンク40の中心部には、上下を貫通する開口49が形成されており、前記開口49内にレーザチップ41が配置される。図3では、レーザチップ41がヒートシンク40の下面の付近に設置されたものとして示されているが、設計によって前記開口49内でレーザチップ41を適切な位置に配置させうる。また、第1実施形態のように、前記ポンプレーザ43とヒートシンク40との間には、TEC 42を配置できる。たとえ図示されていないとしても、前記TECは、レーザチップ41とヒートシンク40との間にも配置されうる。
このような構造で、前記レーザチップ41から放出される光は、前記開口49を通過して外部ミラー46に入射した後、前記外部ミラー46とレーザチップ41との間で反復的に反射される。このような過程を通じて増幅された光は、外部ミラー46を通じてレーザビームとして出力される。このとき、光波長を1/2に変えるSHG結晶48の波長変換効率は、一般的に入射する光度に比例するので、SHG結晶48をレーザチップ41に可能な限り近く配置することが望ましい。図3に示した後端ポンピング構造の面発光レーザは、図2に示した前端ポンピング構造の面発光レーザよりSHG結晶をレーザチップにさらに近く配置できるので、さらに優秀な効率を有しうる。
本発明は、図面に示された実施形態を参考として説明されたが、これは、例示的なものに過ぎず、当業者ならば、これから多様な変形及び均等な他の実施形態が可能であるということが分かる。したがって、本発明の真の技術的保護範囲は、特許請求の範囲の技術的思想によって決定されねばならない。
本発明は、VCSELの製造に利用されうる。
従来の光ポンピング方式のVECSELの構造を概略的に示す断面図である。 本発明の第1実施形態による光ポンピング方式のVECSELの構造を概略的に示す断面図である。 本発明の第2実施形態による光ポンピング方式のVECSELの構造を概略的に示す断面図である。 本発明で使用する球面ミラーの形態を例示的に示す図面である。 ポンプレーザから放出されてレーザチップに入射する光ポンピング用レーザビームのビームプロファイルを示すグラフである。 ポンプレーザから放出されてレーザチップに入射する光ポンピング用レーザビームのビームプロファイルを示すグラフである。
符号の説明
30 ヒートシンク、
31 レーザチップ、
32 TEC、
33 ポンプレーザ、
34 コリメーティングレンズ、
35 反射ミラー、
36 外部ミラー、
38 SHG結晶。

Claims (14)

  1. ヒートシンクと、
    前記ヒートシンクの一方の面上に配置され、前記ヒートシンクの一方の面に対して所定の角度を持って所定の波長の光を放出するレーザチップと、
    前記レーザチップから前記光の照射方向に所定の距離離れて位置され、前記レーザチップで発生した光の一部を透過させて外部に出力すると共に、残りの一部をレーザチップに向けて反射させる外部ミラーと、
    前記ヒートシンクの前記一方の面上の前記レーザチップの横側に配置されたものであって、前記レーザチップを発振させるための光ポンピング用の光を前記ヒートシンクの一方の面に対して平行に放出するポンプレーザと、
    前記ヒートシンクの一方の面上に前記レーザチップを挟んで前記ポンプレーザと対向するように前記レーザチップの横側に配置されたものであって、前記ポンプレーザから放出された光ポンピング用の光を前記レーザチップに向けて反射する反射ミラーと、を備えることを特徴とする面発光レーザ。
  2. 前記反射ミラーは、凹状の球面ミラーであることを特徴とする請求項1に記載の面発光レーザ。
  3. 前記レーザチップと球面ミラーとの距離は、球面ミラーの曲率半径の1/2よりも小さいことを特徴とする請求項2に記載の面発光レーザ。
  4. 前記球面ミラーの曲率半径は、10mmないし100mmの範囲内にあることを特徴とする請求項2または3に記載の面発光レーザ。
  5. 前記ポンプレーザから放出された光ポンピング用の光を平行光にするためのコリメーティングレンズを、前記ポンプレーザと反射ミラーとの間にさらに備えることを特徴とする請求項1に記載の面発光レーザ。
  6. 前記コリメーティングレンズは、前記ポンプレーザの光出射面に付着されていることを特徴とする請求項5に記載の面発光レーザ。
  7. 前記レーザチップから放出された光の周波数を2倍にする2次調和波発生の結晶を、前記レーザチップと外部ミラーとの間にさらに備えることを特徴とする請求項1に記載の面発光レーザ。
  8. 前記ポンプレーザとヒートシンクとの間または前記レーザチップとヒートシンクとの間に熱電冷却器をさらに配置して、前記ポンプレーザまたはレーザチップの温度を調節することを特徴とする請求項1に記載の面発光レーザ。
  9. 垂直に貫通する開口が形成されたヒートシンクと、
    前記ヒートシンクの開口を通過して所定の波長の光を放出するように前記ヒートシンクに配置されレーザチップと、
    前記ヒートシンクの一方の面から前記光の照射方向に所定の距離離れて位置され、前記レーザチップで発生した光の一部を透過させて外部に出力すると共に、残りの一部をレーザチップに向けて反射する外部ミラーと、
    前記ヒートシンクの他方の面上の前記レーザチップの横側に配置されたものであって、前記レーザチップを発振させるための光ポンピング用の光を前記ヒートシンクの他方の面に対して平行に放出するポンプレーザと、
    前記ヒートシンクの他方の面上に前記レーザチップを挟んで前記ポンプレーザと対向するように配置されたものであって、前記ポンプレーザから放出された光ポンピング用の光を前記レーザチップに向けて反射する反射ミラーと、を備えることを特徴とする面発光レーザ。
  10. 前記反射ミラーは、凹状の球面ミラーであることを特徴とする請求項1に記載の面発光レーザ。
  11. 前記レーザチップと球面ミラーとの距離は、球面ミラーの曲率半径の1/2もより小さいことを特徴とする請求項10に記載の面発光レーザ。
  12. 前記ポンプレーザから放出された光ポンピング用の光を平行光にするためのコリメーティングレンズが前記ポンプレーザの光出射面に付着されていることを特徴とする請求項9に記載の面発光レーザ。
  13. 前記レーザチップから放出された光の周波数を2倍にする2次調和波発生の結晶を、前記レーザチップと外部ミラーとの間にさらに備えることを特徴とする請求項9に記載の面発光レーザ。
  14. 前記ポンプレーザとヒートシンクとの間または前記ポンプレーザとレーザチップとの間に熱電冷却器をさらに配置して、前記ポンプレーザまたはレーザチップの温度を調節することを特徴とする請求項9に記載の面発光レーザ。
JP2006143270A 2005-06-02 2006-05-23 単一のヒートシンク上にポンプレーザと共に結合された面発光レーザ Pending JP2006339638A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050047192A KR100718128B1 (ko) 2005-06-02 2005-06-02 단일한 히트싱크 위에 펌프 레이저와 함께 결합된 면발광레이저

Publications (1)

Publication Number Publication Date
JP2006339638A true JP2006339638A (ja) 2006-12-14

Family

ID=37494054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143270A Pending JP2006339638A (ja) 2005-06-02 2006-05-23 単一のヒートシンク上にポンプレーザと共に結合された面発光レーザ

Country Status (3)

Country Link
US (1) US7602832B2 (ja)
JP (1) JP2006339638A (ja)
KR (1) KR100718128B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522756A (ja) * 2005-12-30 2009-06-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光学的にポンピングされる半導体装置
JP2016535935A (ja) * 2013-10-30 2016-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光ポンプ拡張キャビティレーザを含むレーザデバイス
CN111162444A (zh) * 2019-12-31 2020-05-15 芯思杰技术(深圳)股份有限公司 芯片封装方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2320215B1 (de) * 2009-11-06 2013-05-01 Axetris AG Halbleiterlaser-Aufbau zur Gasdetektion mit integriertem temperiertem Strahlformungselement
US8432609B2 (en) * 2010-01-20 2013-04-30 Northrop Grumman Systems Corporation Photo-pumped semiconductor optical amplifier
US20150318656A1 (en) * 2012-12-11 2015-11-05 Koninklijke Philips N.V. Optically pumped solid state laser device with self aligning pump optics and enhanced gain
KR101643925B1 (ko) * 2014-07-23 2016-08-11 울산과학기술원 박판 금속 레이저 열처리 방법
PL3219360T3 (pl) 2014-11-10 2020-10-19 Sanhe Laserconn Tech Co., Ltd. Urządzenie do zabiegów z laserem vcsel dużej mocy z funkcją chłodzenia skóry i jego struktura montażowa
EP4199276A1 (en) * 2021-12-14 2023-06-21 Twenty-One Semiconductors GmbH Optically pumped semiconductor laser arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204256A (ja) * 1994-09-20 1996-08-09 Fuji Photo Film Co Ltd レーザーダイオードポンピング固体レーザー
JP3378103B2 (ja) * 1994-12-28 2003-02-17 富士写真フイルム株式会社 レーザーダイオード励起固体レーザー
US5663979A (en) * 1995-11-22 1997-09-02 Light Solutions Corporation Fiber stub end-pumped laser
US6243407B1 (en) * 1997-03-21 2001-06-05 Novalux, Inc. High power laser devices
US6327293B1 (en) 1998-08-12 2001-12-04 Coherent, Inc. Optically-pumped external-mirror vertical-cavity semiconductor-laser
US6097742A (en) * 1999-03-05 2000-08-01 Coherent, Inc. High-power external-cavity optically-pumped semiconductor lasers
JP2001223429A (ja) 2000-02-09 2001-08-17 Fuji Photo Film Co Ltd 半導体レーザ装置
DE10147888A1 (de) * 2001-09-28 2003-04-24 Osram Opto Semiconductors Gmbh Optisch gepumpter vertikal emittierender Halbleiterlaser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522756A (ja) * 2005-12-30 2009-06-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光学的にポンピングされる半導体装置
JP2016535935A (ja) * 2013-10-30 2016-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光ポンプ拡張キャビティレーザを含むレーザデバイス
CN111162444A (zh) * 2019-12-31 2020-05-15 芯思杰技术(深圳)股份有限公司 芯片封装方法

Also Published As

Publication number Publication date
US20060274807A1 (en) 2006-12-07
KR100718128B1 (ko) 2007-05-14
KR20060125250A (ko) 2006-12-06
US7602832B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
JP5322374B2 (ja) 外部共振器型の面発光レーザ
JP2006339638A (ja) 単一のヒートシンク上にポンプレーザと共に結合された面発光レーザ
KR101270166B1 (ko) 외부 공진기형 면발광 레이저
KR100754402B1 (ko) 수직외부공진기형 면발광 레이저
JP2007194589A (ja) 外部共振器型面発光レーザ
US7548569B2 (en) High-power optically end-pumped external-cavity semiconductor laser
KR101100434B1 (ko) 후방 광펌핑 방식의 외부 공진기형 면발광 레이저
US20210351569A1 (en) Semiconductor laser
KR100773540B1 (ko) 광펌핑 방식의 면발광 레이저
WO2016080252A1 (ja) 外部共振器型半導体レーザ
JP2015515150A (ja) 自己整列ポンプ光学部品を備えた光学的にポンピングされたソリッドステートレーザーデバイス
US20070253458A1 (en) Diode pumping of a laser gain medium
JP2007081233A (ja) レーザ発振装置
JP2007189194A (ja) ミラー面を有する第2高調波発生結晶を備える外部共振器型面発光レーザ
JP2725648B2 (ja) 固体レーザ励起方法及び固体レーザ装置
KR20190040545A (ko) 포물경을 사용한 고출력 레이저 다이오드 모듈
JP2006313889A (ja) ポンプレーザが一体に結合された外部共振器型面発光レーザ
KR20070074750A (ko) 외부 공진기형 면발광 레이저
JPH10261825A (ja) 半導体レーザ光整形光学系及び半導体レーザ励起固体レーザ装置
KR101053354B1 (ko) 외부 공진기를 이용한 파장 변환형 반도체 레이저
KR101334175B1 (ko) 렌즈 덕트를 구비하는 외부 공진기형 면발광 레이저
CN117878716A (zh) 光泵浦vcsel外腔光谱合成的激光器装置
KR100714609B1 (ko) 가시광선 레이저 장치
JP2007266532A (ja) 半導体レーザ装置
JP2000114653A (ja) 半導体レーザユニット、半導体レーザ励起固体レーザ装置 および半導体レーザモジュール