JP2011101862A - Dissimilar-metal polynuclear complex and method for manufacturing catalyst using the same - Google Patents

Dissimilar-metal polynuclear complex and method for manufacturing catalyst using the same Download PDF

Info

Publication number
JP2011101862A
JP2011101862A JP2009258230A JP2009258230A JP2011101862A JP 2011101862 A JP2011101862 A JP 2011101862A JP 2009258230 A JP2009258230 A JP 2009258230A JP 2009258230 A JP2009258230 A JP 2009258230A JP 2011101862 A JP2011101862 A JP 2011101862A
Authority
JP
Japan
Prior art keywords
metal
complex
dissimilar
ionic
heterometallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258230A
Other languages
Japanese (ja)
Other versions
JP5505773B2 (en
JP2011101862A5 (en
Inventor
Hiroto Hirata
裕人 平田
Naoto Nagata
直人 永田
Hiroyuki Matsuzaka
裕之 松坂
Makoto Takemoto
真 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Toyota Motor Corp
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Toyota Motor Corp
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Toyota Motor Corp, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2009258230A priority Critical patent/JP5505773B2/en
Publication of JP2011101862A publication Critical patent/JP2011101862A/en
Publication of JP2011101862A5 publication Critical patent/JP2011101862A5/ja
Application granted granted Critical
Publication of JP5505773B2 publication Critical patent/JP5505773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-soluble metal complex which has a plurality of types of metal atoms and is capable of forming a dissimilar-metal cluster and method for manufacturing catalyst using the same. <P>SOLUTION: The metal complex is a dissimilar-metal polynuclear complex of ionicity having a plurality of types of dissimilar metal atoms, and the method for manufacturing catalyst impregnates a porous carrier in an aqueous solution including a dissimilar polynuclear complex of ionicity having a plurality of types of metal atoms. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、イオン性の異種金属多核錯体およびそれを用いた触媒の製造方法に関し、さらに詳しくは複数種類の金属原子を有するイオン性の異種金属多核錯体およびそれを用いた触媒の製造方法に関するものである。   The present invention relates to an ionic heterometallic multinuclear complex and a method for producing a catalyst using the same, and more particularly to an ionic heterometallic multinuclear complex having a plurality of types of metal atoms and a method for producing a catalyst using the same. It is.

近年の研究によれば、制御されたサイズを有する金属クラスターは、触媒活性等の化学的性質及び磁性等の物理的性質に関して、バルクの金属とは異なる性質を有することが明らかになっている。
この金属クラスターの特異な性質を利用するために、サイズを制御したクラスターを簡便に且つ大量に合成する方法が必要とされている。
一方、サイズを制御したクラスターを得るために現在知られている方法としては、真空中において金属ターゲットを蒸散させて様々なサイズのクラスターを生成させ、このようにして得たクラスターから、マススペクトルの原理を用いてクラスターサイズを分離する方法がある。しかしながらこの方法ではサイズを制御した金属クラスターを簡便に且つ大量に合成することはできない。
Recent studies have shown that metal clusters with controlled sizes have different properties from bulk metals in terms of chemical properties such as catalytic activity and physical properties such as magnetism.
In order to utilize the unique properties of this metal cluster, there is a need for a method for simply and massively synthesizing a size-controlled cluster.
On the other hand, a currently known method for obtaining a cluster having a controlled size is to evaporate a metal target in a vacuum to generate clusters of various sizes. From the clusters thus obtained, There is a method of separating the cluster size using the principle. However, this method cannot synthesize a metal cluster with a controlled size easily and in large quantities.

貴金属による触媒性能を用いる例としては、自動車用エンジン等の内燃機関から排出される排ガスの浄化を挙げることができる。この排ガスの浄化では、排ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等を、白金、パラジウム、ロジウム等の貴金属を主成分とする触媒成分によって、二酸化炭素、窒素、水、酸素に転化させている。この排ガス浄化の用途では一般に、貴金属である触媒成分をアルミナ等の酸化物製多孔質担体に担持して、排ガスと触媒成分との大きい接触面積を与えるようにしている。 As an example of using the catalytic performance of the noble metal, there can be mentioned purification of exhaust gas discharged from an internal combustion engine such as an automobile engine. In this exhaust gas purification, carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO x ), etc. contained in the exhaust gas are converted into catalyst components mainly composed of noble metals such as platinum, palladium and rhodium. , Converted to carbon dioxide, nitrogen, water, oxygen. In this exhaust gas purification application, a catalyst component that is a noble metal is generally supported on an oxide porous carrier such as alumina to provide a large contact area between the exhaust gas and the catalyst component.

触媒成分である貴金属の酸化物製多孔質担体への担持は、一般に貴金属の硝酸塩又は単一の貴金属原子を有する貴金属錯体の溶液を担体に含浸させて、担体の表面に貴金属化合物を分散させて、次いで溶液を含浸させた担体を乾燥及び焼成することによって行っている。このような方法では、簡便に大量の触媒を調製することは出来るが、金属は単原子分散状態もしくは、適当な加熱・雰囲気制御により粒子成長させた状態であり、任意の構成原子数を有する貴金属クラスターを担持させることはできない。
こうした排ガス浄化触媒においても、貴金属資源枯渇の問題への対応と環境改善に対する要求から排ガス浄化性能のさらなら向上への期待は強く、貴金属をクラスターの状態で担持させることが提案されている。
Supporting a noble metal oxide support as a catalyst component is generally performed by impregnating a noble metal nitrate or a noble metal complex solution having a single noble metal atom into the support and dispersing the noble metal compound on the surface of the support. Then, the carrier impregnated with the solution is dried and fired. In such a method, a large amount of catalyst can be easily prepared, but the metal is in a single atom dispersed state or a state in which particles are grown by appropriate heating / atmosphere control, and a noble metal having an arbitrary number of constituent atoms. Clusters cannot be supported.
Even in such exhaust gas purification catalysts, there is a strong expectation for further improvement in exhaust gas purification performance from the demands for precious metal resource depletion and environmental improvement, and it has been proposed to support precious metals in a cluster state.

例えば、特許文献1には、複数の有機多座配位子と複数の貴金属原子からなる多核錯体を担体上に析出させ、次いで有機多座配位子を除去することにより、貴金属クラスター担持触媒を製造する貴金属クラスター担持触媒の製造方法が記載されている。そして、酸化物担体表面上の水酸基と有機多座配位子とを反応させて有機多座配位子を酸化物担体に結合させ、この有機多座配位子を貴金属原子及び他の有機多座配位子と反応させて酸化物担体上に結合した多核錯体を形成し、次いでこの多角錯体の有機多座配位子を例えば大気雰囲気下の加熱で燃焼除去することを含む方法が開示されている。   For example, Patent Document 1 discloses a noble metal cluster-supported catalyst by precipitating a multinuclear complex composed of a plurality of organic polydentate ligands and a plurality of noble metal atoms on a support, and then removing the organic polydentate ligand. A method for producing a noble metal cluster supported catalyst to be produced is described. Then, the hydroxyl group on the surface of the oxide support is reacted with the organic polydentate ligand to bind the organic polydentate ligand to the oxide support, and the organic multidentate ligand is bonded to the noble metal atom and other organic polydentate ligands. A method is disclosed that includes reacting with a bidentate ligand to form a polynuclear complex bonded on an oxide support, and then burning off the organic polydentate ligand of the polyhedral complex, for example, by heating in an atmospheric atmosphere. ing.

一方、金属錯体として複数の金属を含む錯体が知られていて、例えば、非特許文献1には、分子中にパラジウムを2つ含みアミドを架橋配位子とする2核錯体、パラジウムを4つ含むアミド架橋4核錯体、2核ロジウムアミド錯体あるいは2核イミド錯体が提案された。   On the other hand, a complex containing a plurality of metals is known as a metal complex. For example, Non-Patent Document 1 discloses a binuclear complex having two palladium in a molecule and an amide as a bridging ligand, four palladium. Including amide-bridged tetranuclear complexes, binuclear rhodium amide complexes or binuclear imide complexes have been proposed.

特開2006−55807号公報JP 2006-55807 A

錯体化学討論会講演要旨集、2007.9.10、第57巻、第8頁、講演番号1Aa−07「アミド架橋パラジウムクラスターの合成」Abstracts of Coordination Chemistry Conference, 2007.9.9, Vol. 57, Page 8, Lecture No. 1Aa-07 “Synthesis of Amide-Bridged Palladium Clusters”

しかし、従来公知の金属クラスターでは大量に合成することが不可能であるとか、貴金属錯体を担持する際に錯体中に含まれる金属原子が1種類の金属原子に限られるため異種金属の金属クラスターとはならないとか、また前記特許文献1に記載の水溶性を意図していないため触媒調製時に有機溶媒を必要とし有機溶媒溶液では担体表面との濡れ性が良くないため予め水酸基化する必要があるなど複雑な工程を必要とし、また有機配位子を含むため有機配位子の分解に酸素雰囲気での焼成が必要となり、焼成温度が高すぎると貴金属クラスターサイズに影響を及ぼす恐れがあり、得られる触媒は性能的に焼成条件の影響を受け易い。
従って、本発明の目的は、複数種の金属原子を有していて異種金属クラスターを形成することが可能であって且つ水溶性である金属錯体、およびそのような金属錯体を使用する触媒の製造方法を提供することである。
However, it is impossible to synthesize in a large amount with a conventionally known metal cluster, or when a noble metal complex is supported, the metal atom contained in the complex is limited to one type of metal atom. In addition, since the water solubility described in Patent Document 1 is not intended, an organic solvent is required at the time of catalyst preparation, and the organic solvent solution does not have good wettability with the support surface. It requires a complicated process, and since it contains organic ligands, firing in an oxygen atmosphere is required to decompose the organic ligands. If the firing temperature is too high, the size of the noble metal cluster may be affected and obtained. The catalyst is susceptible to the calcination conditions in terms of performance.
Accordingly, an object of the present invention is to produce a metal complex having a plurality of types of metal atoms and capable of forming heterogeneous metal clusters and being water-soluble, and a catalyst using such a metal complex. Is to provide a method.

本発明は、複数種類の異種の金属原子を有するイオン性の異種金属多核錯体に関する。
さらに、本発明は、複数種類の金属原子を有するイオン性の異種金属多核錯体を含む水溶液に多孔質担体を含浸する触媒の製造方法に関する。
The present invention relates to an ionic dissimilar metal polynuclear complex having plural kinds of dissimilar metal atoms.
Furthermore, the present invention relates to a method for producing a catalyst in which a porous carrier is impregnated with an aqueous solution containing an ionic heterometallic multinuclear complex having a plurality of types of metal atoms.

本発明によれば、複数種の金属原子を有していて異種の金属クラスターを形成することが可能であって且つ水溶性である金属錯体を得ることができる。
また、本発明によれば、複数種の金属原子を有する異種金属多核錯体が水溶性であるため、溶媒として水を用いて異種金属クラスターを含む触媒を調製し得る。
According to the present invention, it is possible to obtain a metal complex that has a plurality of types of metal atoms and can form different types of metal clusters and is water-soluble.
Moreover, according to the present invention, since the heterogeneous metal polynuclear complex having a plurality of types of metal atoms is water-soluble, a catalyst containing heterogeneous metal clusters can be prepared using water as a solvent.

図1は、実施例3で得られた錯体4の単結晶構造解析の結果を示す図である。FIG. 1 is a diagram showing the results of single crystal structure analysis of the complex 4 obtained in Example 3. 図2は、実施例4で得られた錯体のMSスペクトル図である。FIG. 2 is an MS spectrum diagram of the complex obtained in Example 4. 図3は、実施例4で得られた錯体のNMRスペクトル図である。FIG. 3 is an NMR spectrum diagram of the complex obtained in Example 4.

本発明の実施態様によれば、複数種類の異種金属原子を有するイオン性の異種金属多核錯体によって、異種金属多核錯体がイオン性であるため水溶性である。
また、本発明の実施態様によれば、複数種の金属原子を有するイオン性の異種金属多核錯体によって金属錯体がイオン性であるので水溶性であり溶媒として水を用いて触媒調製することができ、特に複数個の金属原子が窒素含有基で架橋されているので窒素含有化合物を加熱により除去可能である。
According to the embodiment of the present invention, the ionic heterometallic multinuclear complex having plural kinds of heterometallic atoms is water-soluble because the heterometallic multinuclear complex is ionic.
Further, according to the embodiment of the present invention, the metal complex is ionic by the ionic heterogeneous metal multinuclear complex having a plurality of types of metal atoms, so that it is water soluble and can be prepared using water as a solvent. In particular, since a plurality of metal atoms are cross-linked with a nitrogen-containing group, the nitrogen-containing compound can be removed by heating.

従来の技術によれば、ある元素に着目した場合、クラスター(原子の集合体)のサイズにより触媒活性などの化学的特性や磁性などの物理的特性が変化し得る。
このクラスターの特異的な性質を利用するために、サイズを制御したクラスターを簡便に且つ大量に合成する方法が望まれているが、現在試みられているサイズを制御したクラスターを生成する方法としては真空中で金属ターゲットを蒸発させて様々なサイズのクラスターを生成させた後、MASS(MSと略記する場合もある)スペクトルの原理を用いてクラスターサイズを分離する方法であり大量に作ることは不可能である。また、触媒の調製法として利用されている錯体を用いる方法では、簡便に大量の触媒を調製することはできるが、金属は単原子分散状態若しくは適当な加熱・雰囲気制御により粒子成長させるため、異種金属により構成される金属原子や組成を有するクラスターを担持し得ない。
According to the conventional technology, when attention is paid to a certain element, chemical characteristics such as catalytic activity and physical characteristics such as magnetism can change depending on the size of the cluster (a collection of atoms).
In order to utilize the specific properties of this cluster, a method for synthesizing a cluster with a controlled size easily and in large quantities is desired. However, as a currently attempted method for generating a cluster with a controlled size, It is a method that separates the cluster size using the principle of MASS (sometimes abbreviated as MS) spectrum after generating various size clusters by evaporating the metal target in vacuum. Is possible. In addition, in the method using a complex used as a method for preparing a catalyst, a large amount of catalyst can be easily prepared. However, since metal grows particles in a single atom dispersion state or by appropriate heating / atmosphere control, It cannot carry a metal atom composed of a metal or a cluster having a composition.

このように、従来技術によるクラスター調製では、装置の制約上、安価且つ大量にクラスターを合成することは不可能である。例えば、従来公知の錯体、例えばテトラアンミンPd、硝酸Pdを担持する方法では、錯体中に含まれる金属原子数が1原子であるためクラスターとはなり得ない。また、従来公知の錯体を利用して2種類の錯体を混合しても、錯体金属同士の化学結合が出来ないため、合金クラスターを作ることが困難である。
また、複数の金属を含む錯体であっても、錯体化合物が分子中に有機配子を含むため、錯体が水に溶け難く、配位子を分解するために酸素共存下で焼成する必要があり焼成温度が高すぎるとクラスターサイズに悪影響を及ぼし得る。
As described above, in the cluster preparation according to the conventional technique, it is impossible to synthesize clusters in a large amount at a low cost because of apparatus limitations. For example, in a method of supporting a conventionally known complex such as tetraammine Pd or nitric acid Pd, the number of metal atoms contained in the complex is one atom, so that it cannot be a cluster. Moreover, even if two types of complexes are mixed using a conventionally known complex, it is difficult to form an alloy cluster because chemical bonds between complex metals cannot be formed.
In addition, even if the complex contains multiple metals, the complex compound contains an organic ligand in the molecule, so the complex is difficult to dissolve in water and must be fired in the presence of oxygen to decompose the ligand. If the temperature is too high, the cluster size can be adversely affected.

これに対して、本発明の異種金属多角金属錯体は、複数種類の異種金属原子を有し且つイオン性であり、アニオンである対イオン(以下、単に対イオンと略記する)を選択することにより水に可溶な化合物とし得る。また、本発明の異種金属多角金属錯体によれば複数種の金属元素が複合化した合金クラスターを化学的に合成し得るため、従来技術により得られる材料の特性を大幅に上回る、従来の材料にはない特性を有する材料の創製を可能とし得る。   On the other hand, the different metal polymetallic complex of the present invention has a plurality of types of different metal atoms and is ionic, by selecting a counter ion which is an anion (hereinafter simply abbreviated as a counter ion). It can be a water-soluble compound. Also, according to the dissimilar metal multi-metal complex of the present invention, an alloy cluster in which multiple kinds of metal elements are complexed can be chemically synthesized, so that the characteristics of the material obtained by the prior art are greatly exceeded. It may be possible to create a material with unique properties.

以下、本発明について、本発明の実施態様である下記の化学式で表わされる異種金属多角金属錯体を用いて説明する。
本発明の実施態様である異種金属多角金属錯体の一例としては、下記の化学式:
Hereinafter, the present invention will be described using different metal polymetallic complexes represented by the following chemical formula, which is an embodiment of the present invention.
As an example of the heterogeneous metal polymetallic complex which is an embodiment of the present invention, the following chemical formula:

Figure 2011101862
Figure 2011101862

Figure 2011101862
Figure 2011101862

で示される2種類の異種金属多核錯体が挙げられる。
前記の本発明の実施態様の異種金属多角金属錯体は、異種金属原子が異種貴金属元素、Pd、PtがNH基で架橋された貴金属多核錯体であり、貴金属原子を複数個有する貴金属クラスターを化学的に合成することを可能とし得る。また、複数種の金属元素が複合化した金属クラスターを化学的に合成することを可能とし得る。
The two types of different metal polynuclear complexes shown by these are mentioned.
The heterogeneous metal polymetallic complex according to the embodiment of the present invention is a noble metal multinuclear complex in which different metal atoms are bridged with different noble metal elements and Pd and Pt are NH 2 groups, and a noble metal cluster having a plurality of noble metal atoms is chemically Can be synthesized. Further, it may be possible to chemically synthesize a metal cluster in which a plurality of types of metal elements are combined.

また、前記の異種金属多角金属錯体を触媒の調製に用いると、対イオンを選択することにより水に可溶な化合物とし、触媒調製時の溶媒として水を用いることを可能とし得る。また、錯体をカチオンとして触媒の担体である金属酸化物表面に吸着させることが可能となり、さらに配位子としてNH基を用いて貴金属同士を結合しているため、この錯体を担体に担持した後に酸素共存下での焼成を必要とせず加熱するだけで配位子の除去が容易である。さらに、配位子がNH基であるため工業ベースの利用を考慮するとコスト面においても優れている。 Further, when the heterogeneous metal multimetal complex is used for the preparation of the catalyst, it can be made a compound that is soluble in water by selecting a counter ion, and water can be used as a solvent for the preparation of the catalyst. In addition, the complex can be adsorbed as a cation on the surface of the metal oxide which is a carrier of the catalyst, and further, the NH 2 group is used as a ligand to bond the noble metals to each other, so that this complex is supported on the carrier. The ligand can be easily removed by simply heating without the need for subsequent firing in the presence of oxygen. Furthermore, since the ligand is an NH 2 group, it is excellent in terms of cost in consideration of utilization on an industrial basis.

本発明の異種金属多核錯体の化合物は、式:[M1M2n+ n−(M1、M2は各々異なる金属原子であり、Aは2価の配位子でありBは1価の配位子であり、X n−は対イオンであり、p、qは1以上の整数で、a、bは各々偶数であり、nは1〜3の整数である。)で示すことが出来る。 The compounds of different metals multinuclear complex of the present invention have the formula: [M1 p M2 q A a B b] n + X n n- (M1, M2 are each different metal atom, A is a divalent ligand B is a monovalent ligand, X n n- is a counter ion, p and q are integers of 1 or more, a and b are even numbers, and n is an integer of 1 to 3. ).

前記のイオン性の異種金属多核錯体を構成する異種金属としては、遷移金属であれば特に制限はなく、例えばチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム(Rh)、パラジウム(Pd)、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金(Pt)及び金から選ばれる少なくとも2種の金属であってよく、特にPd、PtおよびRhから選ばれる2種が好適である。   The dissimilar metal constituting the ionic dissimilar metal polynuclear complex is not particularly limited as long as it is a transition metal. For example, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, niobium, molybdenum, technetium, It may be at least two metals selected from ruthenium, rhodium (Rh), palladium (Pd), silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum (Pt) and gold, in particular Pd, Pt and Two types selected from Rh are preferred.

また、前記の異種金属原子は2価の配位子(前記一般式ではAで表される)、例えば2価の窒素含有基、好適にはNR基(RはH又はアルキル基、例えばメチル基、エチル基、プロピル基などである)などで架橋されていて、さらに、複数の金属は1価の配位子(前記一般式ではBで表される。)、例えば1価の窒素含有基、好適にはNR’〔R’はH又はアルキル基、例えばメチル基、エチル基、プロピル基など又はピリジン基(化学式中、Pyで示される)である〕と結合されていることが好ましい。前記の2価の配位子として、特にはNH基を、1価の配位子として特にはNH基、ピリジン基を挙げることができる。
また、前記のイオン性の異種金属多核錯体における金属原子の数は合計で2以上、好適には2〜100、特に2〜10である。
The heterogeneous metal atom is a divalent ligand (represented by A in the above general formula), such as a divalent nitrogen-containing group, preferably an NR 2 group (R is H or an alkyl group such as methyl A plurality of metals are monovalent ligands (represented by B in the above general formula), for example, monovalent nitrogen-containing groups. , Preferably NR ′ 3 [R ′ is H or an alkyl group such as a methyl group, an ethyl group, a propyl group or the like, or a pyridine group (indicated by Py in the chemical formula)]. Examples of the divalent ligand include NH 2 group, and examples of the monovalent ligand include NH 3 group and pyridine group.
The total number of metal atoms in the ionic heterometallic multinuclear complex is 2 or more, preferably 2 to 100, particularly 2 to 10.

本発明における異種金属多核錯体化合物の対イオンとしては、B[C(CF 、[B[C 、C(Cはハロゲン原子である。)、OH、AlCl 、AlBr 、GaCl 、PF 、AsF 、SbCl 、SbF などが挙げられるが、製造時の有機溶媒への溶解性の高さからB[C(CF 、[B(C が好ましい。 As counter ions of the heterometallic multinuclear complex compound in the present invention, B [C 6 H 3 (CF 3 ) 2 ] 4 , [B [C 6 F 5 ) 4 , C (C is a halogen atom. ), OH , AlCl 4 , AlBr 4 , GaCl 4 , PF 6 , AsF 6 , SbCl 6 , SbF 6 − and the like. To B [C 6 H 3 (CF 5 ) 2 ] 4 and [B (C 6 F 5 ) 4 are preferable.

本発明のイオン性の異種金属多核錯体は、分子中に2個以上の異種金属原子を有するイオン性錯体で且つ水溶性であり、セラミック系の基材である多孔質担体表面によって吸着可能で担体表面に特別な処理、例えばOHを付ける前処理をすることなく担体表面に前記イオン性の異種金属多核錯体を吸着させて、加熱のみによって配位子を除去して異種金属クラスターを形成可能であり、触媒活性向上の観点から好適である。しかしながら、多孔質担体表面を予め前処理することによってこの発明のイオン性の異種金属多核錯体との接着性を改良しても構わないことは当然である。   The ionic dissimilar metal multinuclear complex of the present invention is an ionic complex having two or more dissimilar metal atoms in the molecule, is water-soluble, and can be adsorbed by the surface of a porous carrier that is a ceramic substrate. It is possible to adsorb the ionic dissimilar metal multinuclear complex on the surface of the support without special treatment on the surface, for example, pretreatment with OH, and remove the ligand only by heating to form a dissimilar metal cluster. From the viewpoint of improving the catalytic activity. However, it is natural that the adhesion with the ionic heterometallic multinuclear complex of the present invention may be improved by pretreating the surface of the porous carrier in advance.

本発明におけるイオン性の異種金属多核錯体化合物は、例えば、有機溶媒中、第1の金属、たとえばPtと1価の配位子と2価の配位子とリチウムと対イオンとを有する第1の金属化合物と、第2の金属、例えばPdとピリジン基と対イオンとを有する第2の金属化合物とを接触させて、ピリジンおよびリチウムの対イオン化合物を除くことによって2種の金属化合物を結合させることにより、第1の金属、第2の金属、1価の配位子と2価の配位子および対イオンを有するイオン性の異種金属多核錯体化合物として得ることができる。この反応を順次続けることによって、または第1の金属化合物と第2の金属化合物との組み合わせを選択することによって、前記の式:[M1M2n+ n−における任意のp、qを有するイオン性の異種金属多核錯体を得ることができる。 The ionic heterometallic multinuclear complex compound in the present invention is, for example, a first metal having a first metal such as Pt, a monovalent ligand, a divalent ligand, lithium and a counter ion in an organic solvent. The two metal compounds by contacting the second metal compound with a second metal such as Pd, a second metal compound having a pyridine group and a counter ion, and removing the counter ion compound of pyridine and lithium. By doing so, it can be obtained as an ionic heterometallic multinuclear complex compound having a first metal, a second metal, a monovalent ligand, a divalent ligand, and a counter ion. By continuing this reaction sequence, or by selecting a combination of the first metal compound and the second metal compound, wherein the formula: [M1 p M2 q A a B b] n + X n optionally in n- It is possible to obtain an ionic heterometallic multinuclear complex having the following p and q.

前記の有機溶媒としては、特に制限はなく例えば、テトラヒドロフラン(THF)、ジエチルエーテルなどのエーテル、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンセン、ジクロロベンゼンなどのハロゲン化炭化水素、N−メチル2−ピロリドン、N,N−ジメチルアセトアミドなどのアミドなど、あるいはこれらの少なくとも1種とn−ヘキサン(単に、ヘキサンと略記する場合がある)などの炭化水素との混合溶媒を挙げることができる。
また、前記の反応は、溶媒の凝固点以上で25℃以下の温度、好適には−95〜25℃で、2〜24時間攪拌下に行うことができる。
反応終了後、溶媒に不溶な固体を除去し、溶媒を留去することにより又は再結晶することによって結晶として得ることができる。
The organic solvent is not particularly limited, and examples thereof include ethers such as tetrahydrofuran (THF) and diethyl ether, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, chlorobenzene and dichlorobenzene, N-methyl 2-pyrrolidone, N , N-dimethylacetamide and the like, or a mixed solvent of at least one of them and a hydrocarbon such as n-hexane (simply abbreviated as hexane).
The reaction can be carried out at a temperature not lower than the freezing point of the solvent and not higher than 25 ° C., preferably at −95 to 25 ° C. with stirring for 2 to 24 hours.
After completion of the reaction, solids that are insoluble in the solvent are removed, and the crystals can be obtained by distilling off the solvent or by recrystallization.

本発明のイオン性の異種金属多核錯体の化学構造は、後述の実施例の欄に測定法について詳細に記載される核磁気共鳴(以下、NMRと略記する。)分析によるHチャート、後述の実施例の欄に測定法について詳細に記載される質量分析(以下、MSと略記する)分析および元素分析から分子量および各配位子が、後述の実施例の欄に測定法について詳細に記載される単結晶のX線構造解析に基いたORTEP図から複数の異種金属原子を含むカチオン(例えば、前記式:[M1M2n+ n−からX n−が取れた式:[M1M2n+で示されるカチオン)が特定される。
また、MSチャートにより、イオン性錯体のn個の対イオンX n−の1個のDが脱離した1価のカチオン(式:[M1M2n+ (n−1)−)のm/z(mはイオンの質量数を、zはイオンの価数を示す。)が特定される。
これらの分析結果から、イオン性の異種金属多核錯体の化学構造が明らかになる。
The chemical structure of the ionic dissimilar metal polynuclear complex of the present invention is a 1 H chart by nuclear magnetic resonance (hereinafter abbreviated as NMR) analysis described in detail for the measurement method in the column of Examples described later. From the mass spectrometry (hereinafter abbreviated as MS) analysis and elemental analysis described in detail in the column of Examples, the molecular weight and each ligand are described in detail in the column of Examples described later. that a single crystal of a cation comprising the ORTEP diagram based on X-ray structural analysis a plurality of different metal atoms (e.g., the formula: [M1 p M2 q a a B b] n + X n from n-X n n-is taken formula: [M1 p M2 q A a B b] cation represented by n +) is identified.
Further, the MS chart, monovalent cation (wherein n number of counter ions X n n-1 pieces of D of the ionic complex is eliminated: [M1 p M2 q A a B b] n + X n (n -1)- ) m / z (m represents the mass number of the ion and z represents the valence of the ion).
From these analysis results, the chemical structure of the ionic heterometallic polynuclear complex becomes clear.

例えば、本発明の1実施態様である実施例1で得られたイオン性の異種金属多核錯体化合物のMSチャートにより、2核のイオン性の異種金属多核錯体化合物は2個の対イオンのうち1個が脱離した1価のカチオンのm/z=1203であり、本発明の1実施態様である実施例2で得られたイオン性の異種金属多核錯体化合物の3核のイオンの異種金属多核錯体化合物は2個の対イオンのうち1個が脱離した1価のカチオンのm/z=1307である。   For example, according to the MS chart of the ionic heterometallic multinuclear complex compound obtained in Example 1, which is one embodiment of the present invention, the binuclear ionic heterometallic multinuclear complex compound is one of two counter ions. The monovalent cation m / z = 1203 of the detached monovalent cation, and the heteronuclear multinuclear of the trinuclear ion of the ionic heterometallic multinuclear complex compound obtained in Example 2 which is one embodiment of the present invention In the complex compound, m / z = 1307 of a monovalent cation from which one of two counter ions is eliminated.

そして、前記の3核イオン性の異種金属多核錯体(前記式からXn−が取れた式:[M1M2n+で示される)の一例のORTEPを示す図1から、前記のイオン性の異種金属多核錯体は1個のPd原子と2個のPt原子とが同一平面に配置されていることがわかる。
これらの結果から、本発明の実施態様であるイオン性の異種金属多核錯体は、各々前記の化学構造を有することを確認することができる。
FIG. 1 shows an ORTEP as an example of the above-mentioned trinuclear ionic heterometallic multinuclear complex (formula in which X n− is taken from the formula: [M1 p M2 q A a B b ] n + ) It can be seen that in the ionic heterometallic multinuclear complex, one Pd atom and two Pt atoms are arranged in the same plane.
From these results, it can be confirmed that the ionic heterometallic multinuclear complex which is an embodiment of the present invention has the above-mentioned chemical structure.

本発明のイオン性の異種金属多核錯体を含む水溶液に多孔質担体を含浸する触媒の製造方法、特に排ガス浄化触媒の製造方法としては、本発明の各(p+q)核イオンの異種金属多核錯体の水溶液を酸化物担体に含浸させた後、好適には不活性雰囲気下に加熱し、乾燥・焼成して、多孔質担体上に金属クラスターを担持させる方法を挙げることができる。   As a method for producing a catalyst for impregnating a porous carrier with an aqueous solution containing an ionic heterogeneous metal multinuclear complex of the present invention, particularly a method for producing an exhaust gas purification catalyst, each of the (p + q) nuclear ion heterometallic multinuclear complexes of the present invention An example is a method in which an oxide carrier is impregnated with an aqueous solution, and then heated in an inert atmosphere, dried and fired, and metal clusters are supported on the porous carrier.

前記の多孔質担体としては、特に制限はなく、例えば基材内に多数の微細な気孔を有する、コージェライト、アルミナ、ジルコニア、炭化珪素等の、耐熱性を有するセラミック材料からなるハニカム基材を用いることが好ましく、優れた耐熱性と低い熱膨張係数を有するコージェライトハニカムを用いることが好ましい。このハニカム基材は、両端が開口した多数のセルを有するものが好ましい。また、ハニカム基材のセル壁に存在する気孔は実質的に非貫通孔であることが好ましく、セル壁が40〜75%の気孔率と10〜50μmの気孔径を有するものを用いることが好ましい。   The porous carrier is not particularly limited, and for example, a honeycomb substrate made of a heat-resistant ceramic material such as cordierite, alumina, zirconia, silicon carbide, etc. having a large number of fine pores in the substrate. It is preferable to use a cordierite honeycomb having excellent heat resistance and a low thermal expansion coefficient. This honeycomb substrate preferably has a large number of cells open at both ends. The pores present in the cell walls of the honeycomb substrate are preferably substantially non-through holes, and it is preferable to use the cell walls having a porosity of 40 to 75% and a pore diameter of 10 to 50 μm. .

前記の多孔質担体は表面に多数の活性点、例えばOH基、O基等の官能基や突起などの欠陥部を有しており、この発明のイオン性の異種金属多核錯体を含む水溶液で処理することにより、活性点にイオン性の異種金属多核錯体のカチオンが化学的又は物理的に吸着され、後処理の不活性雰囲気下での乾燥・焼成工程によって金属クラスターを形成することができる。   The porous carrier has many active sites on its surface, for example, functional groups such as OH groups and O groups and defects such as protrusions, and is treated with an aqueous solution containing the ionic heterometallic multinuclear complex of the present invention. By doing so, the cation of the ionic heterometallic multinuclear complex is chemically or physically adsorbed at the active site, and a metal cluster can be formed by a drying / firing step in an inert atmosphere of post-treatment.

良好な触媒活性を与えるp+q核数を有するイオン性の異種金属多核錯体は、例えば前記の金属蒸散―MS法によって種々の数の金属クラスター数を形成して別途に求めた担体上の金属クラスター数と触媒活性との関係を示す図から求められる良好な触媒活性を与える金属クラスター数を予め求めておき、イオン性の異種金属多核錯体におけるp+q核数と金属クラスターの数との関係を求めることによって、良好な触媒活性を与えるp+q核数を有するイオン性のp+q核数の異種金属多核錯体を決定することができる。   The ionic heterometallic multinuclear complex having the number of p + q nuclei that gives good catalytic activity is, for example, the number of metal clusters on the support obtained separately by forming various numbers of metal clusters by the above-described metal evaporation-MS method. By obtaining in advance the number of metal clusters that give good catalytic activity obtained from the graph showing the relationship between the catalyst activity and the number of metal clusters, the relationship between the number of p + q nuclei and the number of metal clusters in the ionic heterometallic multinuclear complex is obtained. An ionic p + q nucleus heterogeneous multinuclear complex with p + q nuclei that gives good catalytic activity can be determined.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、この発明を限定するものではない。
以下の各例において、分析は以下に示す測定機器で行った。
NMR:VARIAN−MERCURY300−C/H(VARIAN社)
MS:JEOL SX−203(JEOL社)
元素分析:Parkin−Elmer 2400(Parkin−Elmer社)
X線結晶構造解析:PAXIS−RAID(Rigaku社)
ORTEP:単結晶についてのPAXIS−RAID(Rigaku社)によるX線結晶構造解析に基く
IR測定:JASCO FT−IR4100(日本分光社)
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the analysis was performed with the following measuring instruments.
NMR: VARIAN-MERCURY300-C / H (Varian)
MS: JEOL SX-203 (JEOL)
Elemental analysis: Parkin-Elmer 2400 (Parkin-Elmer)
X-ray crystal structure analysis: PAXIS-RAID (Rigaku)
ORTEP: IR measurement based on X-ray crystal structure analysis by PAXIS-RAID (Rigaku) for single crystal: JASCO FT-IR4100 (JASCO Corporation)

参考例1
[Pt(NH][B(C(1)の合成
[Pt(NH]Cl・HO(991mg、2.82mmol)の水溶液(30mL)に室温(25℃)でLi[B(C](5.53g、5.63mmol)の水溶液(60mL)を加えて1時間攪拌した。生じた固体をろ別し、THF(30mL)で洗浄してから、硫酸マグネシウムで乾燥した。再度ろ別し、真空乾燥することにより、1・4.3THF(下記の化学式1の物質に平均で4.3個のTHFが溶媒和したもの)が無色の結晶性固体として得られた。収量は2.48g(収率88%)であった。
Reference example 1
Synthesis of [Pt (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 (1) [Pt (NH 3 ) 4 ] Cl 2 .H 2 O (991 mg, 2.82 mmol) in water (30 mL) Was added with an aqueous solution (60 mL) of Li [B (C 6 F 5 ) 4 ] (5.53 g, 5.63 mmol) at room temperature (25 ° C.) and stirred for 1 hour. The resulting solid was filtered off, washed with THF (30 mL), and dried over magnesium sulfate. By filtering again and vacuum drying, 1.4.3 THF (a substance obtained by solvating 4.3 THF on average in the substance of the following chemical formula 1) was obtained as a colorless crystalline solid. The yield was 2.48 g (88% yield).

化合物1のNMR、MSおよびIR測定結果を次に示す。
H NMR(CDCN):d3.36(br、12H、NH
MS(FAB):m/z942{(1−[B(C]}
IR(nujol):3356(br)、1516(s)、1274(m)、1084(m)、979(s)cm−1
参考例1の反応を下記の化学式に示す。
The NMR, MS, and IR measurement results of Compound 1 are shown below.
1 H NMR (CD 3 CN): d3.36 (br, 12H, NH 3 )
MS (FAB): m / z 942 {(1- [B (C 6 F 5 ) 4 ]} +
IR (nujol): 3356 (br), 1516 (s), 1274 (m), 1084 (m), 979 (s) cm −1
The reaction of Reference Example 1 is shown in the following chemical formula.

Figure 2011101862
Figure 2011101862

参考例2
[Pd(CN)][B(C(2)合成
[Pd(NH][B(C・4.6THF(2.00g、1.07mmol)をピリジン(10mL)に溶解し、80℃で10時間攪拌した。溶媒を留去し、残った固体をTHF/ヘキサン(10mL/40mL)で再結晶して2・THF(下記の化学式2の物質に1個のTHFが溶媒和したもの)が無色の結晶として得られた。収量は1.51g(収率76%)であった。
Reference example 2
[Pd (C 6 H 5 N) 4 ] [B (C 6 F 5 ) 4 ] 2 (2) Synthesis [Pd (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 · 4.6THF ( (2.00 g, 1.07 mmol) was dissolved in pyridine (10 mL) and stirred at 80 ° C. for 10 hours. The solvent was distilled off, and the remaining solid was recrystallized with THF / hexane (10 mL / 40 mL) to obtain 2.THF (one THF solvated in the following chemical formula 2) as colorless crystals. It was. The yield was 1.51 g (76% yield).

化合物2のMS、NMRおよびIR測定結果を次に示す。
722840OPdとしての計算値:C,46.67;H,1.52;N,3.02 測定値:C,46.69;H,1.33;N,2.87
H NMR(CDCN):d7.52(m,8H,py),7.98(m,4H,py),8.73(m,8H,py)
MS(FAB):m/z1101{(2−[B(C]}
IR(nujol):1644(m)、1610(w)、1515(s)、1275(m)、1090(m)、1090(m)、1058(w)、977(s)、757(m)cm−1
参考例2の反応を下記の化学式に示す。

Figure 2011101862
The MS, NMR and IR measurement results of Compound 2 are shown below.
C 72 H 28 B 2 F 40 N 4 Calculated as OPd: C, 46.67; H, 1.52; N, 3.02 measured values: C, 46.69; H, 1.33 ; N, 2.87
1 H NMR (CD 3 CN): d7.52 (m, 8H, py), 7.98 (m, 4H, py), 8.73 (m, 8H, py)
MS (FAB): m / z 1101 {(2- [B (C 6 F 5 ) 4 ]} +
IR (nujol): 1644 (m), 1610 (w), 1515 (s), 1275 (m), 1090 (m), 1090 (m), 1058 (w), 977 (s), 757 (m) cm -1
The reaction of Reference Example 2 is shown in the following chemical formula.
Figure 2011101862

実施例1
[(NHPt(m−NHPd(CN)][B(C(3)の合成
1・4.3THF(100mg、0.052mmol)のTHF溶液(5mL)を−95℃に冷却し、n−BuLi(2.64Mヘキサン溶液、41μL、0.11mmol)を加えた後、激しく攪拌しつつ3時間かけて徐々に室温まで戻した。反応液を再び−95℃に冷却し、2・THF(96mg、0.052mmol)のTHF溶液(5mL)を加え、激しく攪拌しつつ12時間かけて室温まで戻した。無色であった反応液は黄色へと変化した。溶媒を留去し、残った固体を水(30mL)で洗浄してからTHF(10mL)に溶解させ、硫酸マグネシウムで乾燥した。固体をろ別後に溶媒を留去することにより、3・THF・0.5pyridineが薄黄色の結晶性固体として得られた。収量は89mg(収率89%)であった。
Example 1
Synthesis of [(NH 3 ) 2 Pt (m 2 —NH 2 ) 2 Pd (C 6 H 5 N) 2 ] [B (C 6 F 5 ) 4 ] 2 (3) 1.4.3THF (100 mg, 0 .052 mmol) in THF (5 mL) was cooled to −95 ° C., n-BuLi (2.64 M hexane solution, 41 μL, 0.11 mmol) was added, and then gradually stirred to room temperature over 3 hours with vigorous stirring. Returned. The reaction solution was cooled again to −95 ° C., a THF solution (5 mL) of 2 · THF (96 mg, 0.052 mmol) was added, and the mixture was returned to room temperature over 12 hours with vigorous stirring. The reaction solution, which was colorless, turned yellow. The solvent was distilled off, and the remaining solid was washed with water (30 mL), dissolved in THF (10 mL), and dried over magnesium sulfate. The solid was filtered off and the solvent was distilled off to obtain 3.THF.0.5 pyridine as a light yellow crystalline solid. The yield was 89 mg (yield 89%).

化合物3のNMR、MSおよびIR測定結果を次に示す。
H NMR(CDCN):d−0.70(br,4H,m−NH),2.84(br,6H,NH),7.45(m,4H,py),7.91(m,2H,py),8.48(m,4H,py)
MS(FAB):m/z1203{(3−[B(C]}
IR(nujol):3635(br)、3292(w)、1644(m)、1515(s)、1276(m)、1087(m)、977(s)cm−1
実施例1の反応を下記の化学式に示す。
The NMR, MS, and IR measurement results of Compound 3 are shown below.
1 H NMR (CD 3 CN) : d-0.70 (br, 4H, m 2 -NH 2), 2.84 (br, 6H, NH 3), 7.45 (m, 4H, py), 7 .91 (m, 2H, py), 8.48 (m, 4H, py)
MS (FAB): m / z 1203 {(3- [B (C 6 F 5 ) 4 ]} +
IR (nujol): 3635 (br), 3292 (w), 1644 (m), 1515 (s), 1276 (m), 1087 (m), 977 (s) cm −1
The reaction of Example 1 is shown in the following chemical formula.

Figure 2011101862
Figure 2011101862

実施例2
[(NHPt(m−NHPd(m−NHPt(NH][B(C(4)の合成(3と1からの合成)
1・4.3THF(72mg、0.037mmol)のTHF溶液(5mL)を−95℃に冷却し、n−BuLi(2.64Mヘキサン溶液、30μL、0.079mmol)を加えた後、激しく攪拌しつつ3時間かけて徐々に室温まで戻した。反応液を再び−95℃に冷却し、3・THF・0.5pyridine(80mg、0.037mmol)のTHF溶液(5mL)を加え、激しく攪拌しつつ12時間かけて室温まで戻した。溶媒を留去し、残った固体を水(30mL)で洗浄してからTHF(10mL)に溶解させ、硫酸マグネシウムで乾燥した。固体をろ別後に溶媒を留去することにより、4・3.7THFが薄黄色の結晶性固体として得られた。収量は72mg(収率86%)であった。
Example 2
Synthesis of [(NH 3 ) 2 Pt (m 2 -NH 2 ) 2 Pd (m 2 -NH 2 ) 2 Pt (NH 3 ) 2 ] [B (C 6 F 5 ) 4 ] 2 (4) (3 and Synthesis from 1)
1.4.3 THF (72 mg, 0.037 mmol) in THF (5 mL) was cooled to −95 ° C. and n-BuLi (2.64 M hexane solution, 30 μL, 0.079 mmol) was added, followed by vigorous stirring. The temperature was gradually returned to room temperature over 3 hours. The reaction solution was cooled again to −95 ° C., a THF solution (5 mL) of 3 · THF · 0.5 pyridine (80 mg, 0.037 mmol) was added, and the mixture was returned to room temperature over 12 hours with vigorous stirring. The solvent was distilled off, and the remaining solid was washed with water (30 mL), dissolved in THF (10 mL), and dried over magnesium sulfate. By filtering off the solid and then distilling off the solvent, 4.3.7THF was obtained as a light yellow crystalline solid. The yield was 72 mg (86% yield).

化合物4のMS、NMRおよびIR測定結果を次に示す。
522840OPdPtとしての計算値:C,30.33;H,1.37;N,5.44 測定値:C,30.31;H,1.32;N,5.17
H NMR(CDCN):d−1.61(br,8H,m−NH),2.69(br,12H,NH
MS(FAB):m/z1307(4−[B(C]}
IR(nujol):3680(w)、3623(w)、3369(br)、3289(w)、3174(br)、1645(m)、1515(s)、1275(m)、1084(m)、977(s)cm−1
また、実施例2の反応を下記の化学式に示す。
The MS, NMR and IR measurement results of Compound 4 are shown below.
C 52 H 28 B 2 F 40 N 8 calculated for OPdPt 2: C, 30.33; H , 1.37; N, 5.44 measured values: C, 30.31; H, 1.32 ; N , 5.17
1 H NMR (CD 3 CN): d-1.61 (br, 8H, m 2 —NH 2 ), 2.69 (br, 12H, NH 3 )
MS (FAB): m / z 1307 (4- [B (C 6 F 5 ) 4 ]} +
IR (nujol): 3680 (w), 3623 (w), 3369 (br), 3289 (w), 3174 (br), 1645 (m), 1515 (s), 1275 (m), 1084 (m), 977 (s) cm −1
The reaction of Example 2 is shown in the following chemical formula.

Figure 2011101862
Figure 2011101862

実施例3
[(NHPt(m−NHPd(m−NHPt(NH][B(C(4)の合成(1と2からの1ポット合成)
1・4.3THF(1.01g、0.52mmol)のTHF溶液(10mL)を−95℃に冷却し、n−BuLi(2.64Mヘキサン溶液、417μL、1.10mmol)を加えた後、激しく攪拌しつつ3時間かけて徐々に室温まで戻した。反応液を再び−95℃に冷却し、2・THF(485mg、0.262mmol)のTHF溶液(10mL)を加え、激しく攪拌しつつ12時間かけて室温まで戻した。溶媒を留去し、残った固体を水(50mL)で洗浄後THF/ヘキサン(10mL/40mL)から再結晶して4を黄色針状結晶として得られた。収量は500mg(収率96%)であった。
得られた錯体化合物4の単結晶構造解析結果を図1に示す。
実施例3の反応を下記の化学式に示す。
Example 3
Synthesis of [(NH 3 ) 2 Pt (m 2 —NH 2 ) 2 Pd (m 2 —NH 2 ) 2 Pt (NH 3 ) 2 ] [B (C 6 F 5 ) 4 ] 2 (4) (1 and 1 pot synthesis from 2)
1.4.3 THF (1.01 g, 0.52 mmol) in THF (10 mL) was cooled to −95 ° C., n-BuLi (2.64 M hexane solution, 417 μL, 1.10 mmol) was added, and then vigorously While stirring, the temperature was gradually returned to room temperature over 3 hours. The reaction solution was cooled again to −95 ° C., a THF solution (10 mL) of 2 · THF (485 mg, 0.262 mmol) was added, and the mixture was returned to room temperature over 12 hours with vigorous stirring. The solvent was distilled off, and the remaining solid was washed with water (50 mL) and recrystallized from THF / hexane (10 mL / 40 mL) to obtain 4 as yellow needle crystals. The yield was 500 mg (yield 96%).
The single crystal structure analysis result of the obtained complex compound 4 is shown in FIG.
The reaction of Example 3 is shown in the following chemical formula.

Figure 2011101862
Figure 2011101862

実施例4
[PtPd(NHNH][B(C(5)の合成
Pt錯体化合物1(279mg、0.150mmol)をTHF5mLに溶解させ、−95℃に冷却した。n−BuLi溶液159μL(2.64Mヘキサン溶液、0.420mmol)を滴下し、2.5時間攪拌した。この間、温度は室温まで上昇し、反応液は白濁した。再び−95℃に冷却し、Pd錯体化合物2(191mg、0.100mmol)のTHF溶液(2.5mL)を滴下した。溶液は黄色の溶液となった。攪拌しつつ約2時間かけて室温まで戻した。その後、溶液を一晩攪拌した。反応液の一部を採取し、H NMRを測定した結果、5核錯体化合物:[PtPd(NH(NH][B(Cと3核錯体化合物:[PtPd(NH(NH][B(Cのシグナルが観測された。両生成物の生成比は5核:3核=8:3であった。なお、このことから、得られた反応液には5異核錯体化合物と3異核錯体化合物との混合物が含まれているが、他の成分は存在せず且つ分子量が大きく異なるので液体クルマトグラフィーで容易に分離可能であり、5を単一生成物として取得するのは容易であると推定した。
Example 4
Synthesis of [Pt 3 Pd 2 (NH 2 ) 8 NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 (5) Pt complex compound 1 (279 mg, 0.150 mmol) was dissolved in 5 mL of THF and −95. Cooled to ° C. 159 μL of n-BuLi solution (2.64 M hexane solution, 0.420 mmol) was added dropwise and stirred for 2.5 hours. During this time, the temperature rose to room temperature, and the reaction solution became cloudy. The mixture was cooled again to −95 ° C., and a THF solution (2.5 mL) of Pd complex compound 2 (191 mg, 0.100 mmol) was added dropwise. The solution became a yellow solution. While stirring, the temperature was returned to room temperature over about 2 hours. The solution was then stirred overnight. A part of the reaction solution was collected, and 1 H NMR was measured. As a result, a 5-nuclear complex compound: [Pt 3 Pd 2 (NH 2 ) 8 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 A signal of trinuclear complex compound: [Pt 2 Pd (NH 2 ) 4 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 was observed. The production ratio of both products was 5 nuclei: 3 nuclei = 8: 3. From this, the obtained reaction solution contains a mixture of a pentaheteronuclear complex compound and a triheteronuclear complex compound, but there is no other component and the molecular weight is greatly different, so that the liquid carmato It was estimated that it was easy to obtain 5 as a single product, easily separable by chromatography.

生成物(5核:3核=8:3)のNMRおよびMS測定結果を次に示す。
[PtPd(NHNH][B(Cに対する H NMR(500MHz、CDCN):d2.69(br,12H,NH),−1.64(br,8H,m−NH),−2.04(br,8H,m−NH
[PtPd(NHNH][B(Cに対するFAB−MS(2−nitrophenyl Octyl ether中):m/z1673({[PtPd((NHNH][B(C]}
実施例4の反応を下記の化学式に示す。
The NMR and MS measurement results of the product (5 nuclei: 3 nuclei = 8: 3) are shown below.
1 H NMR (500 MHz, CD 3 CN) for [Pt 3 Pd 2 (NH 2 ) 8 NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 : d2.69 (br, 12H, NH 3 ), -1.64 (br, 8H, m 2 -NH 2), - 2.04 (br, 8H, m 2 -NH 2)
FAB-MS (in 2-nitrophenyl Octyl ether) for [Pt 3 Pd 2 (NH 2 ) 8 NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 : m / z 1673 ({[Pt 3 Pd 2 ( (NH 2 ) 8 NH 3 ) 4 ] [B (C 6 F 5 ) 4 ]} +
The reaction of Example 4 is shown in the following chemical formula.

Figure 2011101862
Figure 2011101862

(式中、[B]は[B(C]を示す)
また、実施例4で得られた生成物のMSスペクトル図を図2に、NMRスペクトル図を図3に示す。
図2において942m/zのピークは下記の金属錯体を示す。
(Wherein [B] represents [B (C 6 F 5 ) 4 ])
Further, FIG. 2 shows an MS spectrum of the product obtained in Example 4, and FIG. 3 shows an NMR spectrum of the product.
In FIG. 2, the peak at 942 m / z indicates the following metal complex.

Figure 2011101862
Figure 2011101862

図2において1307m/zのピークは下記の金属錯体を示す。   In FIG. 2, the peak at 1307 m / z indicates the following metal complex.

Figure 2011101862
Figure 2011101862

図2において1673m/zのピークは下記の金属錯体を示す。   In FIG. 2, the peak at 1673 m / z indicates the following metal complex.

Figure 2011101862
Figure 2011101862

本発明のイオン性の異種金属多核錯体によれば、溶媒として水を用いて触媒調製が可能となり、特に異種の金属原子がNHで架橋されているものは異種金属多核錯体を不活性雰囲気下で加熱により除去可能であり、高性能の触媒を得ることが可能となる。 According to the ionic dissimilar metal multinuclear complex of the present invention, it is possible to prepare a catalyst using water as a solvent. In particular, when a dissimilar metal atom is crosslinked with NH 2 , the dissimilar metal multinuclear complex is subjected to an inert atmosphere. And can be removed by heating, and a high-performance catalyst can be obtained.

Claims (6)

複数種類の異種の金属原子を有するイオン性の異種金属多核錯体。   An ionic dissimilar metal polynuclear complex having plural kinds of dissimilar metal atoms. 複数個の金属原子が2価の窒素含有基で架橋されている請求項1記載の異種金属多核錯体。   The heterogeneous metal multinuclear complex according to claim 1, wherein a plurality of metal atoms are crosslinked with a divalent nitrogen-containing group. 窒素含有基が、NH基、N(CH基、又はピリジン基である請求項2記載の異種金属多核錯体。 The heterometallic multinuclear complex according to claim 2 , wherein the nitrogen-containing group is an NH 2 group, an N (CH 3 ) 2 group, or a pyridine group. 金属原子数が2〜100である請求項1〜3のいずれか1項に記載の異種金属多核錯体。   The heterometallic multinuclear complex according to any one of claims 1 to 3, wherein the number of metal atoms is 2 to 100. 異種金属多核錯体の対イオンがB(C 、C(Cはハロゲン原子である。)又はOHで示される請求項1〜4のいずれか1項に記載の異種金属多核錯体。 Counterions dissimilar metals multinuclear complex is B (C 6 F 5) 4 -, C - (C is a halogen atom.) Or OH - dissimilar metals according to claim 1, represented by Multinuclear complex. 複数種類の金属原子を有するイオン性の異種金属多核錯体を含む水溶液に多孔質担体を含浸する触媒の製造方法。   A method for producing a catalyst comprising impregnating a porous carrier with an aqueous solution containing an ionic heterometallic multinuclear complex having a plurality of types of metal atoms.
JP2009258230A 2009-11-11 2009-11-11 Heterometallic polynuclear complex and method for producing catalyst using the same Expired - Fee Related JP5505773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258230A JP5505773B2 (en) 2009-11-11 2009-11-11 Heterometallic polynuclear complex and method for producing catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258230A JP5505773B2 (en) 2009-11-11 2009-11-11 Heterometallic polynuclear complex and method for producing catalyst using the same

Publications (3)

Publication Number Publication Date
JP2011101862A true JP2011101862A (en) 2011-05-26
JP2011101862A5 JP2011101862A5 (en) 2013-02-28
JP5505773B2 JP5505773B2 (en) 2014-05-28

Family

ID=44192459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258230A Expired - Fee Related JP5505773B2 (en) 2009-11-11 2009-11-11 Heterometallic polynuclear complex and method for producing catalyst using the same

Country Status (1)

Country Link
JP (1) JP5505773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036791A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR-METAL POLYNUCLEAR COMPLEX COMPRISING Pd AND Au
JP2016138056A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR METAL POLYNUCLEAR COMPLEX COMPRISING Ni AND Au

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301840A (en) * 1992-02-27 1993-11-16 Daicel Chem Ind Ltd Production of acetic acid or methyl acetate and catalyst
WO2008059630A1 (en) * 2006-11-17 2008-05-22 Osaka University Catalyst for decomposition of formic acid, method for decomposition of formic acid, process for production of hydrogen, apparatus for production or decomposition of formic acid, and method for storage or generation of hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301840A (en) * 1992-02-27 1993-11-16 Daicel Chem Ind Ltd Production of acetic acid or methyl acetate and catalyst
WO2008059630A1 (en) * 2006-11-17 2008-05-22 Osaka University Catalyst for decomposition of formic acid, method for decomposition of formic acid, process for production of hydrogen, apparatus for production or decomposition of formic acid, and method for storage or generation of hydrogen

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JPN6013046367; A. MARTIN et al.: 'Neutral and Cationic Group 4 Metal Compounds Containing Octamethyldibenzotetraazaannulene (Me8taa2-)' Organometallics , Vol. 17, Pages 382-397 (1998) *
JPN6013046368; C. NISHITANI et al.: 'Synthesis and structure of pentanuclear clusters bridged by tellurido ions' Inorganic Chemistry Communications , Vol. 1, Pages 325-327 (1998) *
JPN6013046369; J. R. BERENGUER et al.: 'Reactions of (sigma-Alkynyl)platinum Complexes with [Pd(eta3-C3H5)Cl]2. Synthesis of Bis(eta2-alkyne)(eta3' Orgnometallics , Vol. 15, Pages 4537-4546 (1996) *
JPN6013046370; R. M. MATOS et al: 'Transition metal complexes of thioalcanamines' Transition Metal Chemistry , Vol. 15, Pages 297-299 (1990) *
JPN6013046371; E. ALONSO et al: 'Synthesis of Homo- or Hetero-trinuclear Palladium(II)/Platinum(II) Compounds with Bridging Phosphido' Organometallics , Vol. 20, Pages 5571-5582 (2001) *
JPN6013046372; K. MATSUMOTO et al.: 'The syntheses, 31P{1H} NMR spectra and cyclic voltammetry of trinuclear [Pd2M(mu3-Se)2(dppe)3]2+ {M' Inorganica Chimica Acta , Vol. 321, Pages 167-170 (2001) *
JPN6013046373; R. USON et al.: 'Tri- and Tetra-nuclear Palladium(II) and/or Platinum(II) Compounds with Double Thiolato Bridges. Cr' Journal of Chemical Society, Dalton Transactions , No. 4, Pages 401-405 (1994) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036791A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR-METAL POLYNUCLEAR COMPLEX COMPRISING Pd AND Au
JP2016138056A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR METAL POLYNUCLEAR COMPLEX COMPRISING Ni AND Au

Also Published As

Publication number Publication date
JP5505773B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
JP4386045B2 (en) Method for producing supported catalyst
EP1988999B1 (en) Multiple-metal complex-containing compound and metal complex, and manufacture methods therefor, and exhaust gas purification catalyst manufacture method using the same
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
Dijkstra et al. Design of novel hexametallic cartwheel molecules from persubstituted benzene compounds
JP2008013533A (en) Amidine-carboxylic acid complex and multiple-complex-containing compound
CN111450894B (en) Ce-based organometallic complex catalytic material and preparation and application thereof
JP2008208110A (en) Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5505773B2 (en) Heterometallic polynuclear complex and method for producing catalyst using the same
JP5287055B2 (en) Heteronuclear complex and method for producing the same
JP2009073758A (en) Amidine-carboxylic acid complex
JP5854427B2 (en) Hydrogen storage material
JP5760677B2 (en) Novel multinuclear complex and method for producing supported catalyst using the same
JP5774180B1 (en) Composite catalyst for methanol production, method for producing the same, and method for producing methanol
CN113134391A (en) Metal organic complex catalytic material with vanadium-tungsten bimetallic coordination
JP6654555B2 (en) Method for producing protected Pd dinuclear complex
JP5251627B2 (en) Heteronuclear complex and method for producing the same
JP6154409B2 (en) Method for producing heterometallic multinuclear complex containing Ni and Au
JP6306468B2 (en) Process for producing dissimilar metal polynuclear complex containing Pd and Au
JP2006342249A (en) New carboxylic acid metal complex and gas-occluding agent composed of the same
JP6799339B2 (en) Synthesis of metal salt compound aggregate of phenylazomethine type dendrimer and production method of sub-nanoparticles
RU2719176C1 (en) Synthetic gas production method
JP5521176B2 (en) Hydrogen storage material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R151 Written notification of patent or utility model registration

Ref document number: 5505773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees