JP2006339101A - Conductive particulate, anisotropic conductive material, and connection structure - Google Patents

Conductive particulate, anisotropic conductive material, and connection structure Download PDF

Info

Publication number
JP2006339101A
JP2006339101A JP2005165463A JP2005165463A JP2006339101A JP 2006339101 A JP2006339101 A JP 2006339101A JP 2005165463 A JP2005165463 A JP 2005165463A JP 2005165463 A JP2005165463 A JP 2005165463A JP 2006339101 A JP2006339101 A JP 2006339101A
Authority
JP
Japan
Prior art keywords
fine particles
resin
conductive
conductive fine
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165463A
Other languages
Japanese (ja)
Other versions
JP4674119B2 (en
Inventor
Masahiko Tateno
舘野  晶彦
Shinya Uenoyama
伸也 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005165463A priority Critical patent/JP4674119B2/en
Publication of JP2006339101A publication Critical patent/JP2006339101A/en
Application granted granted Critical
Publication of JP4674119B2 publication Critical patent/JP4674119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate capable of connecting a circuit board or the like in high reliability without connection failure or deformation of the board even in the case of connection of a flexible circuit board or the like, and an anisotropic conductive material made by using the conductive particulate, as well as a connection structure made by using the conductive particulate and/or the anisotropic conductive material. <P>SOLUTION: The conductive particulate consists of thermosetting base material particles hardening by heating, and a conductive metal layer formed on the surface of the thermosetting base material particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フレキシブルな回路基板等を接続した際にも接続不良や変形を生じることのない導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体に関する。 The present invention relates to conductive fine particles that do not cause poor connection or deformation even when a flexible circuit board or the like is connected, an anisotropic conductive material using the conductive fine particles, and a connection structure.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。
これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。
The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.
These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性微粒子としては、従来、金属粒子の他、樹脂粒子や有機質無機質複合粒子を芯粒子として、その表面に無電解メッキ法により金メッキ等を施した金属メッキ粒子が用いられている(例えば、特許文献1参照)。 As conductive fine particles used for such anisotropic conductive materials, conventionally, metal particles, resin particles or organic / inorganic composite particles as core particles, and the surface thereof is subjected to gold plating or the like by electroless plating method. Plating particles are used (see, for example, Patent Document 1).

しかし、ガラス基板等の硬質の基板に対してFPC(Flexible Printed Circuit)等のフレキシブルな回路基板等を接続させる際には、従来のような導電性微粒子を用いる場合は加熱圧着時に緻密な圧力制御が必要であった。すなわち、回路基板等の加熱圧着後に導電性微粒子の高い圧縮変形回復率により回路基板が剥がれたり、回路基板が変形して電極が剥がれたりすることがないよう充分な圧力制御を行う必要があった。一方、このような問題に対して、回路基板の加熱圧着時に圧力により導電性微粒子を割ることにより反発を抑えることも考えられるが、導電性微粒子を割ると導電層も割れてしまうため、導通不良が生じる可能性が残るという問題があった。
特公平3−44149号公報
However, when a flexible circuit board such as FPC (Flexible Printed Circuit) is connected to a hard substrate such as a glass substrate, precise pressure control is performed at the time of thermocompression bonding when conventional conductive fine particles are used. Was necessary. That is, it is necessary to perform sufficient pressure control so that the circuit board is not peeled off due to a high compression deformation recovery rate of the conductive fine particles after the thermocompression bonding of the circuit board or the like, and the electrode is not peeled off due to the circuit board being deformed. . On the other hand, it may be possible to suppress the repulsion by cracking the conductive fine particles with the pressure at the time of thermocompression bonding of the circuit board. However, if the conductive fine particles are cracked, the conductive layer is also cracked. There was a problem that there was a possibility that this would occur.
Japanese Examined Patent Publication No. 3-44149

本発明は、上記現状に鑑み、フレキシブルな回路基板等を接続した際にも接続不良や変形を生じることのない導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することを目的とする。 In view of the present situation, the present invention is a conductive fine particle that does not cause poor connection or deformation even when a flexible circuit board or the like is connected, an anisotropic conductive material using the conductive fine particle, and a connection An object is to provide a structure.

本発明は、加熱により熱硬化する熱硬化性基材微粒子と、前記熱硬化性基材微粒子の表面に形成された導電性金属層とからなる導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle comprising thermosetting substrate fine particles which are thermally cured by heating, and a conductive metal layer formed on the surface of the thermosetting substrate fine particles.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、回路基板等の電気的接続の際に用いる導電性微粒子として、回路基板等の接続前(加熱圧縮前)は軟らかく、回路基板等の接続後(加熱圧縮後)は硬化する微粒子、すなわち、加熱により熱硬化する熱硬化性基材微粒子と、該熱硬化性基材微粒子の表面上に形成された導電性金属層とからなる導電性微粒子を用いることにより、FPC等のフレキシブルな回路基板等であっても接続不良等を起こすことなく、高い信頼性で回路基板等を接続することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have determined that the conductive fine particles used for electrical connection of a circuit board and the like are soft before connection (before heating and compression) of the circuit board and the like, and after connection of the circuit board and the like (heating and compression). After) by using fine particles to be cured, that is, conductive fine particles comprising thermosetting substrate fine particles that are thermally cured by heating, and a conductive metal layer formed on the surface of the thermosetting substrate fine particles. The present inventors have found that even a flexible circuit board such as an FPC can be connected with high reliability without causing a connection failure, and the present invention has been completed.

本発明の導電性微粒子は、加熱により熱硬化する熱硬化性基材微粒子と、上記熱硬化性基材微粒子の表面に形成された導電性金属層とからなる導電性微粒子である。このような導電性微粒子を用いることにより、FPC等のフレキシブルな回路基板等であっても接続不良等を起こすことなく、高い信頼性で回路基板等を接続することができる。
上記熱硬化性基材微粒子としては特に限定されないが、例えば、架橋により熱硬化する樹脂を含有していることが好ましい。
The conductive fine particles of the present invention are conductive fine particles comprising a thermosetting substrate fine particle that is thermally cured by heating, and a conductive metal layer formed on the surface of the thermosetting substrate fine particle. By using such conductive fine particles, even a flexible circuit board such as an FPC can be connected with high reliability without causing connection failure.
Although it does not specifically limit as said thermosetting base particle, For example, it is preferable to contain resin which thermosets by bridge | crosslinking.

上記架橋により熱硬化する樹脂としては特に限定されないが、例えば、ラジカル重合性単量体を用いてラジカル重合を行う際に未反応のラジカル重合性単量体を残存させた、樹脂中にラジカル重合性官能基が残存する樹脂や、ラジカル重合性単量体を用いてラジカル重合を行う際に開環重合性官能基を有する単量体と酸性又は塩基性官能基を有する単量体とを共重合させた、樹脂中に開環重合性官能基と酸性又は塩基性官能基とを有する樹脂等が好適に用いられる。 The resin that is thermoset by the crosslinking is not particularly limited. For example, radical polymerization is performed in a resin in which an unreacted radical polymerizable monomer is left when radical polymerization is performed using a radical polymerizable monomer. When a radical polymerization is performed using a resin in which a functional functional group remains or a radical polymerizable monomer, a monomer having a ring-opening polymerizable functional group and a monomer having an acidic or basic functional group are used together. A polymerized resin having a ring-opening polymerizable functional group and an acidic or basic functional group in the resin is preferably used.

上記ラジカル重合性単量体としては特に限定されず、架橋性単量体のみを用いてもよいし、架橋性単量体に加えて非架橋性単量体を併用してもよい。
上記架橋性単量体としては特に限定されず、例えば、ジビニルベンゼン及びその誘導体、ブタジエン、イソプレン等の共役ジエン類、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類等が挙げられる。
上記非架橋性単量体としては特に限定されず、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル、アクリロニトリル等の不飽和ニトリル類、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート等の単官能(メタ)アクリレート類等が挙げられる。
ここで、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。
The radical polymerizable monomer is not particularly limited, and only a crosslinkable monomer may be used, or a noncrosslinkable monomer may be used in combination with the crosslinkable monomer.
The crosslinkable monomer is not particularly limited, and examples thereof include divinylbenzene and derivatives thereof, conjugated dienes such as butadiene and isoprene, polytetramethylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth). Examples include polyfunctional (meth) acrylates such as acrylate.
The non-crosslinkable monomer is not particularly limited, and examples thereof include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; unsaturated nitriles such as vinyl chloride and acrylonitrile. And monofunctional (meth) acrylates such as isobutyl (meth) acrylate and isooctyl (meth) acrylate.
Here, (meth) acrylate means acrylate or methacrylate.

上記開環重合性官能基を有する単量体としては特に限定されず、例えば、ビニル基とエポキシ基とを有する単量体等が挙げられ、具体的には、例えば、1−ビニル−プロピレンオキシド、1−ビニル−ブチレンオキシド、1−ビニル−へキセンオキシド、1−ビニル−オクテンオキシド、グリシジル(メタ)アクリレート等が挙げられる。
上記酸性官能基を有する単量体としては特に限定されず、例えば、(メタ)アクリル酸、2−(メタ)アクリロイロキシエチルコハク酸等のビニル基とカルボキシル基とを有する単量体等が挙げられる。
上記塩基性官能基を有する単量体としては特に限定されず、例えば、アリルアミン、ビニルアミン等のビニル基とアミノ基とを有する単量体、1−ビニルエタノールNa塩、1−ビニルプロパノールNa塩、1−ビニルブタノールNa塩等のビニル基とONa基とを有する単量体等が挙げられる。
上記樹脂が開環重合性官能基と酸性又は塩基性官能基とを有する樹脂の場合、加熱時に酸性又は塩基性官能基が開始剤となって、エポキシ基等の開環重合を進行させることができる。
The monomer having the ring-opening polymerizable functional group is not particularly limited, and examples thereof include a monomer having a vinyl group and an epoxy group, and specifically, for example, 1-vinyl-propylene oxide. 1-vinyl-butylene oxide, 1-vinyl-hexene oxide, 1-vinyl-octene oxide, glycidyl (meth) acrylate and the like.
The monomer having an acidic functional group is not particularly limited, and examples thereof include monomers having a vinyl group and a carboxyl group, such as (meth) acrylic acid and 2- (meth) acryloyloxyethyl succinic acid. Can be mentioned.
The monomer having a basic functional group is not particularly limited, and examples thereof include monomers having a vinyl group and an amino group such as allylamine and vinylamine, 1-vinylethanol Na salt, 1-vinylpropanol Na salt, Examples thereof include monomers having a vinyl group and an ONa group such as 1-vinylbutanol Na salt.
When the resin is a resin having a ring-opening polymerizable functional group and an acidic or basic functional group, the acidic or basic functional group becomes an initiator at the time of heating, and the ring-opening polymerization of an epoxy group or the like can proceed. it can.

上記樹脂中にラジカル重合性官能基が残存する樹脂を得るためには、上記ラジカル重合性単量体から該樹脂を製造する際に、反応が完全に行われないように反応時間等を適宜調整すればよい。 In order to obtain a resin in which the radical polymerizable functional group remains in the resin, the reaction time and the like are appropriately adjusted so that the reaction is not completely performed when the resin is produced from the radical polymerizable monomer. do it.

上記単量体から上記樹脂を製造する方法としては特に限定されず、例えば、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法等が挙げられる。上記製造方法のなかでも、懸濁重合は、粒子径分布が比較的広く、多分散の微粒子を得ることができるので、多品種の粒子径の微粒子を製造する目的に適している。但し、懸濁重合による微粒子を熱硬化性基材微粒子として用いる場合には分級操作を行って、所望の粒子径や粒子径分布を有するものを選別して用いることが好ましい。また、シード重合は、分級操作を必要とせず、単分散の微粒子を得ることができるので、特定の粒子径の微粒子を大量に製造する目的に適している。 The method for producing the resin from the monomer is not particularly limited, and examples thereof include a method using a polymerization method such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization. Among the above production methods, suspension polymerization is suitable for the purpose of producing fine particles having a wide variety of particle sizes because the particle size distribution is relatively wide and polydispersed fine particles can be obtained. However, when fine particles obtained by suspension polymerization are used as the thermosetting substrate fine particles, it is preferable to perform classification operation and select and use those having a desired particle size or particle size distribution. In addition, seed polymerization does not require a classification operation, and monodispersed fine particles can be obtained. Therefore, seed polymerization is suitable for the purpose of producing a large amount of fine particles having a specific particle diameter.

上記シード重合の具体的方法としては、例えば、シード粒子を分散した水中に、上記樹脂を形成する単量体からなる水性エマルジョンと、油溶性重合開始剤の水性エマルジョンとを添加し、シード粒子に上記樹脂を形成する単量体及び油溶性重合開始剤を吸収させた後、上記樹脂を形成する単量体を重合する方法が挙げられる。 As a specific method of the seed polymerization, for example, an aqueous emulsion composed of the monomer that forms the resin and an aqueous emulsion of an oil-soluble polymerization initiator are added to the seed particles in water in which seed particles are dispersed. Examples include a method of polymerizing the monomer that forms the resin after absorbing the monomer that forms the resin and the oil-soluble polymerization initiator.

上記シード粒子の重量平均分子量としては特に限定されないが、好ましい上限は2万である。また、上記樹脂を形成する単量体は、上記シード粒子1重量部に対して10〜500重量部とすることが好ましい。 Although it does not specifically limit as a weight average molecular weight of the said seed particle, A preferable upper limit is 20,000. Moreover, it is preferable that the monomer which forms the said resin shall be 10-500 weight part with respect to 1 weight part of said seed particles.

上記油溶性重合開始剤としては特に限定されず、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。 The oil-soluble polymerization initiator is not particularly limited. For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butyl peroxide Organic peroxides such as oxy-2-ethylhexanoate and di-t-butyl peroxide; azos such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4-dimethylvaleronitrile) System compounds and the like.

上記油溶性重合開始剤の使用量としては特に限定されないが、上記樹脂を形成する単量体100重量部に対して好ましい下限は1重量部、好ましい上限は3重量部である。 The amount of the oil-soluble polymerization initiator used is not particularly limited, but the preferred lower limit is 1 part by weight and the preferred upper limit is 3 parts by weight with respect to 100 parts by weight of the monomer forming the resin.

また、上記熱硬化性基材微粒子を製造する際には、必要に応じて、界面活性剤、分散安定剤等を用いてもよい。 Moreover, when manufacturing the said thermosetting base particle, you may use surfactant, a dispersion stabilizer, etc. as needed.

上記熱硬化性基材微粒子は、100℃以上の加熱により硬化するものであることが好ましい。100℃未満で硬化してしまうと、本発明の導電性微粒子を用いて回路基板等を接続する際に、回路基板等の加熱圧着前に硬化してしまうことがあり、FPC等のフレキシブルな回路基板等の接続において接続不良が生じることがある。より好ましくは120℃以上である。 The thermosetting substrate fine particles are preferably those that are cured by heating at 100 ° C. or higher. If it is cured at a temperature lower than 100 ° C., it may be cured before thermocompression bonding of the circuit board or the like when connecting the circuit board or the like using the conductive fine particles of the present invention. Connection failure may occur in the connection of a substrate or the like. More preferably, it is 120 ° C. or higher.

上記導電性金属層に使用される金属としては特に限定されず、例えば、ニッケル、金、銀、銅、コバルト、及び、これらを主成分とする合金等が挙げられる。 It does not specifically limit as a metal used for the said electroconductive metal layer, For example, nickel, gold | metal | money, silver, copper, cobalt, the alloy etc. which have these as a main component are mentioned.

上記熱硬化性基材微粒子の表面に上記導電性金属層を形成する方法としては特に限定されず、例えば、無電解メッキ法等により上記熱硬化性基材微粒子の表面を金属メッキする方法等が挙げられる。 The method for forming the conductive metal layer on the surface of the thermosetting substrate fine particles is not particularly limited. For example, a method of metal plating the surface of the thermosetting substrate fine particles by an electroless plating method or the like can be used. Can be mentioned.

上記導電性金属層の厚さとしては特に限定されないが、好ましい下限は0.02μm、好ましい上限は5μmである。0.02μm未満であると、導電性微粒子が導電性を得られなくなることがあり、5μmを超えると、導電性微粒子が硬くなりすぎて電極端子間の間隔に追随して導電性微粒子が変形しにくくなることがある。 Although it does not specifically limit as thickness of the said electroconductive metal layer, A preferable minimum is 0.02 micrometer and a preferable upper limit is 5 micrometers. If the thickness is less than 0.02 μm, the conductive fine particles may not obtain conductivity. If the thickness exceeds 5 μm, the conductive fine particles become too hard and the conductive fine particles are deformed following the distance between the electrode terminals. It may be difficult.

上記導電性金属層の厚さは、例えば、本発明の導電性微粒子の断面を透過型電子顕微鏡(TEM)で観察することにより測定することができる。倍率としては特に限定されず、観察しやすい倍率を選べばよいが、例えば、5万倍が用いられる。 The thickness of the conductive metal layer can be measured, for example, by observing the cross section of the conductive fine particles of the present invention with a transmission electron microscope (TEM). The magnification is not particularly limited, and a magnification that is easy to observe may be selected. For example, 50,000 times is used.

本発明の導電性微粒子の平均粒子径としては特に限定されないが、好ましい下限は2.5μm、好ましい上限は15μmである。2.5μm未満であると、導電性金属層を形成する際に凝集しやすく、単粒子としにくくなることがあり、15μmを超えると、異方性導電材料として微細な配線を有する基板等の電極端子間で用いられる範囲を超えてしまうことがある。 Although it does not specifically limit as an average particle diameter of the electroconductive fine particles of this invention, A preferable minimum is 2.5 micrometers and a preferable upper limit is 15 micrometers. If it is less than 2.5 μm, it tends to aggregate when forming the conductive metal layer, making it difficult to form single particles. If it exceeds 15 μm, an electrode such as a substrate having fine wiring as an anisotropic conductive material It may exceed the range used between terminals.

本発明の導電性微粒子のCV値(粒子径分布の標準偏差を平均粒子径で除して百分率とした値)が10%以下であることが好ましい。CV値が10%以下であることにより、導電性微粒子と回路基板等との接触面積のばらつきが小さく、安定した接続が得られやすい。 The CV value (value obtained by dividing the standard deviation of the particle size distribution by the average particle size) as a percentage is preferably 10% or less. When the CV value is 10% or less, variation in the contact area between the conductive fine particles and the circuit board is small, and stable connection is easily obtained.

また、本発明の導電性微粒子は、熱硬化前において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3000N/mm以下、圧縮変形回復率が40%以下であり、熱硬化後において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3600N/mm以上、圧縮変形回復率が40%以上である導電性微粒子であることが好ましい。
熱硬化前において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3000N/mmを超え、又は、圧縮変形回復率が40%を超えると、本発明の導電性微粒子が硬くなりすぎ、フレキシブルな回路基板等を接続した際に接続不良が生じてしまったり、回路基板等が変形を起こしたりすることがある。
また、熱硬化後において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3600N/mm未満、又は、圧縮変形回復率が40%未満であると、本発明の導電性微粒子が軟らかくなりすぎ、フレキシブルな回路基板等を接続した際に接続が不安定になることがある。
Further, the conductive fine particles of the present invention have a compressive elastic modulus (10% K value) of 3000 N / mm 2 or less when the particle diameter measured at 20 ° C. is displaced by 10% before thermosetting, and a compression deformation recovery rate. When the particle diameter measured at 20 ° C. is 10% displaced after thermosetting, the compression modulus (10% K value) is 3600 N / mm 2 or more, and the compression deformation recovery rate is 40% or more. A certain conductive fine particle is preferable.
If the compression modulus (10% K value) when the particle diameter measured at 20 ° C. is displaced by 10% before thermosetting exceeds 3000 N / mm 2 or the compression deformation recovery rate exceeds 40%, The conductive fine particles of the invention may become too hard, and connection failure may occur when a flexible circuit board or the like is connected, or the circuit board or the like may be deformed.
Further, after thermosetting, the compression elastic modulus (10% K value) when the particle diameter measured at 20 ° C. is displaced by 10% is less than 3600 N / mm 2 or the compression deformation recovery rate is less than 40%. The conductive fine particles of the present invention may become too soft, and the connection may become unstable when a flexible circuit board or the like is connected.

上記10%K値は、微小圧縮試験機(PCT−200、島津製作所社製)を用いて一辺が50μmの四角柱の平滑端面で、本発明の導電性微粒子を圧縮速度2.646mN/秒、最大試験荷重98mNで圧縮することにより測定することができる。 The 10% K value is a smooth end face of a square column with a side of 50 μm using a micro compression tester (PCT-200, manufactured by Shimadzu Corporation), and the conductive fine particles of the present invention have a compression rate of 2.646 mN / sec. It can be measured by compressing at a maximum test load of 98 mN.

上記10%K値は、下記式により求めることができる。
K=(3/√2)・F・S−3/2・R−1/2
F:導電性微粒子の10%圧縮変形における荷重値(N)
S:導電性微粒子の10%圧縮変形における圧縮変位(mm)
R:導電性微粒子の半径(mm)
The 10% K value can be obtained by the following equation.
K = (3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of conductive fine particles (N)
S: Compression displacement (mm) in 10% compression deformation of conductive fine particles
R: Radius of conductive fine particles (mm)

上記圧縮変形回復率とは、上記微小圧縮試験機にて導電性微粒子を反転荷重値9.8mNまで圧縮した後、逆に荷重を減らしていくときの、荷重値と圧縮変位との関係を測定して得られる値であり、荷重を除く際の終点を原点荷重値0.98mN、負荷及び除負荷における圧縮速度0.2842mN/秒として測定され、反転の点までの変位(L1)と反転の点から原点荷重値を取る点までの変位(L2)との比(L2/L1)を百分率にて表した値である。 The compression deformation recovery rate is a measurement of the relationship between the load value and the compression displacement when the conductive fine particles are compressed to the reversal load value of 9.8 mN and then the load is reduced. The end point when removing the load is measured as an origin load value of 0.98 mN, a compression rate of 0.2842 mN / sec at loading and unloading, displacement (L1) up to the reversal point and reversal of the reversal It is a value expressed as a percentage of the ratio (L2 / L1) to the displacement (L2) from the point to the point where the origin load value is taken.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、熱硬化型であることが好ましい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Moreover, it is preferable that the said curable resin is a thermosetting type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, apply to the release treatment surface of the release material such as release paper or release film so that it has a predetermined film thickness, and dry and cool as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明の導電性微粒子及び/又は本発明の異方性導電材料を用いてなる接続構造体もまた、本発明の1つである。 A connection structure using the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention is also one aspect of the present invention.

本発明の接続構造体は、一対の回路基板間に、本発明の導電性微粒子及び/又は本発明の異方性導電材料を充填することにより、一対の回路基板間を接続させたものである。本発明の接続構造体は、本発明の導電性微粒子及び/又は本発明の異方性導電材料を用いてなるものであることから、上記回路基板がFPC等のフレキシブルなものである場合であっても、接続不良や変形を生じることがない。 The connection structure of the present invention is a structure in which a pair of circuit boards are connected by filling the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention between a pair of circuit boards. . Since the connection structure of the present invention is formed using the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention, the circuit board is a flexible one such as an FPC. However, connection failure and deformation do not occur.

本発明の接続構造体を製造する前は、本発明の導電性微粒子は架橋により熱硬化する樹脂を含有しているため、本発明の導電性微粒子は軟らかいものであるが、一対の回路基板と本発明の導電性微粒子及び/又は本発明の異方性導電材料とを接続する際には、加熱圧着を行うため架橋反応が進行し、その結果、導電性微粒子は硬化する。従って、本発明の接続構造体中の導電性微粒子は完全な球状ではなく、楕円状である。
なお、加熱圧着の際には、硬化後の導電性微粒子を更に加圧状態とするために、硬化後にも再度加圧することが好ましい。
本発明の接続構造体中における導電性微粒子の形状は、アスペクト比により定義され、好ましい下限は1.2、好ましい上限は2.0である。1.2未満であると、熱硬化前の粒子が硬すぎて加熱圧着時に圧縮されて充分な変形が起こっておらず、接続が充分でないことがあり、2.0を超えると、熱硬化前の粒子が軟らかすぎて変形しすぎ、熱硬化後に充分な接続を保てないことがある。なお、加熱圧着前の導電性微粒子のアスペクト比は1.2未満であることが好ましい。
なお、アスペクト比とは粒子の平均長径を平均短径で割った値である。
Before the connection structure of the present invention is manufactured, the conductive fine particles of the present invention contain a resin that is thermoset by crosslinking, so that the conductive fine particles of the present invention are soft, but a pair of circuit boards and When connecting the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention, a crosslinking reaction proceeds because of thermocompression bonding, and as a result, the conductive fine particles are cured. Therefore, the conductive fine particles in the connection structure of the present invention are not completely spherical but elliptical.
In the case of thermocompression bonding, it is preferable to pressurize again after curing in order to further pressurize the conductive fine particles after curing.
The shape of the conductive fine particles in the connection structure of the present invention is defined by the aspect ratio, and the preferable lower limit is 1.2 and the preferable upper limit is 2.0. If it is less than 1.2, the particles before thermosetting are too hard and are compressed at the time of thermocompression bonding so that sufficient deformation does not occur and the connection may not be sufficient. In some cases, the particles are too soft and deformed so that sufficient connection cannot be maintained after thermosetting. The aspect ratio of the conductive fine particles before thermocompression bonding is preferably less than 1.2.
The aspect ratio is a value obtained by dividing the average major axis of the particles by the average minor axis.

本発明によれば、フレキシブルな回路基板等を接続した際にも接続不良や変形を生じることのない導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することができる。 According to the present invention, there are provided conductive fine particles that do not cause connection failure or deformation even when a flexible circuit board or the like is connected, an anisotropic conductive material using the conductive fine particles, and a connection structure. Can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)導電性微粒子の製造
シード粒子として0.8μmのスチレン粒子5gと、イオン交換水500gと、5重量%のポリビニルアルコール溶液100gとを混合し、超音波を加え分散させた後、セパラブルフラスコに入れて均一に攪拌した。
次に、ポリテトラメチレングリコールジアクリレート128gと、ジビニルベンゼン32gとを、油溶性重合開始剤(日本油脂社製、ナイパーBW)12g、ラウリル硫酸トリエタノールアミン9g、エタノール118gを添加したイオン交換水1035gより調製した乳化液をセパラブルフラスコに加え、12時間攪拌を行いシード粒子にモノマーを吸収させた。
その後、5重量%のポリビニルアルコール水溶液500gを加え窒素ガスを導入しオートクレーブ中にて85℃、3時間反応させ、樹脂の一部を反応させることにより、樹脂中にラジカル重合性官能基が残存する樹脂を含有する熱硬化性基材微粒子(平均粒子径4μm)を得た。
得られた熱硬化性基材微粒子の表面に無電解ニッケルメッキを行い、約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層をニッケルメッキ層の上に形成させ導電性微粒子を得た。
Example 1
(1) Production of conductive fine particles 5 g of 0.8 μm styrene particles as seed particles, 500 g of ion-exchanged water, and 100 g of 5 wt% polyvinyl alcohol solution were mixed and dispersed by applying ultrasonic waves, then separable. It put into the flask and stirred uniformly.
Next, 128 g of polytetramethylene glycol diacrylate and 32 g of divinylbenzene, 1035 g of ion-exchanged water to which 12 g of an oil-soluble polymerization initiator (NIPPER BW, manufactured by NOF Corporation), 9 g of triethanolamine lauryl sulfate, and 118 g of ethanol were added. The prepared emulsion was added to a separable flask and stirred for 12 hours to allow the seed particles to absorb the monomer.
Thereafter, 500 g of a 5% by weight polyvinyl alcohol aqueous solution is added, nitrogen gas is introduced, and the mixture is reacted in an autoclave at 85 ° C. for 3 hours to react part of the resin, whereby radically polymerizable functional groups remain in the resin. Thermosetting substrate fine particles (average particle size 4 μm) containing a resin were obtained.
Electroless nickel plating was performed on the surface of the obtained thermosetting substrate fine particles to form a nickel plating layer of about 0.08 μm. Further, substitution gold plating was performed, and a gold plating layer of about 0.03 μm was formed on the nickel plating layer to obtain conductive fine particles.

(2)異方性導電材料の製造
エポキシ樹脂(油化シェルエポキシ社製、エピコート828)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に対し、得られた導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとした。
その後、導電性微粒子を含有する接着フィルムを、導電性微粒子を含有させずに得た接着フィルムと常温で貼り合わせた厚さ17μmで2層構造の異方性導電フィルムを得た。
(2) Production of anisotropic conductive material Conductivity obtained for 100 parts by weight of epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene After adding fine particles and mixing thoroughly using a planetary stirrer, the coated film is coated on a release film so that the thickness after drying is 7 μm, and toluene is evaporated to form an adhesive film containing conductive fine particles. Obtained. In addition, the compounding quantity of electroconductive fine particles made content in a film 50,000 piece / cm < 2 >.
Thereafter, an anisotropic conductive film having a thickness of 17 μm was obtained by bonding an adhesive film containing conductive fine particles to an adhesive film obtained without containing conductive fine particles at room temperature.

(3)接続構造体の製造
得られた異方性導電フィルムを5×5mmの大きさに切断した。また、一方に抵抗測定用の引き回し線を持つ、幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極が形成されたガラス基板及びポリイミド基板の2枚を用意した。異方性導電フィルムをガラス基板のほぼ中央に貼り付けた後、ポリイミド基板を異方性導電フィルムが貼り付けられたガラス基板の電極パターンと重なるように位置合わせをし、ガラス基板とポリイミド基板とを、圧力10N、温度150℃の条件で30秒間熱圧着することにより接続構造体を得た。
(3) Production of connection structure The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. In addition, two sheets of a glass substrate and a polyimide substrate on which an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for measuring resistance was formed were prepared. After the anisotropic conductive film is attached to the center of the glass substrate, the polyimide substrate is aligned with the electrode pattern of the glass substrate to which the anisotropic conductive film is attached, and the glass substrate and the polyimide substrate are aligned. Was subjected to thermocompression bonding for 30 seconds under conditions of a pressure of 10 N and a temperature of 150 ° C. to obtain a connection structure.

(実施例2)
セパラブルフラスコに、ジビニルベンゼン8重量部、スチレン8重量部、1−ビニル−ブチレンオキシド2重量部、1−ビニルプロパノールNa塩2重量部、及び、重合開始剤として過酸化ベンゾイル1.3重量部を投入し、均一に攪拌混合した。次に、ポリビニルアルコール(商品名「クラレポバールGL−03」、クラレ社製)の3重量%水溶液20重量部及びドデシル硫酸ナトリウム0.5重量部を投入し、均一に攪拌混合した後、イオン交換水140重量部を投入した。次いで、窒素気流下、この混合溶液を攪拌しながら50℃で7時間重合反応を行って粒子を得た。得られた粒子を熱水及びアセトンで十分に洗浄した後、分級操作を行い、アセトンを揮散させて、樹脂中に開環重合性官能基を有する樹脂を含有する熱硬化性基材微粒子(平均粒子径4μm)を得た。
得られた熱硬化性基材微粒子の表面に無電解ニッケルメッキを行い、約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層をニッケルメッキ層の上に形成させ導電性微粒子を得た。
また、実施例1と同様にして異方性導電材料及び接続構造体を製造した。
(Example 2)
In a separable flask, 8 parts by weight of divinylbenzene, 8 parts by weight of styrene, 2 parts by weight of 1-vinyl-butylene oxide, 2 parts by weight of 1-vinylpropanol Na salt, and 1.3 parts by weight of benzoyl peroxide as a polymerization initiator Was added and stirred and mixed uniformly. Next, 20 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol (trade name “Kuraray Poval GL-03”, manufactured by Kuraray Co., Ltd.) and 0.5 parts by weight of sodium dodecyl sulfate were added, mixed uniformly, and then ion exchanged. 140 parts by weight of water was added. Next, under a nitrogen stream, this mixed solution was stirred for 7 hours at 50 ° C. to obtain particles. After the obtained particles are sufficiently washed with hot water and acetone, classification operation is performed, acetone is volatilized, and thermosetting base particles containing a resin having a ring-opening polymerizable functional group in the resin (average) A particle diameter of 4 μm) was obtained.
Electroless nickel plating was performed on the surface of the obtained thermosetting substrate fine particles to form a nickel plating layer of about 0.08 μm. Further, substitution gold plating was performed, and a gold plating layer of about 0.03 μm was formed on the nickel plating layer to obtain conductive fine particles.
Further, an anisotropic conductive material and a connection structure were manufactured in the same manner as in Example 1.

(比較例1)
反応時間を9時間にして樹脂の反応を完全に行ったこと以外は、実施例1と同様にして導電性微粒子、異方性導電材料及び接続構造体を製造した。
(Comparative Example 1)
Conductive fine particles, anisotropic conductive material and connection structure were produced in the same manner as in Example 1 except that the reaction time was 9 hours and the resin was completely reacted.

<評価>
実施例1〜2、及び、比較例1で得られた導電性微粒子及び接続構造体について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed on the conductive fine particles and the connection structure obtained in Examples 1 and 2 and Comparative Example 1. The results are shown in Table 1.

(1)10%K値の測定
微小圧縮試験機(PCT−200、島津製作所社製)を用いて一辺が50μmの四角柱の平滑端面で、加熱前後の導電性微粒子を圧縮速度2.646mN/秒、最大試験荷重98mNで圧縮することにより10%K値を測定した。
なお、測定は20℃の条件下で行った。
(1) Measurement of 10% K value Using a micro compression tester (PCT-200, manufactured by Shimadzu Corporation), the conductive fine particles before and after heating were compressed at a compression rate of 2.646 mN / mm on a smooth end face of a square column with a side of 50 μm. The 10% K value was measured by compressing at a maximum test load of 98 mN for a second.
The measurement was performed under the condition of 20 ° C.

(2)圧縮変形回復率の測定
微小圧縮試験機(PCT−200、島津製作所社製)にて加熱前後の導電性微粒子を反転荷重値9.8mNまで圧縮した後、逆に荷重を減らし、荷重を除く際の終点を原点荷重値0.98mN、負荷及び除負荷における圧縮速度0.2842mN/秒とし、反転の点までの変位(L1)と反転の点から原点荷重値を取る点までの変位(L2)との比(L2/L1)に100を乗じることにより圧縮変形回復率を求めた。
(2) Measurement of compression deformation recovery rate After compressing the conductive fine particles before and after heating to a reversal load value of 9.8 mN with a micro compression tester (PCT-200, manufactured by Shimadzu Corporation), the load is reduced and the load is reduced. The end point when removing the origin is 0.98 mN as the origin load value, and the compression speed is 0.2842 mN / sec at the load and removal load. The displacement from the reversal point (L1) to the point where the origin load value is taken from the reversal point The compression deformation recovery rate was determined by multiplying the ratio (L2 / L1) to (L2) by 100.

(3)接続抵抗値の測定
得られた接続構造体の電極間の抵抗値を四端子法にて測定した。また、得られた接続構造体に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の抵抗値を四端子法にて測定した。
(3) Measurement of connection resistance value The resistance value between the electrodes of the obtained connection structure was measured by the four-terminal method. In addition, a reliability test (held at 80 ° C. in a high-temperature and high-humidity environment of 95% RH for 1000 hours) was performed on the obtained connection structure, and then the resistance value between the electrodes was measured by a four-terminal method. .

(4)アスペクト比の測定
熱硬化前の導電性微粒子、及び熱硬化後の導電性微粒子について、走査電子顕微鏡(SEM)により倍率5000倍で導電性微粒子の平均長径及び平均短径を測定し、アスペクト比を求めた。熱硬化後の導電性微粒子については、接続構造体断面を観察することにより接続構造体内部の導電性微粒子についてアスペクト比を求めた。
(4) Measurement of aspect ratio About the conductive fine particles before thermosetting and the conductive fine particles after thermosetting, the average major axis and the average minor axis of the conductive fine particles are measured at a magnification of 5000 times by a scanning electron microscope (SEM). The aspect ratio was determined. About the electroconductive fine particles after thermosetting, the aspect ratio was calculated | required about the electroconductive fine particles inside a connection structure by observing a connection structure cross section.

Figure 2006339101
Figure 2006339101

本発明によれば、フレキシブルな回路基板等を接続した際にも接続不良や変形を生じることのない導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することができる。 According to the present invention, there are provided conductive fine particles that do not cause connection failure or deformation even when a flexible circuit board or the like is connected, an anisotropic conductive material using the conductive fine particles, and a connection structure. Can be provided.

Claims (8)

加熱により熱硬化する熱硬化性基材微粒子と、前記熱硬化性基材微粒子の表面に形成された導電性金属層とからなることを特徴とする導電性微粒子。 Conductive fine particles comprising thermosetting substrate fine particles that are thermally cured by heating, and a conductive metal layer formed on the surface of the thermosetting substrate fine particles. 熱硬化性基材微粒子は、100℃以上の加熱により硬化するものであることを特徴とする請求項1記載の導電性微粒子。 2. The conductive fine particles according to claim 1, wherein the thermosetting substrate fine particles are cured by heating at 100 [deg.] C. or higher. 熱硬化前において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3000N/mm以下、圧縮変形回復率が40%以下であり、熱硬化後において、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3600N/mm以上、圧縮変形回復率が40%以上であることを特徴とする請求項1又は2記載の導電性微粒子。 Before thermosetting, the compression modulus (10% K value) when the particle diameter measured at 20 ° C. is displaced by 10% is 3000 N / mm 2 or less, and the compression deformation recovery rate is 40% or less. The compression elastic modulus (10% K value) when the particle diameter measured at 20 ° C. is displaced by 10% is 3600 N / mm 2 or more, and the compression deformation recovery rate is 40% or more. 2. Conductive fine particles according to 2. 熱硬化性基材微粒子は、架橋により熱硬化する樹脂を含有することを特徴とする請求項1、2又は3記載の導電性微粒子。 4. The conductive fine particles according to claim 1, 2 or 3, wherein the thermosetting substrate fine particles contain a resin that is thermoset by crosslinking. 架橋により熱硬化する樹脂は、樹脂中にラジカル重合性官能基が残存する樹脂であることを特徴とする請求項4記載の導電性微粒子。 The conductive fine particles according to claim 4, wherein the resin that is thermoset by crosslinking is a resin in which a radical polymerizable functional group remains in the resin. 架橋により熱硬化する樹脂は、樹脂中に開環重合性官能基と酸性又は塩基性官能基とを有する樹脂であることを特徴とする請求項4記載の導電性微粒子。 5. The conductive fine particle according to claim 4, wherein the resin that is thermoset by crosslinking is a resin having a ring-opening polymerizable functional group and an acidic or basic functional group in the resin. 請求項1、2、3、4、5又は6記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive fine particles according to claim 1 are dispersed in a resin binder. 請求項1、2、3、4、5又は6記載の導電性微粒子及び/又は請求項7記載の異方性導電材料を用いてなることを特徴とする接続構造体。
A connection structure comprising the conductive fine particles according to claim 1, 2, 3, 4, 5 or 6, and / or the anisotropic conductive material according to claim 7.
JP2005165463A 2005-06-06 2005-06-06 Conductive fine particles, anisotropic conductive material, and connection structure Active JP4674119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165463A JP4674119B2 (en) 2005-06-06 2005-06-06 Conductive fine particles, anisotropic conductive material, and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165463A JP4674119B2 (en) 2005-06-06 2005-06-06 Conductive fine particles, anisotropic conductive material, and connection structure

Publications (2)

Publication Number Publication Date
JP2006339101A true JP2006339101A (en) 2006-12-14
JP4674119B2 JP4674119B2 (en) 2011-04-20

Family

ID=37559478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165463A Active JP4674119B2 (en) 2005-06-06 2005-06-06 Conductive fine particles, anisotropic conductive material, and connection structure

Country Status (1)

Country Link
JP (1) JP4674119B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064350A (en) * 2010-09-14 2012-03-29 Sekisui Chem Co Ltd Connection structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153323A (en) * 1984-08-23 1986-03-17 Daicel Chem Ind Ltd Agent for low shrinkage and thermosetting resin composition having low shrinkage
JPH10182812A (en) * 1996-12-24 1998-07-07 Sumitomo Bakelite Co Ltd Norbornane cyclocarbonate resin composition and cured product
JPH11116566A (en) * 1997-10-14 1999-04-27 Sumitomo Bakelite Co Ltd Cyclic carbonate resin composition and its cured product
JP2003313304A (en) * 2002-04-22 2003-11-06 Sekisui Chem Co Ltd Conductive fine particle, its manufacturing method and bonding material for electronic component
WO2005004171A1 (en) * 2003-07-04 2005-01-13 Natoco Co., Ltd. Coated conductive particle, conductive material, anisotropic conductive adhesive and anisotropic conductive junction structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153323A (en) * 1984-08-23 1986-03-17 Daicel Chem Ind Ltd Agent for low shrinkage and thermosetting resin composition having low shrinkage
JPH10182812A (en) * 1996-12-24 1998-07-07 Sumitomo Bakelite Co Ltd Norbornane cyclocarbonate resin composition and cured product
JPH11116566A (en) * 1997-10-14 1999-04-27 Sumitomo Bakelite Co Ltd Cyclic carbonate resin composition and its cured product
JP2003313304A (en) * 2002-04-22 2003-11-06 Sekisui Chem Co Ltd Conductive fine particle, its manufacturing method and bonding material for electronic component
WO2005004171A1 (en) * 2003-07-04 2005-01-13 Natoco Co., Ltd. Coated conductive particle, conductive material, anisotropic conductive adhesive and anisotropic conductive junction structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064350A (en) * 2010-09-14 2012-03-29 Sekisui Chem Co Ltd Connection structure

Also Published As

Publication number Publication date
JP4674119B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
KR100722493B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film Using the Same
EP1426979A1 (en) COATED CONDUCTIVE PARTICLE&amp;comma; COATED CONDUCTIVE PARTICLE MANUFACTURING METHOD&amp;comma; ANISOTROPIC CONDUCTIVE MATERIAL&amp;comma; AND CONDUCTIVE CONNECTION STRUCTURE
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JP3739232B2 (en) Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles
JP6061443B2 (en) Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
JP2006269296A (en) Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP4902853B2 (en) Resin fine particles and conductive fine particles
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2007188727A (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP4674119B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP5535507B2 (en) Conductive particles and manufacturing method thereof
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP5046689B2 (en) Anisotropic conductive adhesive film
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
JP6044254B2 (en) Crosslinked polymer particle, conductive particle, anisotropic conductive material, and connection structure of circuit member
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP2005325383A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
JPH087658A (en) Anisotropic conductive adhesive film
JP2005325382A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R151 Written notification of patent or utility model registration

Ref document number: 4674119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3