JP2006332329A - 半導体レーザー装置 - Google Patents

半導体レーザー装置 Download PDF

Info

Publication number
JP2006332329A
JP2006332329A JP2005153861A JP2005153861A JP2006332329A JP 2006332329 A JP2006332329 A JP 2006332329A JP 2005153861 A JP2005153861 A JP 2005153861A JP 2005153861 A JP2005153861 A JP 2005153861A JP 2006332329 A JP2006332329 A JP 2006332329A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor laser
heat dissipation
laser element
dissipation block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005153861A
Other languages
English (en)
Inventor
Teruhiko Kuramachi
照彦 蔵町
Kazuhiko Nagano
和彦 永野
Yoshihiro Ujiie
善宏 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005153861A priority Critical patent/JP2006332329A/ja
Publication of JP2006332329A publication Critical patent/JP2006332329A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 半導体レーザー素子を放熱ブロックに固定してなる半導体レーザー装置において、半導体レーザー素子位置合わせのためのアライメントマークを放熱ブロックに高精度に形成可能とし、また放熱ブロックのコストも低く抑える。
【解決手段】 半導体レーザー素子1と、この半導体レーザー素子1をジャンクションダウン構造で固定したサブマウント2と、このサブマウント2を固定した放熱ブロック3とを備えてなる半導体レーザー装置において、AlN等の絶縁性セラミックから放熱ブロック3を形成する。
【選択図】 図1

Description

本発明は半導体レーザー装置、特に詳細には、半導体レーザー素子と、この半導体レーザー素子をジャンクションダウン構造で固定したサブマウントと、このサブマウントを固定した放熱ブロックとを備えてなる半導体レーザー装置に関するものである。
従来、例えば特許文献1に記載されているように、GaN系半導体レーザー素子等において、基板に対してP電極およびN電極を同じ側に形成する構造が採用されている。この種の半導体レーザー素子を実装するに当たっては、素子からの放熱性を高めるために、P電極およびN電極が形成された側の素子表面をヒートシンクに接合する、いわゆるジャンクションダウンと言われる構造が採用されることが多い。なお上記ヒートシンクは、大きな放熱ブロックに半導体レーザーを実装する上で、それら両者の間に介設されるサブマウントの形態を取ることが多い。
上述のように、半導体レーザー素子と、この半導体レーザー素子をジャンクションダウン構造で固定したサブマウントと、このサブマウントを固定した放熱ブロックとを備えてなる従来の半導体レーザー装置において、放熱ブロックの材料としては、これも放熱性を重視して、Cu(銅)やCu合金が適用されている。
特開2004−96062号公報
ところがCuやCu合金から放熱ブロックを作製する場合には、それらが良導電体であることから、コストが高くなるという問題が生じる。すなわち、放熱ブロック上には、半導体レーザー素子に給電するための電気配線層を形成しなければならないが、放熱ブロック材料が良導電体であると、その表面に、経時変化しない高絶縁性(比抵抗1MΩ・m以上)の誘電体膜を形成してから、その上に配線層を形成する必要が生じる。このような誘電体膜を形成することは技術的に困難であって、その成膜コストはかなり高くつくので、それが放熱ブロックのコストを押し上げることになる。
また、放熱ブロックに固定した複数の半導体レーザー素子と、同じく該放熱ブロックに固定したレンズ等の光学部品とを組み合わせての光モジュールを形成する場合は、半導体レーザー素子と光学部品とを高精度に位置合わせする必要がある。その場合は複数の半導体レーザー素子を、誤差±3μm以下程度の高い相対位置精度で実装することが求められ、そのためには、位置合わせの基準となるアライメントマークを放熱ブロックに形成することが不可欠となる。高精度のアライメントマークを形成する場合は通常、金属膜を形成し、それをリソグラフィにてエッチングしてマークが加工されるが、CuやCu合金からなる放熱ブロックにその種の加工を施すと、同時にブロック素材もエッチングされて部材表面が荒れ、かつ、マーク加工の精度も悪くなる。このような不具合を回避するために、放熱ブロックに機械加工によりマークを施すことも考えられているが、その場合はマークの認識精度が悪く、半導体レーザー素子の実装精度が低くなるという問題が認められている。
本発明は上記の事情に鑑みてなされたものであり、半導体レーザー素子の位置合わせのためのアライメントマークを放熱ブロックに高精度に形成することができ、また放熱ブロックのコストも低く抑えることができる半導体レーザー装置を提供することを目的とする。
本発明による半導体レーザー装置は、放熱ブロック材料として、従来使用されて来たCuあるいはCu合金に代えて絶縁性セラミックを用いることにより、上記課題を解決しようとするものである。
すなわち本発明の半導体レーザー装置は、より具体的には、半導体レーザー素子と、この半導体レーザー素子をジャンクションダウン構造で固定したサブマウントと、このサブマウントを固定した放熱ブロックとを備えてなる半導体レーザー装置において、放熱ブロックが絶縁性セラミックから形成されていることを特徴とするものである。
なお上記絶縁性セラミックとしては、線膨張係数が2.0〜6.0×10-6/℃の範囲にあるものを適用することが望ましい。さらに、上記絶縁性セラミックとしてより具体的には、窒化アルミニウム、炭化ケイ素または酸化アルミニウムを好適に用いることができる。
また、上記構成の本発明による半導体レーザー装置において、
前記半導体レーザー素子が、N型基板上に複数の半導体層が形成されるとともに、該層の基板と反対側の表面にP電極およびN電極が、前者が後者と比べて基板からより遠い状態に段差を付けて形成されてなるものであり、
この半導体レーザー素子が、前記電極が形成された表面側から半田で前記サブマウントに接合されている場合は、
N電極をヒートシンク側に接合する半田が、このN電極よりも大面積で、このN電極からP電極側にははみ出さないでP電極と反対側にはみ出したパターンとされ、
P電極をヒートシンク側に接合する半田が、このP電極よりも小面積で、P電極およびN電極の並び方向と略直交する方向に互いに間隔を置いて連なる複数のドット状部分からなるパターンとされていることが望ましい。
また、上記複数のドット状部分からなるパターンの代わりに、このような複数のドット状部分と該部分を連絡するそれらよりも細幅の部分とからなるパターンが採用されてもよい。
本発明の半導体レーザー装置においては、放熱ブロックが絶縁性セラミックから形成されているので、その表面に直接配線層を形成することができる。つまり、良導電体から放熱ブロックを形成する場合と異なって、放熱ブロック表面に成膜コストの高い高絶縁性の誘電体膜を形成することは不要であるので、放熱ブロックのコストが低く抑えられ、そこで本発明の半導体レーザー装置は従来装置と比べて低いコストで形成可能となる。
また絶縁性セラミックからなる放熱ブロックは、その上に形成された金属膜をエッチングする際に、同時にエッチングされることはない。そこで、半導体レーザー素子を位置決めするためのアライメントマークは、金属膜をエッチングする手法を適用して、高精度に形成可能となる。
また、上記絶縁性セラミックとして、特に線膨張係数が2.0〜6.0×10-6/℃の範囲にあるものが適用された場合、その線膨張係数は、半導体レーザー素子の一般的な材料の線膨張係数と近いものとなる。そこで、半導体レーザー素子および放熱ブロックが実装時に、両者接合用の半田を融解する熱を受けて温度変化したとき、両者間の熱膨張の違いにより半導体レーザー素子に発生する内部応力を低く抑えることができる。よって、このような線膨張係数を持つ絶縁性セラミックから放熱ブロックを形成してなる半導体レーザー装置は、上記内部応力による素子劣化が防止されて、高い信頼性を備えたものとなり得る。
なお、半導体レーザー素子をジャンクションダウン構造でサブマウントに接合する場合は、半導体レーザー素子のショートを招くことがある。これは、接合用の半田が、半導体レーザー素子の電極パターンの外まではみ出すことに起因している。
本発明者の研究によると、こうして電極パターンの外まではみ出した半田による半導体レーザー素子のショートは、大別して次の2つの状態から発生することが分かった。一つは、P電極とN電極の一方を接合するための半田が他方の電極側に流れ出して、その他方の電極まで到達することによるショートである。二つ目は、特にP電極接合用半田がP電極パターンの外まではみ出して半導体層の側面まで回り込み、それが半導体層中のN型半導体層まで到達することによるショートである。
以上の知見に鑑みて、請求項4、5に係る発明の半導体レーザー装置においては、半導体レーザー素子とヒートシンクとの接合強度は主にN電極の方の半田によって確保し、P電極の方では電気的導通を果たすことを主眼として、はみ出しの事態を極力回避できる半田パターンを採用したものである。
すなわちN電極接合用の半田は、N電極よりも大面積で、かつP電極と反対側にはみ出したパターンとされたことにより、該N電極とヒートシンクとを(つまり半導体レーザー素子とヒートシンクとを)十分な強度で接合可能となる。その一方、このN電極接合用の半田は、N電極からP電極側にははみ出さないでP電極と反対側にはみ出したパターンとされているので、P電極まで達してショートを招くことも確実に防止される。またこのN電極接合用の半田が、上述のようにP電極と反対側にはみ出して半導体層の側面に回り込んだとしても、N電極から基板までの間にP型半導体層は存在しないから、この回り込んだ半田によってショートの事態を招くことはない。
またP電極接合用の半田は、P電極よりも小面積で、P電極およびN電極の並び方向と略直交する方向に互いに間隔を置いて連なる複数のドット状部分からなるパターン、あるいは該複数のドット状部分と該部分を連絡するそれらよりも細幅の部分とからなるパターンとされているので、大きな接合強度は得られないものの、N電極側へのはみ出しも、また半導体層の側面まで回り込むようなはみ出しも抑えられ、それにより、半導体レーザー素子のショートが確実に防止される。
なお、ヒートシンクのP電極およびN電極を各々半田で接合する部分が、半導体レーザー素子のP電極およびN電極の段差を吸収する段部を有する形状とされている場合は、半田が融解しているときに半導体レーザー素子が大きく傾くことが回避されるので、融解状態の半田が流れ難くなり、ショート防止の効果がより一層高いものとなる。
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の一実施形態による半導体レーザー装置10の概略正面形状を示すものである。図示の通りこの半導体レーザー装置10は、一例としてGaN系半導体レーザー素子であるチップ状態の半導体レーザー素子1が、ヒートシンクであるAlN(窒化アルミニウム)サブマウント2を介してAlN放熱ブロック3上に実装されてなるものである。なお本実施形態では図2に示すように、AlN放熱ブロック3の上に複数(例えば7個)の半導体レーザー素子1が並べて取り付けられ、それらにより、複数のレーザービームを発するレーザー光源装置が構成されている。
またAlN放熱ブロック3の上面には、複数の半導体レーザー素子1に対して共通となる1つのN極用電気配線層18と、各半導体レーザー素子1に対して個別に形成されたP電極用電気配線層19と、半導体レーザー素子1を位置決めするためのアライメントマーク20とが形成されている。
半導体レーザー素子1は、サファイア基板1sの上に(図1中では下側になる)図示外のGaN層、およびN型半導体からなるコンタクト層1a等が順次形成され、該コンタクト層1aの一部領域の上にN電極1bが形成されるとともに、コンタクト層1aのそれ以外の領域上に、N型半導体からなる下部クラッド層並びに下部光ガイド層、活性層、P型半導体からなる上部光ガイド層並びにクラッド層、およびコンタクト層等が順次積層されてなる半導体層1cが形成され、この半導体層1cの上に(直接的にはP型半導体からなるコンタクト層の上に)P電極1dが形成されてなるものである。
この半導体レーザー素子1の実装は、下記の通りにしてなされる。本実施形態では、後述のように切断されてAlNサブマウント2を構成するAlN基板2sの表面が、研磨加工により、例えば厚さが0.25±0.02mm、表面粗さ:Raが0.05μm以下となるように仕上げられる。そしてこのAlN基板2sの下表面には、Ti/Pt/Auメタライズ層4が形成される。なおAlN基板2sとしては、通常熱伝導率が140W/mK以上、好ましくは170W/mK以上、さらに好ましくは200W/mK以上のものが用いられ、それにより良好な放熱性が確保される。
またAlN基板2sの上表面には、電極配線機能層としての1対のTi/Pt/Auメタライズ層5、15が形成される。これらのメタライズ層5、15は、例えばAlN基板2sの上表面全域にスパッタ成膜によりTi/Pt/Au膜を形成し、その上に所定形状のレジストをパターニングし、イオンミリングによりレジストの無い部分のTi/Pt/Au膜を除去する等によって形成される。
次に、メタライズ層5、15の上にそれぞれ濡れ改善層並びに高さ調整層として機能する、互いに厚さの異なるAu厚膜からなるメタライズ層6、16が形成される。これらのAuメタライズ層6、16の厚さの差は、例えば0.3±0.05μmとされる。そのように互いに厚さの異なるTi/Pt/Auメタライズ層6、16は、例えば一様な厚さでメタライズ層を形成した後、低くする部分をイオンミリングのようなドライプロセスあるいはエッチャントによるウェットプロセスによって除去する方法や、さらには、低くする方の層の高さ分だけメタライズした後、低くする部分をマスキングした上で再度メタライズする方法等を適用して形成することができる。
次に、これらのメタライズ層6、16上の半田が成膜される領域に、濡れ改善層としてのPt膜26、36がそれぞれ形成される。それらのPt膜26、36は、例えばリフトオフ法を用いて、スパッタによりパターニング成膜される。
次いで上記Pt膜26、36の上に、それぞれAuSn半田(以下、単に半田という)7、17が成膜される。P電極1dを接合する方の半田7は、例えば直径30±5μm、厚さ1.75±0.25μmの円形ドットが4個、半導体レーザー素子1の共振器軸方向(P電極1dおよびN電極1bの並び方向と直交する方向)に90μmピッチで並設されてなるパターンとされている。一方、N電極1bを接合する方の半田17は、一例として半導体レーザー素子1の共振器軸方向の長さが700μm、それと直角な方向の幅が350μmである長方形のパターンとされて、Pt膜36の表面全領域を覆うように形成される。なお半田7、17は、例えばAuとSnの二元蒸着法により、目的の組成比(例えばAu組成が73±10wt%)となるように成膜される。
その後AlN基板2sが切断されて、AlNサブマウント2が複数形成される。本実施形態においてAlNサブマウント2は基本的に、AlN基板2s、Ti/Pt/Auメタライズ層4、Ti/Pt/Auメタライズ層5、15、Auメタライズ層6、16およびPt膜26、36から構成されている。
次に、上述のようにして1個ずつに切断されたAlNサブマウント2の上に、外形が概略350×700×100μmのサイズに形成されているチップ状半導体レーザー素子1が、そのP電極1dが半田7の上に位置し、N電極1bが半田17の上に位置する状態に位置決め配置される。そして所定の荷重を加えることにより、半導体レーザー素子1がAlNサブマウント2に圧接され、この状態のままそれら全体が310℃に加熱される。それにより半田7、17が融解し、半導体レーザー素子1がP電極1dおよびN電極1b側からAlNサブマウント2に接合される。なお上記P電極1dおよびN電極1bは同一面に形成され、サイズは前者が150×600μm、後者が100×600μmとされている。
上記半導体レーザー素子1の位置決め配置に際しては、図1中にQで示す発光点およびそこから紙面に直角な方向に延びる導波路領域が、メタライズ層5および6と、メタライズ層15および16との間に構成されている溝状部分内に位置し、かつ、導波路領域からドット状半田7の中心までの距離が、P電極の幅つまり図1の左右方向寸法の約半分となる状態に、該素子1がP電極幅方向(導波路長さ方向と直角な方向)に位置決めされる。また該半導体レーザー素子1は、導波路長さ方向に関しては、その光出射端面がAlNサブマウント2の端面から100±30μm突き出す状態に(図2参照)位置決めされる。
またAlNサブマウント2には、互いに厚さが異なるAuメタライズ層6、16によって段部が形成されているので、半導体レーザー素子1のP電極1dとN電極1bとの段差は、この段部によって吸収される。
次いで、図1に示すように上表面にTi/Pt/Auメタライズ層8および濡れ改善層としてのPt層9が形成されているAlN放熱ブロック3を150℃に加熱し、その上に半田11を配置し、その上にTi/Pt/Auメタライズ層4を下にしてAlNサブマウント2を配置し、両者を200〜500gf(≒1.96〜4.9N)の力で圧接させながら300℃に加熱して半田11を融解させることにより、AlNサブマウント2がAlN放熱ブロック3に接合される。その後、P電極1dと電気的に導通可能となったメタライズ層5が前記P電極用電気配線層19に、またN電極1bと電気的に導通可能となったメタライズ層15が前記N極用電気配線層18に、それぞれワイヤーボンドによって接続される。
以上により、半導体レーザー素子1がAlNサブマウント2を介してAlN放熱ブロック3に実装される。これまでの説明から明らかな通り、本実施形態において半導体レーザー素子1は、サファイア基板1s側が上に位置する向きに配置され、素子形成面側(PN接合側)がAlN放熱ブロック3側に固定されて、いわゆるジャンクションダウン構造で実装がなされる。
なお、上記のようにAlNサブマウント2をAlN放熱ブロック3に接合させる際には、AlN放熱ブロック3に対してAlNサブマウント2を高い位置決め精度の下に所定位置に配することが必要であり、その際に前述のアライメントマーク20が位置決め基準として利用される。この位置決めは、例えば画像認識機能を備えた実装機にAlN放熱ブロック3をセットした後、AlNサブマウント2の半導体レーザー素子1が固定されていない部分をコレットにより吸着保持して、該AlNサブマウント2を実装機に供給し、その画像認識機能を利用して行うことができる。この画像認識機能はより詳しくは、ワークの表面画像を撮像するとともに、撮像されたワークの表面画像から、予め記憶手段に登録されたマーク画像の特徴と一致するマークをサーチ検出し、その検出されたマークについて、指定された特定位置からの位置を求める機能である。
次に、AlN放熱ブロック3の形成について詳しく説明する。まず、後述のように切断されてAlN放熱ブロック3を構成するAlN基板の表面が、研磨加工により、例えば厚さが8mm、表面粗さ:Raが0.05μm以下となるように仕上げられる。そしてこのAlN基板の上表面に、Ti/Pt/Au層がスパッタにより形成される。なおAlN基板の熱伝導率は140W/mKであり、良好な放熱性が確保される。
次に上記Ti/Pt/Au層の上に所定のレジストパターンが形成され、イオンミリングによりレジストの無い部分のTi/Pt/Au膜を除去することにより、図1に示したTi/Pt/Auメタライズ層8および、図2に示した電気配線層18、19並びにアライメントマーク20が形成される。そしてTi/Pt/Auメタライズ層8の上に、リフトオフによってPt層9が形成される。さらにその上に前述の半田11が、例えばAuとSnの二元蒸着法により、目的の組成比(例えばAu組成が73±10wt%)となるように成膜される。その後AlN基板が切断されて、AlN放熱ブロック3が複数形成される。
なお本実施形態においては、図2に示す通りAlN放熱ブロック3の前面3aに、ガラス製のレンズホルダ25が接着固定される。このレンズホルダ25はその上面に、複数の半導体レーザー素子1から射出されたレーザービームを各々平行光化するコリメートレンズが複数並設されてなるコリメートレンズアレイを接着固定するためのものである。AlN基板は、まず上記前面3aとなる部分で切断され、この切断面が表面粗さ:Ra=0.1〜0.2μmとなるように研磨された後、さらにこの切断面と直交する複数の面で切断されて、複数のAlN放熱ブロック3が形成される。
以上述べた通り本実施形態の半導体レーザー装置においては、放熱ブロック3が絶縁性セラミックであるAlNから形成されているので、その表面に直接電気配線層18、19を形成することができる。つまり、良導電体のCuやCu合金等から放熱ブロックを形成する場合と異なって、放熱ブロック表面に成膜コストの高い高絶縁性の誘電体膜を形成することは不要であるので、AlN放熱ブロック3のコストが低く抑えられ、ひいては半導体レーザー装置が従来装置と比べて低いコストで形成可能となる。
またAlN放熱ブロック3は、その上に形成された金属膜をエッチングする際に、同時にエッチングされることはない。そこで、複数の半導体レーザー素子1を位置決めするためのアライメントマーク20を、前述したようにTi/Pt/Au膜をイオンミリングにより除去する手法を採用して、高精度に形成可能となる。具体的には、CuやCu合金等の良伝導体から放熱ブロックが形成された場合、その表面に形成した金属膜を機械加工して得るアライメントマークの認識再現性の誤差は3μm程度であるが、本実施形態におけるアライメントマーク20の認識再現性の誤差は0.3μm程度まで低減される。それにより、例えば7個の半導体レーザー素子1の相対位置精度を誤差3μm程度まで高めることができるので、歩留まりが高く、長寿命の半導体レーザー光源が実現される。
ここで、上記の認識再現性について詳しく説明する。アライメントマーク20は前述した通り、実装機の画像認識機能を利用してAlNサブマウント2を(つまりは半導体レーザー素子1を)AlN放熱ブロック3に対して高精度に位置決めするために用いられる。その際、予め記憶手段に登録されているマーク画像と撮像されたアライメントマーク20とが比較されるが、アライメントマーク20の加工性が悪いと、そのアライメントマーク20と一致するものとして登録されているマーク画像との間に特徴部分形状のずれが生じることになる。このようなずれが大きいと、登録されているマーク画像と撮像されたアライメントマーク20とが同一のものである場合にも、特徴部分が不一致であると判定されてしまうので、特徴一致の判定基準を下げて比較をしなければならない。そうすると、アライメントマーク20の認識性があいまいになってしまうので、同一のアライメントマーク20を繰り返し撮像して、それらの撮像マークを登録されているマーク画像と比較したとき、本来はどの撮像マークも登録マーク画像に対して同一の相対位置で一致すると判定される筈であるのに、登録マーク画像と一致する相対位置が各撮像マーク毎に変わってしまうようになる。認識再現性の誤差が3μm程度有るということは、このような相対位置の変化が、長さにして最大3μm程度存在するということである。アライメントマーク20の加工性が良い場合は、上記特徴一致の判定基準を厳しくして撮像マークと登録マーク画像とを比較できるから、同一のアライメントマーク20を繰り返し撮像して、それらの撮像マークを登録されているマーク画像と比較させたとき、どの撮像マークも登録マーク画像に対して同一の相対位置で一致するようになる。
なお、良導電体のCu等から放熱ブロックを形成する場合、配線層形成のために形成される誘電体膜は、ヒートサイクルによって剥がれを招き、比抵抗1MΩ・m以上の条件を満たさないものが生じることもあるが、AlNからなる放熱ブロック3は、常にこの比抵抗1MΩ・m以上の条件を満足することができる。
また本実施形態においては、放熱ブロック3を構成する絶縁性セラミックとして、特に線膨張係数が4.5×10-6/℃である(これは2.0〜6.0×10-6/℃の範囲内にある)AlNを用いており、これはGaN系半導体レーザー素子1の材料であるGaNの線膨張係数5.6×10-6/℃と近いものとなっている。そこで、半導体レーザー素子1およびAlN放熱ブロック3が、実装時に半田を融解する熱を受けて温度変化したとき、両者間の熱膨張の違いにより半導体レーザー素子1に発生する内部応力を低く抑えることができる。具体的にこの内部応力は、10Mpa以下に抑えられる。そこで本実施形態の半導体レーザー装置は、上記内部応力による半導体レーザー素子1の劣化が防止されて、高い信頼性および高寿命を備えたものとなり得る。
また本実施形態では、前述した通り、AlN放熱ブロック3にガラス製レンズホルダ25が接着されるが、このガラスの線膨張係数は11×10-6/℃であって、AlN放熱ブロック3の線膨張係数はこれとも近いものとなっている。そこで、AlN放熱ブロック3およびレンズホルダ25が温度変化を受けた際に、両者を接合している例えば紫外線硬化型接着剤等の接着剤に加わる応力も小さく抑えることができ、この応力によって接着剤が剥がれる等の不具合を防止することができる。
なお、上記のようにレンズホルダ25をAlN放熱ブロック3の前面3aに固定保持するためには、該AlN放熱ブロック3は最低3mm以上の厚さが必要である。それに対して、AlN放熱ブロック3からの放熱性を高める上では、その厚さはより小さい方が好ましい。この2つの要求を満足させるためには、例えば半導体レーザー素子1が総消費電力0.5Wで駆動され、かつ、AlN放熱ブロック3がその下面の結露を防止できる20℃に温度調節されているときに、AlN放熱ブロック3の上面が25℃以下となるようにすることが望ましい。そのためには、AlN放熱ブロック3の熱伝導率を考慮すると、その厚さを10mm以下にする必要がある。
またAlN放熱ブロック3のレンズホルダ接着面となる前面3aは、そこに圧接配置されたレンズホルダ25との間に接着剤が良好に浸透するように加工されている必要がある。CuあるいはCu合金等から形成された放熱ブロックにおいては、接着面に切削による蟇目加工を行うことができるが、AlNから形成された放熱ブロック3においては、コストおよび加工性の点から、切削加工ではなく研磨加工にて側面加工を行わなくてはならない。そこで、研磨面の表面性を評価したところ、表面粗さRaが0.1μm以下の場合は十分接着剤が浸透せず、また、表面粗さRaが0.4μm以上の場合は、温度サイクル試験にてレンズホルダ25に±1μm以上の位置変動を生じることが判明した。以上の点に鑑みれば、AlN放熱ブロック3のレンズホルダ接着面の表面粗さRaは、0.1〜0.4μmの範囲にあることが望ましいと言える。
なお、本発明において放熱ブロックを形成する絶縁性セラミックとしては、上述したAlNに限らず、その他SiCやAl23等も好適に用いることができる。
また本発明は、半導体レーザー素子としてGaN系半導体レーザー素子を用いる場合に限らず、その他の半導体レーザー素子を用いる場合にも同様に適用可能であり、その場合にも上述の実施形態におけるのと同様の効果を奏する。
本発明の一実施形態による半導体レーザー装置を示す概略正面図 上記半導体レーザー装置を示す斜視図 上記半導体レーザー装置の一部を示す斜視図
符号の説明
1 半導体レーザー素子
2 AlNサブマウント
3 AlN放熱ブロック
7、17 AuSn半田
18、19 電気配線層
20 アライメントマーク

Claims (5)

  1. 半導体レーザー素子と、
    この半導体レーザー素子をジャンクションダウン構造で固定したサブマウントと、
    このサブマウントを固定した放熱ブロックとを備えてなる半導体レーザー装置において、
    前記放熱ブロックが絶縁性セラミックから形成されていることを特徴とする半導体レーザー装置。
  2. 前記絶縁性セラミックの線膨張係数が、2.0〜6.0×10-6/℃の範囲にあることを特徴とする請求項1記載の半導体レーザー装置。
  3. 前記絶縁性セラミックが窒化アルミニウム、炭化ケイ素または酸化アルミニウムであることを特徴とする請求項1または2記載の半導体レーザー装置。
  4. 前記半導体レーザー素子が、N型基板上に複数の半導体層が形成されるとともに、該層の基板と反対側の表面にP電極およびN電極が、前者が後者と比べて基板からより遠い状態に段差を付けて形成されてなるものであり、
    この半導体レーザー素子が、前記電極が形成された表面側から半田で前記サブマウントに接合されており、
    N電極をヒートシンク側に接合する半田が、このN電極よりも大面積で、このN電極からP電極側にははみ出さないでP電極と反対側にはみ出したパターンとされ、
    P電極をヒートシンク側に接合する半田が、このP電極よりも小面積で、P電極およびN電極の並び方向と略直交する方向に互いに間隔を置いて連なる複数のドット状部分からなるパターンとされていることを特徴とする請求項1から3いずれか1項記載の半導体レーザー装置。
  5. 前記半導体レーザー素子が、N型基板上に複数の半導体層が形成されるとともに、該層の基板と反対側の表面にP電極およびN電極が、前者が後者と比べて基板からより遠い状態に段差を付けて形成されてなるものであり、
    この半導体レーザー素子が、前記電極が形成された表面側から半田で前記サブマウントに接合されており、
    N電極をヒートシンク側に接合する半田が、このN電極よりも大面積で、このN電極からP電極側にははみ出さないでP電極と反対側にはみ出したパターンとされ、
    P電極をヒートシンク側に接合する半田が、このP電極よりも小面積で、P電極およびN電極の並び方向と略直交する方向に互いに間隔を置いて連なる複数のドット状部分と、該部分を連絡するそれらよりも細幅の部分とからなるパターンとされていることを特徴とする請求項1から3いずれか1項記載の半導体レーザー装置。
JP2005153861A 2005-05-26 2005-05-26 半導体レーザー装置 Withdrawn JP2006332329A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153861A JP2006332329A (ja) 2005-05-26 2005-05-26 半導体レーザー装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153861A JP2006332329A (ja) 2005-05-26 2005-05-26 半導体レーザー装置

Publications (1)

Publication Number Publication Date
JP2006332329A true JP2006332329A (ja) 2006-12-07

Family

ID=37553706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153861A Withdrawn JP2006332329A (ja) 2005-05-26 2005-05-26 半導体レーザー装置

Country Status (1)

Country Link
JP (1) JP2006332329A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186855A (ja) * 2007-01-26 2008-08-14 Nichia Chem Ind Ltd 半導体レーザ素子、半導体レーザ装置及びその製造方法
JP2013191787A (ja) * 2012-03-15 2013-09-26 Sony Corp 半導体レーザアレイおよび半導体レーザ装置
JP2015231038A (ja) * 2014-06-06 2015-12-21 株式会社フジクラ 半導体レーザ素子及び半導体レーザ素子の位置調整方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186855A (ja) * 2007-01-26 2008-08-14 Nichia Chem Ind Ltd 半導体レーザ素子、半導体レーザ装置及びその製造方法
JP2013191787A (ja) * 2012-03-15 2013-09-26 Sony Corp 半導体レーザアレイおよび半導体レーザ装置
JP2015231038A (ja) * 2014-06-06 2015-12-21 株式会社フジクラ 半導体レーザ素子及び半導体レーザ素子の位置調整方法

Similar Documents

Publication Publication Date Title
KR100688317B1 (ko) 반도체 발광소자, 그 제조방법 및 탑재기판
US7816155B2 (en) Mounted semiconductor device and a method for making the same
KR101142561B1 (ko) 레이저 광원 모듈
US20060180828A1 (en) Light source apparatus and fabrication method thereof
EP3583667B1 (en) Bonded laser with solder-free laser active stripe in facing relationship with submount
US10833474B2 (en) CTE-matched silicon-carbide submount with high thermal conductivity contacts
US20150349487A1 (en) Method For Producing Semiconductor Laser Elements And Semi-Conductor Laser Element
US20020172244A1 (en) Self-separating laser diode assembly and method
JPH0513820A (ja) 半導体装置
JP2005183558A (ja) 光部品搭載用パッケージ及びその製造方法
JP2002232061A (ja) 半導体レーザ装置の製造方法および半導体レーザ装置
JP2006332329A (ja) 半導体レーザー装置
JP2007013002A (ja) 半導体レーザー装置
JP2007103542A (ja) 半導体レーザ用サブマウントおよび半導体レーザ装置
JPH11220204A (ja) アレイ型半導体レーザ装置およびその製造方法
JP2002124729A (ja) 半導体レーザ素子の製造方法
JP2006332521A (ja) 半導体レーザー装置
JP2005005681A (ja) 半導体発光装置およびその製造方法
JP2006185931A (ja) 半導体レーザー装置およびその製造方法
JP5901752B2 (ja) 照明デバイスの製造方法および照明デバイス
KR102365887B1 (ko) 레이저 다이오드와 같은 구성 요소를 방열판에 연결하기 위한 어댑터 요소, 레이저 다이오드, 방열판 및 어댑터 요소를 포함하는 시스템 및 어댑터 요소를 제조하는 방법
JP2018113377A (ja) レーザー光源装置
JP2009158644A (ja) レーザモジュール
JP2008091768A (ja) 半導体レーザ装置および電子機器
KR20150002505U (ko) 전력용 반도체 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061209

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805