JP2011240340A - Porous organic-inorganic hybrid material, and adsorbent containing the same - Google Patents

Porous organic-inorganic hybrid material, and adsorbent containing the same Download PDF

Info

Publication number
JP2011240340A
JP2011240340A JP2011148240A JP2011148240A JP2011240340A JP 2011240340 A JP2011240340 A JP 2011240340A JP 2011148240 A JP2011148240 A JP 2011148240A JP 2011148240 A JP2011148240 A JP 2011148240A JP 2011240340 A JP2011240340 A JP 2011240340A
Authority
JP
Japan
Prior art keywords
acid
adsorbent
inorganic hybrid
organic
porous organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011148240A
Other languages
Japanese (ja)
Other versions
JP5551119B2 (en
Inventor
Jong San Chang
ジョン−サン・チャン
Young Kyu Hwang
ヨン・キュ・ファン
Sung-Hwa Jhung
スン・ファ・ジュン
Do-Young Hong
ドゥ−ヨン・ホン
You-Kyung Seo
ユー−キュン・セオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Chemical Technology KRICT
Original Assignee
Korea Research Institute of Chemical Technology KRICT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060127343A external-priority patent/KR100803964B1/en
Priority claimed from KR1020070077335A external-priority patent/KR100890347B1/en
Application filed by Korea Research Institute of Chemical Technology KRICT filed Critical Korea Research Institute of Chemical Technology KRICT
Publication of JP2011240340A publication Critical patent/JP2011240340A/en
Application granted granted Critical
Publication of JP5551119B2 publication Critical patent/JP5551119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moisture adsorbent having a high moisture adsorbability and exhibits easy desorption even at a relatively low temperature.SOLUTION: The present invention relates to an adsobent using an iron-containing porous organic-inorganic hybrid material having a large surface area and a large pore volume, particularly to a moisture adsorbent. The present invention relates to an adsorbent which can adsorb and desorb easily even at ≤100°C, has a large adsorption amount per 1 weight of the adsorbent, and can be applied to a humidifier, a dehumidifier and a cooler/heater. The present invention relates also to a novel method for manufacturing a porous organic-inorganic hybrid material, particularly to the manufacturing method using no hydrofluoric acid, and to a porous organic-inorganic hybrid material manufactured by the manufacturing method, and to the use thereof as an adsorbent.

Description

本発明は、多孔性有・無機混成体の製造方法、これを含有する吸着剤、及び前記有・無機混成体の触媒応用に関するものである。さらに詳しくは、100℃以下の低温でも容易に吸・脱着することができ、吸着条件での吸着量と脱着条件での吸着量との差が大きい吸着剤に関するものである。また、本発明は、ナノサイズの細孔を有し、表面積及び細孔体積が非常に大きい特徴を有する多孔性有・無機混成体を用いた吸着剤に関するものである。   The present invention relates to a method for producing a porous organic / inorganic hybrid, an adsorbent containing the same, and a catalyst application of the organic / inorganic hybrid. More specifically, the present invention relates to an adsorbent that can be easily adsorbed / desorbed even at a low temperature of 100 ° C. or less and has a large difference between the adsorption amount under the adsorption condition and the adsorption amount under the desorption condition. The present invention also relates to an adsorbent using a porous organic / inorganic hybrid having features of nano-sized pores and a very large surface area and pore volume.

また、本発明は、フッ酸を用いずに多孔性有・無機混成体を製造する新規な製造方法、及び前記製造方法により得られる多孔性有・無機混成体の吸着剤としての新規な用途に関するものである。   The present invention also relates to a novel production method for producing a porous organic / inorganic hybrid without using hydrofluoric acid, and a novel use as an adsorbent for the porous organic / inorganic hybrid obtained by the production method. Is.

特に、本発明による多孔性有・無機混成体の吸着剤としての新規な用途に関し、本発明は、100℃以下でも容易に吸・脱着することができる吸着剤の1重量当たりの吸着量が高く、加湿器、除湿器及び冷・暖房機に適用可能な水分吸着剤に関するものである。また、本発明は、広い表面積と均一な細孔特性を有する本発明の多孔性有・無機混成体を、特定の有害物質に対する吸着性能に優れた吸着剤として用いる用途に関するものである。   In particular, the present invention relates to a novel use as a porous organic / inorganic hybrid adsorbent according to the present invention, and the present invention has a high adsorbed amount per weight of an adsorbent that can be easily adsorbed and desorbed even at 100 ° C. Further, the present invention relates to a moisture adsorbent applicable to a humidifier, a dehumidifier, and a cooling / heating machine. The present invention also relates to an application in which the porous organic / inorganic hybrid of the present invention having a large surface area and uniform pore characteristics is used as an adsorbent having excellent adsorption performance for specific harmful substances.

本発明により製造される多孔性有・無機混成体は、中心金属イオン(例えば、鉄イオン)が、有機リガンドと結合して形成された多孔性有・無機高分子化合物と定義することができる。前記化合物は、骨格構造内に有機物と無機物のいずれも含み、分子サイズまたはナノサイズの細孔構造を有する結晶性化合物を意味する。   The porous organic / inorganic hybrid produced by the present invention can be defined as a porous organic / inorganic polymer compound formed by binding a central metal ion (for example, iron ion) to an organic ligand. The said compound means the crystalline compound which contains both organic substance and inorganic substance in frame | skeleton structure, and has a pore structure of molecular size or nanosize.

多孔性有・無機混成体は、広範囲な意味の用語であって、一般に“多孔性配位高分子(porous coordination polymers)”とも言い[Angew.Chem.Intl.Ed.、43、2334(2004)]、または“金属−有機骨格体(metal−organic frameworks)”とも言う[Chem.Soc.Rev.、32、276(2003)]。   Porous organic / inorganic hybrids are terms in a broad sense, and are generally also referred to as “porous coordination polymers” [Angew. Chem. Intl. Ed. , 43, 2334 (2004)], or “metal-organic frameworks” [Chem. Soc. Rev. 32, 276 (2003)].

最近は、分子配位結合と材料科学との接木によるこのような物質の開発に研究の焦点が合わせられている。このような物質は、高表面積と分子サイズまたはナノサイズの細孔を有しており、吸着剤、気体保存物質、センサ、メンブレイン、機能性薄膜、触媒及び触媒担体等に用いられるだけでなく、細孔のサイズよりも小さいゲスト分子を捕集するか、または細孔を用いて分子のサイズに応じて分子を分離するのに用いられ得る。   Recently, research has focused on the development of such materials by grafting molecular coordination bonds and materials science. Such materials have high surface area and molecular or nano-sized pores and are not only used in adsorbents, gas storage materials, sensors, membranes, functional thin films, catalysts and catalyst supports. It can be used to collect guest molecules that are smaller than the size of the pores or to separate the molecules according to the size of the molecules using the pores.

多孔性有・無機混成体は、種々な方法により製造されてきた。代表的に、室温付近で溶媒拡散(solvent difffusion)を用いるか、または水を溶媒として用いて高温で反応させる水熱合成(hydrothermal synthesis)、または有機溶媒を用いる溶媒熱合成(solvothermal synthesis)方法により製造された[Microporous Mesoporous Mater.、73、15、2004;Accounts of Chemical Research、38、217、2005]。   Porous organic / inorganic hybrids have been produced by various methods. Typically, by solvent diffusion near room temperature, or by hydrothermal synthesis in which water is used as a solvent for reaction at high temperature, or by solvent thermal synthesis using an organic solvent. Manufactured [Microporous Mesoporous Mater. 73, 15, 2004; Accounts of Chemical Research, 38, 217, 2005].

多孔性有・無機混成体は、高い表面積、規則性が非常に高い結晶構造及び比較的に高い熱安定性等の特性のため、触媒、触媒担体、吸着剤、イオン交換物質及び気体保存物質に用いることができるだけでなく、ナノ物質の保存、製造及び分離に活用され、ナノ反応器としても活用できる独特な特性を有するものと認識されている。これに関し、有−無機混成体であるMIL−100(MIL:Materials of Institute Lavoisier)構造であるCr−MIL−100[Bulletin of Korean Chemical Society vol.26、p.880(2005)]が報告された。   Porous organic / inorganic hybrids are suitable for catalysts, catalyst supports, adsorbents, ion exchange materials and gas storage materials because of their characteristics such as high surface area, very regular crystal structure and relatively high thermal stability. It is recognized that it has unique properties that can be used not only for storage, production and separation of nanomaterials, but also as a nanoreactor. In this regard, Cr-MIL-100 [Bulletin of Korean Chemical Society vol. 1] is a MIL-100 (MIL: Materials of Institute Laborator) structure, which is an organic-inorganic hybrid. 26, p. 880 (2005)] was reported.

しかし、上述したように、Crを含有する有・無機混成体の場合、人体に有害なCr成分により、その応用性が相対的に制限されるしかない。特に、人体に有害ではないFeを中心金属とする鉄−有・無機混成体は、Cr成分を有する有・無機混成体の合成方法によっては形成されにくく、このための新しい製造方法の開発が必要となった。   However, as described above, in the case of the organic / inorganic hybrid containing Cr, its applicability can only be relatively limited by the Cr component harmful to the human body. In particular, iron-inorganic / inorganic hybrids with Fe as the central metal that are not harmful to the human body are difficult to be formed by the synthesis method of organic / inorganic hybrids having Cr components, and development of a new manufacturing method for this purpose is required. It became.

また、水熱合成による多孔性有・無機混成体合成の場合、一般に結晶の形成速度を調節するために、硝酸、フッ酸等を含む混合酸を用いた。前記水熱合成により製造された代表的な多孔性有・無機混成体としては、化学式がCrО(HО)F[C−(CО・nHО(n〜14.5)である MIL−100(Cr)と、CrF(HО)О[C(CО・nHО(n〜25)であるMIL−101(Cr)等が報告された[Science 23、2040、(2005);Accounts of Chemical Research、38、217、(2005)]。また、Cr以外の金属が置換された金属−有機骨格構造の有・無機混成体はまだ報告されていない。 In the case of synthesis of a porous organic / inorganic hybrid by hydrothermal synthesis, a mixed acid containing nitric acid, hydrofluoric acid, etc. is generally used to adjust the crystal formation rate. A typical porous organic / inorganic hybrid produced by the hydrothermal synthesis has a chemical formula of Cr 3 O (H 2 O) 2 F [C 6 H 3- (CO 2 ) 3 ] 2 .nH 2 O MIL-100 (Cr), which is (n to 14.5), and Cr 3 F (H 2 O) 2 O [C 6 H 4 (CO 2 ) 2 ] 3 · nH 2 O (n to 25). MIL-101 (Cr) and others have been reported [Science 23, 2040, (2005); Accounts of Chemical Research, 38, 217, (2005)]. Moreover, the organic / inorganic hybrid having a metal-organic skeleton structure in which a metal other than Cr is substituted has not been reported yet.

一方、水分を容易に吸・脱着することができる吸着剤は、種々な用途を有している。例えば、除湿器には、低温で水分を吸着した後、高温に加熱すれば、水分が脱着される特性を有する吸着剤を活用することができる。また、冷暖房機に吸着剤を活用すれば、暖房時には低い温度の室外の湿気を吸着した後、室内に湿気を流入し、高温の室内で脱着して加湿器の役割を代わりにすることもでき、冷房時には低い温度の室内の湿気を吸着し、高い温度の室外で脱着し、湿気を室外に送ることもでき、快適な室内雰囲気を得ることができる。   On the other hand, adsorbents that can easily absorb and desorb moisture have various uses. For example, in the dehumidifier, an adsorbent having a property of desorbing moisture can be used by adsorbing moisture at a low temperature and then heating to a high temperature. In addition, if an adsorbent is used in the air conditioner, the humidity of the outdoor room at low temperature can be adsorbed during heating, and then the moisture can flow into the room and be desorbed in a hot room to replace the role of the humidifier. During cooling, moisture in the room at a low temperature is adsorbed, desorbed outside the room at a high temperature, and the moisture can be sent to the outside, so that a comfortable room atmosphere can be obtained.

このような概念を適用したエアコン及び湿度調節器が米国特許第6,978,635号、同6,959,875号、同6,675,601号等に提案されている。しかし、このような装置に用いられた吸着剤について詳しくは言及されておらず、シリカゲル、ゼオライト、イオン交換樹脂を用いるとのみ言及されているか、または吸着剤を用いるとのみなっている。また、このような吸着剤の場合、吸着量が低いだけでなく、脱着にも100℃以上の高温が要求される等、運転コストの上昇を誘発させる。   US Pat. Nos. 6,978,635, 6,959,875, 6,675,601 and the like have proposed air conditioners and humidity controllers to which such a concept is applied. However, the adsorbent used in such a device is not described in detail, but only mentions that silica gel, zeolite, ion exchange resin is used, or only adsorbent is used. In addition, in the case of such an adsorbent, not only the adsorption amount is low, but also a high temperature of 100 ° C. or higher is required for desorption, which causes an increase in operating cost.

従って、低温でも脱着が可能であり、吸着量と脱着量との差が大きい吸着剤の開発が非常に必要である。しかし、吸着量が増加すれば脱着が難しく、吸着量が少ない場合は、吸着量と脱着量との差が少ないという問題が常に存在していた。   Therefore, it is very necessary to develop an adsorbent that can be desorbed even at a low temperature and has a large difference between the amount of adsorption and the amount of desorption. However, if the amount of adsorption increases, desorption is difficult, and if the amount of adsorption is small, there is always a problem that the difference between the amount of adsorption and the amount of desorption is small.

また、これまで揮発性有機化合物(VОCs)等を含む蒸気相または粒子相の特定の有害物質を除去することができる吸着剤として、活性炭及び疎水性ゼオライトを主に用いてきた。活性炭は、微細空洞が発達しており、比表面積が非常に大きく、非極性分子に対する吸着力が強く、排気ガスの除去、臭いの除去及び脱色効果に優れているのに対し、ゼオライトは、3〜10Å程度の細孔径を有する親水性吸着剤であって、一酸化炭素、二酸化炭素及び水分に対する吸着特性が強い特性を有する。しかし、ほとんどが疎水性特性のみを有しており、水が含まれている揮発性有機化合物を効果的に吸着して除去することは、容易でないという短所があった。   In the past, activated carbon and hydrophobic zeolite have been mainly used as adsorbents that can remove specific harmful substances in the vapor phase or particle phase containing volatile organic compounds (VOCs) and the like. Activated carbon has developed fine cavities, has a very large specific surface area, has a strong adsorptive power to nonpolar molecules, and has excellent exhaust gas removal, odor removal and decolorization effects, whereas zeolite has 3 It is a hydrophilic adsorbent having a pore diameter of about 10 to 10 mm, and has a strong adsorption characteristic for carbon monoxide, carbon dioxide and moisture. However, most of them have only hydrophobic characteristics, and it is difficult to effectively adsorb and remove volatile organic compounds containing water.

米国特許第6,978,635号US Pat. No. 6,978,635 米国特許第6,959,875号US Pat. No. 6,959,875 米国特許第6,675,601号US Pat. No. 6,675,601

Angew.Chem.Intl.Ed.、43、2334(2004)Angew. Chem. Intl. Ed. 43, 2334 (2004) Chem.Soc.Rev.、32、276(2003)Chem. Soc. Rev. 32, 276 (2003) Microporous Mesoporous Mater.、73、15、2004Microporous Mesoporous Mater. 73, 15, 2004 Accounts of Chemical Research、38、217、2005Accounts of Chemical Research, 38, 217, 2005 Bulletin of Korean Chemical Society vol.26、p.880(2005)Bulletin of Korean Chemical Society vol. 26, p. 880 (2005) Science 23、2040、(2005)Science 23, 2040, (2005)

これにより、本発明の第1の様態において、高い水分吸着量を有し、100℃以下の比較的に低温、例えば60〜80℃でも脱着が容易な吸着剤を提供し、鉄を含有する多孔性有・無機混成体を用い、吸着量と吸着特性に優れた吸着剤を提供する。   Thereby, in the first aspect of the present invention, an adsorbent having a high moisture adsorption amount and being easily desorbed even at a relatively low temperature of 100 ° C. or lower, for example, 60 to 80 ° C., is provided. Provide an adsorbent that is superior in adsorption amount and adsorption characteristics by using a hybrid of organic and inorganic materials.

従って、本発明の目的は、高い水分吸着量を有し、比較的に低温でも脱着が容易な水分吸着剤を提供することにある。   Accordingly, an object of the present invention is to provide a moisture adsorbent having a high moisture adsorption amount and easy desorption even at a relatively low temperature.

より具体的には、高い水分吸着量を有し、比較的に低温でも脱着が容易な物質として、高い表面積と大きい細孔体積を有する鉄含有多孔性有・無機混成体を用いた水分吸着剤を提供することに、本発明の目的がある。   More specifically, a moisture adsorbent using an iron-containing porous organic / inorganic hybrid having a high surface area and a large pore volume as a substance that has a high moisture adsorption amount and is easily desorbed even at a relatively low temperature. It is an object of the present invention to provide

また、本発明は、前記高い表面積と大きい細孔体積を有する鉄含有多孔性有・無機混成体の製造方法を提供することに、更なる目的がある。   Moreover, this invention has the further objective in providing the manufacturing method of the iron containing porous organic-inorganic hybrid body which has the said high surface area and large pore volume.

従来、多孔性有・無機混成体に含まれる金属成分であったCrの代わりに、環境親和的なFeを含有する鉄前駆体と有機リガンドとを反応させる。硝酸とフッ酸との混合酸の存在下で、溶媒との混合物を加熱して結晶化反応を行った場合、1700m2/gより高い表面積及び0.8ml/gより大きい細孔体積のような、高表面積及び広い細孔体積の鉄含有多孔性有・無機混成体が製造される。これを水分吸着剤として用いた場合、100℃以下の温度で脱着が容易であり、吸着剤の1重量当たりの水分吸着量が非常に高いことを見出し、本発明を完成した。 Conventionally, instead of Cr, which is a metal component contained in a porous organic / inorganic hybrid, an iron precursor containing environmentally friendly Fe is reacted with an organic ligand. When the crystallization reaction is performed by heating the mixture with the solvent in the presence of a mixed acid of nitric acid and hydrofluoric acid, such as a surface area higher than 1700 m 2 / g and a pore volume larger than 0.8 ml / g A high surface area and wide pore volume iron-containing porous organic / inorganic hybrid is produced. When this was used as a moisture adsorbent, it was found that desorption was easy at a temperature of 100 ° C. or lower, and the amount of moisture adsorbed per weight of the adsorbent was found to be very high, thus completing the present invention.

本発明の第2の様態は、多孔性有・無機混成体を製造することにおいて、場合によってフッ酸を全く用いないことにより、環境親和的な新規な製造工程を通じて相対的に小さいナノ粒子サイズを有する多孔性有・無機混成体を製造し、精製する方法、及び前記方法により製造された多孔性有・無機混成体の吸着剤としての用途を提供することを目的とする。   According to the second aspect of the present invention, a relatively small nanoparticle size can be obtained through a novel environmentally friendly production process by producing no porous hydrofluoric acid in some cases in producing a porous organic / inorganic hybrid. It is an object of the present invention to provide a method for producing and purifying a porous organic / inorganic hybrid having the same, and an application as an adsorbent for the porous organic / inorganic hybrid produced by the method.

また、本発明は、マイクロ波の照射により、迅速及び連続製造工程で多孔性有・無機混成体を製造する方法を提供することを目的とする。特に、吸着剤としての用途に関し、本発明は、水分、またはVОC、シックハウス症候群を誘発する有害物質等の特定の有害物質に対して吸着性能に優れた吸着剤を提供することを目的とする。   Another object of the present invention is to provide a method for producing a porous organic / inorganic hybrid material by microwave irradiation in a rapid and continuous production process. In particular, the present invention relates to use as an adsorbent, and an object of the present invention is to provide an adsorbent excellent in adsorption performance for specific harmful substances such as moisture, VOC, and a harmful substance that induces sick house syndrome.

本発明の第1の様態は、水分吸着剤に関するものである。特に、前記吸着剤は、環境親和的な鉄を金属成分として含有する多孔性の有・無機混成体を用いることを特徴とする。   The first aspect of the present invention relates to a moisture adsorbent. In particular, the adsorbent is characterized by using a porous organic-inorganic hybrid containing environmentally friendly iron as a metal component.

本発明は、低温でも脱着が容易であり、低温吸着量と高温吸着量との差が大きい、鉄を含む多孔性有・無機混成体を用いた吸着剤を提供する。本発明による吸着剤は、1,700m2/gより大きい表面積、0.8mL/gより大きい細孔体積を有し、有機物と無機物のいずれも骨格の構成成分として含有する。また、前記鉄含有多孔性有・無機混成体は、鉄前駆体及び鉄前駆体と配位結合することができる有機リガンド化合物の反応により製造されることを特徴とする。 The present invention provides an adsorbent using a porous organic / inorganic hybrid containing iron, which is easily desorbed even at low temperatures and has a large difference between the low-temperature adsorption amount and the high-temperature adsorption amount. The adsorbent according to the present invention has a surface area of more than 1,700 m 2 / g and a pore volume of more than 0.8 mL / g, and contains both organic and inorganic substances as skeleton constituents. The iron-containing porous organic / inorganic hybrid is produced by a reaction of an iron precursor and an organic ligand compound capable of coordinating with the iron precursor.

表面積及び細孔体積が前記の値よりも小さい場合、水分吸着剤としての効果が大きくない。   When the surface area and pore volume are smaller than the above values, the effect as a moisture adsorbent is not large.

また、表面積及び細孔体積は大きければ大きいほど良い。しかし、製造方法上、実質的に実現可能な範囲として、表面積の上限は10000m2/g程度であり、細孔体積の上限は10mL/g程度である。本発明による鉄含有多孔性有・無機混成体の場合、1,700〜2,500m2/gの表面積、0.8〜1.2mL/gの細孔体積を有する。 Moreover, the larger the surface area and pore volume, the better. However, the upper limit of the surface area is about 10,000 m 2 / g and the upper limit of the pore volume is about 10 mL / g as a practically realizable range in the production method. The iron-containing porous organic / inorganic hybrid according to the present invention has a surface area of 1,700 to 2,500 m 2 / g and a pore volume of 0.8 to 1.2 mL / g.

また、従来の吸着剤の場合、室温の水分吸着量に対する100℃での水分吸着量の比が0.5〜1程度である。従って、100℃以下の温度では、吸着された水分の50%以下が脱着され、低温での脱着特性が良くないという問題点があった。しかし、本発明による吸着剤の場合は、100℃以下の温度で、吸着された水分の80%以上、より好ましくは90%以上が脱着される特性を有する。また、60〜80℃で10〜30分乾燥した後、相対湿度60〜80%の条件で水分吸着量は吸着剤の1重量当たり0.4〜0.7g/gと、吸着剤の単位重量当たりの水分吸着量が非常に高い。従って、本発明による水分吸着剤は、水分吸着量が非常に高く、100℃以下の低い温度でも脱着が容易であるだけでなく、従来の吸着剤に比べて脱着速度が高く、湿度調節用として用いるのに適している。   In the case of a conventional adsorbent, the ratio of the moisture adsorption amount at 100 ° C. to the moisture adsorption amount at room temperature is about 0.5 to 1. Therefore, at a temperature of 100 ° C. or less, 50% or less of the adsorbed moisture is desorbed, and there is a problem that the desorption characteristics at a low temperature are not good. However, the adsorbent according to the present invention has a characteristic that 80% or more, more preferably 90% or more of the adsorbed moisture is desorbed at a temperature of 100 ° C. or less. Further, after drying at 60 to 80 ° C. for 10 to 30 minutes, the moisture adsorption amount is 0.4 to 0.7 g / g per weight of the adsorbent under the condition of the relative humidity 60 to 80%, and the unit weight of the adsorbent. The amount of moisture adsorbed per unit is very high. Therefore, the moisture adsorbent according to the present invention has a very high moisture adsorption amount and is easy to desorb even at a low temperature of 100 ° C. or lower, and has a higher desorption rate than conventional adsorbents, and is used for humidity adjustment. Suitable for use.

本発明の第2の様態において、本発明は、多孔性有・無機混成体の効率的な新規な製造方法、特に、水熱合成の際にフッ酸を用いずにナノサイズの粒径を有する多孔性有・無機混成体を製造する方法を提供する。また、本発明の前記製造方法は、多孔性有・無機混成体の表面積を増加させるための精製方法を含むことを特徴とする。また、本発明は、前記新規な製造方法により得られる多孔性有・無機混成体を水分吸着剤、VОC(揮発性有機化合物)等の特定の有害物質除去用吸着剤として用いることを特徴とする新規な用途に関するものである。前記特定の有害物質としては、揮発性有機化合物以外に、シックハウス症候群を起こすホルムアルデヒド、アセトアルデヒド、タール、ニトロソアミン類、ポリ環状芳香族炭化水素類等のような蒸気相または粒子相の物質等を含む。また、本発明は、前記新規な製造方法により得られる多孔性有・無機混成体を水分吸着剤、蒸気相または粒子相の特定の有害物質を除去する吸着剤として用いることを特徴とする新規な用途に関するものである。   In the second aspect of the present invention, the present invention has an efficient novel method for producing a porous organic / inorganic hybrid, particularly a nano-sized particle size without using hydrofluoric acid during hydrothermal synthesis. Provided is a method for producing a porous organic / inorganic hybrid. The production method of the present invention includes a purification method for increasing the surface area of the porous organic / inorganic hybrid. Further, the present invention is characterized in that the porous organic / inorganic hybrid obtained by the novel production method is used as an adsorbent for removing specific harmful substances such as a moisture adsorbent and VOC (volatile organic compound). It relates to new applications. In addition to volatile organic compounds, the specific harmful substances include vapor phase or particulate phase substances such as formaldehyde, acetaldehyde, tar, nitrosamines, polycyclic aromatic hydrocarbons and the like that cause sick house syndrome. In addition, the present invention is a novel product characterized in that the porous organic-inorganic hybrid obtained by the novel production method is used as a moisture adsorbent, an adsorbent that removes specific harmful substances in the vapor phase or the particle phase. It relates to the use.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明の第1の様態において、本発明による吸着剤として用いられる鉄含有多孔性有・無機混成体は、次のステップを含む方法により製造される:
(1)鉄前駆体として鉄または鉄塩、有機リガンド、溶媒及び反応促進剤としてフッ酸及び硝酸を含む混合酸を混合して反応物混合液を製造するステップ;及び
(2)前記反応物混合液を加熱するステップ。
In the first aspect of the present invention, the iron-containing porous organic-inorganic hybrid used as the adsorbent according to the present invention is produced by a method comprising the following steps:
(1) a step of mixing a mixed acid containing iron or an iron salt as an iron precursor, an organic ligand, a solvent, and hydrofluoric acid and nitric acid as a reaction accelerator to produce a reactant mixture; and (2) mixing the reactants. Heating the liquid.

多孔性有・無機混成体のもう1つの構成元素であるリガンドとして作用することができる有機化合物は、リンカー(linker)とも言い、配位結合可能な有機化合物であれば、いずれも用いることができる。例えば、配位することができる作用基には、−CО 、−N、カルボン酸基、カルボン酸の陰イオン基、アミノ基(−NH)、イミノ基(

Figure 2011240340
)、アミド基(−CОNH)、スルホン酸基(−SОH)、スルホン酸の陰イオン基(−SО )、メタンジチオ酸基(−CSH)、メタンジチオ酸の陰イオン基(−CS )、ピリジン基またはピラジン基等がある。 An organic compound that can act as a ligand, which is another constituent element of the porous organic-inorganic hybrid, is also called a linker, and any organic compound that can be coordinated can be used. . For example, functional groups that can be coordinated include —CO 2 , —N, carboxylic acid groups, carboxylic acid anion groups, amino groups (—NH 2 ), imino groups (
Figure 2011240340
), Amide group (—CONH 2 ), sulfonic acid group (—SO 3 H), anionic group of sulfonic acid (—SO 3 ), methanedithioic acid group (—CS 2 H), anionic group of methanedithioic acid ( -CS 2 -), and the like pyridine group or a pyrazine group.

より安定した有・無機混成体を誘導するためには、配位することができる場所が2つ以上の化合物、例えば、二座配位子(bidentate)または三座配位子(tridentate)である有機化合物が有利である。有機化合物としては、配位する場所があれば、ビピリジン、ピラジン等のような中性有機化合物、陰イオン性有機化合物、例えばテレフタレート、ナフタレンジカルボキシレート、ベンゼントリカルボキシレート、グルタレート、サクシネート等のようなカルボン酸の陰イオンはもちろん、陽イオン物質も可能である。カルボン酸の陰イオンの場合、テレフタレートのような芳香族環を有する陰イオンの他、例えば、ホルメートのような線形のカルボン酸の陰イオン、シクロヘキシルジカーボネートのように非芳香族環を有する陰イオン等、いずれの陰イオンであっても用いることができる。   In order to derive a more stable organic / inorganic hybrid, the place where coordination is possible is two or more compounds, for example, bidentate or tridentate. Organic compounds are preferred. As an organic compound, a neutral organic compound such as bipyridine and pyrazine, an anionic organic compound, such as terephthalate, naphthalene dicarboxylate, benzene tricarboxylate, glutarate, succinate, etc., can be used if there is a place to coordinate. In addition to anions of carboxylic acids, cationic substances are possible. In the case of a carboxylic acid anion, in addition to an anion having an aromatic ring such as terephthalate, a linear carboxylic acid anion such as formate, an anion having a non-aromatic ring such as cyclohexyl dicarbonate Any anion such as can be used.

また、配位することができる場所を有する有機化合物はもちろん、潜在的に配位する場所を有しており、反応条件で配位するように変換することができる有機化合物も使用可能である。すなわち、テレフタル酸のような有機酸を用いても、反応後にはテレフタレートとして金属成分と結合することができる。用いることができる有機化合物の代表的な例として、ベンゼンジカルボン酸、ナフタレンジカルボン酸、ベンゼントリカルボン酸、ナフタレントリカルボン酸、ピリジンジカルボン酸、ビピリジルジカルボン酸、蟻酸、蓚酸、マロン酸、コハク酸、グルタル酸、ヘキサン二酸、ヘプタン二酸、またはシクロヘキシルジカルボン酸から選ばれる有機酸及びこれらの陰イオン、ピラジン、ビピリジン等が含まれる。また、1つ以上の有機化合物を混合して用いることもできる。テレフタル酸またはベンゼントリカルボン酸を用いることが好ましい。   In addition, organic compounds having a place where coordination can be performed, as well as organic compounds which have a potential coordination place and can be converted to coordinate under reaction conditions can be used. That is, even when an organic acid such as terephthalic acid is used, it can be combined with the metal component as terephthalate after the reaction. Representative examples of organic compounds that can be used include benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, An organic acid selected from hexanedioic acid, heptanedioic acid, or cyclohexyldicarboxylic acid, and anions thereof, pyrazine, bipyridine and the like are included. One or more organic compounds can also be mixed and used. It is preferable to use terephthalic acid or benzenetricarboxylic acid.

本発明による吸着剤である鉄含有多孔性有・無機混成体は、鉄前駆体、有機リガンド、溶媒、及び反応促進剤としてフッ酸及び硝酸を含む混合酸を反応器に仕込んで封止した後、100〜250℃に加熱するが、マイクロ波または電気を用いて反応温度を維持し、圧力を自動圧力に維持して製造することができる。   The iron-containing porous organic-inorganic hybrid as an adsorbent according to the present invention is sealed after charging an iron precursor, an organic ligand, a solvent, and a mixed acid containing hydrofluoric acid and nitric acid as a reaction accelerator. , Heated to 100 to 250 ° C., but can be produced by maintaining the reaction temperature using microwaves or electricity and maintaining the pressure at an automatic pressure.

上述したように、本発明による鉄含有有・無機混成体の製造方法は、酸、好ましくはフッ酸及び硝酸の混合酸を用いることを特徴とする。特に、本発明の鉄を含有する有・無機混成体は、既存のフッ酸のみを用いて合成する方法に比べて、顕著な結晶性の向上と、結晶サイズの減少を示す。従来のフッ酸を用いる製造方法では、1,700m2/gより大きい表面積、及び0.8mL/gより大きい細孔体積を有する鉄含有有・無機混成体を製造することができない。実施例及び比較例の結果を参照すれば、既存のフッ酸を用いた場合は、BET表面積の値が1,590m2/gであって、混合酸を用いた2,050m2/gのBET表面積の値に比べて顕著に低い。また、混合酸を用いた場合は、細孔体積が1.0ml/gであるのに対し、フッ酸を用いた場合は、0.7ml/gと低かった。また、混合酸を用いた場合は、そうでない場合に比べて、非常に短い反応時間(マイクロ波を用いたときに、2分以内)にも拘らず、結晶性は向上し、収率は同様の効果を有することが確認された。しかし、その他の酸として、酢酸、硫酸等の酸成分や、フッ化アンモニウム及び塩化ナトリウム等の塩を用いた場合は、十分な結晶性を有する有・無機混成体を製造することが難しい。本発明の製造方法で、前記混合酸において、硝酸とフッ酸との混合割合を0.1〜1:1〜0.1のモル比で用い、本発明の目的とする鉄含有有・無機混成体を製造することができる。硝酸やフッ酸が前記モル比から外れる場合は、収率が低下し、且つ反応時間が長くなり過ぎる短所がある。 As described above, the method for producing an iron-containing organic-inorganic hybrid according to the present invention is characterized by using an acid, preferably a mixed acid of hydrofluoric acid and nitric acid. In particular, the organic / inorganic hybrid containing iron of the present invention exhibits a marked improvement in crystallinity and a reduction in crystal size as compared with the conventional method of synthesis using only hydrofluoric acid. The conventional production method using hydrofluoric acid cannot produce an iron-containing organic-inorganic hybrid having a surface area greater than 1,700 m 2 / g and a pore volume greater than 0.8 mL / g. Referring to the results of Examples and Comparative Examples, when existing hydrofluoric acid was used, the BET surface area value was 1,590 m 2 / g, and 2,050 m 2 / g BET using a mixed acid was used. It is significantly lower than the surface area value. When mixed acid was used, the pore volume was 1.0 ml / g, whereas when hydrofluoric acid was used, it was as low as 0.7 ml / g. In addition, when mixed acid is used, crystallinity is improved and yield is the same, despite a very short reaction time (within 2 minutes when using microwave) compared to the case where mixed acid is not used. It was confirmed to have the effect of. However, when an acid component such as acetic acid or sulfuric acid or a salt such as ammonium fluoride or sodium chloride is used as the other acid, it is difficult to produce an organic / inorganic hybrid having sufficient crystallinity. In the production method of the present invention, in the mixed acid, the mixing ratio of nitric acid and hydrofluoric acid is used in a molar ratio of 0.1 to 1: 1 to 0.1, and the iron-containing organic-inorganic hybrid aimed at by the present invention The body can be manufactured. When nitric acid or hydrofluoric acid deviates from the molar ratio, there are disadvantages in that the yield decreases and the reaction time becomes too long.

金属成分と有機化合物の他に、多孔性有・無機混成体を製造する場合は、適当な溶媒が必要である。前記溶媒としては、水、アルコール類、ケトン類、炭化水素類のいずれの物質も使用可能であり、2つ以上の溶媒を混合して用いることもできる。好ましくは、水、炭素数1〜10個のアルコール、例えばメタノール、エタノール、プロパノール、炭素数2〜10個のケトン、例えばアセトン、メチルエチルケトン、及び炭素数5〜20個の炭化水素、例えば、ヘキサン、ヘプタン、オクタンの中から選ばれた1種または2種以上の混合物を用いることができる。より好ましくは、水を用いることができる。   In addition to the metal component and the organic compound, an appropriate solvent is required when producing a porous / inorganic hybrid. As the solvent, any of water, alcohols, ketones, and hydrocarbons can be used, and two or more solvents can be mixed and used. Preferably, water, alcohol having 1 to 10 carbon atoms such as methanol, ethanol, propanol, ketone having 2 to 10 carbon atoms such as acetone, methyl ethyl ketone, and hydrocarbon having 5 to 20 carbon atoms such as hexane, One or a mixture of two or more selected from heptane and octane can be used. More preferably, water can be used.

前記鉄前駆体と有機化合物とは、1:0.1〜10の割合(モル比)で混合することができる。前記割合は、各鉄前駆体と有機化合物の種類により適宜調節することができる。本発明においては、鉄前駆体として金属粉末状の鉄または硝酸鉄のような鉄塩等を用い、有機リガンドとしてテレフタル酸またはベンゼントリカルボン酸がより好ましい。   The iron precursor and the organic compound can be mixed at a ratio (molar ratio) of 1: 0.1 to 10. The said ratio can be suitably adjusted with the kind of each iron precursor and an organic compound. In the present invention, iron powder or iron salt such as iron nitrate is used as the iron precursor, and terephthalic acid or benzenetricarboxylic acid is more preferable as the organic ligand.

本発明において、多孔性有・無機混成体の製造のための反応温度は、実際に制限されない。   In the present invention, the reaction temperature for producing the porous organic / inorganic hybrid is not actually limited.

しかし、100℃以上が適当である。100℃以上250℃以下の温度が好ましく、150℃以上220℃以下の温度がさらに好ましい。前記反応温度が100℃未満と低過ぎると、反応速度が遅くて効果的ではなく、反応温度が250℃を超えて高過ぎると、細孔のない物質が得られやすく、反応速度が速過ぎて不純物が混入しやすい。また、反応器の内部圧力が高くなり、反応器の構成が非経済的である。反応器の圧力は実際には限界がないが、反応温度での反応物の自動圧力(autogeneous pressure)で物質を合成することが簡単である。また、窒素、ヘリウムのような不活性気体を追加し、高圧で反応を行うこともできる。前記反応熱源としてマイクロ波を照射した場合、周波数がおよそ300MHz〜300GHzである、いずれのマイクロ波も反応物を加熱するのに用いることができる。しかし、産業的に周波数2.45GHz、0.915GHzのマイクロ波を一般に用いる。   However, 100 ° C. or higher is appropriate. A temperature of 100 ° C. or higher and 250 ° C. or lower is preferable, and a temperature of 150 ° C. or higher and 220 ° C. or lower is more preferable. If the reaction temperature is too low as less than 100 ° C., the reaction rate is slow and not effective, and if the reaction temperature exceeds 250 ° C. and too high, a substance without pores is easily obtained and the reaction rate is too high. Impurities are easily mixed. Further, the internal pressure of the reactor becomes high, and the configuration of the reactor is uneconomical. The pressure in the reactor is practically unlimited, but it is easy to synthesize the material with the autogenous pressure of the reactants at the reaction temperature. Further, an inert gas such as nitrogen or helium can be added to carry out the reaction at a high pressure. When microwaves are irradiated as the reaction heat source, any microwave having a frequency of about 300 MHz to 300 GHz can be used to heat the reaction product. However, industrially, microwaves with frequencies of 2.45 GHz and 0.915 GHz are generally used.

マイクロ波を照射する方法は、電気加熱を用いた方法に比べて、反応時間が短く、多孔性有・無機混成体の粒子のサイズが相対的に小さく、比表面積の値が高く、水分吸着剤としての特性がより優れている。   Compared with the method using electric heating, the microwave irradiation method has a shorter reaction time, a relatively small porous / inorganic hybrid particle size, a high specific surface area, and a moisture adsorbent. As the characteristics are better.

また、加湿器または除湿器に吸着剤として用いるためには、初期10分、より好ましくは、初期5分内の吸着及び脱着特性が重要である。すなわち、吸着量が多いとしても、その速度が低過ぎると、加湿器及び除湿器の用途に用いるのに適していないこともある。ところが、本発明による吸着剤のうち、マイクロ波を照射する方法により製造された吸着剤の場合、吸着速度が非常に高く、脱着速度にも優れており、このような用途に用いるのに、より適した特性を有している。すなわち、60〜80℃で10〜30分乾燥した後、相対湿度60〜80%の条件で5分経過の後、水分吸着量が吸着剤の1重量当たり0.35〜0.45g/gと、初期の吸着速度が非常に高い。   Also, for use as an adsorbent in a humidifier or dehumidifier, the adsorption and desorption characteristics within the initial 10 minutes, more preferably within the initial 5 minutes, are important. That is, even if the adsorption amount is large, if the speed is too low, it may not be suitable for use in humidifiers and dehumidifiers. However, among the adsorbents according to the present invention, in the case of the adsorbents produced by the method of irradiating microwaves, the adsorption rate is very high and the desorption rate is also excellent. It has suitable characteristics. That is, after drying for 10 to 30 minutes at 60 to 80 ° C. and after 5 minutes under conditions of 60 to 80% relative humidity, the moisture adsorption amount is 0.35 to 0.45 g / g per weight of the adsorbent. The initial adsorption rate is very high.

前記製造方法において、反応は、回分式及び連続式により行うことができる。回分式反応器は、1時間当たりの生産量が低く、少量の多孔性有・無機混成体を生産するのに適している。連続式反応器は、投資費が多くかかるが、大量生産に適している。反応時間は、回分式の場合、1分〜8時間程度が適している。反応時間が長過ぎると、不純物が混入しやすく、粒子が成長してナノ粒子を製造することが容易でない。反応時間が短過ぎると、反応転換率が低い。連続式反応器の滞留時間は、1分〜1時間程度が適している。滞留時間が長過ぎると、生産性が低く、大きい粒子が得られ、滞留時間が短過ぎると、反応転換率が低い。滞留時間は、1分〜20分がさらに適当である。回分式反応中には反応物を攪拌することができ、攪拌速度は100〜1000rpmが適当である。しかし、反応は攪拌過程なしでも行うことができ、攪拌をしないことが反応器の構成や運転において簡便で、適用しやすい。   In the said manufacturing method, reaction can be performed by a batch type and a continuous type. The batch reactor has a low production amount per hour and is suitable for producing a small amount of a porous / inorganic hybrid. Continuous reactors are expensive, but are suitable for mass production. In the case of a batch system, the reaction time is suitably about 1 minute to 8 hours. If the reaction time is too long, impurities are likely to be mixed, and it is not easy to produce nanoparticles by growing the particles. When the reaction time is too short, the reaction conversion rate is low. The residence time of the continuous reactor is suitably about 1 minute to 1 hour. If the residence time is too long, the productivity is low and large particles are obtained, and if the residence time is too short, the reaction conversion rate is low. The residence time is more suitably from 1 minute to 20 minutes. The reaction product can be stirred during the batch reaction, and the stirring speed is suitably 100 to 1000 rpm. However, the reaction can be carried out without a stirring process, and not stirring is simple and easy to apply in the configuration and operation of the reactor.

マイクロ波を用いた反応は非常に速い速度で起こるため、反応物の均一性を高めるか、または溶解度を高め、結晶核が一部生成されるように、前処理が行われた状態でマイクロ波を照射することが好ましい。前処理が行われていない状態で、マイクロ波による反応を直ぐ開始すれば、反応が遅いか、または不純物が混入するか、または粒子サイズの均一度が低くなりやすい。しかし、工程自体は簡便になる。前処理は、反応物を超音波で処理するか、または激しく攪拌することにより行うことができる。前処理の温度は、室温〜反応温度の間の温度が好ましい。しかし、温度が低過ぎると、前処理の効果が微弱であり、高過ぎると、不純物が生成されやすいだけでなく、前処理の設備が複雑にならなければならないという短所がある。前処理の時間は、1分〜5時間が適している。超音波処理の場合は1分以上、攪拌処理の場合は5分以上が適している。前記前処理ステップを攪拌で行う場合、金属成分と有機化合物を溶媒の存在下で50〜2,000rpmで5〜600分間攪拌することが好ましく、超音波を照射して行う場合、15,000Hz〜30MHzの超音波を1〜600分間照射して行うことが好ましい。前記前処理の時間が短過ぎた場合は、前処理の効果が微弱であり、あまりにも長く前処理を行えば、前処理の効率が低くなる。   Microwave reactions occur at a very fast rate, so the microwaves are pre-treated to increase the homogeneity of the reactants or increase the solubility and produce some crystal nuclei. Is preferably irradiated. If the reaction by the microwave is started immediately without pretreatment, the reaction is slow, impurities are mixed, or the particle size uniformity tends to be low. However, the process itself is simple. Pretreatment can be done by treating the reaction with ultrasound or by vigorous stirring. The pretreatment temperature is preferably between room temperature and the reaction temperature. However, if the temperature is too low, the effect of the pretreatment is weak. If the temperature is too high, impurities are easily generated, and the pretreatment equipment must be complicated. The pretreatment time is suitably 1 minute to 5 hours. In the case of ultrasonic treatment, 1 minute or more is suitable, and in the case of stirring treatment, 5 minutes or more is suitable. When the pretreatment step is performed by stirring, the metal component and the organic compound are preferably stirred at 50 to 2,000 rpm for 5 to 600 minutes in the presence of a solvent. It is preferable to irradiate with 30 MHz ultrasonic waves for 1 to 600 minutes. When the preprocessing time is too short, the effect of the preprocessing is weak. If the preprocessing is performed too long, the efficiency of the preprocessing is lowered.

前処理は、超音波を用いて行うことが、前処理の時間と反応物の均一性の面でより効果的である。   It is more effective to perform the pretreatment using ultrasonic waves in terms of the pretreatment time and the uniformity of the reaction product.

本発明の第2の様態は、次のステップを含む、多孔性有・無機混成体の製造方法に関するものである:
(1)金属前駆体、リガンドとして作用することができる有機化合物及び溶媒を混合して反応物混合液を製造するステップ;
(2)前記反応物混合液を加熱するステップ;及び
(3)前記ステップ(2)で得られる多孔性有・無機混成体を、無機塩が溶解された溶液または溶媒で処理して精製するステップ。
The second aspect of the present invention relates to a method for producing a porous organic / inorganic hybrid, comprising the following steps:
(1) mixing a metal precursor, an organic compound capable of acting as a ligand, and a solvent to produce a reactant mixture;
(2) heating the reactant mixture; and (3) purifying the porous organic / inorganic hybrid obtained in step (2) by treating with a solution or solvent in which an inorganic salt is dissolved. .

前記製造方法において、前記ステップ(3)は、必要な場合に選択的に行うことができる。   In the manufacturing method, the step (3) can be selectively performed when necessary.

本発明による前記製造方法により製造される多孔性有・無機混成体は、ナノ粒子として得ることができ、前記ナノ粒子のサイズは、約450nm以下である。また、本発明による前記製造方法により製造される多孔性有・無機混成体は、粉末状や、薄膜またはメンブレイン形態であることができる。   The porous organic-inorganic hybrid produced by the production method according to the present invention can be obtained as nanoparticles, and the size of the nanoparticles is about 450 nm or less. Moreover, the porous organic-inorganic hybrid produced by the production method according to the present invention can be in the form of powder, thin film or membrane.

ナノ粒子、薄膜またはメンブレイン形態の多孔性有・無機混成体は、前記反応物混合液に基板を浸漬した後、前記加熱及びマイクロ波の照射のような方法で容易に製造することができる。   A porous organic / inorganic hybrid in the form of nanoparticles, thin film or membrane can be easily produced by a method such as heating and microwave irradiation after immersing a substrate in the reaction mixture.

本発明の多孔性有・無機混成体の製造方法は、多孔性ナノ細孔体の製造のための水熱合成で、フッ酸を用いずにナノサイズの粒径を有する有・無機混成体を製造する。また、多孔性有・無機混成体の表面積を増加させるための精製方法として、一般に用いられる溶媒以外に、塩化アンモニウムまたはフッ化カリウム等のような無機塩を用いて処理することにより、有・無機混成体の細孔内の不純物を精製するステップをさらに含むことを特徴とする。   The method for producing a porous organic / inorganic hybrid according to the present invention is a hydrothermal synthesis for producing a porous nanoporous material, and an organic / inorganic hybrid having a nano-sized particle size without using hydrofluoric acid. To manufacture. Moreover, as a purification method for increasing the surface area of the porous organic / inorganic hybrid, in addition to a commonly used solvent, by using an inorganic salt such as ammonium chloride or potassium fluoride, an organic / inorganic The method further comprises purifying impurities in the pores of the hybrid.

また、前記多孔性有・無機混成体は、吸着剤としての新規な用途を有する。特に、本発明による多孔性有・無機混成体の吸着剤は、100℃以下でも容易に吸・脱着することができ、吸着剤の1重量当たりの吸着量が高い。従って、前記吸着剤は、加湿器、除湿器、冷/暖房機、冷凍機等に適用可能な水分吸着剤として用いることができる。また、広い表面積と均一な細孔特性を有する本発明の多孔性有・無機混成体は、特定の有害物質に対する吸着性能に優れた吸着剤として用いることができる。   The porous organic / inorganic hybrid has a novel use as an adsorbent. In particular, the porous / inorganic hybrid adsorbent according to the present invention can be easily adsorbed / desorbed even at a temperature of 100 ° C. or lower, and the adsorbed amount per 1 wt. Therefore, the adsorbent can be used as a moisture adsorbent applicable to a humidifier, a dehumidifier, a cooler / heater, a refrigerator, and the like. Moreover, the porous organic / inorganic hybrid of the present invention having a large surface area and uniform pore characteristics can be used as an adsorbent excellent in adsorption performance for specific harmful substances.

本発明の製造方法において、多孔性有・無機混成体に含まれる成分の1つである金属物質として、いずれの金属であっても用いることができる。代表的な金属成分は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Оs、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、Mg、Ca、Sr、Ba、Sc、Y、Al、Ga、In、Tl、Si、Ge、Sn、Pb、As、Sb、Bi等を含む。特に、配位化合物を生成しやすい遷移金属が適当である。遷移金属のうち、クロム、バナジウム、鉄、ニッケル、コバルト、銅、チタン及びマンガン等が適当であり、クロム及び鉄が最も適当である。遷移金属の他にも、配位化合物を生成する典型元素はもちろん、ランタン族のような金属も可能である。典型元素の中では、アルミニウム及びケイ素が適当であり、ランタン族金属の中では、セリウム、ランタンが適当である。金属源としては、金属自体はもちろん、金属のいずれの化合物も用いることができる。   In the production method of the present invention, any metal can be used as the metal substance which is one of the components contained in the porous organic / inorganic hybrid. Typical metal components are Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag. , Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi, and the like. In particular, a transition metal that easily generates a coordination compound is suitable. Of the transition metals, chromium, vanadium, iron, nickel, cobalt, copper, titanium, manganese and the like are suitable, and chromium and iron are most suitable. Besides transition metals, lanthanum group metals as well as typical elements that form coordination compounds are possible. Among typical elements, aluminum and silicon are suitable, and among lanthanum group metals, cerium and lanthanum are suitable. As the metal source, not only the metal itself but also any compound of metal can be used.

本発明の第2の様態において、有・無機混成体に含まれる他の成分であるリガンドとして作用することができる有機化合物、及び有・無機混成体の合成に用いられる溶媒は、前記第1の様態で用いられたものと同一である。   In the second aspect of the present invention, the organic compound that can act as a ligand, which is another component contained in the organic / inorganic hybrid, and the solvent used for the synthesis of the organic / inorganic hybrid are the first Identical to that used in the mode.

有・無機混成ナノ細孔体の結晶成長速度を調節するために、酸、特に硝酸、塩酸、フッ酸のほかに、フッ酸を含む混合酸を用いることができる。   In order to adjust the crystal growth rate of the organic / inorganic hybrid nanoporous material, a mixed acid containing hydrofluoric acid can be used in addition to the acid, particularly nitric acid, hydrochloric acid and hydrofluoric acid.

一方、フッ酸を用いる工程では、テフロン(登録商標)以外の反応器を用いるのに制限があった。これまで、有・無機混成ナノ細孔体の結晶成長速度について、核形成速度が遅いのに対し、結晶成長速度は相対的に速いものと知られてきた。従って、フッ酸が含まれた反応物では、金属イオンとフッ素イオンとの間の強い結合特性により、相対的に核形成速度が遅く、結晶サイズの小さいナノ細孔体を得ることが難しいこともある。   On the other hand, in the process using hydrofluoric acid, there was a limitation in using a reactor other than Teflon (registered trademark). Until now, the crystal growth rate of organic / inorganic hybrid nanopores has been known to be relatively high while the nucleation rate is low. Therefore, the reaction product containing hydrofluoric acid has a relatively slow nucleation rate due to the strong binding property between metal ions and fluorine ions, and it is difficult to obtain nanopores with small crystal size. is there.

従って、本発明の更なる側面では、フッ酸の使用による前記問題点を解決するために、本発明の多孔性有・無機混成体の製造方法において、多孔性有・無機混成体の製造のために、フッ酸を除いた無機酸を用いることを特徴とする。これにより、本発明の前記製造方法により、フッ酸を全く用いずに、相対的に小さいナノ粒子サイズを有する多孔性有・無機混成ナノ細孔体を製造することができる。   Therefore, in a further aspect of the present invention, in order to solve the above-mentioned problems caused by the use of hydrofluoric acid, in the method for producing a porous organic / inorganic hybrid according to the present invention, for producing a porous organic / inorganic hybrid. And an inorganic acid excluding hydrofluoric acid. Thereby, by the said manufacturing method of this invention, the porous organic-inorganic hybrid nanopore body which has a relatively small nanoparticle size can be manufactured, without using hydrofluoric acid at all.

また、本発明の第2の様態により製造された多孔性有・無機混成体の細孔内に存在する金属または有機リガンドを除去するために、従来は、溶媒を用いて不純物を除去していた。   Further, in order to remove the metal or organic ligand present in the pores of the porous organic / inorganic hybrid produced by the second aspect of the present invention, conventionally, impurities have been removed using a solvent. .

しかし、前記の場合は、細孔内にキレート化した有機または無機物の不純物を除去することに限界があった。これに比べて、本発明の製造方法では、無機塩、特に、NH 、アルカリ金属及びアルカリ土類金属からなる群より選ばれる1価または2価の陽イオンと、ハロゲン陰イオン、炭酸イオン (CO 2−)、硝酸イオン及び硫酸イオンからなる群より選ばれる1価または2価の陰イオンを含む無機塩を用いて多孔性有・無機混成体を処理することにより、有・無機混成ナノ細孔体の細孔内の不純物を効率的に除去することができる。従って、高い表面積を有する有・無機混成ナノ細孔体を得ることができる。前記無機塩として、2価の陽イオンとしてCa2+またはMg2+、1価の陰イオンとして、F、IまたはBrを含む塩、1価の陽イオンと2価の陰イオンを含む塩、NHF、KF、KI及びKBrからなる群より選ばれる1つ以上の無機塩を用いることができる。 However, in the above case, there is a limit to removing organic or inorganic impurities chelated in the pores. In contrast, in the production method of the present invention, an inorganic salt, particularly a monovalent or divalent cation selected from the group consisting of NH 4 + , an alkali metal and an alkaline earth metal, a halogen anion, and a carbonate ion By treating a porous organic / inorganic hybrid with an inorganic salt containing a monovalent or divalent anion selected from the group consisting of (CO 3 2− ), nitrate ions and sulfate ions, organic / inorganic hybrids are obtained. Impurities in the pores of the nanopore body can be efficiently removed. Therefore, the organic / inorganic hybrid nanoporous body having a high surface area can be obtained. As the inorganic salt, a salt containing Ca 2+ or Mg 2+ as a divalent cation, F , I or Br as a monovalent anion, a salt containing a monovalent cation and a divalent anion One or more inorganic salts selected from the group consisting of NH 4 F, KF, KI and KBr can be used.

本発明において、無機塩で処理した後の有・無機混成ナノ細孔体の窒素吸着量が200ml/g程度増加することを、表面積の測定により確認することができた。   In the present invention, it was confirmed by measuring the surface area that the nitrogen adsorption amount of the organic / inorganic hybrid nanoporous material after the treatment with the inorganic salt increased by about 200 ml / g.

反応は、電気ヒーティング方式の水熱合成法の他にも、マイクロ波の照射による回分式または連続式方式による水熱合成も可能である。また、有・無機混成体のメンブレインまたは薄膜は、前記(1)のステップで反応物混合液に基板を浸漬した後、マイクロ波を照射して加熱する方法により製造することができる。   In addition to the hydrothermal synthesis method of electric heating, the reaction can be hydrothermal synthesis by batch or continuous method by microwave irradiation. The organic / inorganic hybrid membrane or thin film can be produced by a method in which the substrate is immersed in the reaction mixture in the step (1) and then heated by irradiation with microwaves.

本発明の前記製造方法により、フッ素を含有せず、化学式:MОH(HO)O[C(CO(M=Fe、Cr、VまたはAl)またはその水化物または化学式:MO(HO)OH[C−(CO(M=Fe、Cr、VまたはAl)またはその水化物で表わされる新規な多孔性有・無機混成体、特に、化学式:CrОH(HO)O[C(CO・nHO(n〜25)または化学式:FeO(HO)OH[C−(CO・nHO(n〜14.5)で表わされる新規な多孔性有・無機混成体を得ることができる。 According to the production method of the present invention, fluorine is not contained and the chemical formula: M 3 OH (H 2 O) 2 O [C 6 H 4 (CO 2 ) 2 ] 3 (M = Fe, Cr, V or Al) or its hydrates or formula: M 3 O (H 2 O ) 2 OH [C 6 H 3 - (CO 2) 3] 2 (M = Fe, Cr, V , or Al) novel porous represented by or a hydrate Organic / inorganic hybrid, especially chemical formula: Cr 3 OH (H 2 O) 2 O [C 6 H 4 (CO 2 ) 2 ] 3 · nH 2 O (n to 25) or chemical formula: Fe 3 O (H 2 O) 2 OH [C 6 H 3 — (CO 2 ) 3 ] 2 · nH 2 O (n to 14.5) can be obtained as a novel porous organic-inorganic hybrid.

また、本発明の製造方法により得られる多孔性有・無機混成体は、酸化反応用触媒または酸触媒として用いることができる。   The porous organic / inorganic hybrid obtained by the production method of the present invention can be used as an oxidation reaction catalyst or an acid catalyst.

また、本発明の製造方法により製造された多孔性有・無機混成体は、吸・脱着性能に優れた吸着剤として用いることができる。特に、水分吸着剤として用いる場合、100℃以下の低温で脱着が容易に起こるため、このような特性を用いて加湿器、除湿器等で非常に優れた性能を達成することができる。また、本発明の製造方法により製造された多孔性有・無機混成体を、VOC、シックハウス症候群の誘発物質等の吸着剤として用いる場合、特定の有害物質を効果的に除去することができる。   Moreover, the porous organic-inorganic hybrid produced by the production method of the present invention can be used as an adsorbent excellent in absorption / desorption performance. In particular, when used as a moisture adsorbent, desorption easily occurs at a low temperature of 100 ° C. or lower, so that very excellent performance can be achieved with a humidifier, a dehumidifier or the like using such characteristics. Moreover, when the porous organic-inorganic hybrid produced by the production method of the present invention is used as an adsorbent such as a VOC or sick house syndrome inducer, a specific harmful substance can be effectively removed.

特に、本発明の製造方法により得られる多孔性有・無機混成体が低温水分吸着剤として用いられる場合、100℃以下、好ましくは50〜100℃の低温脱着特性と、既存のHFを含有する有・無機ナノ細孔体に比べて非常に速い水分吸着速度を有することを確認することができる。   In particular, when the porous organic / inorganic hybrid obtained by the production method of the present invention is used as a low-temperature moisture adsorbent, it has a low-temperature desorption characteristic of 100 ° C. or less, preferably 50 to 100 ° C., and an existing HF. -It can confirm that it has a very high moisture adsorption rate compared with an inorganic nanopore body.

上述したように、本発明により製造された鉄含有多孔性有・無機混成体は、水分の吸着量が多く、低温で脱着量の特性が優れている。従って、除湿器、加湿器、暖房機または冷房機において、吸着剤として用いることができる。特に、脱着温度が非常に低く、このような装備の運転コストを非常に大きく減少させることができるという長所がある。   As described above, the iron-containing porous organic-inorganic hybrid produced according to the present invention has a large amount of moisture adsorption and is excellent in desorption amount characteristics at low temperatures. Therefore, it can be used as an adsorbent in a dehumidifier, humidifier, heater or air conditioner. In particular, the desorption temperature is very low, and the operation cost of such equipment can be greatly reduced.

また、他の側面から、本発明の新規な製造方法により製造された多孔性有・無機混成体は、水熱合成の際にフッ酸を用いないにも拘らず、高い結晶性を有するナノ細孔体である。特に、塩化アンモニウムまたはフッ化カリウム等のような無機塩で処理することにより、前記有・無機混成ナノ細孔体の細孔内の不純物を除去して精製することで、その表面積を増加させることができる。また、本発明の製造方法により製造された多孔性有・無機混成体は、吸・脱着性能に優れた吸着剤として用いることができる。特に、水分吸着剤として用いる場合、100℃以下の低温で脱着が容易に起こる。このような特性を用い、加湿器、除湿器等において、非常に優れた性能を達成することができる。また、本発明の製造方法により製造された多孔性有・無機混成体を、VOC、シックハウス症候群の誘発物質等の吸着剤として用いる場合、特定の有害物質を効果的に除去することができる。   From another aspect, the porous organic-inorganic hybrid produced by the novel production method of the present invention is a nano-sized nanocrystal having high crystallinity even though hydrofluoric acid is not used during hydrothermal synthesis. It is a hole. In particular, by treating with an inorganic salt such as ammonium chloride or potassium fluoride, the impurities in the pores of the organic / inorganic hybrid nanopore body are removed and purified, thereby increasing the surface area. Can do. Moreover, the porous organic-inorganic hybrid produced by the production method of the present invention can be used as an adsorbent excellent in absorption / desorption performance. In particular, when used as a moisture adsorbent, desorption occurs easily at a low temperature of 100 ° C. or lower. Using such characteristics, very excellent performance can be achieved in humidifiers, dehumidifiers and the like. Moreover, when the porous organic-inorganic hybrid produced by the production method of the present invention is used as an adsorbent such as a VOC or sick house syndrome inducer, a specific harmful substance can be effectively removed.

図1は、実施例1により得られた鉄ベンゼントリカルボキシレートの有・無機吸着剤のX−線回折形態である。FIG. 1 is an X-ray diffraction pattern of the organic / inorganic adsorbent of iron benzene tricarboxylate obtained in Example 1. 図2は、実施例1により得られた鉄ベンゼントリカルボキシレートの有・無機吸着剤の窒素等温吸着線である。FIG. 2 is a nitrogen isotherm adsorption line of the iron benzene tricarboxylate-containing organic / inorganic adsorbent obtained in Example 1. 図3は、実施例1及び2の鉄ベンゼントリカルボキシレート及び比較例1のゼオライトYを用いた吸着剤の水分吸着特性を示したグラフである:水分吸着剤の脱着は70℃(実施例1及び2)または200℃(比較例1)、吸着は相対湿度68%で行った結果を示したものである。FIG. 3 is a graph showing the moisture adsorption characteristics of the adsorbents using the iron benzene tricarboxylates of Examples 1 and 2 and the zeolite Y of Comparative Example 1: Desorption of the moisture adsorbent is 70 ° C. (Example 1) And 2) or 200 ° C. (Comparative Example 1), and the adsorption was performed at a relative humidity of 68%. 図4は、実施例1及び比較例1の吸着剤に対する水分脱着試験結果を示したグラフである:実施例1は70℃での水分脱着の結果であり、比較例1は200℃での水分脱着の結果である。FIG. 4 is a graph showing the results of moisture desorption tests on the adsorbents of Example 1 and Comparative Example 1: Example 1 is the result of moisture desorption at 70 ° C., and Comparative Example 1 is the moisture at 200 ° C. It is the result of desorption. 図5は、本発明の実施例3の製造方法により製造された多孔性有・無機混成体であるクロムテレフタレートのX−線回折形態のグラフである。FIG. 5 is a graph of an X-ray diffraction pattern of chromium terephthalate which is a porous organic / inorganic hybrid produced by the production method of Example 3 of the present invention. 図6は、本発明の実施例3の精製方法により製造された多孔性有・無機混成体であるクロムテレフタレートの精製前後のX−線回折形態の結果を示したものであって、(a)は精製前の形態であり、(b)は精製後の形態である。FIG. 6 shows the results of X-ray diffraction patterns before and after purification of chromium terephthalate, which is a porous organic / inorganic hybrid produced by the purification method of Example 3 of the present invention, and (a) Is the form before purification, and (b) is the form after purification. 図7は、本発明の実施例4により得られた多孔性有・無機混成体であるクロムテレフタレートでの窒素吸着等温線の結果である。FIG. 7 shows the results of nitrogen adsorption isotherms on chromium terephthalate, which is a porous organic / inorganic hybrid obtained in Example 4 of the present invention. 図8は、本発明の実施例5及び比較例4により得られた多孔性有・無機混成体である鉄ベンゼントリカルボキシレートの電子顕微鏡の写真である。FIG. 8 is an electron micrograph of iron benzene tricarboxylate, which is a porous organic / inorganic hybrid obtained in Example 5 and Comparative Example 4 of the present invention. 図9は、本発明の実施例5及び6、並びに比較例4により得られた鉄を含む多孔性有・無機混成体の水分吸着特性の結果である。FIG. 9 shows the results of moisture adsorption characteristics of the porous organic-inorganic hybrid containing iron obtained in Examples 5 and 6 and Comparative Example 4 of the present invention.

実施例1:マイクロ波の照射による多孔性有・無機混成体(Fe−BTC)の製造   Example 1: Production of porous organic / inorganic hybrid (Fe-BTC) by microwave irradiation

テフロン(登録商標)反応器に、金属鉄1mmol、1M HNO 60ml、5M HF (水溶液)40ml及び1,3,5−ベンゼントリカルボン酸(BTCA)7mmolを加えた後、蒸留水を加えた。反応物の最終のモル比は、Fe:HF:HNO:BTCA:HO=1:2:0.6:0.7:278であった。前記混合した反応物を室温で500rpmで20分間攪拌し、均一な反応物となるようにした。前記前処理した反応物を含有するテフロン(登録商標)反応器を、マイクロ波反応器(CEM社、モデルMars−5)に取り付け、マイクロ波(2.54GHz)を照射して200℃に昇温させた後、200℃で2分間維持し、結晶化反応を行った。次いで、反応物を室温に冷却し、遠心分離、蒸留水による洗浄及び乾燥を行い、多孔性有・無機混成体(Fe−BTC)を得た。前記得られた固体相の多孔性有・無機混成体のX−線回折形態を図1に示す。元素の分析の結果、Fe:C:F=1:6.5:0.32のモル比を示し、窒素吸着実験の結果、BET表面積が2,050m2/g、細孔体積が1.0ml/gであった。形成した多孔性粒子の収率は、86%であった(図2)。 After adding 1 mmol of metal iron, 1 ml of 1M HNO 3 , 40 ml of 5M HF (aqueous solution) and 7 mmol of 1,3,5-benzenetricarboxylic acid (BTCA) to a Teflon (registered trademark) reactor, distilled water was added. The final molar ratio of the reactants was Fe: HF: HNO 3 : BTCA: H 2 O = 1: 2: 0.6: 0.7: 278. The mixed reaction product was stirred at 500 rpm for 20 minutes at room temperature so that a uniform reaction product was obtained. A Teflon (registered trademark) reactor containing the pretreated reactant was attached to a microwave reactor (CEM, Model Mars-5), and heated to 200 ° C. by irradiation with microwave (2.54 GHz). Then, it was maintained at 200 ° C. for 2 minutes to carry out a crystallization reaction. Next, the reaction product was cooled to room temperature, centrifuged, washed with distilled water, and dried to obtain a porous / inorganic hybrid (Fe-BTC). FIG. 1 shows an X-ray diffraction pattern of the obtained solid phase porous organic / inorganic hybrid. As a result of elemental analysis, it showed a molar ratio of Fe: C: F = 1: 6.5: 0.32, and as a result of nitrogen adsorption experiment, the BET surface area was 2,050 m 2 / g and the pore volume was 1.0 ml. / G. The yield of the formed porous particles was 86% (FIG. 2).

上記結果は、前記物質が、以前に文献[Bulletin of Korean Chemical Society vol.26、p.880(2005)]に公開された、Cr−MIL−100の構造と類似した結晶性の構造を有するということを示す。
実施例2:電気加熱による多孔性有・無機混成体(Fe−BTC)の製造
The above results indicate that the substance was previously published in the literature [Bulletin of Korean Chemical Society vol. 26, p. 880 (2005)], which shows a crystalline structure similar to that of Cr-MIL-100.
Example 2: Production of porous organic / inorganic hybrid (Fe-BTC) by electric heating

熱源として、マイクロ波を照射する代わりに、一般的なコンベクションオーブン(Convection oven)を用いた電気加熱方式で144時間加熱し、有・無機混成体を製造した以外は、前記実施例1と同一の方法で多孔性有・無機混成体を製造した。XRD分析の結果、製造された有・無機混成体の結晶構造において、ピークの相対的な強度は異なるが、実施例1と同一の位置で回折形態が得られたことを確認することができる。窒素吸着実験の結果、1,820m2/gのBET表面積及び0.9ml/gの細孔体積を示した。
比較例1:ゼオライトの水分吸着剤
As a heat source, the same as in Example 1 except that a mixed organic / inorganic mixture was produced by heating for 144 hours by an electric heating method using a general convection oven instead of irradiating microwaves. A porous organic / inorganic hybrid was produced by this method. As a result of the XRD analysis, it can be confirmed that the diffraction pattern was obtained at the same position as in Example 1, although the relative intensity of the peaks was different in the crystal structure of the produced organic / inorganic hybrid. As a result of the nitrogen adsorption experiment, it showed a BET surface area of 1,820 m 2 / g and a pore volume of 0.9 ml / g.
Comparative Example 1: Zeolite moisture adsorbent

商業用水分吸着剤として用いられるゼオライトY(アルドリッチ社、Si/Al=5.6、比表面積=827m2/g、細孔体積=0.35ml/g)を準備した。
比較例2:単一の酸を用いた多孔性有・無機混成体(Fe−BTC)の製造
Zeolite Y (Aldrich, Si / Al = 5.6, specific surface area = 827 m 2 / g, pore volume = 0.35 ml / g) used as a commercial water adsorbent was prepared.
Comparative Example 2: Production of porous organic / inorganic hybrid (Fe-BTC) using a single acid

硝酸ではない単一の酸を用いて混成体を製造した以外は、前記実施例1と同一の方法で多孔性有・無機混成体を製造した。テフロン(登録商標)反応器に、金属鉄1mmol、5M HF(水溶液)40ml及び1,3,5−ベンゼントリカルボン酸 (BTCA)7mmolを加えた後、蒸留水を加えた。反応物の最終のモル比は、Fe:HF:BTCA:HO=1:2:0.6:278であった。有・無機混成体に対するマイクロ波の照射温度は200℃であり、反応を1時間行った。得られた固体相の多孔性有・無機混成体の収率は、82%であった。多孔性有・無機混成体のX−線回折形態は、実施例1の結果と類似しているが、全体的なピーク強度が低い。窒素吸着実験の結果、1,590m2/gのBET表面積及び0.7ml/gの細孔体積を示した。
試験例1:水分吸着試験
A porous organic / inorganic hybrid was produced in the same manner as in Example 1 except that a hybrid was produced using a single acid that was not nitric acid. After adding 1 mmol of metallic iron, 40 ml of 5M HF (aqueous solution) and 7 mmol of 1,3,5-benzenetricarboxylic acid (BTCA) to a Teflon (registered trademark) reactor, distilled water was added. The final molar ratio of the reactants was Fe: HF: BTCA: H 2 O = 1: 2: 0.6: 278. The microwave irradiation temperature for the organic / inorganic hybrid was 200 ° C., and the reaction was carried out for 1 hour. The yield of the obtained solid-phase porous / inorganic hybrid was 82%. The X-ray diffraction pattern of the porous organic-inorganic hybrid is similar to the result of Example 1, but the overall peak intensity is low. As a result of the nitrogen adsorption experiment, a BET surface area of 1,590 m 2 / g and a pore volume of 0.7 ml / g were shown.
Test example 1: moisture adsorption test

実施例1及び実施例2で得られた吸着剤を、70℃で30分真空乾燥した後、水分吸着実験を重量法で行った(図3)。相対湿度68%でも吸着剤の1重量当たりの水分吸着量は、実施例1で0.67g/g、実施例2で0.59g/gであった。   The adsorbents obtained in Example 1 and Example 2 were vacuum-dried at 70 ° C. for 30 minutes, and then a moisture adsorption experiment was carried out by a weight method (FIG. 3). Even at a relative humidity of 68%, the amount of moisture adsorbed per weight of the adsorbent was 0.67 g / g in Example 1 and 0.59 g / g in Example 2.

比較例1の商用の水分吸着剤として用いられるゼオライトYと比較してみると、ゼオライトYを200℃で30分真空乾燥した後、水分吸着実験を同一に行った結果、水分吸着量は0.35g/gであった(図3)。すなわち、実施例の吸着剤に対する脱着温度を70℃にしたにも拘らず、本発明による吸着剤は、1.6倍以上の水分吸着量を示した。   Comparing with zeolite Y used as a commercial moisture adsorbent in Comparative Example 1, after the zeolite Y was vacuum dried at 200 ° C. for 30 minutes, the moisture adsorption experiment was the same. It was 35 g / g (FIG. 3). That is, although the desorption temperature for the adsorbent of the example was set to 70 ° C., the adsorbent according to the present invention exhibited a water adsorption amount of 1.6 times or more.

また、マイクロ波を用いて製造された実施例1の吸着剤は、初期の5分経過の後、0.4g/g、10分経過の後、0.56g/gの吸着量を示したのに対し、比較例1の吸着剤は、5分経過の後、0.25g/g、10分経過の後、0.28g/gの吸着量を示した。従って、本発明の実施例1による吸着剤は、初期の吸着速度が非常に高いことが分かる。
試験例2:水分脱着試験
In addition, the adsorbent of Example 1 manufactured using microwaves showed an adsorption amount of 0.46 g / g after the initial 5 minutes and 0.56 g / g after 10 minutes. On the other hand, the adsorbent of Comparative Example 1 showed an adsorption amount of 0.28 g / g after 10 minutes after 0.25 g / g after 5 minutes. Therefore, it can be seen that the adsorbent according to Example 1 of the present invention has a very high initial adsorption rate.
Test example 2: moisture desorption test

実施例1で製造された吸着剤とナトリウムゼオライトY(NaY)を、塩化アンモニウム飽和水溶液を仕込んだデシケーターの上層に3日間維持し、充分に水分を吸着させた後、重量分析法で脱着量を分析した。脱着条件において、窒素を300ml/min流しながら吸着剤の重量減少を測定した。実施例1の吸着剤における脱着温度は70℃、比較例1のナトリウムゼオライトY(NaY)における脱着温度は200℃であった。   The adsorbent prepared in Example 1 and sodium zeolite Y (NaY) were maintained in the upper layer of a desiccator charged with a saturated aqueous solution of ammonium chloride for 3 days to sufficiently adsorb moisture, and the desorption amount was determined by gravimetric analysis. analyzed. Under desorption conditions, the weight loss of the adsorbent was measured while flowing nitrogen at 300 ml / min. The desorption temperature in the adsorbent of Example 1 was 70 ° C., and the desorption temperature in sodium zeolite Y (NaY) of Comparative Example 1 was 200 ° C.

図4は、水分を吸着した吸着剤の全重量を100%として、経時的な重量減少の結果を示したグラフである。重量減少率がこれ以上減少しないことは、脱着可能な水分が全て脱着したことを意味する。実施例1の結果をみると、10分経過の後、40重量%程度の重量減少を示した。比較例1の場合、25重量%の重量減少を示した。実施例1の場合、吸着剤の1重量当たりの脱着可能な水分吸着量が40/60=0.67g/gであり、比較例1の場合、吸着剤の1重量当たりの脱着可能な水分吸着量が25/75=0.33g/gである。従って、実施例1の吸着剤の絶対水分吸着量が、比較例1の吸着剤に比べて2倍以上であることが分かる。また、初期の5分以内の脱着速度も、比較例1の吸着剤に比べて、実施例1の吸着剤がさらに高いことが示された。   FIG. 4 is a graph showing the results of weight reduction over time, with the total weight of the adsorbent adsorbing moisture as 100%. That the weight reduction rate does not decrease any more means that all the desorbable moisture has been desorbed. The results of Example 1 showed a weight loss of about 40% by weight after 10 minutes. In the case of Comparative Example 1, a weight reduction of 25% by weight was shown. In the case of Example 1, the desorbable water adsorption amount per weight of the adsorbent is 40/60 = 0.67 g / g, and in the case of Comparative Example 1, the desorbable water adsorption per weight of the adsorbent The amount is 25/75 = 0.33 g / g. Therefore, it can be seen that the absolute water adsorption amount of the adsorbent of Example 1 is twice or more that of the adsorbent of Comparative Example 1. In addition, the desorption rate within 5 minutes in the initial stage was also shown to be higher for the adsorbent of Example 1 than for the adsorbent of Comparative Example 1.

前記の結果から、本発明による吸着剤は、100℃の温度で水分脱着が容易であり、単位重量当たりの水分吸着量が高い特性を有することが分かる。このような特性を用い、吸着剤を加湿器、除湿器に適用すれば、湿度調節に優れた性能を示すものと予想される。
実施例3(Cr−BDC−1)
From the above results, it can be seen that the adsorbent according to the present invention is easy to desorb moisture at a temperature of 100 ° C. and has a high moisture adsorption amount per unit weight. If such characteristics are used and the adsorbent is applied to a humidifier or a dehumidifier, it is expected to exhibit excellent performance in humidity control.
Example 3 (Cr-BDC-1)

テフロン(登録商標)反応器に、Cr(NO・9HO及び1,4−ベンゼンジカルボン酸(BDCA)を添加した後、蒸留水を添加し、反応物の最終のモル比がCr:HNO:BDCA:HO=1:0.1:1:272となるようにした。基本的に、Cr(NOが水に溶解されれば、水化して強い酸となる。従って、HNOを仕込んだものと同一の効果を示す。前記反応物を含むテフロン(登録商標)反応器を電気オーブンに入れ、210℃で11時間反応させた後、室温に冷却した後、遠心分離、蒸留水による洗浄及び乾燥を行い、多孔性有・無機混成体としてクロムテレフタレート(Cr−BDC)を得た。製造したCr−BDCのX−線回折分析の結果、2θ値がおよそ3.3、5.2、5.9、8.5及び9.1である特徴的な回折ピークを示し、これから、立方晶の結晶性を有するクロムテレフタレートが得られたことが分かる(図5)。本実施例で得られたクロムテレフタレート結晶のXRD形態は、公開された文献の値と一致することを確認した[Science23、2040、2005]。これにより、反応物にフッ酸(HF)を用いない環境親和型工程によっても、非常に効果的に多孔性有・無機混成体が得られることが分かる。ICP分析の結果、前記得られた多孔性有・無機混成体のクロムテレフタレートは、Fが含まれておらず、その構造はMIL−101と同一であるが、構造内にFが含まれていないものであって、化学式:CrOH(HO)O[C(CO・nHO(n〜25)で表わすことができる物質であることが確認できる。
実施例4(Cr−BDC−2)
A Teflon reactor, after addition of Cr (NO 3) 3 · 9H 2 O and 1,4-benzenedicarboxylic acid (BDCA), distilled water was added, the final molar ratio of the reactants Cr : HNO 3 : BDCA: H 2 O = 1: 0.1: 1: 272. Basically, if Cr (NO 3 ) 3 is dissolved in water, it will hydrate and become a strong acid. Accordingly, the same effect as that obtained by charging HNO 3 is exhibited. A Teflon (registered trademark) reactor containing the reaction product was placed in an electric oven, reacted at 210 ° C. for 11 hours, cooled to room temperature, then centrifuged, washed with distilled water, and dried. Chromium terephthalate (Cr-BDC) was obtained as an inorganic hybrid. As a result of X-ray diffraction analysis of the manufactured Cr-BDC, characteristic diffraction peaks having 2θ values of about 3.3, 5.2, 5.9, 8.5 and 9.1 are shown. It can be seen that chromium terephthalate having crystallinity was obtained (FIG. 5). It was confirmed that the XRD form of the chromium terephthalate crystal obtained in this example was consistent with the published literature values [Science 23, 2040, 2005]. Thus, it can be seen that a porous organic-inorganic hybrid can be obtained very effectively even by an environmental friendly process that does not use hydrofluoric acid (HF) as a reactant. As a result of ICP analysis, chromium terephthalate of the obtained porous organic / inorganic hybrid material does not contain F, and its structure is the same as MIL-101, but F is not contained in the structure. It can be confirmed that the substance can be represented by the chemical formula: Cr 3 OH (H 2 O) 2 O [C 6 H 4 (CO 2 ) 2 ] 3 · nH 2 O (n to 25). .
Example 4 (Cr-BDC-2)

実施例3で製造された多孔性有・無機混成体1gを1M濃度のNHF 50mlに仕込み、70℃の温度で攪拌し、細孔体の細孔内に存在する結晶構造内に結合されない、1,4−ベンゼンジカルボン酸及びクロム酸化物等のような不純物を除去することにより、表面積が向上した有・無機混成体を製造した。X−線回折形態(図6)から、フッ化アンモニウムの処理後に結晶性が損なわれずに維持されることを確認することができる。また、前記フッ化アンモニウムの処理前後の多孔性有・無機混成体の窒素吸着測定結果から、フッ化アンモニウムの処理により表面積が700m2/g(フッ化アンモニウムの処理前3,373m2/g→処理後4,074m2/g)増加し、P/Po=0.5での吸着量が200ml/g(フッ化アンモニウムの処理前1,050ml/g→処理後1,250ml/g)増加する特性を有する有・無機混成体が得られることが見られる(図7)。
実施例5:マイクロ波の照射による多孔性有・無機混成体(Fe−BTC−1)の製造
1 g of porous organic / inorganic hybrid produced in Example 3 was charged into 50 ml of 1M NH 4 F, stirred at a temperature of 70 ° C., and not bonded to the crystal structure existing in the pores of the porous body. By removing impurities such as 1,4-benzenedicarboxylic acid and chromium oxide, an organic / inorganic hybrid having an increased surface area was produced. From the X-ray diffraction pattern (FIG. 6), it can be confirmed that the crystallinity is maintained without being impaired after the treatment with ammonium fluoride. Further, the nitrogen adsorption measurement results of the porous organic-inorganic hybrid material before and after the treatment of the ammonium fluoride, the surface area by the processing of the ammonium fluoride is 700m 2 / g (pre-treatment of ammonium fluoride 3,373m 2 / g → After the treatment, 4,074 m 2 / g) increases, and the adsorption amount at P / Po = 0.5 increases by 200 ml / g (1,050 ml / g before treatment of ammonium fluoride → 1,250 ml / g after treatment). It can be seen that an organic / inorganic hybrid having properties can be obtained (FIG. 7).
Example 5: Production of porous organic / inorganic hybrid (Fe-BTC-1) by microwave irradiation

テフロン(登録商標)反応器に、金属鉄1mmol、1M HNO 60ml及び1,3,5−ベンゼントリカルボン酸(BTCA)7mmolを添加した後、蒸留水を加えた。反応物の最終のモル比は、Fe:HNO:BTCA:HO=1:0.6:0.7:278であった。前記反応物を室温で500rpmで20分間攪拌し、均一な反応物となるようにした。前記前処理した反応物を含むテフロン(登録商標)反応器を、マイクロ波反応器(CEM社、モデルMars−5)に取り付け、マイクロ波(2.54GHz)を照射して200℃に昇温させた後、200℃で2分間維持して、結晶化反応を行った。次いで、室温に冷却し、遠心分離、蒸留水による洗浄及び乾燥を行い、多孔性有・無機混成体(Fe−BTC)を得た。X−線回折形態の模様は、公開された文献[Bulletin of Korean Chemical Society vol.26、p.880(2005)]の結晶構造であるCr−MIL−100の構造と類似していることを示す。ICP分析の結果、得られた多孔性有・無機混成体のクロムテレフタレートは、Fが含まれていないものであって、その構造はMIL−100と同一であるが、構造内にFが含まれておらず、化学式: FeO(HO)OH[C−(CO)・nHO(n〜14.5)で表わすことができる物質であることが分かる。窒素吸着実験の結果、多孔性有・無機混成体(Fe−BTC)の表面積が1,700m2/g以上であることを確認した。電子顕微鏡分析の結果、粒子のサイズが200〜500nm以下と非常に小さくなったことが分かる(図8a)。
実施例6:電気加熱による多孔性有・無機混成体(Fe−BTC−2)の製造
After adding 1 mmol of metallic iron, 60 ml of 1M HNO 3 and 7 mmol of 1,3,5-benzenetricarboxylic acid (BTCA) to a Teflon (registered trademark) reactor, distilled water was added. The final molar ratio of the reactants was Fe: HNO 3 : BTCA: H 2 O = 1: 0.6: 0.7: 278. The reaction was stirred at 500 rpm for 20 minutes at room temperature so that a uniform reaction was obtained. A Teflon (registered trademark) reactor containing the pretreated reactant is attached to a microwave reactor (CEM, Model Mars-5), and heated to 200 ° C. by irradiation with microwave (2.54 GHz). Then, it was maintained at 200 ° C. for 2 minutes to carry out a crystallization reaction. Next, the mixture was cooled to room temperature, centrifuged, washed with distilled water, and dried to obtain a porous / inorganic hybrid (Fe-BTC). The X-ray diffraction pattern can be found in published literature [Bulletin of Korean Chemical Society vol. 26, p. 880 (2005)], which is similar to the structure of Cr-MIL-100. As a result of ICP analysis, the obtained chromic terephthalate of the porous organic / inorganic hybrid does not contain F, and its structure is the same as MIL-100, but F is contained in the structure. It is a substance that can be represented by the chemical formula: Fe 3 O (H 2 O) 2 OH [C 6 H 3 — (CO 2 ) 3 ] 2 .nH 2 O (n to 14.5). I understand. As a result of the nitrogen adsorption experiment, it was confirmed that the surface area of the porous organic / inorganic hybrid (Fe-BTC) was 1,700 m 2 / g or more. As a result of electron microscopic analysis, it can be seen that the size of the particles was as small as 200 to 500 nm or less (FIG. 8a).
Example 6: Production of porous organic / inorganic hybrid (Fe-BTC-2) by electric heating

熱源として、マイクロ波を照射する代わりに、一般的な電気ヒーティング方式を用いた電気加熱方式で6時間加熱し、有・無機混成体を製造した以外は、前記実施例3と同一の方法で多孔性有・無機混成体を製造した。XRD分析の結果、前記のように製造された有・無機混成体の結晶構造において、ピークの相対的な強度は異なるが、実施例3と同一の位置で回折形態が得られることを確認した。電子顕微鏡を用いた分析の結果、粒子のサイズが1μmと相対的に大きい結晶を得ることができた。
実施例7(Cr−BDC−3)
As a heat source, the same method as in Example 3 was used, except that instead of irradiating microwaves, the mixture was heated for 6 hours by an electric heating method using a general electric heating method to produce an organic / inorganic hybrid. A porous organic / inorganic hybrid was produced. As a result of XRD analysis, it was confirmed that in the crystal structure of the organic / inorganic hybrid produced as described above, a diffraction pattern was obtained at the same position as in Example 3, although the relative intensities of the peaks were different. As a result of analysis using an electron microscope, a crystal having a relatively large particle size of 1 μm could be obtained.
Example 7 (Cr-BDC-3)

実施例3で、電気ヒーティング方式ではないマイクロ波の照射によるヒーティング方式を用いた以外は、実施例3と同一の方法で有・無機混成体を製造した。しかし、2.5GHz振動数のマイクロ波反応装置を用い、反応温度210℃、反応時間40分間維持し、有・無機混成体を製造した。X−線回折形態の分析により、前記物質が実施例3と同一の構造であることが示された。
実施例 8(Fe−BDC−3)
In Example 3, an organic / inorganic hybrid was produced by the same method as in Example 3 except that a heating method by microwave irradiation, which was not an electric heating method, was used. However, using a microwave reactor with a frequency of 2.5 GHz, a reaction temperature of 210 ° C. and a reaction time of 40 minutes were maintained, and an organic / inorganic hybrid was produced. Analysis of the X-ray diffraction pattern showed that the material had the same structure as Example 3.
Example 8 (Fe-BDC-3)

Cr(NO・9HOの代わりに、Feを用いた以外は、実施例3と同一の方法で有・無機混成体を製造した。また、実施例4の後処理ステップを用い、純粋な多孔性有・無機混成体を製造した。X−線回折形態から、実施例3と同一の構造の物質が得られることが分かった。
実施例9(V−BDC−1)
Cr (NO 3) 3 · 9H 2 O in place of, except for using Fe was prepared the organic-inorganic hybrid material in the same manner as in Example 3. In addition, a pure porous organic-inorganic hybrid was produced using the post-treatment step of Example 4. From the X-ray diffraction pattern, it was found that a substance having the same structure as in Example 3 was obtained.
Example 9 (V-BDC-1)

実施例8で、Cr(NO・9HOを用いる代わりに、VClを用いた以外は、実施例3及び実施例4の後処理ステップを用いた同一の方法で有・無機混成体を製造した。X−線回折形態は、実施例3と同一の構造の物質が得られたことを示す。電子顕微鏡の写真は、50〜80nm程度の均一な粒径特性を有する有・無機混成体が得られることを示す。
実施例10
In Example 8, instead of using a Cr (NO 3) 3 · 9H 2 O, except for using VCl 3, organic-inorganic hybrid by the same method using the post-processing steps of Example 3 and Example 4 The body was manufactured. The X-ray diffraction pattern shows that a material with the same structure as Example 3 was obtained. The photograph of an electron microscope shows that the organic / inorganic hybrid having a uniform particle size characteristic of about 50 to 80 nm can be obtained.
Example 10

実施例5及び6、並びに比較例4で得られた有・無機混成体のFe−BTCAそれぞれ0.1gを、150℃で30分真空乾燥した後、水分の吸着実験を重量法で行った(図5)。   After 0.1 g of each of the Fe-BTCA of the organic / inorganic hybrid obtained in Examples 5 and 6 and Comparative Example 4 was vacuum-dried at 150 ° C. for 30 minutes, a moisture adsorption experiment was performed by a weight method ( FIG. 5).

相対湿度60%で、初期の5分以内での吸着剤の1重量当たりの水分吸着量は、実施例5で0.36g/g、実施例6で0.34g/gであるものと測定された。これは、比較例4の吸着量0.29g/gよりそれぞれ24%、17%向上した結果を示すものである。特に、吸着初期から5分までの全領域での水分吸着速度が非常に速いことを確認した。このように、本発明による多孔性有・無機混成体を低温水分吸着剤として用いる場合、吸着剤は100℃以下で容易に脱着することができ、このような特性を用い、加湿器、除湿器等において非常に優れた性能を達成することができることが分かる。
実施例11
The moisture adsorption amount per weight of the adsorbent within the initial 5 minutes at a relative humidity of 60% was measured to be 0.36 g / g in Example 5 and 0.34 g / g in Example 6. It was. This shows a result of 24% and 17% improvement from the adsorption amount of 0.29 g / g in Comparative Example 4, respectively. In particular, it was confirmed that the moisture adsorption rate in the entire region from the initial adsorption to 5 minutes was very fast. Thus, when the porous organic / inorganic hybrid according to the present invention is used as a low-temperature moisture adsorbent, the adsorbent can be easily desorbed at 100 ° C. or less, and using such characteristics, a humidifier and a dehumidifier It can be seen that very good performance can be achieved.
Example 11

前記実施例3の方法により得られた多孔性有・無機混成体のCr−BDC 1gに揮発性有機化合物であるベンゼン1gを仕込み、1時間の吸着実験を行った結果、0.73gのベンゼンが吸着により除去されることを確認した。この値は、同一含量のDarco社の活性炭(表面積1600m2/g)の吸着量である0.19gのベンゼン吸着量よりも3.5倍高い吸着量であることが確認できた。
比較例3(Cr−BDC−4)
1 g of benzene, which is a volatile organic compound, was added to 1 g of porous organic-inorganic hybrid Cr-BDC obtained by the method of Example 3, and as a result of performing an adsorption experiment for 1 hour, 0.73 g of benzene was obtained. It was confirmed that it was removed by adsorption. This value was confirmed to be 3.5 times higher than the adsorption amount of 0.19 g of benzene, which is the adsorption amount of Darco activated carbon (surface area 1600 m 2 / g) of the same content.
Comparative Example 3 (Cr-BDC-4)

実施例3による製造方法において、反応混合物を調製する際にフッ酸を用いて多孔性有・無機混成ナノ細孔体を製造した。反応混合物の最終のモル比は、Cr:HF:BDCA:HO=1:1:1:272となるようにした。製造した多孔性有・無機混成ナノ細孔体の表面積の分析の結果、P/Po=0.5で吸着量が1,044ml/g、BET表面積が3,439m2/gである有・無機混成体が得られることが分かった。
比較例4(Fe−BTC)
In the production method according to Example 3, a porous organic / inorganic hybrid nanopore was produced using hydrofluoric acid when preparing the reaction mixture. The final molar ratio of the reaction mixture was such that Cr: HF: BDCA: H 2 O = 1: 1: 1: 272. As a result of the analysis of the surface area of the produced porous organic / inorganic hybrid nanoporous material, the adsorption / absorption amount is 1,044 ml / g and the BET surface area is 3,439 m 2 / g when P / Po = 0.5. It was found that a hybrid was obtained.
Comparative Example 4 (Fe-BTC)

実施例5による製造方法において、反応混合物を調製する際にフッ酸を用いて多孔性有・無機混成ナノ細孔体を製造した。反応混合物の最終のモル比は、Fe:HF:HNO:BTCA:HO=1:1:0.6:0.7:278となるようにした。製造した有・無機混成体のX−線回折の分析の結果、実施例5と同一の結晶性を有する有・無機混成体が得られる代わりに、結晶サイズが非常に大きい(1 〜 5μm)物質が得られることが分かる(図8b)。 In the production method according to Example 5, a porous organic / inorganic hybrid nanopore was produced using hydrofluoric acid when preparing the reaction mixture. The final molar ratio of the reaction mixture was such that Fe: HF: HNO 3 : BTCA: H 2 O = 1: 1: 0.6: 0.7: 278. As a result of X-ray diffraction analysis of the produced organic / inorganic hybrid material, instead of obtaining an organic / inorganic hybrid material having the same crystallinity as in Example 5, a material having a very large crystal size (1 to 5 μm) Is obtained (FIG. 8b).

前記実施例及び比較例の結果から、フッ酸を用いる工程に比べて、フッ酸を含まない本発明の製造方法により同一の結晶性を有する多孔性有・無機混成ナノ細孔体を製造することができることを確認した。特に、アンモニウム塩及びフッ化カリウム等のような無機塩で処理する場合、表面積が10%以上増加することを確認した。また、本発明の製造方法により製造された多孔性有・無機混成ナノ細孔体は、触媒として活性が非常に高いことを確認した。また、本発明の製造方法により製造された多孔性有・無機混成体は、吸・脱着性能に優れた吸着剤として用いることができる。特に、水分吸着剤として用いる場合、100℃以下の低温で脱着が容易に起こるため、このような特性を用い、加湿器、除湿器等において非常に優れた性能を達成することができる。また、本発明の製造方法により製造された多孔性有・無機混成体を、VOC、シックハウス症候群の誘発物質のような特定の有害物質の吸着剤として用いる場合、蒸気相及び粒子相の特定の有害物質を効果的に除去することができる。   From the results of the Examples and Comparative Examples, producing a porous organic / inorganic hybrid nanoporous body having the same crystallinity by the production method of the present invention that does not contain hydrofluoric acid, compared to the step using hydrofluoric acid. I confirmed that I was able to. In particular, it was confirmed that the surface area increased by 10% or more when treated with inorganic salts such as ammonium salt and potassium fluoride. Moreover, it was confirmed that the porous organic / inorganic hybrid nanoporous material produced by the production method of the present invention has very high activity as a catalyst. Moreover, the porous organic-inorganic hybrid produced by the production method of the present invention can be used as an adsorbent excellent in absorption / desorption performance. In particular, when it is used as a moisture adsorbent, desorption easily occurs at a low temperature of 100 ° C. or lower, so that such characteristics can be used to achieve very excellent performance in a humidifier, a dehumidifier, or the like. In addition, when the porous organic / inorganic hybrid produced by the production method of the present invention is used as an adsorbent for specific harmful substances such as VOCs and sick house syndrome inducers, specific harmful substances in the vapor phase and the particle phase are used. Substances can be effectively removed.

Claims (19)

次のステップにより製造されることを特徴とする多孔性有・無機混成体を含有する吸着剤:
(1)金属前駆体、リガンドとして作用することができる有機化合物及び溶媒を混合して反応物混合液を製造するステップ;
(2)前記反応物混合液を加熱するステップ;及び
(3)前記ステップ(2)で得られた多孔性有・無機混成体を、無機塩が溶解された溶液または溶媒で処理することにより精製するステップ。
Adsorbent containing porous organic / inorganic hybrid material characterized by being produced by the following steps:
(1) mixing a metal precursor, an organic compound capable of acting as a ligand, and a solvent to produce a reactant mixture;
(2) heating the reactant mixture; and (3) purifying the porous organic / inorganic hybrid obtained in step (2) by treating with a solution or solvent in which an inorganic salt is dissolved. Step to do.
前記反応物混合液に酸がさらに含まれることを特徴とする請求項1に記載の吸着剤。   The adsorbent according to claim 1, further comprising an acid in the reactant mixture. 前記酸が、フッ酸を除いた無機酸であることを特徴とする請求項2に記載の吸着剤。   The adsorbent according to claim 2, wherein the acid is an inorganic acid excluding hydrofluoric acid. 前記ステップ(3)で用いられる無機塩は、アンモニウム、アルカリ金属及びアルカリ土類金属からなる群より選ばれる1価または2価の陽イオンと、ハロゲン陰イオン、炭酸イオン(CO 2−)、硝酸イオン及び硫酸イオンからなる群より選ばれる1価または2価の陰イオンを含み、前記無機塩で処理することにより得られた多孔性有・無機混成体内の不純物を精製することを特徴とする請求項1または2に記載の吸着剤。 The inorganic salt used in the step (3) is a monovalent or divalent cation selected from the group consisting of ammonium, alkali metal and alkaline earth metal, a halogen anion, a carbonate ion (CO 3 2− ), It contains a monovalent or divalent anion selected from the group consisting of nitrate ion and sulfate ion, and purifies impurities in a porous organic / inorganic hybrid obtained by treatment with the inorganic salt. The adsorbent according to claim 1 or 2. 前記金属前駆体が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Оs、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、Mg、Ca、Sr、Ba、Sc、Y、Al、Ga、In、Tl、Si、Ge、Sn、Pb、As、Sb及びBiからなる群より選ばれる1つ以上の金属またはその化合物であることを特徴とする請求項1または2に記載の吸着剤。   The metal precursor is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, One or more selected from the group consisting of Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi The adsorbent according to claim 1, wherein the adsorbent is a metal or a compound thereof. 前記金属前駆体が、Al、Fe、V、Mn、Mg及びCrからなる群より選ばれる1つ以上の金属またはその化合物であることを特徴とする請求項5に記載の吸着剤。   The adsorbent according to claim 5, wherein the metal precursor is one or more metals selected from the group consisting of Al, Fe, V, Mn, Mg, and Cr, or a compound thereof. リガンドとして作用することができる有機化合物が、カルボン酸基、カルボン酸の陰イオン基、アミノ基(−NH)、イミノ基(
Figure 2011240340
)、アミド基(−CONH)、スルホン酸基(−SOH)、スルホン酸の陰イオン基(−SO )、メタンジチオ酸基(−CSH)、メタンジチオ酸の陰イオン基(−CS )、ピリジン基及びピラジン基からなる群より選ばれる1つ以上の作用基を含む化合物またはその混合物であることを特徴とする請求項1または2に記載の吸着剤。
Organic compounds that can act as ligands include carboxylic acid groups, anionic groups of carboxylic acids, amino groups (—NH 2 ), imino groups (
Figure 2011240340
), Amide group (—CONH 2 ), sulfonic acid group (—SO 3 H), anionic group of sulfonic acid (—SO 3 ), methanedithioic acid group (—CS 2 H), anionic group of methanedithioic acid ( -CS 2 -), the adsorbent according to claim 1 or 2, characterized in that a compound or a mixture containing one or more functional groups selected from the group consisting of pyridine group and pyrazine groups.
カルボン酸基を有する化合物が、ベンゼンジカルボン酸、ナフタレンジカルボン酸、ベンゼントリカルボン酸、ナフタレントリカルボン酸、ピリジンジカルボン酸、ビピリジルジカルボン酸、蟻酸、蓚酸、マロン酸、コハク酸、グルタル酸、ヘキサン二酸、ヘプタン二酸及びシクロヘキシルジカルボン酸からなる群より選ばれる化合物に由来するものであることを特徴とする請求項7に記載の吸着剤。   Compounds having a carboxylic acid group are benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, hexanedioic acid, heptane The adsorbent according to claim 7, wherein the adsorbent is derived from a compound selected from the group consisting of diacids and cyclohexyldicarboxylic acids. 前記多孔性有・無機混成体が、クロムテレフタレート、鉄テレフタレート、アルミニウムテレフタレートまたはバナジウムテレフタレートであることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, wherein the porous organic-inorganic hybrid is chromium terephthalate, iron terephthalate, aluminum terephthalate, or vanadium terephthalate. 前記多孔性有・無機混成体が、鉄ベンゼントリカルボキシレートクロムベンゼンジカルボキシレート、アルミニウムベンゼントリカルボキシレートまたはバナジウムベンゼントリカルボキシレートであることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, wherein the porous organic-inorganic hybrid is iron benzene tricarboxylate chromium benzene dicarboxylate, aluminum benzene tricarboxylate or vanadium benzene tricarboxylate. 前記多孔性有・無機混成体が、ナノ粒子の形態に製造されることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, wherein the porous organic-inorganic hybrid is produced in the form of nanoparticles. 前記多孔性有・無機混成体が、薄膜またはメンブレイン形態に製造されることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, wherein the porous organic-inorganic hybrid is produced in a thin film or membrane form. 前記多孔性有・無機混成体が、フッ素を含有しておらず、化学式:MOH(HO)O[C(CO(M=Fe、Cr、VまたはAl)またはその水化物で表わされることを特徴とする請求項1または2に記載の吸着剤。 The porous organic-inorganic hybrid does not contain fluorine, and has the chemical formula: M 3 OH (H 2 O) 2 O [C 6 H 4 (CO 2 ) 2 ] 3 (M = Fe, Cr, V Or the adsorbent according to claim 1, wherein the adsorbent is represented by Al) or a hydrate thereof. 前記多孔性有・無機混成体が、フッ素を含有しておらず、化学式:MO(HO)OH[C−(CO(M=Fe、Cr、VまたはAl)またはその水化物で表わされることを特徴とする請求項1または2に記載の吸着剤。 The porous organic-inorganic hybrid does not contain fluorine and has the chemical formula: M 3 O (H 2 O) 2 OH [C 6 H 3- (CO 2 ) 3 ] 2 (M = Fe, Cr, The adsorbent according to claim 1 or 2, represented by V or Al) or a hydrate thereof. 請求項1または2に記載の吸着剤を用いて水分を吸着することを特徴とする水分吸着剤。   A moisture adsorbent characterized by adsorbing moisture using the adsorbent according to claim 1. 除湿器、加湿器、冷房機、暖房機または冷凍機において、水分吸着のために用いられることを特徴とする請求項15に記載の水分吸着剤。   The moisture adsorbent according to claim 15, wherein the moisture adsorbent is used for moisture adsorption in a dehumidifier, a humidifier, a cooler, a heater, or a refrigerator. 蒸気相または粒子相の特定の有害物質の吸着のために用いられることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, which is used for adsorption of a specific harmful substance in a vapor phase or a particle phase. 揮発性有機化合物の吸着のために用いられることを特徴とする請求項1または2に記載の吸着剤。   The adsorbent according to claim 1 or 2, which is used for adsorption of a volatile organic compound. シックハウス症候群を起こす、ホルムアルデヒド、アセトアルデヒド、タール、ニトロソアミン類及びポリ環状芳香族炭化水素類からなる群より選ばれる1つ以上の物質の吸着のために用いられることを特徴とする請求項1または2に記載の吸着剤。   3. The method according to claim 1, wherein the substance is used for adsorbing one or more substances selected from the group consisting of formaldehyde, acetaldehyde, tar, nitrosamines, and polycyclic aromatic hydrocarbons that cause sick house syndrome. The adsorbent described.
JP2011148240A 2006-12-13 2011-07-04 Porous organic / inorganic hybrid and adsorbent containing the same Active JP5551119B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020060127343A KR100803964B1 (en) 2006-12-13 2006-12-13 A synthesis method of fe containing porous organic inorganic hybrid materials and water adsorbent using the same
KR10-2006-0127343 2006-12-13
KR20070075205 2007-07-26
KR10-2007-0075205 2007-07-26
KR10-2007-0077335 2007-08-01
KR1020070077335A KR100890347B1 (en) 2007-07-26 2007-08-01 Absorbent Comprising Porous Organic-Inorganic Hybrid Materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009541227A Division JP5453101B2 (en) 2006-12-13 2007-12-12 Porous organic / inorganic hybrid and adsorbent containing the same

Publications (2)

Publication Number Publication Date
JP2011240340A true JP2011240340A (en) 2011-12-01
JP5551119B2 JP5551119B2 (en) 2014-07-16

Family

ID=45407545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148240A Active JP5551119B2 (en) 2006-12-13 2011-07-04 Porous organic / inorganic hybrid and adsorbent containing the same

Country Status (1)

Country Link
JP (1) JP5551119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289752A (en) * 2015-09-16 2016-02-03 新乡学院 Organic-inorganic hybrid material with photocatalytic activity in sunlight, and preparation method and application of organic-inorganic hybrid material
CN116120574A (en) * 2022-12-30 2023-05-16 广东朗斯姆生化技术有限公司 Preparation method and application of cobalt-based amorphous metal organic framework material Co-aMOF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161675A (en) * 2002-11-13 2004-06-10 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbent material and separating material
JP2005095883A (en) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp Adsorbent for adsorptive heat pump or desiccant air conditioner
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2006043567A (en) * 2004-08-03 2006-02-16 Mitsubishi Chemicals Corp Water vapor adsorbent material, adsorbent material for adsorption heat pump, adsorbent material for desiccant air conditioner, adsorption heat pump, and desiccant air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161675A (en) * 2002-11-13 2004-06-10 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbent material and separating material
JP2005095883A (en) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp Adsorbent for adsorptive heat pump or desiccant air conditioner
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2006043567A (en) * 2004-08-03 2006-02-16 Mitsubishi Chemicals Corp Water vapor adsorbent material, adsorbent material for adsorption heat pump, adsorbent material for desiccant air conditioner, adsorption heat pump, and desiccant air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289752A (en) * 2015-09-16 2016-02-03 新乡学院 Organic-inorganic hybrid material with photocatalytic activity in sunlight, and preparation method and application of organic-inorganic hybrid material
CN105289752B (en) * 2015-09-16 2017-06-27 新乡学院 A kind of organic-inorganic hybrid material with photocatalytic activity and its preparation method and application in the sunlight
CN116120574A (en) * 2022-12-30 2023-05-16 广东朗斯姆生化技术有限公司 Preparation method and application of cobalt-based amorphous metal organic framework material Co-aMOF

Also Published As

Publication number Publication date
JP5551119B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5453101B2 (en) Porous organic / inorganic hybrid and adsorbent containing the same
JP5132671B2 (en) Adsorbents for moisture adsorption and desorption
EP2502671B1 (en) Production method for a metal-organic framework
KR100982641B1 (en) Adsorbent including crystalline porous organic-inorganic hybrid materials
JP5689903B2 (en) Method for producing porous organic-inorganic hybrid body
KR100803945B1 (en) Organic-inorganic porous adsorbent as a water adsorbent and a method for preparing the same
JP2009525973A (en) Method for producing porous hybrid body
JP2014533230A (en) Composite comprising crystalline hybrid nanoporous powder and method for producing the same
KR100803964B1 (en) A synthesis method of fe containing porous organic inorganic hybrid materials and water adsorbent using the same
JP5551119B2 (en) Porous organic / inorganic hybrid and adsorbent containing the same
KR100895413B1 (en) A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials
KR101094075B1 (en) Novel organic­inorganic hybrid nano porous material and method for preparing thereof
KR100890347B1 (en) Absorbent Comprising Porous Organic-Inorganic Hybrid Materials
KR101082832B1 (en) Method for preparing organic-inorganic hybrid nano porous material, organic-inorganic hybrid nano porous materials obtained by said method and use as an absorbent
KR100912790B1 (en) A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250