JP2004161675A - Three-dimensional metal complex, adsorbent material and separating material - Google Patents

Three-dimensional metal complex, adsorbent material and separating material Download PDF

Info

Publication number
JP2004161675A
JP2004161675A JP2002329499A JP2002329499A JP2004161675A JP 2004161675 A JP2004161675 A JP 2004161675A JP 2002329499 A JP2002329499 A JP 2002329499A JP 2002329499 A JP2002329499 A JP 2002329499A JP 2004161675 A JP2004161675 A JP 2004161675A
Authority
JP
Japan
Prior art keywords
metal complex
salts
metal
adsorption
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002329499A
Other languages
Japanese (ja)
Other versions
JP4258608B2 (en
Inventor
Kenji Seki
建司 関
Susumu Kitagawa
進 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002329499A priority Critical patent/JP4258608B2/en
Publication of JP2004161675A publication Critical patent/JP2004161675A/en
Application granted granted Critical
Publication of JP4258608B2 publication Critical patent/JP4258608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent material capable of selectively adsorbing a substance such as a gas, or a separating material with high separating performance. <P>SOLUTION: A metal complex composed of 2,5-dihydroxybenzoic acid, at least one metal atom selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten atoms, and an organic ligand capable of assuming a bidentate configuration on the metal atom, is provided. The adsorbent or separating material comprises the metal complex. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、三次元型金属錯体、該錯体からなる吸着材および分離材に関する。
【0002】
【従来の技術】
圧力スイング法や温度スイング法により混合ガスからガスを分離する際には、一般に、分離吸着材として活性炭、ゼオライト等を使用し、その平衡吸着量または吸着速度の差により分離を行ってきた(例えば、非特許文献1参照)。
【0003】
しかしながら、平衡吸着量の差により分離する場合、これまでの吸着材では片方の物質(ガス)のみを選択的に吸着することができないため、分離係数が小さくなり、装置の大型化を招いていた。一方、吸着速度の差により分離する場合、ガスの種類によっては片方の物質(ガス)のみを吸着できるが、短時間で吸着と脱着を交互に行う必要があり、装置の大型化を招いていた。
【0004】
【非特許文献1】
竹内雍監修,「最新吸着技術便覧」,第1版,株式会社エヌ・ティー・エス,1999年1月11日,p.84−163
【0005】
【発明が解決しようとする課題】
本発明の課題は、ガス等の物質を選択的に吸着できる吸着材や、分離性能の高い分離材を提供することにある。
【0006】
【課題を解決するための手段】
吸着される物質の種類、吸着圧力または吸着温度等により細孔の大きさ(構造)が変化する新規な外場応答型金属錯体を用いることにより、圧力スイング法や温度スイング法のいずれにおいても、物質を選択的に吸着することができることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、下記に示すとおりの三次元型金属錯体、吸着材、分離材、吸着貯蔵装置および分離装置を提供するものである。
項1. 2,5−ジヒドロキシ安息香酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛およびタングステンから選択される少なくとも1種の金属と、該金属に2座配位可能な有機配位子とからなる金属錯体。
項2. 2,5−ジヒドロキシ安息香酸と、銅塩、ロジウム塩、クロム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタングステン塩から選択される少なくとも1種の金属塩と、2座配位可能な有機配位子とを、溶媒中で反応させ、析出させて得られる項1に記載の金属錯体。
項3. 有機配位子が、ピラジン、4,4’−ビピリジル、トランス−1,2−ビス(4−ピリジル)エチレン、4,4’−アゾピリジン、4,4’−ビピリジルエタン、4,4’−ビスビピリジルフェニレンおよびN−(4−ピリジル)イソニコチンアミドから選択される少なくとも1種である項1または2に記載の金属錯体。
項4. 有機配位子が4,4’−ビピリジルである項3に記載の金属錯体。
項5. 金属が銅であり、且つ有機配位子が4,4’−ビピリジルである項1〜4のいずれかに記載の金属錯体。
項6. 気体または液体を吸着する多孔性の金属錯体であって、吸着される物質の種類、吸着圧力または吸着温度により、金属錯体の集積構造が変化すると共に細孔の大きさが変化する項1〜5のいずれかに記載の金属錯体。
項7. 項1〜6のいずれかに記載の金属錯体からなる吸着材。
項8. 項1〜6のいずれかに記載の金属錯体からなる分離材。
項9. 二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、アンモニア、水蒸気または有機蒸気を分離するための項8に記載の分離材。
項10. メタン中の二酸化炭素、窒素中の二酸化炭素、空気中の酸素または天然ガス中のメタンを分離するための項8に記載の分離材。
項11. 項7に記載の吸着材を用いてなる吸着貯蔵装置。
項12. 項8〜10のいずれかに記載の分離材を用いてなる分離装置。
【0008】
【発明の実施の形態】
本発明の金属錯体は、2,5−ジヒドロキシ安息香酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛およびタングステンから選択される少なくとも1種の金属と、該金属に2座配位可能な有機配位子とからなる。
【0009】
[金属錯体の製造]
本発明の金属錯体を製造するには、2,5−ジヒドロキシ安息香酸と、銅塩、ロジウム塩、クロム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタングステン塩から選択される少なくとも1種の金属塩と、2座配位可能な有機配位子とを、溶媒中で数時間から数日間反応させて析出させる。
【0010】
例えば、金属塩の水溶液または有機溶液と、2,5−ジヒドロキシ安息香酸および2座配位可能な有機配位子を含有する有機溶液とを、混合して反応させると、結晶性の良い(純度が高くて吸着性能が良い)金属錯体を得ることができる。
【0011】
得られた混合液から吸引ろ過により沈殿物を集め、メタノールによる洗浄後、100℃程度で数時間真空乾燥することにより、外場応答型金属錯体の結晶を製造することができる。
【0012】
2,5−ジヒドロキシ安息香酸のモル濃度は、0.01〜0.5mol/lが好ましく、0.05〜0.3mol/lがより好ましい。
【0013】
金属塩としては、銅塩、ロジウム塩、クロム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタングステン塩から選択される金属塩を使用することができ、銅塩が好ましい。また、これらの金属塩としては、酢酸塩、ギ酸塩等の有機酸塩、硫酸塩、硝酸塩、炭酸塩等の無機酸塩を使用することができる。金属塩のモル濃度は、前記2,5−ジヒドロキシ安息香酸の1/2程度であり、0.002〜0.25mol/lが好ましく、0.02〜0.15mol/lがより好ましい。
【0014】
2座配位可能な有機配位子としては、ピラジン、4,4’−ビピリジル、トランス−1,2−ビス(4−ピリジル)エチレン、4,4’−アゾピリジン、4,4’−ビピリジルエタン、4,4’−ビスビピリジルフェニレンおよびN−(4−ピリジル)イソニコチンアミドから選択される有機配位子を使用することができ、4,4’−ビピリジルが好ましい。2座配位可能な有機配位子のモル濃度は、前記金属塩と同程度であり、0.002〜0.25mol/lが好ましく、0.02〜0.15mol/lがより好ましい。
【0015】
溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール等のアルコール類、ジエチルエーテル、ベンゼン、トルエン、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、ヘキサン、アセトン、水またはこれらの混合溶媒を使用することができる。
【0016】
反応温度としては、−20〜100℃程度が好ましく、常温でも反応する。
【0017】
[金属錯体の構造]
以上のようにして得られる本発明の金属錯体においては、図1に示すように、2,5−ジヒドロキシ安息香酸のカルボキシル基の2個の酸素とジヒドロキシ基の2個の酸素が金属イオン(例えば、銅イオン)に配位してなる一次元鎖が、2座配位可能な有機配位子(例えば、4,4’−ビピリジル)により連結された二次元シートが形成されている。そして、これらの二次元シートが集積することにより、パッキング構造をとる。a軸方向には、細孔(チャンネル)が生成している。図1においては、便宜的に、2,5−ジヒドロキシ安息香酸と、銅イオンと、有機配位子として4,4’−ビピリジルとからなる金属錯体の構造を概略的に示す。
【0018】
[吸脱着のメカニズム]
本発明の金属錯体は、二次元シート同士がかみ合うようなπスタックによるピラードレイヤー構造をとっており、a軸方向に細孔(チャンネル)を有している。
【0019】
例えば、本発明の金属錯体が、2,5−ジヒドロキシ安息香酸と、銅と、有機配位子として4,4’−ビピリジルとからなる場合には、この構造の細孔の大きさは約3.0×3.6Åであり、一般に、この細孔より大きな分子を吸着することはできない。しかしながら、本発明の金属錯体におけるこれらの二次元シートが集積したパッキング構造は、合成後の結晶においても変化できるため、その変化に伴って、細孔の構造や大きさも変化する。すなわち、物質を吸着する結果、構造的により安定なエネルギー状態を有する細孔構造に変化できる。この構造が変化する条件は、吸着される物質の種類、吸着圧力、吸着温度に依存する。このようにして細孔が大きくなり、大きくなった細孔に大きな分子が吸着される。吸着された物質が脱着した後は、元の構造に戻るので、細孔の大きさも元に戻る。図2に、吸着と脱着により集積構造と細孔の大きさが変化するメカニズムを模式的に示す。
【0020】
本発明の金属錯体は、吸着される物質の種類、吸着圧力または吸着温度により、金属錯体の集積構造が変化すると共に細孔の大きさが変化するので、一定の吸着圧力になると急に吸着が始まり、瞬時に最大吸着量に達する。吸着の開始圧力は、吸着される物質の種類または吸着温度により異なる。
【0021】
従って、本発明の金属錯体からなる吸着材は、ガス等の物質を選択的に吸着することができる。また、本発明の金属錯体からなる分離材は、分離性能が優れている。
【0022】
本発明の分離材は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素(メタン、エタン、エチレン等)、アンモニア、水蒸気または有機蒸気を、効率よく分離することができる。有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノール等のアルコール;トリメチルアミン等のアミン類;アセトアルデヒド等のアルデヒド類;炭素数5〜16の脂肪族炭化水素;ベンゼン、トルエン、アニリン等の芳香族化合物;アセトン、メチルエチルケトン等のケトン類;フッ化炭化水素;塩化メチル、クロロホルム等のハロゲン化炭化水素等が挙げられる。本発明の分離材は、特に、メタン中の二酸化炭素、窒素中の二酸化炭素、空気中の酸素、天然ガス中のメタン等を、圧力スイング法や温度スイング法により分離するのに適している。
【0023】
本発明の吸着材を用いてなる吸着貯蔵装置は、吸着効率が優れている。また、本発明の分離材を用いてなる分離装置は、分離効率が優れている。
【0024】
【発明の効果】
本発明の金属錯体からなる吸着材は、ガス等の物質を選択的に吸着することができる。
【0025】
また、本発明の金属錯体からなる分離材は、分離性能が優れている。特に、圧力スイング法や温度スイング法により分離するのに適している。
【0026】
【実施例】
以下に、本発明を実施例により詳細に説明する。本発明は、実施例に限定されるものではない。
【0027】
実施例1
硝酸銅0.13g(0.56mmol)を水20mlに溶解させ、2,5−ジヒドロキシ安息香酸0.50g(3.2mmol)と4,4’−ビピリジル0.13g(0.8mmol)をジエチルエーテル20mlに溶解させた。硝酸銅水溶液にジエチルエーテル溶液を拡散させながら、室温で1週間反応させた。その後、沈殿物を吸引濾過し、メタノールで3回洗浄し、真空下100℃で約2時間加熱乾燥し、目的物の金属錯体(単結晶)を0.18g得た。
【0028】
X線解析により得られたこの金属錯体の構造を、図3に示す。図3中の(a)、(b)、(c)は、それぞれ異なる方向から見た金属錯体の構造を示す。
【0029】
実施例2
実施例1で得られた金属錯体について、各種ガス(窒素、酸素、メタン、炭酸ガス(二酸化炭素))の室温(298K)における吸脱着等温線を、重量法により測定した。その結果を図4〜図7に示す。図から明らかなように、吸着の開始は吸着圧力に依存し、所定の圧力で急に吸着が始まり、瞬時に最大吸着量に達した。この圧力は、ガスの種類により異なった。
【0030】
この特徴を利用することにより、従来の分離材を用いる場合に比べて、分離性能の高いガス分離が可能である。
【0031】
実施例3
実施例1で得られた金属錯体について、メタンガスの各種温度における吸脱着等温線を、重量法により測定した。その結果を図8に示す。図8から、吸着の開始点(吸着が始まる圧力)は温度に依存し、制御可能であることが判明した。
【0032】
この特徴を利用することにより、従来の分離材を用いる場合に比べて、温度スイング法により分離性能の高いガス分離が可能である。
【図面の簡単な説明】
【図1】本発明の金属錯体の構造を示す概略図である。
【図2】本発明の金属錯体における吸脱着のメカニズムを示す模式図である。
【図3】X線解析により得られた本発明の金属錯体の構造を示す図である。
【図4】本発明の金属錯体についての窒素の吸脱着等温線を示すグラフである。
【図5】本発明の金属錯体についての酸素の吸脱着等温線を示すグラフである。
【図6】本発明の金属錯体についてのメタンの吸脱着等温線を示すグラフである。
【図7】本発明の金属錯体についての炭酸ガスの吸脱着等温線を示すグラフである。
【図8】本発明の金属錯体についての各種温度の吸脱着等温線を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional metal complex, an adsorbent comprising the complex, and a separating material.
[0002]
[Prior art]
When a gas is separated from a mixed gas by a pressure swing method or a temperature swing method, generally, activated carbon, zeolite, or the like is used as a separation adsorbent, and separation is performed based on a difference in the equilibrium adsorption amount or the adsorption speed (for example, , Non-Patent Document 1).
[0003]
However, in the case of separation based on the difference in the equilibrium adsorption amount, the conventional adsorbent cannot selectively adsorb only one substance (gas), so that the separation coefficient becomes small and the apparatus becomes large. . On the other hand, when separation is performed by the difference in adsorption speed, depending on the type of gas, only one substance (gas) can be adsorbed. .
[0004]
[Non-patent document 1]
Y. Takeuchi, “Handbook of Latest Adsorption Technology”, 1st edition, NTT Co., Ltd., January 11, 1999, p. 84-163
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an adsorbent capable of selectively adsorbing a substance such as a gas and a separating material having high separation performance.
[0006]
[Means for Solving the Problems]
By using a new external-field-responsive metal complex whose pore size (structure) changes depending on the type of substance to be adsorbed, the adsorption pressure, the adsorption temperature, etc., both the pressure swing method and the temperature swing method They have found that the substance can be selectively adsorbed, and have completed the present invention.
[0007]
That is, the present invention provides a three-dimensional metal complex, an adsorbent, a separation material, an adsorption storage device, and a separation device as described below.
Item 1. Metals comprising 2,5-dihydroxybenzoic acid, at least one metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and an organic ligand capable of bidentate coordination with the metal Complex.
Item 2. 2,5-dihydroxybenzoic acid, at least one metal salt selected from copper salts, rhodium salts, chromium salts, molybdenum salts, palladium salts, zinc salts and tungsten salts, and organic coordination capable of bidentate coordination Item 7. The metal complex according to item 1, which is obtained by reacting with an element in a solvent to cause precipitation.
Item 3. The organic ligand is pyrazine, 4,4′-bipyridyl, trans-1,2-bis (4-pyridyl) ethylene, 4,4′-azopyridine, 4,4′-bipyridylethane, 4,4′-bis Item 3. The metal complex according to Item 1 or 2, which is at least one selected from bipyridylphenylene and N- (4-pyridyl) isonicotinamide.
Item 4. Item 4. The metal complex according to item 3, wherein the organic ligand is 4,4′-bipyridyl.
Item 5. Item 5. The metal complex according to any one of Items 1 to 4, wherein the metal is copper and the organic ligand is 4,4′-bipyridyl.
Item 6. Items 1 to 5 which are porous metal complexes that adsorb a gas or a liquid, wherein the integrated structure of the metal complex changes and the pore size changes depending on the kind of the substance to be adsorbed, the adsorption pressure or the adsorption temperature. The metal complex according to any one of the above.
Item 7. Item 7. An adsorbent comprising the metal complex according to any one of Items 1 to 6.
Item 8. Item 7. A separation material comprising the metal complex according to any one of Items 1 to 6.
Item 9. Item 9. The separation material according to item 8, for separating carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, a hydrocarbon having 1 to 4 carbon atoms, ammonia, water vapor, or organic vapor.
Item 10. Item 9. The separation material according to item 8, for separating carbon dioxide in methane, carbon dioxide in nitrogen, oxygen in air or methane in natural gas.
Item 11. Item 8. An adsorption storage device using the adsorbent according to Item 7.
Item 12. Item 11. A separation device using the separation material according to any one of Items 8 to 10.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The metal complex of the present invention comprises 2,5-dihydroxybenzoic acid, at least one metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and an organic compound capable of bidentate coordination with the metal. And a ligand.
[0009]
[Production of metal complex]
To produce the metal complex of the present invention, 2,5-dihydroxybenzoic acid and at least one metal salt selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten salts And an organic ligand capable of bidentate coordination are reacted in a solvent for several hours to several days to precipitate.
[0010]
For example, when an aqueous solution or an organic solution of a metal salt and an organic solution containing 2,5-dihydroxybenzoic acid and an organic ligand capable of bidentate coordination are mixed and reacted, good crystallinity (purity) is obtained. Metal complex which has high adsorption performance and good adsorption performance).
[0011]
The precipitate is collected from the obtained mixture by suction filtration, washed with methanol, and then dried under vacuum at about 100 ° C. for several hours to produce a crystal of an external-field-responsive metal complex.
[0012]
The molar concentration of 2,5-dihydroxybenzoic acid is preferably from 0.01 to 0.5 mol / l, more preferably from 0.05 to 0.3 mol / l.
[0013]
As the metal salt, a metal salt selected from a copper salt, a rhodium salt, a chromium salt, a molybdenum salt, a palladium salt, a zinc salt and a tungsten salt can be used, and a copper salt is preferable. In addition, as these metal salts, organic acid salts such as acetate and formate, and inorganic acid salts such as sulfate, nitrate and carbonate can be used. The molar concentration of the metal salt is about 1/2 of the 2,5-dihydroxybenzoic acid, preferably 0.002 to 0.25 mol / l, more preferably 0.02 to 0.15 mol / l.
[0014]
Organic ligands capable of bidentate coordination include pyrazine, 4,4′-bipyridyl, trans-1,2-bis (4-pyridyl) ethylene, 4,4′-azopyridine, and 4,4′-bipyridylethane And 4,4'-bisbipyridylphenylene and N- (4-pyridyl) isonicotinamide, and 4,4'-bipyridyl is preferred. The molar concentration of the organic ligand capable of bidentate coordination is approximately the same as that of the metal salt, and is preferably 0.002 to 0.25 mol / l, more preferably 0.02 to 0.15 mol / l.
[0015]
As the solvent, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, alcohols such as methanol, ethanol, and propanol, diethyl ether, benzene, toluene, acetonitrile, tetrahydrofuran, dimethylformamide, hexane, acetone, water, and a mixed solvent thereof can be used.
[0016]
The reaction temperature is preferably about −20 to 100 ° C., and the reaction is performed even at room temperature.
[0017]
[Structure of metal complex]
In the metal complex of the present invention obtained as described above, as shown in FIG. 1, two oxygens of a carboxyl group and two oxygens of a dihydroxy group of 2,5-dihydroxybenzoic acid are converted into metal ions (for example, , A copper ion) to form a two-dimensional sheet in which one-dimensional chains coordinated by an organic ligand capable of bidentate coordination (for example, 4,4′-bipyridyl) are formed. Then, these two-dimensional sheets are stacked to form a packing structure. Micropores (channels) are generated in the a-axis direction. FIG. 1 schematically shows the structure of a metal complex composed of 2,5-dihydroxybenzoic acid, copper ions, and 4,4′-bipyridyl as an organic ligand for convenience.
[0018]
[Adsorption and desorption mechanism]
The metal complex of the present invention has a pillar layer structure of a π stack in which two-dimensional sheets are engaged with each other, and has pores (channels) in the a-axis direction.
[0019]
For example, when the metal complex of the present invention is composed of 2,5-dihydroxybenzoic acid, copper, and 4,4′-bipyridyl as an organic ligand, the pore size of this structure is about 3 μm. 0.0 × 3.6 °, and generally cannot adsorb molecules larger than these pores. However, the packing structure in which these two-dimensional sheets are accumulated in the metal complex of the present invention can be changed even in the crystal after synthesis, and accordingly, the structure and size of the pores are also changed. That is, as a result of adsorbing the substance, the structure can be changed to a pore structure having a more stable energy state. The conditions under which this structure changes depend on the type of the substance to be adsorbed, the adsorption pressure, and the adsorption temperature. In this way, the pores are enlarged, and large molecules are adsorbed on the enlarged pores. After the adsorbed substance is desorbed, the structure returns to its original structure, so that the pore size also returns to its original state. FIG. 2 schematically shows the mechanism by which the size of the integrated structure and the pores changes by adsorption and desorption.
[0020]
In the metal complex of the present invention, the accumulation structure of the metal complex changes and the pore size changes depending on the kind of the substance to be adsorbed, the adsorption pressure or the adsorption temperature. It starts and reaches the maximum adsorption amount instantly. The starting pressure of the adsorption differs depending on the type of the substance to be adsorbed or the adsorption temperature.
[0021]
Therefore, the adsorbent comprising the metal complex of the present invention can selectively adsorb substances such as gas. Further, the separation material comprising the metal complex of the present invention has excellent separation performance.
[0022]
The separation material of the present invention efficiently separates carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, etc.), ammonia, water vapor, or organic vapor. Can be. The organic vapor means a vaporized gas of an organic substance which is liquid at normal temperature and normal pressure. Examples of such organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine; aldehydes such as acetaldehyde; aliphatic hydrocarbons having 5 to 16 carbon atoms; aromatic compounds such as benzene, toluene and aniline; And ketones such as methyl ethyl ketone; fluorinated hydrocarbons; and halogenated hydrocarbons such as methyl chloride and chloroform. The separation material of the present invention is particularly suitable for separating carbon dioxide in methane, carbon dioxide in nitrogen, oxygen in air, methane in natural gas, and the like by a pressure swing method or a temperature swing method.
[0023]
The adsorption storage device using the adsorbent of the present invention has excellent adsorption efficiency. Further, the separation device using the separation material of the present invention has excellent separation efficiency.
[0024]
【The invention's effect】
The adsorbent comprising the metal complex of the present invention can selectively adsorb substances such as gas.
[0025]
Further, the separation material comprising the metal complex of the present invention has excellent separation performance. In particular, it is suitable for separation by a pressure swing method or a temperature swing method.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the embodiments.
[0027]
Example 1
0.13 g (0.56 mmol) of copper nitrate is dissolved in 20 ml of water, and 0.50 g (3.2 mmol) of 2,5-dihydroxybenzoic acid and 0.13 g (0.8 mmol) of 4,4′-bipyridyl are dissolved in diethyl ether. Dissolved in 20 ml. The reaction was allowed to proceed for 1 week at room temperature while diffusing the diethyl ether solution into the aqueous copper nitrate solution. Thereafter, the precipitate was filtered by suction, washed with methanol three times, and dried by heating at 100 ° C. for about 2 hours under vacuum to obtain 0.18 g of the target metal complex (single crystal).
[0028]
FIG. 3 shows the structure of this metal complex obtained by X-ray analysis. (A), (b), and (c) in FIG. 3 show the structures of the metal complex viewed from different directions.
[0029]
Example 2
With respect to the metal complex obtained in Example 1, adsorption and desorption isotherms of various gases (nitrogen, oxygen, methane, carbon dioxide (carbon dioxide)) at room temperature (298 K) were measured by a gravimetric method. The results are shown in FIGS. As is clear from the figure, the start of the adsorption depends on the adsorption pressure, and the adsorption starts suddenly at a predetermined pressure and reaches the maximum adsorption amount instantaneously. This pressure varied depending on the type of gas.
[0030]
By utilizing this feature, gas separation with higher separation performance can be performed than in the case where a conventional separation material is used.
[0031]
Example 3
With respect to the metal complex obtained in Example 1, adsorption and desorption isotherms of methane gas at various temperatures were measured by a gravimetric method. FIG. 8 shows the result. From FIG. 8, it has been found that the starting point of adsorption (pressure at which adsorption starts) depends on the temperature and can be controlled.
[0032]
By utilizing this feature, gas separation with high separation performance can be performed by the temperature swing method as compared with the case where a conventional separation material is used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the structure of a metal complex of the present invention.
FIG. 2 is a schematic diagram showing a mechanism of adsorption and desorption in the metal complex of the present invention.
FIG. 3 is a view showing the structure of the metal complex of the present invention obtained by X-ray analysis.
FIG. 4 is a graph showing a nitrogen adsorption / desorption isotherm for the metal complex of the present invention.
FIG. 5 is a graph showing adsorption and desorption isotherms of oxygen for the metal complex of the present invention.
FIG. 6 is a graph showing the adsorption / desorption isotherm of methane for the metal complex of the present invention.
FIG. 7 is a graph showing adsorption and desorption isotherms of carbon dioxide for the metal complex of the present invention.
FIG. 8 is a graph showing adsorption / desorption isotherms at various temperatures for the metal complex of the present invention.

Claims (12)

2,5−ジヒドロキシ安息香酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛およびタングステンから選択される少なくとも1種の金属と、該金属に2座配位可能な有機配位子とからなる金属錯体。A metal comprising 2,5-dihydroxybenzoic acid, at least one metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and an organic ligand capable of bidentate coordination with the metal Complex. 2,5−ジヒドロキシ安息香酸と、銅塩、ロジウム塩、クロム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタングステン塩から選択される少なくとも1種の金属塩と、2座配位可能な有機配位子とを、溶媒中で反応させ、析出させて得られる請求項1に記載の金属錯体。2,5-dihydroxybenzoic acid, at least one metal salt selected from copper salts, rhodium salts, chromium salts, molybdenum salts, palladium salts, zinc salts and tungsten salts, and organic coordination capable of bidentate coordination The metal complex according to claim 1, wherein the metal complex is obtained by reacting with an element in a solvent to cause precipitation. 有機配位子が、ピラジン、4,4’−ビピリジル、トランス−1,2−ビス(4−ピリジル)エチレン、4,4’−アゾピリジン、4,4’−ビピリジルエタン、4,4’−ビスビピリジルフェニレンおよびN−(4−ピリジル)イソニコチンアミドから選択される少なくとも1種である請求項1または2に記載の金属錯体。The organic ligand is pyrazine, 4,4′-bipyridyl, trans-1,2-bis (4-pyridyl) ethylene, 4,4′-azopyridine, 4,4′-bipyridylethane, 4,4′-bis The metal complex according to claim 1, wherein the metal complex is at least one selected from bipyridylphenylene and N- (4-pyridyl) isonicotinamide. 有機配位子が4,4’−ビピリジルである請求項3に記載の金属錯体。The metal complex according to claim 3, wherein the organic ligand is 4,4'-bipyridyl. 金属が銅であり、且つ有機配位子が4,4’−ビピリジルである請求項1〜4のいずれかに記載の金属錯体。The metal complex according to any one of claims 1 to 4, wherein the metal is copper and the organic ligand is 4,4'-bipyridyl. 気体または液体を吸着する多孔性の金属錯体であって、吸着される物質の種類、吸着圧力または吸着温度により、金属錯体の集積構造が変化すると共に細孔の大きさが変化する請求項1〜5のいずれかに記載の金属錯体。A porous metal complex for adsorbing a gas or a liquid, wherein the integrated structure of the metal complex changes and the pore size changes depending on the kind of the substance to be adsorbed, the adsorption pressure or the adsorption temperature. 5. The metal complex according to any one of 5. 請求項1〜6のいずれかに記載の金属錯体からなる吸着材。An adsorbent comprising the metal complex according to claim 1. 請求項1〜6のいずれかに記載の金属錯体からなる分離材。A separating material comprising the metal complex according to claim 1. 二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、アンモニア、水蒸気または有機蒸気を分離するための請求項8に記載の分離材。The separation material according to claim 8, for separating carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, a hydrocarbon having 1 to 4 carbon atoms, ammonia, water vapor, or organic vapor. メタン中の二酸化炭素、窒素中の二酸化炭素、空気中の酸素または天然ガス中のメタンを分離するための請求項8に記載の分離材。9. The separation material according to claim 8, for separating carbon dioxide in methane, carbon dioxide in nitrogen, oxygen in air or methane in natural gas. 請求項7に記載の吸着材を用いてなる吸着貯蔵装置。An adsorption storage device using the adsorbent according to claim 7. 請求項8〜10のいずれかに記載の分離材を用いてなる分離装置。A separation device comprising the separation material according to claim 8.
JP2002329499A 2002-11-13 2002-11-13 Three-dimensional metal complex, adsorbent and separation material Expired - Fee Related JP4258608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329499A JP4258608B2 (en) 2002-11-13 2002-11-13 Three-dimensional metal complex, adsorbent and separation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329499A JP4258608B2 (en) 2002-11-13 2002-11-13 Three-dimensional metal complex, adsorbent and separation material

Publications (2)

Publication Number Publication Date
JP2004161675A true JP2004161675A (en) 2004-06-10
JP4258608B2 JP4258608B2 (en) 2009-04-30

Family

ID=32807475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329499A Expired - Fee Related JP4258608B2 (en) 2002-11-13 2002-11-13 Three-dimensional metal complex, adsorbent and separation material

Country Status (1)

Country Link
JP (1) JP4258608B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095435A1 (en) * 2005-03-10 2006-09-14 Fujitsu Limited Crosslinking ligand, metal complex and metal complex integrated structure
JP2006328050A (en) * 2005-04-25 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2007063448A (en) * 2005-08-31 2007-03-15 Kyoto Univ Ion conductive material using carboxy group-containing coordination polymer
JP2007204446A (en) * 2006-02-03 2007-08-16 Showa Denko Kk Metal complex and method for recovering rare gas by using the same
JP2008055326A (en) * 2006-08-31 2008-03-13 National Institute Of Advanced Industrial & Technology Membrane and method for separation of organic compound
JP2008124164A (en) * 2006-11-10 2008-05-29 Sony Corp Semiconductor device and its manufacturing method
JP2008247884A (en) * 2007-03-08 2008-10-16 Sumitomo Chemical Co Ltd Porous organometallic complex, method for producing the same and occlusion method and separation method of unsaturated organic molecule by using the same
JP2009519116A (en) * 2005-11-14 2009-05-14 ビーエーエスエフ ソシエタス・ヨーロピア Porous metal organic framework material containing another polymer
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
WO2010021345A1 (en) 2008-08-19 2010-02-25 株式会社クラレ Metal complex and manufacturing method therefor
WO2010035561A1 (en) * 2008-09-29 2010-04-01 日本碍子株式会社 Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
JP2010070545A (en) * 2008-08-19 2010-04-02 Kuraray Co Ltd Metal complex and method for producing the same
JP2010070546A (en) * 2008-08-19 2010-04-02 Kuraray Co Ltd Metal complex and method for producing the same
JP2010516869A (en) * 2007-01-24 2010-05-20 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Crystalline 3D- and 2D-covalent organic frameworks
JP2010158617A (en) * 2009-01-07 2010-07-22 Japan Science & Technology Agency Organometallic complex, and molding and method for separating gas
JP2011093894A (en) * 2009-09-30 2011-05-12 Kuraray Co Ltd Metal complex, and separating material comprising the same
WO2011105521A1 (en) 2010-02-24 2011-09-01 株式会社クラレ Metal complex, and adsorbent, occlusion material and separator material made from same
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
JP2011240340A (en) * 2006-12-13 2011-12-01 Korea Res Inst Of Chem Technol Porous organic-inorganic hybrid material, and adsorbent containing the same
JP2013512978A (en) * 2009-12-02 2013-04-18 ビーエーエスエフ ソシエタス・ヨーロピア Use of metal complexes as oxygen absorbing / scavenging elements for packaging applications
US8507406B2 (en) 2010-08-12 2013-08-13 The Board Of Regents Of The University Of Texas System Zn4(OH)2(1,2,4-BTC)2—a rod packing microporous metal-organic framework with open metal sites for selective separation and sensing of small molecules
US8597406B2 (en) 2010-04-27 2013-12-03 Board Of Regents, The University Of Texas System Isoreticular metal-organic framework of the formula Zn4O(FMA)3
JP2014012251A (en) * 2012-07-04 2014-01-23 Showa Denko Kk Gas separation material containing metal complex of oxocarbonic acid, and separation method of hydrocarbon gas
US8664419B2 (en) 2010-04-30 2014-03-04 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks of the formula M2(2,5-dihydroxyterephthalate)
JP2014113539A (en) * 2012-12-10 2014-06-26 Hitachi Ltd Co2 capture material, and co2 separation device
US9120080B2 (en) 2010-02-10 2015-09-01 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks with open metal sites
US9127025B2 (en) 2011-08-19 2015-09-08 The Board Of Regents Of The University Of Texas System Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
US9296773B2 (en) 2012-01-17 2016-03-29 The Board Of Regents Of The University Of Texas System Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)]—enantiopure mixed metal-organic frameworks for selective separations and enantioselective recognition
WO2017029868A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
CN115888327A (en) * 2022-11-09 2023-04-04 福州大学 Chlorine-free eutectic solvent ammonia absorbent
JP7478761B2 (en) 2019-07-03 2024-05-07 エクソンモービル テクノロジー アンド エンジニアリング カンパニー Metal-organic framework materials containing pyrazolyl benzoate ligands and methods for their preparation

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095435A1 (en) * 2005-03-10 2006-09-14 Fujitsu Limited Crosslinking ligand, metal complex and metal complex integrated structure
JP2006328050A (en) * 2005-04-25 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2007063448A (en) * 2005-08-31 2007-03-15 Kyoto Univ Ion conductive material using carboxy group-containing coordination polymer
JP2009519116A (en) * 2005-11-14 2009-05-14 ビーエーエスエフ ソシエタス・ヨーロピア Porous metal organic framework material containing another polymer
JP4834107B2 (en) * 2005-11-14 2011-12-14 ビーエーエスエフ ソシエタス・ヨーロピア Porous metal organic framework material containing another polymer
JP2007204446A (en) * 2006-02-03 2007-08-16 Showa Denko Kk Metal complex and method for recovering rare gas by using the same
JP2008055326A (en) * 2006-08-31 2008-03-13 National Institute Of Advanced Industrial & Technology Membrane and method for separation of organic compound
JP2008124164A (en) * 2006-11-10 2008-05-29 Sony Corp Semiconductor device and its manufacturing method
JP2011240340A (en) * 2006-12-13 2011-12-01 Korea Res Inst Of Chem Technol Porous organic-inorganic hybrid material, and adsorbent containing the same
JP2010516869A (en) * 2007-01-24 2010-05-20 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Crystalline 3D- and 2D-covalent organic frameworks
JP2008247884A (en) * 2007-03-08 2008-10-16 Sumitomo Chemical Co Ltd Porous organometallic complex, method for producing the same and occlusion method and separation method of unsaturated organic molecule by using the same
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
WO2010021345A1 (en) 2008-08-19 2010-02-25 株式会社クラレ Metal complex and manufacturing method therefor
US8592626B2 (en) 2008-08-19 2013-11-26 Kuraray Co., Ltd. Metal complex and manufacturing method therefor
JP2010070546A (en) * 2008-08-19 2010-04-02 Kuraray Co Ltd Metal complex and method for producing the same
JP2010070545A (en) * 2008-08-19 2010-04-02 Kuraray Co Ltd Metal complex and method for producing the same
JP5759175B2 (en) * 2008-09-29 2015-08-05 日本碍子株式会社 Gas adsorption material, precursor thereof, and method for producing gas adsorption material
WO2010035561A1 (en) * 2008-09-29 2010-04-01 日本碍子株式会社 Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
JPWO2010035561A1 (en) * 2008-09-29 2012-02-23 日本碍子株式会社 Gas adsorption material, precursor thereof, and method for producing gas adsorption material
US8389755B2 (en) 2008-09-29 2013-03-05 Ngk Insulators, Ltd. Gas adsorption material, precursor of same, and method of producing gas adsorption material
JP2010158617A (en) * 2009-01-07 2010-07-22 Japan Science & Technology Agency Organometallic complex, and molding and method for separating gas
JP2011093894A (en) * 2009-09-30 2011-05-12 Kuraray Co Ltd Metal complex, and separating material comprising the same
JP2013512978A (en) * 2009-12-02 2013-04-18 ビーエーエスエフ ソシエタス・ヨーロピア Use of metal complexes as oxygen absorbing / scavenging elements for packaging applications
US9120080B2 (en) 2010-02-10 2015-09-01 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks with open metal sites
US8741030B2 (en) 2010-02-24 2014-06-03 Kuraray Co., Ltd. Metal complex, and adsorbent, occlusion material and separator material made from same
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
WO2011105521A1 (en) 2010-02-24 2011-09-01 株式会社クラレ Metal complex, and adsorbent, occlusion material and separator material made from same
US8597406B2 (en) 2010-04-27 2013-12-03 Board Of Regents, The University Of Texas System Isoreticular metal-organic framework of the formula Zn4O(FMA)3
US8664419B2 (en) 2010-04-30 2014-03-04 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks of the formula M2(2,5-dihydroxyterephthalate)
US8507406B2 (en) 2010-08-12 2013-08-13 The Board Of Regents Of The University Of Texas System Zn4(OH)2(1,2,4-BTC)2—a rod packing microporous metal-organic framework with open metal sites for selective separation and sensing of small molecules
US9127025B2 (en) 2011-08-19 2015-09-08 The Board Of Regents Of The University Of Texas System Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
US9296773B2 (en) 2012-01-17 2016-03-29 The Board Of Regents Of The University Of Texas System Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)]—enantiopure mixed metal-organic frameworks for selective separations and enantioselective recognition
JP2014012251A (en) * 2012-07-04 2014-01-23 Showa Denko Kk Gas separation material containing metal complex of oxocarbonic acid, and separation method of hydrocarbon gas
JP2014113539A (en) * 2012-12-10 2014-06-26 Hitachi Ltd Co2 capture material, and co2 separation device
WO2017029868A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
JPWO2017029868A1 (en) * 2015-08-17 2018-07-05 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
US10654775B2 (en) 2015-08-17 2020-05-19 Daikin Industries, Ltd. Separation method for halogenated unsaturated carbon compound
US11053180B2 (en) 2015-08-17 2021-07-06 Daikin Industries, Ltd. Separation method for halogenated unsaturated carbon compound
JP6997986B2 (en) 2015-08-17 2022-01-18 ダイキン工業株式会社 Separation method of halogenated unsaturated carbon compound
JP7478761B2 (en) 2019-07-03 2024-05-07 エクソンモービル テクノロジー アンド エンジニアリング カンパニー Metal-organic framework materials containing pyrazolyl benzoate ligands and methods for their preparation
CN115888327A (en) * 2022-11-09 2023-04-04 福州大学 Chlorine-free eutectic solvent ammonia absorbent

Also Published As

Publication number Publication date
JP4258608B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4258608B2 (en) Three-dimensional metal complex, adsorbent and separation material
JP5496676B2 (en) Metal complex and method for producing the same
JP2003342260A (en) Three-dimensional metal complex, adsorbing material and separating material
Huang et al. Synthesis of highly hydrophobic and permselective metal–organic framework Zn (BDC)(TED) 0.5 membranes for H2/CO2 separation
JP5506283B2 (en) Metal complex and method for producing the same
JP5478120B2 (en) Metal complex and method for producing the same
JP5649342B2 (en) Metal complex and method for producing the same
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
Gaikwad et al. Novel metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP2012193122A (en) Metal complex and separation material consisting thereof
Missaoui et al. Rapid room-temperature synthesis and characterizations of high-surface-area nanoparticles of zeolitic imidazolate framework-8 (ZIF-8) for CO2 and CH4 adsorption
JP5478121B2 (en) Metal complex and method for producing the same
JP2011051949A (en) Metal complex and method for producing the same
JP2013216622A (en) Metal complex, method for producing the same, and adsorbent
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
JP5677132B2 (en) Metal complex and method for producing the same
Wang et al. Heterobilayer membranes from isostructural metal-organic frameworks for efficient CO2 separation
JP2010265245A (en) Metal complex, and method of producing the same
JP5507150B2 (en) Metal complex and method for producing the same
JP5523763B2 (en) Adsorbent made of metal complex
JP2012232929A (en) Metal complex, and adsorbing material and separation material comprising the same
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP2013040126A (en) Metal complex and adsorbing material comprising the same
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees