JP2003342260A - Three-dimensional metal complex, adsorbing material and separating material - Google Patents

Three-dimensional metal complex, adsorbing material and separating material

Info

Publication number
JP2003342260A
JP2003342260A JP2002149556A JP2002149556A JP2003342260A JP 2003342260 A JP2003342260 A JP 2003342260A JP 2002149556 A JP2002149556 A JP 2002149556A JP 2002149556 A JP2002149556 A JP 2002149556A JP 2003342260 A JP2003342260 A JP 2003342260A
Authority
JP
Japan
Prior art keywords
metal complex
salts
adsorption
separating
bipyridyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002149556A
Other languages
Japanese (ja)
Inventor
Kenji Seki
建司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002149556A priority Critical patent/JP2003342260A/en
Publication of JP2003342260A publication Critical patent/JP2003342260A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a adsorbing material capable of selectively adsorbing a substance such as gas and a separating material having high separation performance. <P>SOLUTION: In a porous metal complex adsorbing gases or liquids, an accumulation structure of the basic skeleton of the metal complex is changed and the size of the pores is changed by kinds of substances to be adsorbed, adsorption pressure or adsorption temperature. The adsorbing material or the separating material are each composed of the metal complex. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、三次元型金属錯
体、該錯体からなる吸着材および分離材に関する。
TECHNICAL FIELD The present invention relates to a three-dimensional metal complex, an adsorbent and a separating material comprising the complex.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】圧力スイ
ング法や温度スイング法により混合ガスからガスを分離
する際には、一般に、分離吸着材として活性炭、ゼオラ
イト等を使用し、その平衡吸着量または吸着速度の差に
より分離を行ってきた。
2. Description of the Related Art When separating a gas from a mixed gas by a pressure swing method or a temperature swing method, generally, activated carbon, zeolite or the like is used as a separation adsorbent, and its equilibrium adsorption amount is used. Alternatively, separation has been performed by the difference in adsorption rate.

【0003】しかしながら、平衡吸着量の差により分離
する場合、これまでの吸着材では片方の物質(ガス)の
みを選択的に吸着することができないため、分離係数が
小さくなり、装置の大型化を招いていた。一方、吸着速
度の差により分離する場合、ガスの種類によっては片方
の物質(ガス)のみを吸着できるが、短時間で吸着と脱
着を交互に行う必要があり、装置の大型化を招いてい
た。
However, in the case of separating by the difference in the equilibrium adsorption amount, the conventional adsorbent cannot selectively adsorb only one substance (gas), so that the separation coefficient becomes small and the apparatus becomes large. I was invited. On the other hand, in the case of separation based on the difference in adsorption rate, only one substance (gas) can be adsorbed depending on the type of gas, but it is necessary to alternate adsorption and desorption in a short time, leading to an increase in the size of the device. .

【0004】本発明の目的は、ガス等の物質を選択的に
吸着できる吸着材や、分離性能の高い分離材を提供する
ことにある。
An object of the present invention is to provide an adsorbent capable of selectively adsorbing a substance such as gas, and a separator having a high separation performance.

【0005】[0005]

【課題を解決するための手段】吸着される物質の種類、
吸着圧力または吸着温度により細孔の大きさが変化する
新規な外場応答型金属錯体を用いることにより、圧力ス
イング法や温度スイング法のいずれにおいても、物質を
選択的に吸着することができることを見出し、本発明を
完成するに至った。
[Means for Solving the Problems] Types of substances to be adsorbed,
By using a novel external field-responsive metal complex whose pore size changes depending on the adsorption pressure or adsorption temperature, it is possible to selectively adsorb a substance by either the pressure swing method or the temperature swing method. Heading out, the present invention has been completed.

【0006】すなわち、本発明は、下記に示すとおりの
三次元型金属錯体、吸着材および分離材を提供するもの
である。 項1. 気体または液体を吸着する多孔性の金属錯体で
あって、吸着される物質の種類、吸着圧力または吸着温
度により、金属錯体の基本骨格の集積構造が変化すると
共に細孔の大きさが変化する金属錯体。 項2. 基本骨格の集積構造が相互貫入型である項1に
記載の金属錯体。 項3. テレフタル酸と、銅、ロジウム、クロム、モリ
ブデン、パラジウム、亜鉛およびタングステンから選択
される少なくとも1種の2価の金属と、有機配位子とし
て4,4'-ビピリジルとを含む項1または2に記載の金属
錯体。 項4. テレフタル酸と、銅塩、ロジウム塩、クロム
塩、モリブデン塩、パラジウム塩、亜鉛塩およびタング
ステン塩から選択される少なくとも1種の金属塩とを、
有機溶媒に溶解させて反応させ、その反応生成物に、有
機配位子として4,4'-ビピリジルをさらに反応させ、ジ
カルボン酸金属錯体を析出させて得られる項1〜3のい
ずれかに記載の金属錯体。 項5. 項1〜4のいずれかに記載の金属錯体からなる
吸着材。 項6. 項1〜4のいずれかに記載の金属錯体からなる
分離材。 項7. 二酸化炭素、水素、一酸化炭素、酸素、窒素、
炭素数1〜4の炭化水素または水蒸気を分離するための
項6に記載の分離材。 項8. メタン中の二酸化炭素、窒素中の二酸化炭素、
空気中の酸素または天然ガス中のメタンを分離するため
の項6に記載の分離材。
That is, the present invention provides a three-dimensional metal complex, an adsorbent and a separator as shown below. Item 1. A porous metal complex that adsorbs gas or liquid, in which the integrated structure of the basic skeleton of the metal complex changes and the size of the pores changes depending on the type of substance to be adsorbed, the adsorption pressure or the adsorption temperature. Complex. Item 2. Item 2. The metal complex according to Item 1, wherein the integrated structure of the basic skeleton is an interpenetrating type. Item 3. Item 1 or 2 containing terephthalic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and 4,4′-bipyridyl as an organic ligand The metal complex described. Item 4. Terephthalic acid and at least one metal salt selected from copper salts, rhodium salts, chromium salts, molybdenum salts, palladium salts, zinc salts and tungsten salts,
Item 4. The method according to any one of Items 1 to 3, which is obtained by dissolving in an organic solvent to cause a reaction, and further reacting the reaction product with 4,4'-bipyridyl as an organic ligand to precipitate a metal dicarboxylic acid complex. Metal complex of. Item 5. Item 4. An adsorbent comprising the metal complex according to any one of items 1 to 4. Item 6. Item 4. A separating material comprising the metal complex according to any one of items 1 to 4. Item 7. Carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen,
Item 7. The separating material according to item 6 for separating a hydrocarbon having 1 to 4 carbon atoms or steam. Item 8. Carbon dioxide in methane, carbon dioxide in nitrogen,
Item 7. The separation material according to Item 6 for separating oxygen in air or methane in natural gas.

【0007】[0007]

【発明の実施の形態】本発明の三次元型金属錯体は、従
来の三次元型金属錯体の構造(図2)と異なり、図1に
示すように三次元の基本骨格同士が二重に相互貫入して
おり、細孔径(b)が小さくなっている。ここで、基本
骨格とは、基本単位格子がn個集まったものをいう。図
1においては、便宜的に、テレフタル酸と、銅(II)と、
有機配位子として4,4'-ビピリジルとを含む三次元型金
属錯体の構造を模式的に示す。図1において、「bip
y」は4,4'-ビピリジルを意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Unlike the structure of a conventional three-dimensional type metal complex (FIG. 2), the three-dimensional type metal complex of the present invention has three-dimensional basic skeletons doubly interconnected as shown in FIG. It penetrates and the pore diameter (b) is small. Here, the basic skeleton means a group of n basic unit lattices. In FIG. 1, terephthalic acid, copper (II), and
1 schematically shows the structure of a three-dimensional metal complex containing 4,4'-bipyridyl as an organic ligand. In FIG. 1, "bip
"y" means 4,4'-bipyridyl.

【0008】三次元型金属錯体の基本骨格はエネルギー
的に最も安定な場所に集積するが、本発明の三次元型金
属錯体は、図1に示すように、1つの基本骨格の細孔の
中心より少しずれた所にもう1つの基本骨格が貫入して
いる構造(相互貫入型)で集積している。また、本発明
の三次元型金属錯体は、三次元のチャンネル構造を有す
る。
The basic skeleton of the three-dimensional metal complex accumulates at the most energetically stable place, but the three-dimensional metal complex of the present invention has a center of pores of one basic skeleton as shown in FIG. They are accumulated in a structure (interpenetration type) in which another basic skeleton penetrates at a position slightly offset. Further, the three-dimensional metal complex of the present invention has a three-dimensional channel structure.

【0009】例えば、本発明の三次元型金属錯体が、テ
レフタル酸と、銅(II)と、有機配位子として4,4'-ビピ
リジルとを含む場合には、この構造の細孔径(b)は約
3Åであり、一般に、この細孔径より大きな分子を吸着
することはできない。しかしながら、本発明の三次元型
金属錯体のように基本骨格が二重に相互貫入している集
積状態における貫入の位置は一定条件で変化するため、
その変化に伴って、細孔の構造も変化する。すなわち、
物質を吸着する結果、構造的により安定なエネルギー状
態を有する細孔構造に変化できる。この構造が変化する
条件は、吸着される物質の種類、吸着圧力、吸着温度に
依存する。このようにして、集積状態における貫入の位
置が、細孔径を大きくする方向に変化し、大きくなった
細孔に3Åより大きな分子が吸着される。吸着された物
質が脱着した後は、元の集積構造に戻るので、細孔径も
元に戻る。図3に、吸着と脱着により基本骨格の集積構
造と細孔径が変化するメカニズムを模式的に示す。
For example, when the three-dimensional metal complex of the present invention contains terephthalic acid, copper (II) and 4,4'-bipyridyl as an organic ligand, the pore size (b ) Is about 3Å, and in general, molecules larger than this pore size cannot be adsorbed. However, since the position of penetration in the integrated state in which the basic skeleton is doubly interpenetrated like the three-dimensional metal complex of the present invention changes under certain conditions,
With the change, the structure of the pore also changes. That is,
As a result of adsorbing the substance, it is possible to change to a pore structure having a structurally more stable energy state. The conditions under which this structure changes depend on the type of substance to be adsorbed, the adsorption pressure, and the adsorption temperature. In this way, the position of penetration in the accumulated state changes in the direction of increasing the pore diameter, and molecules larger than 3Å are adsorbed in the enlarged pores. After the adsorbed substance is desorbed, it returns to the original integrated structure, so that the pore diameter also returns to the original. FIG. 3 schematically shows the mechanism in which the integrated structure of the basic skeleton and the pore size change due to adsorption and desorption.

【0010】本発明の三次元型金属錯体としては、例え
ば、テレフタル酸と、銅、ロジウム、クロム、モリブデ
ン、パラジウム、亜鉛およびタングステンから選択され
る少なくとも1種の2価の金属と、2座配位可能な有機
配位子として4,4'-ビピリジルとを含むものが挙げられ
る。
The three-dimensional metal complex of the present invention includes, for example, terephthalic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and a bidentate. Examples of the positionable organic ligand include those containing 4,4′-bipyridyl.

【0011】このような金属錯体は、化学式(1): {M(OOC−C64−COO)・1/2(4,4'-ビピリジル)}n (1) 〔式中、MはCu2+、Rh2+、Cr2+、Mo2+、P
2+、Zn2+またはW2+を示す。〕で表すことができ
る。なお、nは該錯体がM(OOC−C64−COO)
・1/2(4,4'-ビピリジル)を繰り返し単位とする結晶で
あることを意味する。
[0011] Such metal complexes has the formula (1): {M (OOC -C 6 H 4 -COO) · 1/2 (4,4'- bipyridyl)} n (1) wherein, M is Cu 2+ , Rh 2+ , Cr 2+ , Mo 2+ , P
d 2+ , Zn 2+ or W 2+ is shown. ] It can be represented by. Here, n the complex is M (OOC-C 6 H 4 -COO)
-It means that the crystal has 1/2 (4,4'-bipyridyl) as a repeating unit.

【0012】従って、本発明は、化学式(1): {M(OOC−C64−COO)・1/2(4,4'-ビピリジル)}n (1) 〔式中、MはCu2+、Rh2+、Cr2+、Mo2+、P
2+、Zn2+またはW2+を示す。nは任意の自然数を意
味する。〕で表されるジカルボン酸金属錯体にも関す
る。
Accordingly, the present invention has the formula (1): {M (OOC -C 6 H 4 -COO) · 1/2 (4,4'- bipyridyl)} n (1) wherein, M is Cu 2+ , Rh 2+ , Cr 2+ , Mo 2+ , P
d 2+ , Zn 2+ or W 2+ is shown. n means an arbitrary natural number. ] It also relates to a dicarboxylic acid metal complex represented by

【0013】なお、例えば、化学式(1)の{M(OO
C−C64−COO)・1/2(4,4'-ビピリジル)}n
が、図1の説明で述べた基本骨格に相当する。
[0013] For example, in the chemical formula (1), {M (OO
C-C 6 H 4 -COO) · 1/2 (4,4'- bipyridyl)} n
Corresponds to the basic skeleton described in the explanation of FIG.

【0014】本発明の金属錯体の構造は、粉末X線のパ
ターン、磁化率の温度変化、元素分析結果で確認するこ
とができる。
The structure of the metal complex of the present invention can be confirmed by a powder X-ray pattern, a change in magnetic susceptibility with temperature, and an elemental analysis result.

【0015】本発明の三次元型金属錯体を製造するに
は、例えば、テレフタル酸と金属塩の混合溶液を数時間
から数日反応させ、生成した金属錯体に、2座配位可能
な4,4'-ビピリジルを含有する溶液を混合し、数時間か
ら数日反応させることにより、目的の吸着材または分離
材であるジカルボン酸錯体を製造することができる。得
られた混合液から吸引ろ過により沈殿物を集め、メタノ
ールによる洗浄後、100℃程度で数時間真空乾燥する
ことにより、外場応答型ジカルボン酸錯体の結晶を製造
することができる。
To produce the three-dimensional metal complex of the present invention, for example, a mixed solution of terephthalic acid and a metal salt is reacted for several hours to several days, and the resulting metal complex is capable of bidentate coordination. By mixing a solution containing 4'-bipyridyl and reacting for several hours to several days, a dicarboxylic acid complex as an objective adsorbent or separating material can be produced. Crystals of the external field-responsive dicarboxylic acid complex can be produced by collecting the precipitate from the obtained mixed solution by suction filtration, washing with methanol, and vacuum drying at about 100 ° C. for several hours.

【0016】テレフタル酸の濃度は、0.003〜0.
1mol/lが好ましく、0.005〜0.05mol
/lがより好ましい。
The concentration of terephthalic acid is 0.003 to 0.
1 mol / l is preferable, 0.005-0.05 mol
/ L is more preferable.

【0017】金属塩としては、銅塩、ロジウム塩、クロ
ム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタン
グステン塩から選択される金属塩を使用することができ
る。また、これらの金属塩としては、酢酸塩、ギ酸塩等
の有機酸塩、硫酸塩、硝酸塩、炭酸塩等の無機酸塩を使
用することができる。金属塩の濃度は、前記テレフタル
酸と等モル量であり、0.003〜0.1mol/lが
好ましく、0.005〜0.05mol/lがより好ま
しい。
As the metal salt, a metal salt selected from copper salts, rhodium salts, chromium salts, molybdenum salts, palladium salts, zinc salts and tungsten salts can be used. Further, as these metal salts, organic acid salts such as acetate and formate, and inorganic acid salts such as sulfate, nitrate and carbonate can be used. The concentration of the metal salt is an equimolar amount with the terephthalic acid, preferably 0.003 to 0.1 mol / l, more preferably 0.005 to 0.05 mol / l.

【0018】2座配位可能な4,4'-ビピリジルの濃度と
しては、前記テレフタル酸と金属塩より生成する金属錯
体に対して0.5〜1モル等量が好ましく、0.5〜
0.6モル等量がより好ましい。
The concentration of 4,4'-bipyridyl capable of bidentate coordination is preferably 0.5 to 1 molar equivalent, and more preferably 0.5 to 1 molar equivalent to the metal complex formed from the terephthalic acid and the metal salt.
0.6 molar equivalent is more preferable.

【0019】溶媒としては、テレフタル酸と金属塩より
生成する金属錯体および2座配位可能な有機配位子であ
る4,4'-ビピリジルを溶解しやすく、目的物である三次
元型金属錯体を溶解しにくい有機溶媒を使用することが
できる。具体的には、メタノール、エタノール、プロパ
ノール等のアルコール類、ベンゼン、トルエン、アセト
ニトリル、テトラヒドロフラン、ジメチルホルムアミド
(DMF)、ヘキサン、アセトンまたはこれらの混合溶
媒を使用することができる。有機溶媒には、ギ酸等の有
機酸を少量添加するのが好ましい。
As a solvent, a metal complex formed from terephthalic acid and a metal salt and 4,4'-bipyridyl which is a bidentate-coordinating organic ligand are easily dissolved, and a target three-dimensional metal complex is obtained. It is possible to use an organic solvent that is difficult to dissolve. Specifically, alcohols such as methanol, ethanol and propanol, benzene, toluene, acetonitrile, tetrahydrofuran, dimethylformamide (DMF), hexane, acetone or a mixed solvent thereof can be used. It is preferable to add a small amount of an organic acid such as formic acid to the organic solvent.

【0020】反応温度としては、−20〜100℃程度
が好ましく、常温でも反応する。
The reaction temperature is preferably about -20 to 100 ° C., and the reaction is possible even at room temperature.

【0021】本発明の三次元型金属錯体は、吸着される
物質の種類、吸着圧力または吸着温度により、金属錯体
の基本骨格の集積構造が変化すると共に細孔の大きさが
変化するので、一定の吸着圧力になると急に吸着が始ま
り、瞬時に最大吸着量に達する。吸着の開始圧力は、吸
着される物質の種類または吸着温度により異なる。
The three-dimensional metal complex of the present invention has a constant size because the integrated structure of the basic skeleton of the metal complex and the size of the pores change depending on the type of the substance to be adsorbed, the adsorption pressure or the adsorption temperature. Adsorption pressure suddenly starts to reach the maximum adsorption amount. The adsorption start pressure varies depending on the type of substance to be adsorbed or the adsorption temperature.

【0022】従って、本発明の三次元型金属錯体からな
る吸着材は、ガス等の物質を選択的に吸着することがで
きる。また、本発明の三次元型金属錯体からなる分離材
は、分離性能が優れている。
Therefore, the adsorbent comprising the three-dimensional metal complex of the present invention can selectively adsorb substances such as gas. Moreover, the separating material comprising the three-dimensional metal complex of the present invention has excellent separating performance.

【0023】本発明の分離材は、二酸化炭素、水素、一
酸化炭素、酸素、窒素、炭素数1〜4の炭化水素(メタ
ン、エタン、エチレン等)または水蒸気を、効率よく分
離することができる。特に、メタン中の二酸化炭素、窒
素中の二酸化炭素、空気中の酸素、天然ガス中のメタン
等を、圧力スイング法や温度スイング法により分離する
のに適している。
The separation material of the present invention can efficiently separate carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, etc.) or water vapor. . In particular, it is suitable for separating carbon dioxide in methane, carbon dioxide in nitrogen, oxygen in air, methane in natural gas, etc. by a pressure swing method or a temperature swing method.

【0024】[0024]

【発明の効果】本発明の三次元型金属錯体からなる吸着
材は、ガス等の物質を選択的に吸着することができる。
The adsorbent comprising the three-dimensional metal complex of the present invention can selectively adsorb substances such as gas.

【0025】また、本発明の三次元型金属錯体からなる
分離材は、分離性能が優れている。特に、圧力スイング
法や温度スイング法により分離するのに適している。
The separating material comprising the three-dimensional type metal complex of the present invention has excellent separating performance. In particular, it is suitable for separation by a pressure swing method or a temperature swing method.

【0026】[0026]

【実施例】以下に、本発明を実施例により詳細に説明す
る。本発明は、実施例に限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples. The present invention is not limited to the examples.

【0027】実施例1[[Cu(OOCC64COO)・1
/2(4,4'-ビピリジル)]nの合成] 硫酸銅・5水和物0.31gのメタノール溶液10ml
を、テレフタル酸0.21gおよびギ酸1.50mlの
メタノール溶液200mlに加え、室温で撹拌し、40
℃で3日間反応させた。その後、反応溶液の上澄みを除
去し、沈殿物に4,4'-ビピリジル0.10gのメタノー
ル溶液30mlを加え、室温で撹拌し、2日間反応させ
た。その後、沈殿物を吸引濾過し、メタノールで3回洗
浄し、真空下100℃で約2時間加熱乾燥し、目的物を
0.31g得た。得られた錯体の87Kにおけるアルゴ
ン吸着より求めたBET比表面積は700m2/g、細
孔容積は0.26ml/gであった。
Example 1 [[Cu (OOCC 6 H 4 COO) · 1
Synthesis of / 2 (4,4'-bipyridyl)] n] 10 ml of a solution of copper sulfate pentahydrate 0.31 g in methanol
Was added to 200 ml of a methanol solution of 0.21 g of terephthalic acid and 1.50 ml of formic acid and stirred at room temperature.
The reaction was carried out at 0 ° C for 3 days. Then, the supernatant of the reaction solution was removed, and 30 ml of a methanol solution containing 0.10 g of 4,4′-bipyridyl was added to the precipitate, and the mixture was stirred at room temperature and reacted for 2 days. Then, the precipitate was suction filtered, washed with methanol three times, and dried by heating under vacuum at 100 ° C. for about 2 hours to obtain 0.31 g of the desired product. The BET specific surface area of the obtained complex determined by adsorption of argon at 87 K was 700 m 2 / g, and the pore volume was 0.26 ml / g.

【0028】この錯体は、粉末X線、磁化率および元素
分析結果より、図4に示すような銅イオンの周りにテレ
フタル酸が配位した二核構造をとり、銅イオン同士をこ
のテレフタル酸が橋かけした二次元格子構造を、4,4'-
ビピリジルが軸配位子として架橋した三次元構造を形成
している。そして、図5に示すように、この三次元構造
(基本骨格)が、お互いに二重に相互貫入した構造であ
る。
This complex has a binuclear structure in which terephthalic acid is coordinated around copper ions as shown in FIG. 4 based on powder X-rays, magnetic susceptibility and elemental analysis results. The bridged two-dimensional lattice structure is converted into 4,4'-
Bipyridyl forms a three-dimensional structure in which it is crosslinked as an axial ligand. Then, as shown in FIG. 5, the three-dimensional structure (basic skeleton) is a structure in which two mutually penetrate each other.

【0029】実施例2 実施例1で得られた錯体について、各種ガスの吸着等温
線を、重量法により測定した。その結果を図6に示す。
図6から明らかなように、吸着の開始は吸着圧力に依存
し、所定の圧力で急に吸着が始まり、瞬時に最大吸着量
に達した。この圧力は、ガスの種類により異なった。
Example 2 With respect to the complex obtained in Example 1, adsorption isotherms of various gases were measured by a gravimetric method. The result is shown in FIG.
As is clear from FIG. 6, the start of adsorption depends on the adsorption pressure, the adsorption suddenly starts at a predetermined pressure, and the maximum adsorption amount is instantaneously reached. This pressure varied depending on the type of gas.

【0030】この特徴を利用することにより、従来の分
離材を用いる場合に比べて、分離性能の高いガス分離が
可能である。
By utilizing this feature, it is possible to perform gas separation having a high separation performance as compared with the case of using a conventional separation material.

【0031】実施例3 実施例1で得られた錯体について、メタンガスの各種温
度における吸着等温線を、重量法により測定した。その
結果を図7に示す。図7から、吸着の開始点(吸着が始
まる圧力)は温度に依存し、制御可能であることが判明
した。
Example 3 With respect to the complex obtained in Example 1, adsorption isotherms of methane gas at various temperatures were measured by a gravimetric method. The result is shown in FIG. 7. From FIG. 7, it was found that the starting point of adsorption (pressure at which adsorption starts) depends on temperature and can be controlled.

【0032】この特徴を利用することにより、従来の分
離材を用いる場合に比べて、温度スイング法により分離
性能の高いガス分離が可能である。
By utilizing this feature, it is possible to perform gas separation with high separation performance by the temperature swing method as compared with the case of using a conventional separation material.

【0033】実施例4 実施例1で得られた錯体について、メタン65%および
二酸化炭素35%の2成分系混合ガスの吸着等温線を、
重量法および容量法により測定した。その結果を図8に
示す。図8から明らかなように、この錯体は、二酸化炭
素のみを選択的に吸着できるため、ガス分離材として使
用できる。
Example 4 For the complex obtained in Example 1, the adsorption isotherm of a binary gas mixture of 65% methane and 35% carbon dioxide was calculated.
It was measured by a gravimetric method and a volume method. The result is shown in FIG. As is clear from FIG. 8, since this complex can selectively adsorb only carbon dioxide, it can be used as a gas separating material.

【0034】実施例5 実施例1で得られた錯体について、各種液体の蒸気の吸
着等温線を、容量法により測定した。その結果を図9に
示す。図9から明らかなように、吸着の開始は相対圧に
依存し、所定の相対圧(圧力)で急に吸着が始まり、瞬
時に最大吸着量に達した。この点(相対圧)は、蒸気の
種類により異なった。なお、水の場合、表面吸着のみで
あり、細孔内への吸着は起こらない。
Example 5 With respect to the complex obtained in Example 1, adsorption isotherms of vapors of various liquids were measured by the volume method. The result is shown in FIG. As is clear from FIG. 9, the start of adsorption depends on the relative pressure, and the adsorption suddenly starts at a predetermined relative pressure (pressure), and the maximum adsorption amount is instantaneously reached. This point (relative pressure) varied depending on the type of steam. In the case of water, only surface adsorption is performed, and adsorption into pores does not occur.

【0035】この特徴を利用することにより、従来の分
離材を用いる場合に比べて、分離性能の高い液体蒸気分
離が可能である。
By utilizing this feature, it is possible to perform liquid vapor separation having a high separation performance as compared with the case where a conventional separating material is used.

【0036】実施例6 実施例1で得られた錯体について、吸着による錯体の構
造(細孔径)の変化を考察するために、吸着される物質
としてメタノール蒸気を用い、その吸着の前後および脱
着後においてX線回折パターンを測定した。その結果を
図10に示す。図10において、a)は吸着前、b)は
吸着後、c)は脱着後を示す。図10から明らかなよう
に、吸着により、細孔径に対応する面間隔のピークがシ
フトしており、細孔径が拡大したことを示している。X
線の2θの値より求めると、細孔径は3.33Åから
3.85Åへと広がった。また、その他のピークが変化
していないことより、基本骨格は維持されており、相互
貫入の態様のみが変化していることが示唆される。さら
に、メタノール蒸気を完全に脱着した後は、元の吸着前
の構造に戻っているのがわかる。
Example 6 With respect to the complex obtained in Example 1, methanol vapor was used as the substance to be adsorbed, and before and after the adsorption and after desorption in order to study the change in the structure (pore size) of the complex due to adsorption. The X-ray diffraction pattern was measured at. The result is shown in FIG. In FIG. 10, a) shows before adsorption, b) shows after adsorption, and c) shows after desorption. As is clear from FIG. 10, the peak of the interplanar distance corresponding to the pore diameter is shifted by the adsorption, indicating that the pore diameter is expanded. X
The pore diameter expanded from 3.33Å to 3.85Å when calculated from the 2θ value of the line. In addition, the fact that the other peaks do not change suggests that the basic skeleton is maintained and only the mode of mutual penetration changes. Furthermore, it can be seen that after complete desorption of the methanol vapor, the original structure before adsorption is restored.

【0037】また、メタノール蒸気の吸着等温線を測定
したところ、繰り返し吸脱着を行っても同じ等温線を示
した。
Further, when the adsorption isotherm of methanol vapor was measured, the same isotherm was shown even after repeated adsorption and desorption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の三次元型金属錯体の相互貫入型構造を
示す模式図である。
FIG. 1 is a schematic diagram showing an interpenetrating structure of a three-dimensional metal complex of the present invention.

【図2】従来の三次元型金属錯体の構造を示す模式図で
ある。
FIG. 2 is a schematic diagram showing the structure of a conventional three-dimensional metal complex.

【図3】本発明の三次元型金属錯体における吸脱着のメ
カニズムを示す模式図である。
FIG. 3 is a schematic diagram showing a mechanism of adsorption / desorption in the three-dimensional metal complex of the present invention.

【図4】本発明の三次元型金属錯体の構造の一部を示す
概略図である。
FIG. 4 is a schematic view showing a part of the structure of the three-dimensional metal complex of the present invention.

【図5】本発明の三次元型金属錯体の相互貫入型構造を
示す概略図である。
FIG. 5 is a schematic view showing an interpenetrating structure of the three-dimensional metal complex of the present invention.

【図6】本発明の三次元型金属錯体についての各種ガス
の吸着等温線を示すグラフである。
FIG. 6 is a graph showing adsorption isotherms of various gases for the three-dimensional metal complex of the present invention.

【図7】本発明の三次元型金属錯体についての各種温度
の吸着等温線を示すグラフである。
FIG. 7 is a graph showing adsorption isotherms at various temperatures for the three-dimensional metal complex of the present invention.

【図8】本発明の三次元型金属錯体についての混合ガス
の吸着等温線を示すグラフである。
FIG. 8 is a graph showing adsorption isotherms of a mixed gas for the three-dimensional metal complex of the present invention.

【図9】本発明の三次元型金属錯体についての各種液体
の蒸気の吸着等温線を示すグラフである。
FIG. 9 is a graph showing vapor adsorption isotherms of various liquids for the three-dimensional metal complex of the present invention.

【図10】本発明の三次元型金属錯体についてのX線回
折パターンを示す図である。
FIG. 10 is a diagram showing an X-ray diffraction pattern of the three-dimensional metal complex of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C055 AA01 BA01 CA01 DA25 EA01 GA02 4G066 AB24B BA31 BA36 CA27 CA35 CA37 CA51 CA56 GA14 4H048 AA01 AB90 AC90 VA20 VA56 VB10 VB80    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4C055 AA01 BA01 CA01 DA25 EA01                       GA02                 4G066 AB24B BA31 BA36 CA27                       CA35 CA37 CA51 CA56 GA14                 4H048 AA01 AB90 AC90 VA20 VA56                       VB10 VB80

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 気体または液体を吸着する多孔性の金属
錯体であって、吸着される物質の種類、吸着圧力または
吸着温度により、金属錯体の基本骨格の集積構造が変化
すると共に細孔の大きさが変化する金属錯体。
1. A porous metal complex which adsorbs a gas or a liquid, wherein the integrated structure of the basic skeleton of the metal complex is changed and the size of the pores is changed depending on the type of the substance to be adsorbed, the adsorption pressure or the adsorption temperature. A metal complex that changes in shape.
【請求項2】 基本骨格の集積構造が相互貫入型である
請求項1に記載の金属錯体。
2. The metal complex according to claim 1, wherein the integrated structure of the basic skeleton is an interpenetrating type.
【請求項3】 テレフタル酸と、銅、ロジウム、クロ
ム、モリブデン、パラジウム、亜鉛およびタングステン
から選択される少なくとも1種の2価の金属と、有機配
位子として4,4'-ビピリジルとを含む請求項1または2
に記載の金属錯体。
3. Containing terephthalic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and 4,4′-bipyridyl as an organic ligand. Claim 1 or 2
The metal complex according to.
【請求項4】 テレフタル酸と、銅塩、ロジウム塩、ク
ロム塩、モリブデン塩、パラジウム塩、亜鉛塩およびタ
ングステン塩から選択される少なくとも1種の金属塩と
を、有機溶媒に溶解させて反応させ、その反応生成物
に、有機配位子として4,4'-ビピリジルをさらに反応さ
せ、ジカルボン酸金属錯体を析出させて得られる請求項
1〜3のいずれかに記載の金属錯体。
4. Terephthalic acid and at least one metal salt selected from copper salts, rhodium salts, chromium salts, molybdenum salts, palladium salts, zinc salts and tungsten salts are dissolved in an organic solvent and reacted. The metal complex according to claim 1, which is obtained by further reacting the reaction product with 4,4′-bipyridyl as an organic ligand to precipitate a dicarboxylic acid metal complex.
【請求項5】 請求項1〜4のいずれかに記載の金属錯
体からなる吸着材。
5. An adsorbent comprising the metal complex according to claim 1.
【請求項6】 請求項1〜4のいずれかに記載の金属錯
体からなる分離材。
6. A separating material comprising the metal complex according to claim 1.
【請求項7】 二酸化炭素、水素、一酸化炭素、酸素、
窒素、炭素数1〜4の炭化水素または水蒸気を分離する
ための請求項6に記載の分離材。
7. Carbon dioxide, hydrogen, carbon monoxide, oxygen,
The separation material according to claim 6 for separating nitrogen, hydrocarbon having 1 to 4 carbon atoms, or steam.
【請求項8】 メタン中の二酸化炭素、窒素中の二酸化
炭素、空気中の酸素または天然ガス中のメタンを分離す
るための請求項6に記載の分離材。
8. The separating material according to claim 6, for separating carbon dioxide in methane, carbon dioxide in nitrogen, oxygen in air or methane in natural gas.
JP2002149556A 2002-05-23 2002-05-23 Three-dimensional metal complex, adsorbing material and separating material Pending JP2003342260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149556A JP2003342260A (en) 2002-05-23 2002-05-23 Three-dimensional metal complex, adsorbing material and separating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149556A JP2003342260A (en) 2002-05-23 2002-05-23 Three-dimensional metal complex, adsorbing material and separating material

Publications (1)

Publication Number Publication Date
JP2003342260A true JP2003342260A (en) 2003-12-03

Family

ID=29767685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149556A Pending JP2003342260A (en) 2002-05-23 2002-05-23 Three-dimensional metal complex, adsorbing material and separating material

Country Status (1)

Country Link
JP (1) JP2003342260A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275531A (en) * 2002-03-26 2003-09-30 Nippon Steel Corp Gas separator and gaseous mixture separation method
EP1674555A1 (en) * 2004-12-20 2006-06-28 Basf Aktiengesellschaft Concentration of methane in methane containing gas mixtures by adsorption
WO2006095435A1 (en) * 2005-03-10 2006-09-14 Fujitsu Limited Crosslinking ligand, metal complex and metal complex integrated structure
WO2006122920A1 (en) * 2005-05-18 2006-11-23 Basf Aktiengesellschaft Gas odorous substance separation
JP2006328051A (en) * 2005-04-28 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
WO2007101797A1 (en) * 2006-03-09 2007-09-13 Basf Se Closed reversible breathing apparatus having a metal organic framework
WO2007144324A1 (en) * 2006-06-14 2007-12-21 Basf Se Process for preparing unsaturated hydrocarbons
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
WO2008138989A1 (en) * 2007-05-14 2008-11-20 Shell Internationale Research Maatschappij B.V. Process for producing purified natural gas from natural gas comprising water and carbon dioxide
WO2009007436A1 (en) * 2007-07-12 2009-01-15 Shell Internationale Research Maatschappij B.V. Method and apparatus for separating nitrogen from a mixed nitrogen and methane containing stream by using a metal organic framework
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent
JP2009535586A (en) * 2006-05-04 2009-10-01 ビーエーエスエフ ソシエタス・ヨーロピア Gas pressure vessel with filter or gas pressure vessel containing storage agent
WO2010021345A1 (en) 2008-08-19 2010-02-25 株式会社クラレ Metal complex and manufacturing method therefor
JP2010516869A (en) * 2007-01-24 2010-05-20 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Crystalline 3D- and 2D-covalent organic frameworks
JP2011514377A (en) * 2008-03-17 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア Use of formate-based porous metal-organic framework materials for methane storage
WO2011105521A1 (en) 2010-02-24 2011-09-01 株式会社クラレ Metal complex, and adsorbent, occlusion material and separator material made from same
JP2011524870A (en) * 2008-06-11 2011-09-08 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティ フィック セーエヌエールエス Reducible porous crystalline solid hybrid for separating a mixture of molecules having different degrees of unsaturation and / or number of unsaturations
JP2011190255A (en) * 2010-02-22 2011-09-29 Kuraray Co Ltd Metal complex, and adsorbing material, occlusion material and separation material composed thereof
JP2011190256A (en) * 2010-02-22 2011-09-29 Kuraray Co Ltd Metal complex, and occlusion material and separation material composed thereof
JP2011195570A (en) * 2010-02-23 2011-10-06 Kuraray Co Ltd Metal complex and method for production thereof
WO2011162351A1 (en) * 2010-06-23 2011-12-29 Jx日鉱日石エネルギー株式会社 Porous metal complex, process for producing same, gas storage method, and gas separation method
US8252255B2 (en) 2007-09-10 2012-08-28 Shell Oil Company Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
WO2013024888A1 (en) * 2011-08-17 2013-02-21 株式会社クラレ Separation material, and separation method using said separating material
WO2013024761A1 (en) 2011-08-17 2013-02-21 株式会社クラレ Metal complex and adsorbent material, storage material, and separating material comprising same
JP2013040129A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and storage material and separating material comprising the same
JP2013040130A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material, occluding material and separating material each comprising the same
US8507406B2 (en) 2010-08-12 2013-08-13 The Board Of Regents Of The University Of Texas System Zn4(OH)2(1,2,4-BTC)2—a rod packing microporous metal-organic framework with open metal sites for selective separation and sensing of small molecules
US8597406B2 (en) 2010-04-27 2013-12-03 Board Of Regents, The University Of Texas System Isoreticular metal-organic framework of the formula Zn4O(FMA)3
WO2014007179A1 (en) * 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
WO2014007181A1 (en) * 2012-07-04 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
US8664419B2 (en) 2010-04-30 2014-03-04 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks of the formula M2(2,5-dihydroxyterephthalate)
WO2014126238A1 (en) * 2013-02-18 2014-08-21 株式会社クラレ Metal complex, and adsorbent, absorbent and separator, each of which is formed of metal complex
WO2014129569A1 (en) 2013-02-22 2014-08-28 株式会社クラレ Method for producing metal complex
JPWO2013035702A1 (en) * 2011-09-05 2015-03-23 株式会社クラレ Adsorbent
US9120080B2 (en) 2010-02-10 2015-09-01 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks with open metal sites
US9127025B2 (en) 2011-08-19 2015-09-08 The Board Of Regents Of The University Of Texas System Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
US9296773B2 (en) 2012-01-17 2016-03-29 The Board Of Regents Of The University Of Texas System Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)]—enantiopure mixed metal-organic frameworks for selective separations and enantioselective recognition
WO2021090723A1 (en) * 2019-11-05 2021-05-14 東京エレクトロン株式会社 Substrate processing device, processing gas concentration device, and substrate processing method
CN114479094A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 Metal-organic framework hydrogen storage material and preparation method and application thereof

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275531A (en) * 2002-03-26 2003-09-30 Nippon Steel Corp Gas separator and gaseous mixture separation method
EP1674555A1 (en) * 2004-12-20 2006-06-28 Basf Aktiengesellschaft Concentration of methane in methane containing gas mixtures by adsorption
WO2006095435A1 (en) * 2005-03-10 2006-09-14 Fujitsu Limited Crosslinking ligand, metal complex and metal complex integrated structure
JP2006328051A (en) * 2005-04-28 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
WO2006122920A1 (en) * 2005-05-18 2006-11-23 Basf Aktiengesellschaft Gas odorous substance separation
WO2007101797A1 (en) * 2006-03-09 2007-09-13 Basf Se Closed reversible breathing apparatus having a metal organic framework
JP2009535586A (en) * 2006-05-04 2009-10-01 ビーエーエスエフ ソシエタス・ヨーロピア Gas pressure vessel with filter or gas pressure vessel containing storage agent
WO2007144324A1 (en) * 2006-06-14 2007-12-21 Basf Se Process for preparing unsaturated hydrocarbons
JP2010516869A (en) * 2007-01-24 2010-05-20 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Crystalline 3D- and 2D-covalent organic frameworks
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
WO2008138989A1 (en) * 2007-05-14 2008-11-20 Shell Internationale Research Maatschappij B.V. Process for producing purified natural gas from natural gas comprising water and carbon dioxide
EA015625B1 (en) * 2007-05-14 2011-10-31 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Process for producing purified natural gas from natural gas comprising water and carbon dioxide
US8557026B2 (en) 2007-05-14 2013-10-15 Shell Oil Company Process for producing purified natural gas from natural gas comprising water and carbon dioxide
WO2009007436A1 (en) * 2007-07-12 2009-01-15 Shell Internationale Research Maatschappij B.V. Method and apparatus for separating nitrogen from a mixed nitrogen and methane containing stream by using a metal organic framework
AU2008274180B2 (en) * 2007-07-12 2010-12-16 Shell Internationale Research Maatschappij B.V. Method and apparatus for separating nitrogen from a mixed nitrogen and methane containing stream by using a metal organic framework
US8252255B2 (en) 2007-09-10 2012-08-28 Shell Oil Company Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent
JP2011514377A (en) * 2008-03-17 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア Use of formate-based porous metal-organic framework materials for methane storage
JP2011524870A (en) * 2008-06-11 2011-09-08 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティ フィック セーエヌエールエス Reducible porous crystalline solid hybrid for separating a mixture of molecules having different degrees of unsaturation and / or number of unsaturations
WO2010021345A1 (en) 2008-08-19 2010-02-25 株式会社クラレ Metal complex and manufacturing method therefor
US8592626B2 (en) 2008-08-19 2013-11-26 Kuraray Co., Ltd. Metal complex and manufacturing method therefor
CN102131760B (en) * 2008-08-19 2014-03-19 可乐丽股份有限公司 Metal complex and manufacturing method therefor
US9120080B2 (en) 2010-02-10 2015-09-01 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks with open metal sites
JP2011190256A (en) * 2010-02-22 2011-09-29 Kuraray Co Ltd Metal complex, and occlusion material and separation material composed thereof
JP2011190255A (en) * 2010-02-22 2011-09-29 Kuraray Co Ltd Metal complex, and adsorbing material, occlusion material and separation material composed thereof
JP2011195570A (en) * 2010-02-23 2011-10-06 Kuraray Co Ltd Metal complex and method for production thereof
WO2011105521A1 (en) 2010-02-24 2011-09-01 株式会社クラレ Metal complex, and adsorbent, occlusion material and separator material made from same
US8741030B2 (en) 2010-02-24 2014-06-03 Kuraray Co., Ltd. Metal complex, and adsorbent, occlusion material and separator material made from same
JPWO2011105521A1 (en) * 2010-02-24 2013-06-20 株式会社クラレ Metal complex, adsorbent, occlusion material and separation material comprising the same
CN102762536A (en) * 2010-02-24 2012-10-31 可乐丽股份有限公司 Metal complex, and adsorbent, occlusion material and separator material made from same
US8597406B2 (en) 2010-04-27 2013-12-03 Board Of Regents, The University Of Texas System Isoreticular metal-organic framework of the formula Zn4O(FMA)3
US8664419B2 (en) 2010-04-30 2014-03-04 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks of the formula M2(2,5-dihydroxyterephthalate)
US8915989B2 (en) 2010-06-23 2014-12-23 Jx Nippon Oil & Energy Corporation Porous coordination polymer, process for producing same, gas storage method, and gas separation method
WO2011162351A1 (en) * 2010-06-23 2011-12-29 Jx日鉱日石エネルギー株式会社 Porous metal complex, process for producing same, gas storage method, and gas separation method
US8507406B2 (en) 2010-08-12 2013-08-13 The Board Of Regents Of The University Of Texas System Zn4(OH)2(1,2,4-BTC)2—a rod packing microporous metal-organic framework with open metal sites for selective separation and sensing of small molecules
JP2013040129A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and storage material and separating material comprising the same
JP2013040130A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material, occluding material and separating material each comprising the same
WO2013024761A1 (en) 2011-08-17 2013-02-21 株式会社クラレ Metal complex and adsorbent material, storage material, and separating material comprising same
CN103748064A (en) * 2011-08-17 2014-04-23 株式会社可乐丽 Metal complex and adsorbent material, storage material, and separating material comprising same
US9662606B2 (en) 2011-08-17 2017-05-30 Kuraray Co., Ltd. Metal complex and adsorbent material, storage material, and separating material comprising same
JPWO2013024761A1 (en) * 2011-08-17 2015-03-05 株式会社クラレ Metal complex, adsorbent, occlusion material and separation material comprising the same
CN103748064B (en) * 2011-08-17 2016-08-24 株式会社可乐丽 Metal complex and the adsorbing material being made from, storage material and separation material
WO2013024888A1 (en) * 2011-08-17 2013-02-21 株式会社クラレ Separation material, and separation method using said separating material
US9127025B2 (en) 2011-08-19 2015-09-08 The Board Of Regents Of The University Of Texas System Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
JPWO2013035702A1 (en) * 2011-09-05 2015-03-23 株式会社クラレ Adsorbent
US9296773B2 (en) 2012-01-17 2016-03-29 The Board Of Regents Of The University Of Texas System Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)]—enantiopure mixed metal-organic frameworks for selective separations and enantioselective recognition
WO2014007179A1 (en) * 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
US9586170B2 (en) 2012-07-02 2017-03-07 Kuraray Co., Ltd. Metal complex, and adsorbent material, storage material and separation material comprising metal complex
CN104411673A (en) * 2012-07-02 2015-03-11 株式会社可乐丽 Metal complex, and absorbent, occlusion material and separation material produced therefrom
CN104583172A (en) * 2012-07-04 2015-04-29 株式会社可乐丽 Metal complex, and absorbent, occlusion material and separation material produced therefrom
WO2014007181A1 (en) * 2012-07-04 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
WO2014126238A1 (en) * 2013-02-18 2014-08-21 株式会社クラレ Metal complex, and adsorbent, absorbent and separator, each of which is formed of metal complex
WO2014129569A1 (en) 2013-02-22 2014-08-28 株式会社クラレ Method for producing metal complex
WO2021090723A1 (en) * 2019-11-05 2021-05-14 東京エレクトロン株式会社 Substrate processing device, processing gas concentration device, and substrate processing method
CN114599442A (en) * 2019-11-05 2022-06-07 东京毅力科创株式会社 Apparatus for treating substrate, apparatus for concentrating treatment gas, and method for treating substrate
CN114479094A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 Metal-organic framework hydrogen storage material and preparation method and application thereof
CN114479094B (en) * 2020-10-26 2023-03-03 中国石油化工股份有限公司 Metal-organic framework hydrogen storage material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2003342260A (en) Three-dimensional metal complex, adsorbing material and separating material
Ghanbari et al. A review on production of metal organic frameworks (MOF) for CO2 adsorption
JP4258608B2 (en) Three-dimensional metal complex, adsorbent and separation material
Wang et al. A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP5506283B2 (en) Metal complex and method for producing the same
CA2734126A1 (en) Metal complex and manufacturing method therefor
JP5478120B2 (en) Metal complex and method for producing the same
CN111944160B (en) Oxalic acid functionalized microporous coordination polymer material and preparation method and application thereof
Liu et al. Flexible porous coordination polymers constructed from 1, 2-bis (4-pyridyl) hydrazine via solvothermal in situ reduction of 4, 4′-azopyridine
JP5725784B2 (en) Metal complex and separation material comprising the same
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
WO2017155475A1 (en) Silver-decorated metal-organic framework for olefin/alkane separation
JP2012193122A (en) Metal complex and separation material consisting thereof
JP2013216622A (en) Metal complex, method for producing the same, and adsorbent
JP5478121B2 (en) Metal complex and method for producing the same
JP2011051949A (en) Metal complex and method for producing the same
Zhang et al. A new honeycomb MOF for C 2 H 4 purification and C 3 H 6 enrichment by separating methanol to olefin products
Liu et al. Linker micro-regulation of a Hofmann-based metal–organic framework for efficient propylene/propane separation
JP2013107826A (en) Metal complex, method for producing the metal complex and separation material
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
JP5677132B2 (en) Metal complex and method for producing the same
WO2013024888A1 (en) Separation material, and separation method using said separating material
JP2009208028A (en) Carbon dioxide adsorbent
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090304