JP2006328050A - Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent - Google Patents

Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent Download PDF

Info

Publication number
JP2006328050A
JP2006328050A JP2006115836A JP2006115836A JP2006328050A JP 2006328050 A JP2006328050 A JP 2006328050A JP 2006115836 A JP2006115836 A JP 2006115836A JP 2006115836 A JP2006115836 A JP 2006115836A JP 2006328050 A JP2006328050 A JP 2006328050A
Authority
JP
Japan
Prior art keywords
metal complex
porous metal
metal salt
porous
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115836A
Other languages
Japanese (ja)
Other versions
JP5245208B2 (en
Inventor
Ami Ikura
亜美 伊倉
Mikio Kawai
幹夫 川合
Hitoshi Ito
仁 伊藤
Junji Katamura
淳二 片村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006115836A priority Critical patent/JP5245208B2/en
Publication of JP2006328050A publication Critical patent/JP2006328050A/en
Application granted granted Critical
Publication of JP5245208B2 publication Critical patent/JP5245208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a porous metal complex by which a reaction time can be shortened and the yield can be increased. <P>SOLUTION: The method for producing the porous metal complex composed of a three-dimensional porous skeleton structure of the metal complex having a center metal and an organic ligand having a carboxy group comprises preparing a salt of the organic ligand as a metal salt of a monocarboxylic acid, preparing a salt of the center metal as the second metal salt, and reacting the metal salt of the monocarboxylic acid with the second metal salt. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、多孔性金属錯体の製造方法、多孔性金属錯体、吸着材、分離材、ガス吸着材及び水素吸着材に関する。   The present invention relates to a method for producing a porous metal complex, a porous metal complex, an adsorbing material, a separating material, a gas adsorbing material, and a hydrogen adsorbing material.

近年、燃料電池車両に搭載するための固体高分子型燃料電池の開発競争が活発に繰り広げられている。このような燃料電池車両の実用化のために、低コスト、軽量で、かつ吸蔵密度の高い水素吸蔵材料を用いる効率的な水素吸蔵方法の開発が望まれている。   In recent years, development competition for solid polymer fuel cells to be installed in fuel cell vehicles has been actively developed. In order to put such a fuel cell vehicle into practical use, it is desired to develop an efficient hydrogen storage method using a hydrogen storage material that is low-cost, lightweight, and has a high storage density.

そこで、金属イオンと有機配位子からなる二次元格子構造を単位モチーフとして三次元的に積層した骨格構造を有する多孔性の有機金属錯体を用いた水素吸蔵材料が提案され(特許文献1、特許文献2参照)、メタン、窒素、水素などのガス吸着材として注目されている。中でも特に安息香酸、トルイル酸などのモノカルボン酸化合物を有機配位子に用いた多孔性の有機金属錯体がガス吸蔵材として好適であることが見出されている(特許文献3、非特許文献1、非特許文献2参照)。モノカルボン酸化合物を用いた有機金属錯体は圧力、温度などの外部環境に応じて柔軟に構造が変化する。このように柔軟な骨格構造を持つ金属錯体は、選択吸着性があり、ガス吸蔵材として好適である。
特開2001−348361号公報 米国特許出願公開第2003/0004364号明細書 特開2003−342260号公報 森和亮、大村哲賜、佐藤智彦,「カルボン酸金属錯体の気体吸蔵とその応用」,ペトロテック(PETROTECH),社団法人石油学会,2003年,第26巻,第2号,p.105−112 松田亮太郎、北川進,「新しい結晶性多孔質物質「金属錯体ポーラス材料」の構造と機能」,日本結晶学会誌,日本結晶学会,2004年,第46巻,第1号,p.53−58
Therefore, a hydrogen storage material using a porous organometallic complex having a skeleton structure in which a two-dimensional lattice structure composed of metal ions and organic ligands is three-dimensionally stacked as a unit motif has been proposed (Patent Document 1, Patent). It is attracting attention as a gas adsorbent such as methane, nitrogen and hydrogen. In particular, it has been found that a porous organometallic complex using a monocarboxylic acid compound such as benzoic acid or toluic acid as an organic ligand is suitable as a gas storage material (Patent Document 3, Non-Patent Document). 1, refer to Non-Patent Document 2). The structure of an organometallic complex using a monocarboxylic acid compound changes flexibly according to the external environment such as pressure and temperature. Such a metal complex having a flexible skeleton structure has a selective adsorption property and is suitable as a gas storage material.
JP 2001-348361 A US Patent Application Publication No. 2003/0004364 JP 2003-342260 A Mori Kazuaki, Omura Tetsuki, Sato Tomohiko, “Gas Occlusion of Carboxylic Acid Metal Complexes and Their Applications”, Petrotech, Petroleum Institute of Japan, 2003, Vol. 26, No. 2, p. 105- 112 Ryotaro Matsuda, Susumu Kitagawa, “Structure and Function of a New Crystalline Porous Material“ Metal Complex Porous Material ””, Journal of the Crystallographic Society of Japan, 2004, Vol.46, No.1, p.53- 58

しかしながら、有機配位子となるモノカルボン酸化合物は、有機金属錯体を得るためには使用される溶媒への溶解度が低く、溶媒必要量が多くなる。一度に合成できる量が限られ、これを増やそうとすると多量の溶媒を必要とする。また、モノカルボン酸化合物は金属塩との反応性が低く、有機金属錯体を得るためには長い反応時間が必要である。この反応時間を短くするために反応温度を上げると副反応が多くなり、目的とする有機金属錯体の収率が低くなることがある。中間体が不安定な化合物では、収率の低下がより顕著に見られ、コスト、量産性の点で問題がある。   However, the monocarboxylic acid compound serving as the organic ligand has low solubility in the solvent used to obtain the organometallic complex, and the amount of solvent required increases. The amount that can be synthesized at one time is limited, and increasing the amount requires a large amount of solvent. Monocarboxylic acid compounds have low reactivity with metal salts, and a long reaction time is required to obtain an organometallic complex. Increasing the reaction temperature to shorten the reaction time increases the number of side reactions, which may reduce the yield of the target organometallic complex. In a compound in which the intermediate is unstable, the yield is more markedly reduced, and there is a problem in terms of cost and mass productivity.

本発明は、上記課題を解決するためになされたものであり、本発明に係る多孔性金属錯体の製造方法は、中心金属とカルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造からなる多孔性金属錯体の製造方法であって、有機配位子の塩をモノカルボン酸金属塩として調製し、中心金属の塩を第2の金属塩として調製し、モノカルボン酸金属塩及び第2の金属塩を反応させることを含むことを特徴とする。   The present invention has been made to solve the above problems, and the method for producing a porous metal complex according to the present invention is a three-dimensional metal complex comprising a central metal and an organic ligand having a carboxylate group. Method for preparing a porous metal complex having a porous skeleton structure, wherein a salt of an organic ligand is prepared as a monocarboxylic acid metal salt, a salt of a central metal is prepared as a second metal salt, Reacting an acid metal salt and a second metal salt.

本発明に係る多孔性金属錯体は、上記本発明に係る多孔性金属錯体の製造方法により得られたことを特徴とする。   The porous metal complex according to the present invention is obtained by the method for producing a porous metal complex according to the present invention.

本発明に係る吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る分離材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The separating material according to the present invention includes the porous metal complex according to the present invention.

本発明に係るガス吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The gas adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る水素吸着材は、上記本発明に係るに係る多孔性金属錯体を含むことを特徴とする。   The hydrogen adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明によれば、モノカルボン酸金属塩は、モノカルボン酸よりも解離しやすく、溶解度が高いので、従来に比べて必要溶媒量が少なくてすみ、反応時間も短縮できる。また、モノカルボン酸金属塩が解離しやすいので、金属塩との反応性が高く、反応温度の低下、単位時間当たりの生産性及び収率の増加を期待でき、製造コストを削減できる。   According to the present invention, the monocarboxylic acid metal salt is more easily dissociated than the monocarboxylic acid and has a higher solubility, so that the required amount of solvent can be reduced compared to the conventional case, and the reaction time can be shortened. Moreover, since the monocarboxylic acid metal salt is easily dissociated, the reactivity with the metal salt is high, the reaction temperature can be lowered, the productivity per unit time can be expected to increase, and the production cost can be reduced.

本発明によれば、柔軟な多孔性金属錯体が、効率良く安価に得られる。   According to the present invention, a flexible porous metal complex can be obtained efficiently and inexpensively.

本発明によれば、本発明に係る多孔性金属錯体を用いるので、安価な吸着材、分離材、ガス吸着材及び水素吸着材を効率よく得られる。   According to the present invention, since the porous metal complex according to the present invention is used, an inexpensive adsorbent, separation material, gas adsorbent and hydrogen adsorbent can be obtained efficiently.

以下、本発明の実施の形態に係る多孔性金属錯体の製造方法、多孔性金属錯体、吸着材、分離材、ガス吸着材及び水素吸着材を説明する。   Hereinafter, a method for producing a porous metal complex, a porous metal complex, an adsorbing material, a separating material, a gas adsorbing material, and a hydrogen adsorbing material according to embodiments of the present invention will be described.

図1に、多孔性金属錯体の一例である安息香酸ロジウム(II)−ピラジンの三次元的な結晶構造1を模式的に示す。ここでは、中心金属2の間の結合には、有機配位子と架橋配位子の二種類を配位子として用いている。   FIG. 1 schematically shows a three-dimensional crystal structure 1 of rhodium (II) benzoate-pyrazine, which is an example of a porous metal complex. Here, two types of organic ligands and bridging ligands are used as the ligands for bonding between the central metals 2.

この安息香酸ロジウム(II)−ピラジン1は、ロジウムイオンを中心金属2とし、その周りに4つの安息香酸イオンが有機配位子3として配位されている。各安息香酸イオンは1つのカルボキシレート基を有し、このカルボキシレート基の2つの酸素原子を介してロジウムイオンに配位することにより、2つのロジウムイオンを4つの格子点とする環(空隙)が縮合した格子状の2次元構造が形成されている。各有機配位子はπ−π相互作用、水素結合などの比較的弱い結合により結合され、この二次元格子構造を単位モチーフ、つまり、基本的繰り返しパターンとして積層し、各二次元格子構造を架橋配位子4であるピラジンで架橋することにより三次元的多孔性骨格構造が形成される。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成している。   The rhodium benzoate (II) -pyrazine 1 has a rhodium ion as a central metal 2 around which four benzoate ions are coordinated as an organic ligand 3. Each benzoate ion has one carboxylate group, and is coordinated to the rhodium ion through two oxygen atoms of the carboxylate group, whereby a ring (void) having two rhodium ions as four lattice points. A lattice-like two-dimensional structure in which is condensed is formed. Each organic ligand is bonded by a relatively weak bond such as π-π interaction or hydrogen bond, and this two-dimensional lattice structure is stacked as a unit motif, that is, a basic repeating pattern, and each two-dimensional lattice structure is cross-linked. A three-dimensional porous skeleton structure is formed by crosslinking with the pyrazine which is the ligand 4. In this structure, a plurality of one-dimensional channels are formed because each gap row of a plurality of two-dimensional structures is aligned in a row.

このような構造を有する多孔性金属錯体は、カルボキシレート基を有する有機配位子の塩をモノカルボン酸金属塩として調製し、中心金属の塩を第2の金属塩として調製し、モノカルボン酸金属塩及び第2の金属塩を反応させることによって製造する。この場合には、有機配位子となる化合物を金属塩とすることで化合物が解離しやすくなり、溶媒に対して溶解度が高くなるので、従来に比べて必要溶媒量が少なくてすみ、反応時間も短縮できる。また、モノカルボン酸金属塩及び第2の金属塩は解離しやすいので反応性が高く、反応温度の低下、単位時間当たりの生産性及び収率の増加が期待でき、製造コストを削減できる。   A porous metal complex having such a structure is prepared by preparing a salt of an organic ligand having a carboxylate group as a monocarboxylic acid metal salt, and preparing a central metal salt as a second metal salt, Produced by reacting a metal salt and a second metal salt. In this case, since the compound that becomes the organic ligand is made into a metal salt, the compound is easily dissociated and the solubility in the solvent is increased. Can also be shortened. In addition, since the monocarboxylic acid metal salt and the second metal salt are easily dissociated, the reactivity is high, a reduction in the reaction temperature, an increase in productivity and yield per unit time can be expected, and the production cost can be reduced.

ここで、三次元的多孔性骨格構造を有する多孔性金属錯体の製造方法の一例として、図2(a)に本発明の実施の形態に係る化学反応を、図2(b)に従来例における化学反応を示す。図2(b)に示すように、従来例では有機配位子となる化合物としてモノカルボン酸を用い、溶媒中で中心金属となる金属塩と反応させている。この反応では、溶媒中におけるモノカルボン酸の解離定数が低く溶媒に対する溶解度が低いため、反応終了時間が長く、反応収率も低い。これに対し、図2(a)に示すように有機配位子となる化合物としてモノカルボン酸金属塩を使用した場合には、この化合物は溶媒に易溶であり、容易にイオン化して反応が進む。このため、従来例よりも短時間で反応が終了し、反応収率も従来例と比べて高くなる。なお、この例では、中心金属と有機配位子とからなる二次元格子構造を基本的繰り返しパターンとして積層し、更に有機配位子で架橋することにより三次元的多孔性骨格構造が形成される。   Here, as an example of a method for producing a porous metal complex having a three-dimensional porous skeleton structure, the chemical reaction according to the embodiment of the present invention is shown in FIG. 2 (a), and the conventional example in FIG. 2 (b). Indicates a chemical reaction. As shown in FIG. 2B, in the conventional example, a monocarboxylic acid is used as a compound that becomes an organic ligand, and is reacted with a metal salt that becomes a central metal in a solvent. In this reaction, since the dissociation constant of monocarboxylic acid in the solvent is low and the solubility in the solvent is low, the reaction completion time is long and the reaction yield is low. On the other hand, when a monocarboxylic acid metal salt is used as a compound that becomes an organic ligand as shown in FIG. 2 (a), this compound is readily soluble in a solvent and easily ionized to react. move on. For this reason, the reaction is completed in a shorter time than the conventional example, and the reaction yield is higher than that of the conventional example. In this example, a two-dimensional lattice structure composed of a central metal and an organic ligand is laminated as a basic repeating pattern, and further crosslinked with an organic ligand to form a three-dimensional porous skeleton structure. .

次に、モノカルボン酸金属塩及び第2の金属塩を反応させる際に、中心金属に2座配位可能な架橋配位子を加えた例、つまり、図1で示したように、中心金属の間の結合に有機配位子と架橋配位子の二種類を配位子として用いた多孔性金属錯体(以下、しばしば「多孔性架橋金属錯体」と呼ぶ。)を調製する例として、図3(a)に本発明の実施の形態に係る他の例の化学反応を、図3(b)に他の従来例における化学反応を示す。図3(b)に示すように、従来例では有機配位子となる化合物としてモノカルボン酸を用い、溶媒中で中心金属となる金属塩と反応させている。この反応では、溶媒中におけるカルボン酸の解離定数が低く溶解度が低いため、反応終了時間が長く、反応収率も低い。また、モノカルボン酸と金属塩とを反応させて二次元格子構造からなる金属錯体を形成し、この反応液に更に架橋配位子となる化合物を添加し、架橋金属錯体を形成する2段階の合成法を取る。このため、反応時間が増加し、反応収率が更に低くなる。これに対し、図3(a)に示すように、有機配位子となる化合物としてモノカルボン酸金属塩を使用した場合には、この反応では、中心金属となる銅イオンと安息香酸イオンとから形成される二次元格子構造からなる単位モチーフが形成されると同時に、中心金属に2座配位可能な架橋配位子としてピラジンを加えることにより、ピラジンが二次元格子構造間を架橋して三次元的多孔性骨格構造を形成する。この反応において、有機配位子となる化合物を金属塩とすることで化合物が解離しやすくなり、溶媒に対して溶解度が高くなるため、従来に比べて必要溶媒量が少なくてすみ、反応時間も短縮できる。また、第1及び第2の金属塩は解離しやすいので反応性が高く、反応温度の低下、単位時間当たりの生産性及び収率の増加がを期待でき、製造コストを削減できる。また、モノカルボン酸金属塩、第2の金属塩及び架橋配位子を同時に反応させるため、二次元格子構造からなる金属錯体の形成と同時に架橋配位子による架橋反応が進み、架橋金属錯体が形成する。このように、合成プロセスを1段階に短縮することができ、単位時間当たりの生産性及び収率の増加が期待でき、製造コストを削減できる。   Next, when reacting the monocarboxylic acid metal salt and the second metal salt, an example in which a bridging ligand capable of bidentate coordination is added to the central metal, that is, as shown in FIG. As an example of preparing a porous metal complex (hereinafter often referred to as “porous cross-linked metal complex”) using two kinds of ligands, an organic ligand and a cross-linked ligand, as a bond between 3 (a) shows another example of the chemical reaction according to the embodiment of the present invention, and FIG. 3 (b) shows another conventional chemical reaction. As shown in FIG. 3B, in the conventional example, a monocarboxylic acid is used as a compound that becomes an organic ligand, and is reacted with a metal salt that becomes a central metal in a solvent. In this reaction, since the dissociation constant of the carboxylic acid in the solvent is low and the solubility is low, the reaction completion time is long and the reaction yield is low. Further, a two-step process is performed in which a monocarboxylic acid and a metal salt are reacted to form a metal complex having a two-dimensional lattice structure, and a compound serving as a bridging ligand is further added to the reaction solution to form a cross-linked metal complex. Take the synthesis method. For this reason, reaction time increases and reaction yield becomes still lower. On the other hand, as shown in FIG. 3 (a), when a monocarboxylic acid metal salt is used as a compound that becomes an organic ligand, in this reaction, from a copper ion and a benzoate ion that become a central metal, A unit motif consisting of the two-dimensional lattice structure is formed, and at the same time, pyrazine is bridged between the two-dimensional lattice structures by adding pyrazine as a bridging ligand capable of bidentate coordination to the central metal. An original porous skeletal structure is formed. In this reaction, the compound that becomes the organic ligand is made into a metal salt, so that the compound is easily dissociated and the solubility in the solvent is increased. Can be shortened. Moreover, since the first and second metal salts are easily dissociated, the reactivity is high, and a reduction in reaction temperature, an increase in productivity and yield per unit time can be expected, and the manufacturing cost can be reduced. In addition, since the monocarboxylic acid metal salt, the second metal salt, and the bridging ligand are reacted at the same time, the crosslinking reaction with the bridging ligand proceeds simultaneously with the formation of the metal complex having a two-dimensional lattice structure. Form. In this way, the synthesis process can be shortened to one stage, productivity and yield per unit time can be expected, and manufacturing costs can be reduced.

モノカルボン酸金属塩は、アルカリ金属又はアルカリ土類金属の塩からなることが好ましい。モノカルボン酸金属塩がアルカリ金属又はアルカリ土類金属の塩である場合には、モノカルボン酸の脱プロトン化と比較して溶媒中でカルボキシレート基と金属イオンに解離しやすい。このため、モノカルボン酸金属塩は、モノカルボン酸よりも解離しやすく、溶解度が高いので、従来に比べて必要溶媒量が少なくてすみ、反応時間も短縮できる。また、モノカルボン酸金属塩が解離しやすいので、金属塩との反応性が高く、反応温度の低下、単位時間当たりの生産性及び収率の増加を期待でき、製造コストを削減できる。配位子に有機配位子、架橋配位子の2種類を用いた場合は、第1及び第2の金属塩は解離しやすいので反応性が高く、合成プロセスを1段階に短縮しても、単位時間当たりの生産性及び収率の増加が期待でき、製造コストを削減できる。   The monocarboxylic acid metal salt is preferably made of an alkali metal or alkaline earth metal salt. When the monocarboxylic acid metal salt is an alkali metal or alkaline earth metal salt, it easily dissociates into a carboxylate group and a metal ion in a solvent as compared with the deprotonation of the monocarboxylic acid. For this reason, the monocarboxylic acid metal salt is more easily dissociated than the monocarboxylic acid and has a higher solubility, so that the amount of solvent required is smaller than that of the conventional one, and the reaction time can be shortened. Moreover, since the monocarboxylic acid metal salt is easily dissociated, the reactivity with the metal salt is high, the reaction temperature can be lowered, the productivity per unit time can be expected to increase, and the production cost can be reduced. When two types of ligands, an organic ligand and a bridging ligand, are used, the first and second metal salts are easy to dissociate and are highly reactive. Even if the synthesis process is shortened to one step, Increase in productivity and yield per unit time can be expected, and the manufacturing cost can be reduced.

このモノカルボン酸金属塩は、次の一般式(I)
XOOC−R ・・・(I)
(ただし、Rはアルキル基、アルキニル基、アルケニル基又はアリール基を示す。Xはアルカリ金属又はアルカリ土類金属を示す。)で表されるモノカルボン酸誘導体を含むことが好ましい。この場合、アルキル基、アルキニル基、アルケニル基又はアリール基は置換基を有していても良い。
This monocarboxylic acid metal salt has the following general formula (I)
XOOC-R (I)
(Wherein R represents an alkyl group, an alkynyl group, an alkenyl group, or an aryl group. X represents an alkali metal or an alkaline earth metal). In this case, the alkyl group, alkynyl group, alkenyl group or aryl group may have a substituent.

上記の一般式(I)において、Xは、Na(ナトリウム)又はK(カリウム)を含むことが好ましい。XがNa又はKである場合には、従来に比べ、多孔性金属錯体が効率良く安価に得られる。また、Rはアリール基を含むことが好ましく、アリール基は置換基を有していても良い。   In the above general formula (I), X preferably contains Na (sodium) or K (potassium). When X is Na or K, a porous metal complex can be obtained efficiently and inexpensively as compared with the conventional case. R preferably contains an aryl group, and the aryl group may have a substituent.

このRは、次の一般式(II)〜(XII)

Figure 2006328050
This R is represented by the following general formulas (II) to (XII)
Figure 2006328050

のいずれか一つで表される置換基を含むことが好ましい。一般式(II)〜(XII)において、*の箇所にはカルボキシレート基が結合し、このカルボキシレート基の酸素原子が中心金属に配位することにより二次元格子構造を形成する。 It is preferable that the substituent represented by any one of these is included. In the general formulas (II) to (XII), a carboxylate group is bonded to a position *, and an oxygen atom of the carboxylate group is coordinated to the central metal to form a two-dimensional lattice structure.

第2の金属塩は、2〜4価の金属を含む金属群から選択された金属を含むことが好ましく、特に、第2の金属塩は2価の金属を含むことが好ましい。この場合には、第2の金属塩が溶媒で解離して金属がイオン化するため、モノカルボン酸金属塩との反応が促進される。このため、従来に比べ、反応時間も短縮でき、反応温度の低下、収率の増加が可能となる。なお、この第2の金属塩は、Cu、Zn、Mo、Ru、Cr、Ni及びRhを含む金属群から選択された金属を含むことがより好ましい。また、第2の金属塩は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩を含むことが好ましい。   The second metal salt preferably includes a metal selected from a metal group including a divalent to tetravalent metal. In particular, the second metal salt preferably includes a divalent metal. In this case, since the second metal salt is dissociated by the solvent and the metal is ionized, the reaction with the monocarboxylic acid metal salt is promoted. For this reason, compared with the past, reaction time can also be shortened, reaction temperature can be lowered, and yield can be increased. In addition, it is more preferable that this 2nd metal salt contains the metal selected from the metal group containing Cu, Zn, Mo, Ru, Cr, Ni, and Rh. Moreover, it is preferable that a 2nd metal salt contains the metal salt selected from the metal salt group containing nitrate, a sulfate, acetate, carbonate, and a formate.

モノカルボン酸金属塩の調製は、モノカルボン酸金属塩を第1の溶媒に溶解して第1の溶液を得ることを含み、第2の金属塩の調製は、第2の金属塩を第2の溶媒に溶解して第2の溶液を得ることを含み、反応は、第1及び第2の溶液を混合することを含む。第1及び第2の溶液を混合することにより、モノカルボン酸金属塩が解離すると共に第2の金属塩が解離して金属イオンが生成し、金属錯体が生成する。なお、モノカルボン酸金属塩の調製、第2の金属塩の調製及び反応のいずれか一つは、第1又は第2の溶液に超音波を照射することを含んでいてもよい。この場合には、モノカルボン酸金属塩と第2の金属塩との反応、又はモノカルボン酸金属塩と架橋配位子との反応が促進される。   The preparation of the monocarboxylic acid metal salt includes dissolving the monocarboxylic acid metal salt in a first solvent to obtain a first solution, and the preparation of the second metal salt includes converting the second metal salt to the second metal salt. And the reaction comprises mixing the first and second solutions. By mixing the first and second solutions, the monocarboxylic acid metal salt is dissociated and the second metal salt is dissociated to generate metal ions, thereby forming a metal complex. In addition, any one of the preparation of the monocarboxylic acid metal salt, the preparation of the second metal salt, and the reaction may include irradiating the first or second solution with ultrasonic waves. In this case, the reaction between the monocarboxylic acid metal salt and the second metal salt or the reaction between the monocarboxylic acid metal salt and the bridging ligand is promoted.

また、第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、アセトン及びアセトニトリルを含む溶媒群から選択された溶媒を含むことが好ましい。アルコールは、メタノール、エタノール、プロパノール等が使用可能である。これらの溶媒は、モノカルボン酸金属塩及び第2の金属塩を溶解するが、目的物である金属錯体を溶解しないため、効率良く目的物を得ることが可能となる。中でも、第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類を含む溶媒群から選択された溶媒を含むことが好ましい。また、第1及び第2の溶媒が同じ溶媒でも構わない。   In addition, one of the first and second solvents is from a solvent group including N, N′-dimethylformamide, N, N′-diethylformamide, water, alcohols, tetrahydrofuran, benzene, toluene, hexane, acetone, and acetonitrile. It is preferred to include a selected solvent. As the alcohol, methanol, ethanol, propanol or the like can be used. These solvents dissolve the monocarboxylic acid metal salt and the second metal salt, but do not dissolve the target metal complex, so that the target product can be obtained efficiently. Among these, one of the first and second solvents preferably includes a solvent selected from a solvent group including N, N′-dimethylformamide, N, N′-diethylformamide, water, and alcohols. Further, the first and second solvents may be the same solvent.

反応は、硝酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、炭酸ナトリウム、蟻酸ナトリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、炭酸カリウム及び蟻酸カリウムを含む金属塩群から選択された金属塩を副生成物として得ることを含むことが好ましい。これらの副生成物は反応速度が大きいため、モノカルボン酸金属塩と第2の金属塩の反応、又はモノカルボン酸金属塩と架橋配位子と第2の金属塩との反応が促進される。このため、反応時間の低下、反応温度の低下及び反応収率の増加が可能となる。生成した多孔性金属錯体は、8〜10のpHを有することが好ましい。pHが8〜10の範囲にある場合には、モノカルボン酸金属塩及び第2の金属塩が溶媒中で解離しやすくなるため溶媒への溶解度が上がり、反応が促進される。   The reaction comprises obtaining a metal salt selected from the group of metal salts including sodium nitrate, sodium sulfate, sodium acetate, sodium carbonate, sodium formate, potassium nitrate, potassium sulfate, potassium acetate, potassium carbonate and potassium formate as a by-product. It is preferable to include. Since these by-products have a high reaction rate, the reaction between the monocarboxylic acid metal salt and the second metal salt, or the reaction between the monocarboxylic acid metal salt, the bridging ligand, and the second metal salt is promoted. . For this reason, it becomes possible to decrease the reaction time, decrease the reaction temperature, and increase the reaction yield. The produced porous metal complex preferably has a pH of 8 to 10. When the pH is in the range of 8 to 10, the monocarboxylic acid metal salt and the second metal salt are easily dissociated in the solvent, so that the solubility in the solvent is increased and the reaction is promoted.

この多孔性金属錯体の製造方法により生成した多孔性金属錯体は、中心金属とカルボキシレート基を有する有機配位子とを備え、中心金属の周りに有機配位子が配位される。各有機配位子は1つのカルボキシレート基を有し、このカルボキシレート基の2つの酸素原子を介して中心金属に配位することにより、中心金属を格子点とする環(空隙)が縮合した格子状の二次元構造が形成される。各有機配位子はπ−π相互作用、水素結合などの比較的弱い結合により結合され、この二次元格子構造を単位モチーフ、つまり、基本的繰り返しパターンとして積層し、各二次元格子構造の単位モチーフを三次元方向へも積層又は、他の有機化合物で架橋することにより三次元的多孔性骨格構造が形成される。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成する。また、反応において、中心金属に2座配位可能な架橋配位子を加えた場合には多孔性架橋金属錯体が生成する。この多孔性架橋金属錯体は、中心金属とカルボキシレート基を有する有機配位子と中心金属に二座配位可能な架橋配位子を備え、中心金属の周りに有機配位子及び架橋配位子が配位される。各有機配位子は1つのカルボキシレート基を有し、各カルボキシレート基の2つの酸素原子を介して中心金属に配位することにより、中心金属を格子点とする環(空隙)が縮合した格子状の二次元構造が形成される。この二次元格子構造を単位モチーフ、つまり、基本的繰り返しパターンとして積層し、各二次元格子構造を更に架橋配位子で架橋することにより三次元的多孔性骨格構造が形成される。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成する。   The porous metal complex produced by this method for producing a porous metal complex includes a central metal and an organic ligand having a carboxylate group, and the organic ligand is coordinated around the central metal. Each organic ligand has one carboxylate group, and a ring (void) having the central metal as a lattice point is condensed by coordinating to the central metal via two oxygen atoms of the carboxylate group. A lattice-like two-dimensional structure is formed. Each organic ligand is bonded by a relatively weak bond such as π-π interaction or hydrogen bond, and this two-dimensional lattice structure is stacked as a unit motif, that is, a basic repeating pattern, and the unit of each two-dimensional lattice structure A three-dimensional porous skeleton structure is formed by laminating the motif in the three-dimensional direction or cross-linking with another organic compound. In this structure, each gap row of a plurality of two-dimensional structures is aligned in a row, so that a plurality of one-dimensional channels are formed. Further, in the reaction, when a bridging ligand capable of bidentate coordination is added to the central metal, a porous crosslinked metal complex is formed. This porous cross-linked metal complex has an organic ligand having a central metal and a carboxylate group, and a cross-linking ligand capable of bidentate coordination with the central metal, and the organic ligand and the cross-linked coordination around the central metal. Child is coordinated. Each organic ligand has one carboxylate group, and a ring (void) having the central metal as a lattice point is condensed by coordinating to the central metal via two oxygen atoms of each carboxylate group. A lattice-like two-dimensional structure is formed. This two-dimensional lattice structure is laminated as a unit motif, that is, a basic repeating pattern, and each two-dimensional lattice structure is further crosslinked with a bridging ligand to form a three-dimensional porous skeleton structure. In this structure, each gap row of a plurality of two-dimensional structures is aligned in a row, so that a plurality of one-dimensional channels are formed.

この多孔性金属錯体において、二次元格子構造の単位モチーフを積層した三次元的多孔性骨格構造は空隙を画成する骨格部であり、各空隙の細孔径は0.3〜2.0[nm]の大きさである。そして、この細孔径より小さな気体又は液体分子を骨格構造に取り込むことが可能である。また、有機配位子が比較的弱い結合により結合されているため、圧力、熱などの外部環境に応じてその結合がずれることにより骨格構造は可撓性を有した柔軟な構造を形成する。外部からの熱又は圧力によって骨格構造を変形させることにより、空隙は変形可能である。また、この多孔性金属錯体は上記副生成物を残留物として含む。上記副生成物を残留物として含む場合には、出発物質がモノカルボン酸金属塩と第2の金属塩であることが示される。   In this porous metal complex, a three-dimensional porous skeleton structure in which unit motifs of a two-dimensional lattice structure are stacked is a skeleton part that defines voids, and the pore diameter of each void is 0.3 to 2.0 [nm. ]. A gas or liquid molecule smaller than the pore diameter can be taken into the skeleton structure. In addition, since the organic ligand is bonded by a relatively weak bond, the bond is shifted according to an external environment such as pressure and heat, so that the skeleton structure forms a flexible structure having flexibility. The void can be deformed by deforming the skeletal structure by heat or pressure from the outside. Moreover, this porous metal complex contains the said by-product as a residue. When the by-product is included as a residue, it indicates that the starting materials are a monocarboxylic acid metal salt and a second metal salt.

以上説明した製造方法により、本発明の実施の形態に係る多孔性金属錯体の製造方法では、モノカルボン酸金属塩は、モノカルボン酸よりも解離しやすく、溶解度が高いので、従来に比べて必要溶媒量が少なくてすみ、反応時間も短縮できる。また、モノカルボン酸金属塩が解離しやすいので、金属塩との反応性が高く、反応温度の低下、単位時間当たりの生産性及び収率の増加を期待でき、製造コストを削減できる。配位子に有機配位子、架橋配位子の2種類を用いた場合は、モノカルボン酸金属塩及び第2の金属塩は解離しやすいので反応性が高く、合成プロセスを1段階に短縮しても、単位時間当たりの生産性及び収率の増加が期待でき、製造コストを削減できる。このように、この製造方法により多孔性金属錯体を効率良く安価に得られる。また、この製造方法により得られた多孔性金属錯体を用いて吸着材、分離材、ガス吸着材及び水素吸着材を製造した場合には、従来に比べて効率良く安価に得られる。   According to the production method described above, in the production method of the porous metal complex according to the embodiment of the present invention, the monocarboxylic acid metal salt is more easily dissociated than the monocarboxylic acid and has higher solubility, so that it is necessary compared to the conventional case. The amount of solvent is small and the reaction time can be shortened. Moreover, since the monocarboxylic acid metal salt is easily dissociated, the reactivity with the metal salt is high, the reaction temperature can be lowered, the productivity per unit time can be expected to increase, and the production cost can be reduced. When using two types of ligands, organic ligands and bridging ligands, the monocarboxylic acid metal salt and the second metal salt are easy to dissociate and are highly reactive, shortening the synthesis process to one step. Even so, an increase in productivity and yield per unit time can be expected, and the manufacturing cost can be reduced. Thus, a porous metal complex can be obtained efficiently and inexpensively by this production method. Moreover, when an adsorbent, a separating material, a gas adsorbent and a hydrogen adsorbent are produced using the porous metal complex obtained by this production method, it can be obtained efficiently and inexpensively compared to the conventional case.

以下、実施例1〜実施例12及び比較例1〜比較例2により本発明の実施の形態に係る多孔性金属錯体の製造方法について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, although the manufacturing method of the porous metal complex which concerns on embodiment of this invention is demonstrated more concretely by Example 1- Example 12 and Comparative Example 1- Comparative Example 2, the scope of the present invention is limited to these. Is not to be done.

1.試料の調製
実施例1 安息香酸銅−ピラジンの合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸銅を用いた。まず、安息香酸ナトリウム2.10[g]と酢酸銅一水和物2.60[g]を水/メタノール溶液に溶解して攪拌後室温にて18[時間]放置した。析出した固体を吸引濾過により回収し、粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で6[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅−ピラジンを得た。
1. Sample Preparation Example 1 Synthesis of Copper Benzoate-Pyrazine Sodium benzoate was used as the monocarboxylic acid derivative and copper acetate was used as the second metal salt. First, 2.10 [g] sodium benzoate and 2.60 [g] copper acetate monohydrate were dissolved in a water / methanol solution and stirred and allowed to stand at room temperature for 18 [hours]. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 6 hours, followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, copper benzoate-pyrazine benzoate.

実施例2 ナフトエ酸銅−ピラジンの合成
モノカルボン酸誘導体としてナフトエ酸のイオン交換により合成したナフトエ酸ナトリウムを、第2の金属塩として酢酸銅を用いた。ナフトエ酸ナトリウム2.60[g]と酢酸銅一水和物2.60[g]を水/メタノール溶液に溶解して攪拌後室温にて26[時間]放置した。析出した固体を吸引濾過により回収し、粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で10[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物であるナフトエ酸銅−ピラジンを得た。
Example 2 Synthesis of copper naphthoate-pyrazine Sodium naphthoate synthesized by ion exchange of naphthoic acid as a monocarboxylic acid derivative and copper acetate as a second metal salt were used. Sodium naphthoate 2.60 [g] and copper acetate monohydrate 2.60 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 26 [hours]. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 10 [hour], followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, copper naphthoate-pyrazine.

実施例3 安息香酸銅−ピラジンの合成
モノカルボン酸誘導体として安息香酸カリウムを、第2の金属塩として酢酸銅を用いた。安息香酸カリウム2.42[g]と酢酸銅一水和物2.60[g]を水/メタノール溶液に溶解して攪拌後室温にて26[時間]放置した。析出した固体を吸引濾過により回収し、粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で10[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅−ピラジンを得た。
Example 3 Synthesis of copper benzoate-pyrazine Potassium benzoate was used as the monocarboxylic acid derivative, and copper acetate was used as the second metal salt. Potassium benzoate 2.42 [g] and copper acetate monohydrate 2.60 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 26 [hours]. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 10 [hour], followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, copper benzoate-pyrazine benzoate.

実施例4 安息香酸ロジウム−ピラジンの合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸ロジウム二水和物を用いた。安息香酸ナトリウム2.10[g]と酢酸ロジウム二水和物2.60[g]を水/メタノール溶液に溶解して攪拌後室温にて26[時間]放置した。析出した固体を吸引濾過により回収し、粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で10[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物である安息香酸ロジウム−ピラジンを得た。
Example 4 Synthesis of rhodium benzoate-pyrazine Sodium benzoate was used as the monocarboxylic acid derivative, and rhodium acetate dihydrate was used as the second metal salt. Sodium benzoate 2.10 [g] and rhodium acetate dihydrate 2.60 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 26 [hours]. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 10 [hour], followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, rhodium benzoate-pyrazine.

実施例5 安息香酸銅の合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸銅を用いた。まず、安息香酸ナトリウム2.88[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて18[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅を得た。
Example 5 Synthesis of Copper Benzoate Sodium benzoate was used as the monocarboxylic acid derivative, and copper acetate was used as the second metal salt. First, sodium benzoate 2.88 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution and stirred, and then allowed to stand at room temperature for 18 [hours]. The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper benzoate.

実施例6 ナフトエ酸銅の合成
モノカルボン酸誘導体としてナフトエ酸のイオン交換により合成したナフトエ酸ナトリウムを、第2の金属塩として酢酸銅を用いた。ナフトエ酸ナトリウム3.88[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて24[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物であるナフトエ酸銅を得た。
Example 6 Synthesis of copper naphthoate Sodium naphthoate synthesized by ion exchange of naphthoic acid as a monocarboxylic acid derivative and copper acetate as a second metal salt were used. Sodium naphthoate 3.88 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 24 [hours]. The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper naphthoate.

実施例7 安息香酸銅の合成
モノカルボン酸誘導体として安息香酸カリウムを、第2の金属塩として酢酸銅を用いた。安息香酸カリウム3.20[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて24[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅を得た。
Example 7 Synthesis of copper benzoate Potassium benzoate was used as the monocarboxylic acid derivative, and copper acetate was used as the second metal salt. Potassium benzoate 3.20 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 24 [hours]. The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper benzoate.

実施例8 安息香酸ロジウムの合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸ロジウム二水和物を用いた。安息香酸ナトリウム2.88[g]と酢酸ロジウム二水和物4.78[g]を水/メタノール溶液に溶解して攪拌後室温にて24[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸ロジウムを得た。
Example 8 Synthesis of rhodium benzoate Sodium benzoate was used as the monocarboxylic acid derivative, and rhodium acetate dihydrate was used as the second metal salt. Sodium benzoate 2.88 [g] and rhodium acetate dihydrate 4.78 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 24 [hours]. The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, rhodium benzoate.

実施例9 安息香酸銅−ピラジンの合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸銅を用いた。まず、安息香酸ナトリウム2.88[g]とピラジン0.40[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて18[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅−ピラジンを得た。
Example 9 Synthesis of copper benzoate-pyrazine Sodium benzoate was used as the monocarboxylic acid derivative, and copper acetate was used as the second metal salt. First, sodium benzoate 2.88 [g], pyrazine 0.40 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution and stirred for 18 hours at room temperature. I left it alone. The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper benzoate-pyrazine.

実施例10 ナフトエ酸銅−ピラジンの合成
モノカルボン酸誘導体としてナフトエ酸のイオン交換により合成したナフトエ酸ナトリウムを、第2の金属塩として酢酸銅を用いた。ナフトエ酸ナトリウム3.85[g]とピラジン0.40[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて20[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物であるナフトエ酸銅−ピラジンを得た。
Example 10 Synthesis of Naphthoic Acid Copper-Pyrazine Sodium naphthoate synthesized by ion exchange of naphthoic acid as a monocarboxylic acid derivative and copper acetate as a second metal salt were used. Sodium naphthoate 3.85 [g], pyrazine 0.40 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 20 [hours]. . The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper naphthoate-pyrazine.

実施例11 安息香酸銅−ピラジンの合成
モノカルボン酸誘導体として安息香酸カリウムを、第2の金属塩として酢酸銅を用いた。安息香酸カリウム3.20[g]とピラジン0.40[g]と酢酸銅一水和物2.00[g]を水/メタノール溶液に溶解して攪拌後室温にて20[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅−ピラジンを得た。
Example 11 Synthesis of copper benzoate-pyrazine Potassium benzoate was used as the monocarboxylic acid derivative, and copper acetate was used as the second metal salt. Potassium benzoate 3.20 [g], pyrazine 0.40 [g] and copper acetate monohydrate 2.00 [g] were dissolved in a water / methanol solution and stirred and allowed to stand at room temperature for 20 [hours]. . The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, copper benzoate-pyrazine.

実施例12 安息香酸ロジウム−ピラジンの合成
モノカルボン酸誘導体として安息香酸ナトリウムを、第2の金属塩として酢酸ロジウム二水和物を用いた。安息香酸ナトリウム2.88 [g]とピラジン0.40[g]と酢酸ロジウム二水和物4.78[g]を水/メタノール溶液に溶解して攪拌後室温にて20[時間]放置した。析出した固体を吸引濾過により回収し、その後、80[℃]で2[時間]真空乾燥を行い、目的物である安息香酸ロジウム−ピラジンを得た。
Example 12 Synthesis of rhodium benzoate-pyrazine Sodium benzoate was used as the monocarboxylic acid derivative, and rhodium acetate dihydrate was used as the second metal salt. Sodium benzoate 2.88 [g], pyrazine 0.40 [g] and rhodium acetate dihydrate 4.78 [g] were dissolved in a water / methanol solution, stirred and allowed to stand at room temperature for 20 [hours]. . The precipitated solid was collected by suction filtration, and then vacuum-dried at 80 [° C.] for 2 [hours] to obtain the target product, rhodium benzoate-pyrazine.

比較例1 安息香酸銅−ピラジンの合成
モノカルボン酸として安息香酸を用いた。まず、安息香酸1.00[g]と酢酸銅一水和物0.50[g]をジエチレングリコールメチルエステルに溶解し、攪拌後室温にて36[時間]放置した。析出した固体を吸引濾過により回収し粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で10[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物である安息香酸銅−ピラジンを得た。
Comparative Example 1 Synthesis of Copper Benzoate-Pyrazine Benzoic acid was used as the monocarboxylic acid. First, 1.00 [g] benzoic acid and 0.50 [g] copper acetate monohydrate were dissolved in diethylene glycol methyl ester and allowed to stand at room temperature for 36 [hours] after stirring. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 10 [hour], followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, copper benzoate-pyrazine benzoate.

比較例2 安息香酸ロジウム−ピラジンの合成
モノカルボン酸として安息香酸を用いた。まず、安息香酸1.00[g]と酢酸ロジウム二水和物0.50[g]をジエチレングリコールメチルエステルに溶解し、攪拌後室温にて48[時間]放置した。析出した固体を吸引濾過により回収し粗結晶を得た。粗結晶をアセトンに溶解し、ピラジンを加えて室温で10[時間]攪拌し、吸引濾過を行った。その後、100[℃]で2[時間]真空乾燥を行い、目的物である安息香酸ロジウム−ピラジンを得た。
Comparative Example 2 Synthesis of rhodium benzoate-pyrazine Benzoic acid was used as a monocarboxylic acid. First, 1.00 [g] benzoic acid and 0.50 [g] rhodium acetate dihydrate were dissolved in diethylene glycol methyl ester, and allowed to stand at room temperature for 48 [hours] after stirring. The precipitated solid was collected by suction filtration to obtain crude crystals. The crude crystals were dissolved in acetone, pyrazine was added, and the mixture was stirred at room temperature for 10 [hour], followed by suction filtration. Then, vacuum drying was performed at 100 [° C.] for 2 [hours] to obtain the target product, rhodium benzoate-pyrazine.

2.ガス貯蔵能力の測定
実施例1及び実施例2で得られた試料について、ガス貯蔵能力を測定した。測定方法は、JIS H 7201の水素吸蔵放出測定試験に従った。試料を秤量して測定用耐圧試料管に入れ、200[℃]で3[時間]真空引きして試料管内に残留しているガスを放出させて、水素が吸蔵されていない原点を得た後測定を行った。測定温度は25[℃]とした。その後大気圧まで減圧して水素放出量の確認を行った。
2. Measurement of gas storage capacity The samples obtained in Example 1 and Example 2 were measured for gas storage capacity. The measurement method followed the hydrogen storage / release measurement test of JIS H7201. After weighing the sample and placing it in a pressure-resistant sample tube for measurement and evacuating it at 200 [° C.] for 3 [hours] to release the gas remaining in the sample tube and obtaining the origin where hydrogen is not occluded Measurements were made. The measurement temperature was 25 [° C.]. Thereafter, the pressure was reduced to atmospheric pressure, and the amount of hydrogen released was confirmed.

3.結晶構造の確認
合成した試料の結晶構造の確認にはマックスサイエンス社製X線回折装置(MXP 18VAHF)を用い、電圧40[kV]、電流300[mA]、X線波長CuKαで測定を行った。
3. Confirmation of crystal structure To confirm the crystal structure of the synthesized sample, an X-ray diffractometer (MXP 18VAHF) manufactured by Max Science was used, and measurement was performed at a voltage of 40 [kV], a current of 300 [mA], and an X-ray wavelength of CuKα. .

4.組成の確認
合成した試料の組成は、元素分析により確認した。炭素、水素、窒素の確認には、JPI-5S-65-2004を用い、金属元素の確認には、誘導結合プラズマ発光分光分析法を用いた。
4). Confirmation of composition The composition of the synthesized sample was confirmed by elemental analysis. JPI-5S-65-2004 was used for confirmation of carbon, hydrogen, and nitrogen, and inductively coupled plasma emission spectroscopy was used for confirmation of metal elements.

実施例1〜実施例12、比較例1及び比較例2において合成された金属錯体、有機配位子、第2の金属塩、架橋配位子、反応終了時間及び反応の収率を表1に、実施例1及び実施例2で得られた試料の水素吸蔵能を表2に示す。

Figure 2006328050
Figure 2006328050
Table 1 shows the metal complexes, organic ligands, second metal salts, bridging ligands, reaction completion times, and reaction yields synthesized in Examples 1 to 12, Comparative Examples 1 and 2. Table 2 shows the hydrogen storage capacity of the samples obtained in Example 1 and Example 2.
Figure 2006328050
Figure 2006328050

前述した図3を用いて、実施例9と比較例1の反応について説明する。図3(a)に実施例9における化学反応を、図3(b)に比較例1における化学反応を示す。図3(b)に示すように、比較例1ではカルボン酸としてモノカルボン酸である安息香酸を用い、ジエチレングリコールメチルエステル中で酢酸銅一水和物と反応させている。この反応では、ジエチレングリコールメチルエステル中における安息香酸の解離定数が低く、溶解度が低いため、表1に示すように反応終了時間が46[時間]と長く、その後に安息香酸と酢酸銅との反応物と架橋配位子であるピラジンを反応させていることから、反応収率も48[%]と低い。これに対し、実施例9ではモノカルボン酸誘導体である安息香酸ナトリウムを使用している。安息香酸ナトリウムは水/メタノール溶液に易溶であり、容易にイオン化して反応が進む。また、安息香酸ナトリウム、酢酸銅及び架橋配位子であるピラジンを同時に反応させるため、合成プロセスを1段階に短縮することができ、反応時間が18[時間]と短く、反応収率も85[%]と高かった。   The reaction of Example 9 and Comparative Example 1 will be described using FIG. 3 described above. FIG. 3A shows the chemical reaction in Example 9, and FIG. 3B shows the chemical reaction in Comparative Example 1. As shown in FIG. 3B, in Comparative Example 1, benzoic acid, which is a monocarboxylic acid, is used as the carboxylic acid and reacted with copper acetate monohydrate in diethylene glycol methyl ester. In this reaction, since the dissociation constant of benzoic acid in diethylene glycol methyl ester is low and the solubility is low, the reaction completion time is as long as 46 [hours] as shown in Table 1, and then the reaction product of benzoic acid and copper acetate. And pyrazine, which is a bridging ligand, are reacted with each other, and the reaction yield is as low as 48 [%]. On the other hand, Example 9 uses sodium benzoate, which is a monocarboxylic acid derivative. Sodium benzoate is readily soluble in a water / methanol solution and easily ionizes to promote the reaction. Moreover, since sodium benzoate, copper acetate and pyrazine which is a bridging ligand are reacted at the same time, the synthesis process can be shortened to one step, the reaction time is as short as 18 [hours], and the reaction yield is also 85 [ %] Was high.

図4に、実施例1、実施例9及び比較例1における反応速度と反応収率との関係を示す。ここで反応速度は、反応時間の逆数を示し、右にいく程反応速度が大きいことを示している。カルボン酸誘導体として金属塩を用いた実施例1と、モノカルボン酸を用いた比較例1とを比較すると、実施例1の反応速度は比較例1の1.9倍であり、反応収率は1.7倍であった。また、カルボン酸誘導体として金属塩を用い、更に、安息香酸ナトリウム、酢酸銅及び架橋配位子であるピラジンを同時に反応させた実施例9と比較例1とを比較すると、実施例9の反応速度は比較例1の2.6倍、反応収率は1.8倍となり、ピラジンを安息香酸ナトリウム及び酢酸銅と同時に反応させたことにより、実施例1よりも更に反応速度が速く、反応収率が良くなった。このように、モノカルボン酸誘導体としてモノカルボン酸金属塩を用い、更に、架橋配位子をモノカルボン酸金属塩の反応と同時に反応させた場合には、モノカルボン酸を使用するよりも反応時間が短かく、収率の増加が可能となることがわかった。   In FIG. 4, the relationship between the reaction rate and reaction yield in Example 1, Example 9, and Comparative Example 1 is shown. Here, the reaction rate indicates the reciprocal of the reaction time, and the reaction rate increases as it goes to the right. When Example 1 using a metal salt as a carboxylic acid derivative was compared with Comparative Example 1 using a monocarboxylic acid, the reaction rate of Example 1 was 1.9 times that of Comparative Example 1, and the reaction yield was It was 1.7 times. In addition, when Example 9 and Comparative Example 1 in which a metal salt was used as a carboxylic acid derivative and sodium benzoate, copper acetate, and pyrazine as a bridging ligand were reacted at the same time, the reaction rate of Example 9 was compared. Is 2.6 times that of Comparative Example 1 and the reaction yield is 1.8 times. By reacting pyrazine with sodium benzoate and copper acetate at the same time, the reaction rate is faster than Example 1, and the reaction yield is Improved. As described above, when a monocarboxylic acid metal salt is used as the monocarboxylic acid derivative and the cross-linking ligand is reacted simultaneously with the reaction of the monocarboxylic acid metal salt, the reaction time is longer than when the monocarboxylic acid is used. Was short, and it was found that the yield could be increased.

カルボン酸誘導体として安息香酸カリウムを用いた実施例3、第2の金属塩として酢酸ロジウムを用いた実施例4のいずれにおいても比較例1よりも収率が高くなっており、カルボン酸誘導体としてモノカルボン酸金属塩を使用したことによる効果がみられた。カルボン酸誘導体としてナフトエ酸を使用した場合には、実施例2と比較例2で得られた値を比較すると、実施例2は比較例2と比べて反応時間、収率共に1.33倍と高くなっており、ナフトエ酸金属塩を使用したことによる効果がみられた。架橋配位子を用いていない実施例5〜実施例8においても、カルボン酸誘導体としてモノカルボン酸金属塩を用いたことにより、いずれも反応時間が短く、反応収率が高かった。また、架橋配位子をモノカルボン酸金属塩と第2の金属塩とを反応させると同時に反応させた実施例9〜実施例12では、実施例1〜実施例4よりも更に反応時間が短かく、反応収率が高かった。   In both Example 3 using potassium benzoate as the carboxylic acid derivative and Example 4 using rhodium acetate as the second metal salt, the yield was higher than that in Comparative Example 1, and the monocarboxylic acid derivative was mono The effect by using carboxylic acid metal salt was seen. When naphthoic acid was used as a carboxylic acid derivative, the values obtained in Example 2 and Comparative Example 2 were compared, and Example 2 was 1.33 times in both reaction time and yield compared to Comparative Example 2. The effect was higher due to the use of naphthoic acid metal salt. In Examples 5 to 8 in which no bridging ligand was used, the reaction time was short and the reaction yield was high due to the use of the monocarboxylic acid metal salt as the carboxylic acid derivative. In Example 9 to Example 12 in which the bridging ligand was reacted with the monocarboxylic acid metal salt and the second metal salt at the same time, the reaction time was shorter than in Examples 1 to 4. Thus, the reaction yield was high.

実施例1の水素吸蔵能は10[MPa]で0.51[wt%]、35[MPa]で0.86[wt%]であり、実施例2の水素吸蔵能は10[MPa]で0.53[wt%]、35[MPa]で0.98[wt%]だった。このように、実施例1及び実施例2で得られた試料は高い水素吸蔵能を有することがわかった。   The hydrogen storage capacity of Example 1 is 0.51 [wt%] at 10 [MPa] and 0.86 [wt%] at 35 [MPa], and the hydrogen storage capacity of Example 2 is 0 at 10 [MPa]. It was 0.98 [wt%] at 53 [wt%] and 35 [MPa]. Thus, it was found that the samples obtained in Example 1 and Example 2 have a high hydrogen storage capacity.

実施例1〜実施例12、比較例1及び比較例2の結果より、本発明の実施の形態に係る多孔性金属錯体の製造方法では、モノカルボン酸金属塩はモノカルボン酸と比較して溶媒中で解離しやすく、溶解度が高いため、従来に比べて反応時間の短縮及び収率の増加が可能となることがわかった。また、架橋配位子をモノカルボン酸金属塩と第2の金属塩とを反応させると同時に反応させた場合には、更に反応時間が短かく、収率の増加が可能となることがわかった。   From the results of Examples 1 to 12, Comparative Example 1 and Comparative Example 2, in the method for producing a porous metal complex according to the embodiment of the present invention, the monocarboxylic acid metal salt is a solvent compared to the monocarboxylic acid. It was found that the reaction time can be shortened and the yield can be increased as compared with the conventional method because it is easily dissociated in the medium and has high solubility. Further, it was found that when the bridging ligand was reacted simultaneously with the monocarboxylic acid metal salt and the second metal salt, the reaction time was further shortened and the yield could be increased. .

以上、本実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the present embodiment has been described above, it should not be understood that the description and the drawings, which form part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art.

多孔性金属錯体の三次元構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure of a porous metal complex. (a)本発明の実施の形態に係る化学反応の一例を示す図である。(b)従来例における化学反応を示す図である。(A) It is a figure which shows an example of the chemical reaction which concerns on embodiment of this invention. (B) It is a figure which shows the chemical reaction in a prior art example. (a)本発明の実施の形態に係る他の例の化学反応を示す図である。(b)他の従来例における化学反応を示す。(A) It is a figure which shows the chemical reaction of the other example which concerns on embodiment of this invention. (B) A chemical reaction in another conventional example is shown. 多孔性金属錯体の製造における反応速度と反応収率との関係を示すグラフである。It is a graph which shows the relationship between the reaction rate and reaction yield in manufacture of a porous metal complex.

符号の説明Explanation of symbols

1 安息香酸ロジウム(II)−ピラジンの三次元的な結晶構造
2 中心金属
3 有機配位子
4 架橋配位子
1 Three-dimensional crystal structure of rhodium benzoate (II) -pyrazine 2 Central metal 3 Organic ligand 4 Bridged ligand

Claims (28)

中心金属とカルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造からなる多孔性金属錯体の製造方法であって、
前記有機配位子の塩をモノカルボン酸金属塩として調製し、
前記中心金属の塩を第2の金属塩として調製し、
前記モノカルボン酸金属塩及び第2の金属塩を反応させることを含むことを特徴とする多孔性金属錯体の製造方法。
A method for producing a porous metal complex comprising a three-dimensional porous skeleton structure of a metal complex comprising a central metal and an organic ligand having a carboxylate group,
Preparing a salt of the organic ligand as a monocarboxylic acid metal salt;
Preparing the central metal salt as a second metal salt;
A method for producing a porous metal complex comprising reacting the monocarboxylic acid metal salt and the second metal salt.
前記反応において、前記中心金属に2座配位可能な架橋配位子を加えることを特徴とする請求項1に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 1, wherein a bridging ligand capable of bidentate coordination is added to the central metal in the reaction. 前記モノカルボン酸金属塩は、アルカリ金属又はアルカリ土類金属の塩を含むことを特徴とする請求項1又は請求項2に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 1 or 2, wherein the monocarboxylic acid metal salt contains an alkali metal or alkaline earth metal salt. 前記モノカルボン酸金属塩は、次の一般式(I)
XOOC−R ・・・(I)
(ただし、Rはアルキル基、アルキニル基、アルケニル基又はアリール基を示し、Xはアルカリ金属又はアルカリ土類金属を示す。)で表されるモノカルボン酸誘導体を含むことを特徴とする請求項3に記載の多孔性金属錯体の製造方法。
The monocarboxylic acid metal salt has the following general formula (I)
XOOC-R (I)
(Wherein R represents an alkyl group, an alkynyl group, an alkenyl group, or an aryl group, and X represents an alkali metal or an alkaline earth metal). A method for producing the porous metal complex according to 1.
前記アルキル基、アルキニル基、アルケニル基又はアリール基は置換基を有することを特徴とする請求項4に記載の多孔性金属錯体の製造方法。   The said alkyl group, alkynyl group, alkenyl group, or aryl group has a substituent, The manufacturing method of the porous metal complex of Claim 4 characterized by the above-mentioned. 前記Xは、Na又はKを含むことを特徴とする請求項4又は請求項5に記載の多孔性金属錯体の製造方法。   The said X contains Na or K, The manufacturing method of the porous metal complex of Claim 4 or Claim 5 characterized by the above-mentioned. 前記Rはアリール基を含むことを特徴とする請求項4乃至請求項6のいずれか一項に記載の多孔性金属錯体の製造方法。   The said R contains an aryl group, The manufacturing method of the porous metal complex as described in any one of Claim 4 thru | or 6 characterized by the above-mentioned. 前記アリール基は置換基を有することを特徴とする請求項7に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 7, wherein the aryl group has a substituent. 前記Rは、次の一般式(II)〜(XII)
Figure 2006328050
のいずれか一つで表される置換基を含むことを特徴とする請求項4乃至請求項8のいずれか一項に記載の多孔性金属錯体の製造方法。
R represents the following general formulas (II) to (XII)
Figure 2006328050
The manufacturing method of the porous metal complex as described in any one of Claims 4 thru | or 8 characterized by including the substituent represented by any one of these.
前記第2の金属塩は、2〜4価の金属を含む金属群から選択された金属を含むことを特徴とする請求項1又は請求項2に記載の多孔性金属錯体の製造方法。   3. The method for producing a porous metal complex according to claim 1, wherein the second metal salt includes a metal selected from a metal group including a divalent to tetravalent metal. 前記第2の金属塩は2価の金属を含むことを特徴とする請求項10に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 10, wherein the second metal salt contains a divalent metal. 前記第2の金属塩はCu、Zn、Mo、Ru、Cr、Ni及びRhを含む金属群から選択された金属を含むことを特徴とする請求項11に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 11, wherein the second metal salt includes a metal selected from a metal group including Cu, Zn, Mo, Ru, Cr, Ni, and Rh. 前記第2の金属塩は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩を含むことを特徴とする請求項10乃至請求項12のいずれか一項に記載の多孔性金属錯体の製造方法。   The second metal salt includes a metal salt selected from a metal salt group including nitrate, sulfate, acetate, carbonate, and formate. A method for producing a porous metal complex according to Item. 前記モノカルボン酸金属塩の調製は、前記モノカルボン酸金属塩を第1の溶媒に溶解して第1の溶液を得ることを含み、
前記第2の金属塩の調製は、前記第2の金属塩を第2の溶媒に溶解して第2の溶液を得ることを含み、
前記反応は、前記第1及び第2の溶液を混合することを含むことを特徴とする請求項1又は請求項2に記載の多孔性金属錯体の製造方法。
The preparation of the monocarboxylic acid metal salt includes dissolving the monocarboxylic acid metal salt in a first solvent to obtain a first solution;
The preparation of the second metal salt includes dissolving the second metal salt in a second solvent to obtain a second solution;
The method for producing a porous metal complex according to claim 1 or 2, wherein the reaction includes mixing the first and second solutions.
前記モノカルボン酸金属塩の調製、前記第2の金属塩の調製及び前記反応のいずれか一つは、前記第1又は第2の溶液に超音波を照射することを含むことを特徴とする請求項14に記載の多孔性金属錯体の製造方法。   Any one of the preparation of the monocarboxylic acid metal salt, the preparation of the second metal salt, and the reaction includes irradiating the first or second solution with ultrasonic waves. Item 15. A method for producing a porous metal complex according to Item 14. 前記第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、アセトン及びアセトニトリルを含む溶媒群から選択された溶媒を含むことを特徴とする請求項14又は請求項15に記載の多孔性金属錯体の製造方法。   One of the first and second solvents is selected from a solvent group comprising N, N′-dimethylformamide, N, N′-diethylformamide, water, alcohols, tetrahydrofuran, benzene, toluene, hexane, acetone and acetonitrile. The method for producing a porous metal complex according to claim 14, comprising a solvent that has been prepared. 前記第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類を含む溶媒群から選択された溶媒を含むことを特徴とする請求項16に記載の多孔性金属錯体の製造方法。   The one of the first and second solvents includes a solvent selected from the group of solvents including N, N'-dimethylformamide, N, N'-diethylformamide, water, and alcohols. 16. A method for producing a porous metal complex according to 16. 前記反応は、硝酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、炭酸ナトリウム、蟻酸ナトリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、炭酸カリウム及び蟻酸カリウムを含む金属塩群から選択された金属塩を副生成物として得ることを含むことを特徴とする請求項1乃至請求項17のいずれか一項に記載の多孔性金属錯体の製造方法。   The reaction obtains as a by-product a metal salt selected from a group of metal salts including sodium nitrate, sodium sulfate, sodium acetate, sodium carbonate, sodium formate, potassium nitrate, potassium sulfate, potassium acetate, potassium carbonate and potassium formate. The manufacturing method of the porous metal complex as described in any one of Claims 1 thru | or 17 characterized by the above-mentioned. 前記多孔性金属錯体は、8〜10のpHを有することを特徴とする請求項1乃至請求項18のいずれか一項に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to any one of claims 1 to 18, wherein the porous metal complex has a pH of 8 to 10. 請求項1乃至請求項19のいずれか一項に係る多孔性金属錯体の製造方法により得られたことを特徴とする多孔性金属錯体。   A porous metal complex obtained by the method for producing a porous metal complex according to any one of claims 1 to 19. 前記多孔性金属錯体は、請求項18に係る副生成物を残留物として含むことを特徴とする請求項20に記載の多孔性金属錯体。   The porous metal complex according to claim 20, wherein the porous metal complex contains the by-product according to claim 18 as a residue. 前記骨格構造内に取り込まれた気体又は液体を有することを特徴とする請求項20又は請求項21に記載の多孔性金属錯体。   The porous metal complex according to claim 20 or 21, wherein the porous metal complex has a gas or a liquid taken into the skeleton structure. 前記骨格構造は可撓性を有することを特徴とする請求項20乃至請求項22のいずれか一項に記載の多孔性金属錯体。   The porous metal complex according to any one of claims 20 to 22, wherein the skeleton structure has flexibility. 前記骨格構造は、空隙を画成する骨格部を備え、前記骨格部を外部から熱又は圧力により変形させることにより前記空隙を変形可能なことを特徴とする請求項23に記載の多孔性金属錯体。   24. The porous metal complex according to claim 23, wherein the skeleton structure includes a skeleton part that defines a void, and the void can be deformed by deforming the skeleton part from the outside by heat or pressure. . 請求項20乃至請求項24のいずれか一項に係る多孔性金属錯体を含むことを特徴とする吸着材。   An adsorbent comprising the porous metal complex according to any one of claims 20 to 24. 請求項20乃至請求項24のいずれか一項に係る多孔性金属錯体を含むことを特徴とする分離材。   A separator comprising the porous metal complex according to any one of claims 20 to 24. 請求項20乃至請求項24のいずれか一項に係る多孔性金属錯体を含むことを特徴とするガス吸着材。   A gas adsorbent comprising the porous metal complex according to any one of claims 20 to 24. 請求項20乃至請求項24のいずれか一項に係る多孔性金属錯体を含むことを特徴とする水素吸着材。   A hydrogen adsorbent comprising the porous metal complex according to any one of claims 20 to 24.
JP2006115836A 2005-04-25 2006-04-19 Method for producing porous metal complex Active JP5245208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115836A JP5245208B2 (en) 2005-04-25 2006-04-19 Method for producing porous metal complex

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005126355 2005-04-25
JP2005126355 2005-04-25
JP2006115836A JP5245208B2 (en) 2005-04-25 2006-04-19 Method for producing porous metal complex

Publications (2)

Publication Number Publication Date
JP2006328050A true JP2006328050A (en) 2006-12-07
JP5245208B2 JP5245208B2 (en) 2013-07-24

Family

ID=37550118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115836A Active JP5245208B2 (en) 2005-04-25 2006-04-19 Method for producing porous metal complex

Country Status (1)

Country Link
JP (1) JP5245208B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328051A (en) * 2005-04-28 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2013112660A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Porous metal complex, method for producing porous metal complex, and gas occlusion material
JP2014028792A (en) * 2012-06-27 2014-02-13 Shoei Chem Ind Co Method for manufacturing composite
JPWO2019182137A1 (en) * 2018-03-22 2021-04-08 富士フイルム株式会社 Manufacturing method of metal-organic framework

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246936A (en) * 1991-08-08 1993-09-24 Tioxide Specialties Ltd Preparation of carboxylic acid titanium derivative
JP2001340754A (en) * 2000-06-05 2001-12-11 Taiyo Toyo Sanso Co Ltd Gaseous oxygen absorbing agent and method of producing the same
JP2004161675A (en) * 2002-11-13 2004-06-10 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbent material and separating material
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246936A (en) * 1991-08-08 1993-09-24 Tioxide Specialties Ltd Preparation of carboxylic acid titanium derivative
JP2001340754A (en) * 2000-06-05 2001-12-11 Taiyo Toyo Sanso Co Ltd Gaseous oxygen absorbing agent and method of producing the same
JP2004161675A (en) * 2002-11-13 2004-06-10 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbent material and separating material
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012065048; Brian Murphy et,al.: 'The synthesis, infra-red spectrum, room temperature crystal structure and hydrogen bonding network o' Transition Metal Chemistry 29, 2004, 394-399 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328051A (en) * 2005-04-28 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2013112660A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Porous metal complex, method for producing porous metal complex, and gas occlusion material
JP2014028792A (en) * 2012-06-27 2014-02-13 Shoei Chem Ind Co Method for manufacturing composite
JPWO2019182137A1 (en) * 2018-03-22 2021-04-08 富士フイルム株式会社 Manufacturing method of metal-organic framework
JP7038801B2 (en) 2018-03-22 2022-03-18 富士フイルム株式会社 Manufacturing method of metal-organic framework
US11407777B2 (en) 2018-03-22 2022-08-09 Fujifilm Corporation Metal-organic framework manufacturing method

Also Published As

Publication number Publication date
JP5245208B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5305278B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5176286B2 (en) Method for producing porous metal complex
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP4875576B2 (en) Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
JP5245208B2 (en) Method for producing porous metal complex
US11753731B2 (en) Two-dimensional metal-organic framework alloy photocatalysts
Yang et al. Synthesis, crystal structures, and luminescence properties of seven tripodal imidazole-based Zn/Cd (II) coordination polymers induced by tricarboxylates
JP5044815B2 (en) Method for producing metal complex
KR20140057057A (en) Novel cu-mof compounds, and selective co2 sorption and heterogeneous catalysts for transesterification comprising the same
JP2008266269A (en) Porous metal complex, method for producing porous metal complex, adsorbent, separating material, gas adsorbent, and catalyst material
Cui et al. Heterobimetallic scandium–group 10 metal complexes with LM→ Sc (LM= Ni, Pd, Pt) dative bonds
JP5292679B2 (en) Method for producing porous metal complex as hydrogen storage material
KR101676442B1 (en) Method for regeneration of metal-organic framework
WO2022050236A1 (en) Production method for alkaline earth metal formate
JP5213242B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, and hydrogen adsorbent
JP5403505B2 (en) Method for producing self-assembled metal complex crystals
CN114292412B (en) Covalent organic framework material based on quinoline ring connection and preparation method thereof
JP2016196417A (en) Porous polymer metal complex, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
JP5759175B2 (en) Gas adsorption material, precursor thereof, and method for producing gas adsorption material
JP5257973B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor
JP5137062B2 (en) Metal complex and gas storage material containing the same
JP2011101862A (en) Dissimilar-metal polynuclear complex and method for manufacturing catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3