JP2006327007A - 微細加工用型 - Google Patents

微細加工用型 Download PDF

Info

Publication number
JP2006327007A
JP2006327007A JP2005153403A JP2005153403A JP2006327007A JP 2006327007 A JP2006327007 A JP 2006327007A JP 2005153403 A JP2005153403 A JP 2005153403A JP 2005153403 A JP2005153403 A JP 2005153403A JP 2006327007 A JP2006327007 A JP 2006327007A
Authority
JP
Japan
Prior art keywords
mold
pattern
workpiece
less
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153403A
Other languages
English (en)
Inventor
Takahisa Kusuura
崇央 楠浦
Mitsuru Fujii
充 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scivax Corp
Original Assignee
Scivax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax Corp filed Critical Scivax Corp
Priority to JP2005153403A priority Critical patent/JP2006327007A/ja
Publication of JP2006327007A publication Critical patent/JP2006327007A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 耐久性が高く、平面度の値が小さく、離型性の良い型およびその作製方法を提供すること。
【解決手段】 加工対象物200の被成型面に押圧してパターンを転写するための型100であって、第1の材料によって形成され、所定の平面度以下の平面11を有する型本体部1と、第1の材料より耐久性の高い第2の材料によって平面11に形成され、加工対象物にパターンを転写するためのパターン部2と、を具備する。
【選択図】 図1

Description

この発明は、微細な形状を形成するための微細加工用型に関するものである。
LSI(大規模集積回路)に代表される微細回路パターンを半導体基板(以下、単に基板と称する)上に形成するには、フォトリソグラフィーと呼ばれる技術が一般に用いられている。しかしながら、この方法では、形成するパターンの微細化にともない、装置の大型化やコストの増大を招いていた。
また、微細な成型物を得るために、加熱されて溶融した樹脂を、この樹脂のガラス転移温度以下に加熱された金型に高速・高圧で流し込み、圧力をコントロールしながら凝固させて成型する射出成型も用いられている。しかしながら、この方法では、供給された樹脂が金型に熱を奪われながら凝固するため、金型の微細なパターンの中に樹脂が侵入し難く、微細な形状を形成することは困難であった。また、金型を加熱し、微細なパターン内に樹脂が侵入するのを待った後、金型を冷却し成型することも考えられる。しかしながら、射出成型では、金型に樹脂を高圧で流し込む必要があるため、高圧に耐えられる大きな金型が必要であり、金型の熱容量が大きくなる結果、加熱・冷却に時間がかかるという問題があった。
近年、上記問題を解決するものとして、超微細なパターンを基板上に形成するナノインプリンティングプロセス技術が注目されている(例えば、特許文献1参照。)。このプロセスは、簡単に説明すると以下の手順で行われる。
まず、形成したいパターンが表面に作りこまれた型を準備し、ガラス転移温度以下の温度に保持された樹脂に、ガラス転移温度以上に加熱された型を押圧する。すると、樹脂表面が溶融、流動し、型のパターンが樹脂に転写される。次に、型を冷却して樹脂を凝固させ、型を離型する。これにより、樹脂にパターンが形成される。
この方法では、高価な電子ビーム光源や光学系を必要とせず、加熱用ヒータとプレス装置を基本とした簡易な構造を用いることができる。
また、この方法では、樹脂が型に熱を奪われて凝固するという問題もなく、樹脂を型の微細なパターン内に侵入させることができる。また、射出成型のような高圧に耐える大型の金型は不要であるため、高速に昇降温が可能であり、スループットの問題は生じない。
実際、ナノインプリンティングプロセス技術を用いることで、回折格子、フォトニック結晶、導波路、等の光デバイスや、マクロチャネル、リアクター等の流体デバイスのような、各種のマイクロチップ、マイクロデバイスの製作も可能な状況が実現しつつある。
このようなナノインプリンティングプロセスに用いられる型としては、電子ビームやフォトリソグラフィー技術を用いてSi基板の表面にパターンを形成したものがある(例えば特許文献2)。また、このように形成された型をマスターとし、その表面に電気鋳造(エレクトロフォーミング)法を用いて金属メッキを施し、マスターからこの金属メッキ層を剥離して形成したものもある。
米国特許第5772905号明細書(第4段落第46−47行) 国際公開第2004/062886号パンフレット(第12頁第19−23行)
しかしながら、Si材料を用いた型は、靭性等の耐久性が低いためナノインプリンティングプロセス中に壊れやすく、大量生産用の型には向かないという問題がある。
また、金属材料を用いた型は、Si材料に比較して耐久性は高いがパターン面の平面度の値は大きく、加工するパターンの深さが小さくなる程、パターンを正確に転写するのが難しくなるという問題がある。
更に、型の熱膨張係数と加工対象物の熱膨張係数に大きな差があると、型を冷却した際に、型と加工対象物との収縮率(膨張率)の差によってパターンと加工対象物が噛み合うため、離型をすることができなかったり、無理に剥がすと形成されたパターンが崩れたりするなどの問題があった。
そこで本発明は、耐久性が高く、平面度の値が小さく、離型性の良い型およびその作製方法を提供することを目的とする。
上記目的を達成するために、本発明の型は、加工対象物の被成型面に押圧してパターンを転写するための型であって、第1の材料によって形成され、所定の平面度以下の平面を有する型本体部と、前記第1の材料より耐久性の高い第2の材料によって前記平面に形成され、前記加工対象物に前記パターンを転写するためのパターン部と、を具備することを特徴とする。
また、本発明の別の型は、加工対象物の被成型面に押圧してパターンを転写するための型であって、第1の材料によって形成され、所定の平面度以下の平面を有する型本体部と、前記第1の材料より耐久性の高い第2の材料によって形成され、前記加工対象物に前記パターンを転写するためのパターン部と、前記第1の材料との密着性および前記第2の材料との密着性が、前記第1の材料と前記第2の材料との間の密着性よりも高い第3の材料によって前記平面と前記パターン部との間に形成される中間層と、を具備することを特徴とする。
この場合、前記型本体部の前記平面とは反対側の面に、前記パターン部と同一材料によって形成された反り防止膜を具備する方が好ましい。また、型本体部とパターン部との間に中間層を有する場合には、前記型本体部の前記平面とは反対側の面に、前記中間層と同一材料によって形成された第1の反り防止膜と、前記第1の反り防止膜上に、前記パターン部と同一材料によって形成された第2の反り防止膜と、を具備する方が好ましい。また、前記平面は、平面度が100nm以下に形成される方が好ましい。また、前記第1の材料は、前記加工対象物を構成する材料のうち前記被成型面の熱膨張に支配的な材料の熱膨張係数との差が100K−1以下である方が好ましい。また、前記第1の材料は、前記加工対象物を構成する材料のうち前記被成型面の熱膨張に支配的な材料と同一の材料である方が好ましい。また、前記第1の材料は、Si,GaAs,InP,SiC,セラミックス,金属,金属間化合物,金属酸化物,金属窒化物,ガラス状カーボンのいずれかである方が好ましい。また、前記第2の材料は、金属である方が好ましい。
請求項1,5,8,9記載の発明によれば、型を型本体部とパターン部とに分け、型の平面度を型本体部で調整し、型の耐久性をパターン部で調整するので、正確なパターンを転写することができる高寿命な型を提供することができる。
請求項2記載の発明によれば、型本体部とパターン部との間に、中間層を設けるので、型本体部の材料とパターン部の材料との密着性が低い場合であっても、型を形成することができる。
請求項3,4記載の発明によれば、型本体部のパターン部が形成されている面とは反対側の面に、反り防止膜又は第1の反り防止膜及び第2の反り防止膜を設けるので、型本体部とパターン部の熱膨張率の差による応力によって型が反ってしまうのを防止することができる。
請求項6,7記載の発明によれば、加工対象物を構成する材料のうち被成型面の熱膨張に支配的な材料の熱膨張係数との差が100K−1以下の材料又は加工対象物を構成する材料のうち被成型面の熱膨張に支配的な材料と同一の材料を型本体部に用いるので、型を冷却した際の型と加工対象物の収縮率(膨張率)の差を小さくすることができ、離型性を向上することができる。
以下に、本発明の実施の形態を図面に基づいて詳細に説明する。
本発明の型100は、図1に示すように、加工対象物200(図9参照)の被成型面に押圧して所定のパターンを転写するための型100であって、第1の材料によって形成される型本体部1と、第1の材料より耐久性(靭性や耐摩耗性等)の高い第2の材料によって形成され、加工対象物200にパターンを転写するためのパターン部2と、で主に構成される。
ここで、型100のパターンが転写される加工対象物200としては種々のものがあり、例えばシリコンやガラス等からなる基板本体201の表面に、「配線パターンを形成するためのアルミニウム、金、銀などの金属薄膜」や、「樹脂、フォトレジスト等の被覆層」等の薄膜202が形成されたものがある{図9(a)参照}。また、「ポリカーボネート、ポリイミド等の樹脂」、「アルミニウム等の金属」、「ガラス、石英ガラス、シリコン、ガリウム砒素、サファイア、酸化マグネシウム等の無機材料」などの成形素材が、そのまま基板形状をなしているものもある{図9(b)参照}。更に、加工対象物200は、基板以外の形状、例えばフィルム状に形成されるものもある(図示せず)。
型本体部1は、所定の平面度以下の平面11を有する略平板状に形成される。この平面11の平面度は、加工対象物200に型100を押圧した際に、型100のパターンを転写できる許容値以下に形成される。例えば、加工対象物200が、基板とこの基板上に形成された薄膜とで構成される場合には、平面度を、少なくとも薄膜の厚さ以下に形成しなければならない。具体的には、平面度は1μm以下である方が好ましく、更に100nm以下である方が好ましく、更に10nm以下である方が好ましく、更に1nm以下である方が好ましい。型本体部1の平面11を平坦にする方法としては、化学的機械研磨(CMP:Chemical Mechanical Polishing)等の平坦化技術を好適に用いることができる。
型本体部1の材料(第1の材料)としては、平面11を形成できると共に、パターン転写時の押圧力に耐えられる強度を有するものが良い。例えば、「Si等の元素半導体」、「GaAs,InP,SiC等の化合物半導体」、「セラミックス」、「金属」、「金属間化合物」、「金属酸化物」、「金属窒化物」、「ガラス状カーボン等の炭素素材」などから適宜選択することができる。
また、型100の熱膨張係数と加工対象物200の熱膨張係数に大きな差があると、加熱された型100を冷却した際に、型100と加工対象物200との収縮率(膨張率)の差によって、型100のパターンと加工対象物200が噛み合い、離型をすることができなかったり、無理に剥がすと形成されたパターンが崩れたりするなどの問題がある。したがって、型本体部1の材料(第1の材料)として更に好ましくは、加工対象物200を構成する材料のうち被成型面の熱膨張に支配的な材料の熱膨張係数と近い材料を用いる方が好ましい。具体的には、熱膨張係数の差が100K−1以下である材料を用いる方が好ましく、更に好ましくは、50K−1以下である材料を用いる方が良く、更に好ましくは、10K−1以下である材料を用いる方が良く、更に好ましくは、5K−1以下である材料を用いる方が良く、更に好ましくは、1K−1以下である材料を用いる方が良い。また、加工対象物200を構成する材料のうち被成型面の熱膨張に支配的な材料と同一の材料を用いるのが最も好ましい。例えば、加工対象物200がSi基板とその表面に形成された薄膜から成り、加工対象物の温度を変化させた際に、薄膜の成型面の熱膨張がSi基板の熱膨張に支配される場合には、型本体部1の材料(第1の材料)をSiによって形成すれば良い。型本体部1をこのように構成することにより、型100と加工対象物200の膨張率(収縮率)の差を小さくすることができるので、型100を冷却した際に、型100のパターンと加工対象物200とが噛み合うのを極力防止することができる。したがって、離型性を向上することができる。
パターン部2は、加工対象物に転写するパターンとしての凹凸からなるもので、第1の材料より耐久性(靭性、耐摩耗性、疲労強度、耐熱性等)の高い第2の材料によって型本体部1の平面11に形成される。ここで、パターン部2の凹凸の幅は、加工される製品の種類によって異なり、100μm以下、10μm以下、1μm以下、100nm以下、10nm以下等種々の大きさに形成される。また、第2の材料としては、例えば、「Si等の元素半導体」、「GaAs,InP,SiC等の化合物半導体」、「セラミックス」、「金属」、「金属間化合物」、「金属酸化物」、「金属窒化物」、「ガラス状カーボン等の炭素素材」などを選択することができる。
このパターン部2の形成方法としては、どのようなものでも良いが、例えばフォトリソグラフィープロセスやリフトオフプロセスを用いればよい。
また、型本体部1とパターン部2との間の密着性が低い場合には、図2に示すように、型本体部1とパターン部2との間に、型本体部1の材料(第1の材料)との密着性およびパターン部2の材料(第2の材料)との密着性が、型本体部1の材料(第1の材料)とパターン部2の材料(第2の材料)との間の密着性よりも高い第3の材料からなる中間層3を形成することもできる。例えば、シリコン(Si)とタングステン(W)は密着性が低いため、シリコン基板(型本体部1)上に直接タングステン(W)からなるパターン部2を形成することは難しい。しかし、シリコン(Si)及びタングステン(W)の両方に対して密着性の高いチタン(Ti)を第3の材料として中間層3を形成すれば、タングステン(W)からなるパターン部2を形成することができる。また、第3の材料として、パターン部2の材料(第2の材料)が拡散し難いものを用いれば、パターン部2の材料(第2の材料)が型本体部1の材料(第1の材料)に拡散するのを抑制し、パターン部が劣化するのを防止することもできる。
また、型本体部1の一方の面(平面11)だけにパターン部2を形成すると、型100の温度が変化した際に、型本体部1とパターン部2の熱膨張率の差による応力によって、型100が反って平面度が大きくなり、パターンを正確に転写することができなくなるという問題がある。したがって、図3に示すように、型本体部1の平面11と反対側の面12にパターン部2と同一材料によって反り防止膜4を形成する方が好ましい。また、型本体部1とパターン部2との間に中間層3を形成する場合には、図4に示すように、型本体部1の平面11とは反対側の面12に、中間層3と同一材料によって形成された第1の反り防止膜41と、第1の反り防止膜41上(第1の反り防止膜41の型本体部1とは反対側の面)にパターン部2と同一材料によって形成された第2の反り防止膜42と、を形成する方が好ましい。これにより、型100の温度が変化しても、熱膨張率の差によって生じる応力を型本体部1の両面でほぼ等しくすることができるので、型100が反るのを防止することができる。
次に、本発明の型100の作製方法について説明する。
図5は、フォトリソグラフィープロセスを用いた型100の作製方法を示す図である。ここでは、型本体部1の材料(第1の材料)が単結晶シリコン、パターン部2の材料(第2の材料)がNi−Cr合金である型100の作製方法について具体的に説明する。
まず、平面度が型100のパターンを転写できる許容値以下、例えば100nm以下の平面11を有する略平板状の単結晶シリコン基板(型本体部1)を用意し{図5(a)}、この平面11上に単結晶シリコンより耐久性の高いNi−Cr合金からなるパターン用膜21を形成する{図5(b)}。このパターン用膜21は、例えばPVD法(Physical Vapor Deposition)やCVD法(Chemical Vapor Deposition)等を用いて形成すればよい。
次に、パターン用膜21上にコータ等を用いて感光性のあるポジ型のレジスト膜5を形成し{図5(c)}、ステッパや電子ビーム(EB)によって形成したいパターンをレジスト膜上に露光する{図5(d)}。
次に、レジスト膜5を現像して感光した部分51を除去し{図5(e)}、続いてパターン用膜21の露出している部分22をエッチングにより除去する{図5(f)}。
最後に、残っているレジスト膜5を除去してパターン部2を形成する{図5(g)}。
これにより、所望のパターンが形成された型100を作製することができる。
また、図6は、リフトオフプロセスを用いた型100の作製方法を示す図である。
まず、平面度が型100のパターンを転写できる許容値以下、例えば平面度が100nm以下の平面11を有する略平板状の単結晶シリコン基板(型本体部1)を用意し{図6(a)}、この平面11上にコータ等を用いて感光性のあるポジ型のレジスト膜5を形成する{図6(b)}。
次に、ステッパや電子ビーム(EB)によって形成したいパターンをレジスト膜5上に露光し{図6(c)}、レジスト膜5を現像して感光した部分52を除去する{図6(d)}。
この基板(型本体部1)上に、単結晶シリコンより耐久性の高いNi−Cr合金からなるパターン用膜21を形成する{図6(e)}。このパターン用膜21は、例えばPVD法(Physical Vapor Deposition)やCVD法(Chemical Vapor Deposition)、めっき法等を用いて形成すればよい。
最後に、レジスト膜5をエッチングして除去し、パターン部2を形成する{図6(f)}。
これにより、所望のパターンが形成された型100を作製することができる。
図7は、中間層3を有する型100の作製方法を示す図である。型本体部1の材料(第1の材料)には単結晶シリコン、パターン部2の材料(第2の材料)にはタングステン(W)、中間層3の材料(第3の材料)にはチタン(Ti)を用いた場合について説明する。
まず、平面度が型100のパターンを転写できる許容値以下、例えば平面度が100nm以下の平面11を有する略平板状の単結晶シリコン基板(型本体部1)を用意し{図7(a)}、この平面11上にチタン(Ti)からなる中間層3を形成し{図7(b)}、続いてタングステン(W)からなるパターン用膜21を形成する{図7(c)}。パターン用膜21及び中間層3は、例えばPVD法(Physical Vapor Deposition)やCVD法(Chemical Vapor Deposition)等を用いて形成すればよい。
次に、パターン用膜21上にコータ等を用いて感光性のあるポジ型のレジスト膜5を形成し{図7(d)}、ステッパや電子ビーム(EB)によって形成したいパターンをレジスト膜5上に露光する{図7(e)}。
次に、レジスト膜5を現像して感光した部分53を除去し{図7(f)}、続いてパターン用膜21の露出している部分22をエッチングにより除去する{図7(g)}。
最後に、残っているレジスト膜5を除去してパターン部2を形成する{図7(h)}。
これにより、中間層3を有する型100を作製することができる。
なお、パターン部2の形成方法はこれに限られるものではなく、例えば、単結晶シリコン基板(型本体部1)の平面11上に中間膜3を形成し、その後リフトオフプロセスを用いてパターン部2を形成することも勿論可能である。
図8は、反り防止膜4を有する型100の作製方法を示す図である。
まず、平面度が型100のパターンを転写できる許容値以下、例えば平面度が100nm以下の平面11を有する略平板状の単結晶シリコン基板(型本体部1)を用意し{図8(a)}、この基板の平面11に単結晶シリコンより耐久性の高いNi−Cr合金からなるパターン用膜21を形成すると共に、平面11とは反対側の面12にパターン用膜21と同一の材料であるNi−Cr合金からなる反り防止膜4を形成する{図8(b)}。このパターン用膜21及び反り防止膜4は、例えばPVD法(Physical Vapor Deposition)やCVD法(Chemical Vapor Deposition)等を用いて形成すればよい。
次に、パターン用膜21上にコータ等を用いて感光性のあるポジ型のレジスト膜5を形成し{図8(c)}、ステッパや電子ビーム(EB)によって形成したいパターンをレジスト膜5上に露光する{図8(d)}。
次に、レジスト膜5を現像して感光した部分54を除去し{図8(e)}、続いてパターン用膜21の露出している部分22をエッチングにより除去する{図8(f)}。
最後に、残っているレジスト膜5を除去してパターン部2を形成する{図8(g)}。
これにより、反り防止膜4を有する型100を作製することができる。
なお、上記説明では、レジストとしてポジ型のものを用いて説明したが、これに限られるものではなく、ネガ型のレジストを用いることも勿論可能である。
また、型100の作製方法は、実施例1〜4に記載のものに限定されるものではなく、種々の方法を用いることができる。
本発明の型を示す概略断面図である。 本発明の中間層を有する型を示す概略断面図である。 本発明の反り防止膜を有する型を示す概略断面図である。 本発明の中間層、第1の反り防止膜及び第2の反り防止膜を有する型を示す概略断面図である。 本発明の型作製方法を示す説明図である。 本発明の別の型作製方法を示す説明図である。 本発明の中間膜を有する型の型作製方法を示す説明図である。 本発明の反り防止膜を有する型の型作製方法を示す説明図である。 加工対象物を示す概略断面図である。
符号の説明
1 型本体部
2 パターン部
3 中間層
4 反り防止膜
5 レジスト膜
11 平面
12 面
21 パターン用膜
41 第1の反り防止膜
42 第2の反り防止膜
100 型
200 加工対象物

Claims (9)

  1. 加工対象物の被成型面に押圧してパターンを転写するための型であって、
    第1の材料によって形成され、所定の平面度以下の平面を有する型本体部と、
    前記第1の材料より耐久性の高い第2の材料によって前記平面に形成され、前記加工対象物に前記パターンを転写するためのパターン部と、
    を具備することを特徴とする型。
  2. 加工対象物の被成型面に押圧してパターンを転写するための型であって、
    第1の材料によって形成され、所定の平面度以下の平面を有する型本体部と、
    前記第1の材料より耐久性の高い第2の材料によって形成され、前記加工対象物に前記パターンを転写するためのパターン部と、
    前記第1の材料との密着性および前記第2の材料との密着性が、前記第1の材料と前記第2の材料との間の密着性よりも高い第3の材料によって前記平面と前記パターン部との間に形成される中間層と、
    を具備することを特徴とする型。
  3. 前記型本体部の前記平面とは反対側の面に、前記パターン部と同一材料によって形成された反り防止膜を具備することを特徴とする請求項1又は2記載の型。
  4. 前記型本体部の前記平面とは反対側の面に、前記中間層と同一材料によって形成された第1の反り防止膜と、
    前記第1の反り防止膜上に、前記パターン部と同一材料によって形成された第2の反り防止膜と、
    を具備することを特徴とする請求項2記載の型。
  5. 前記平面は、平面度が100nm以下に形成されることを特徴とする請求項1ないし4のいずれかに記載の型。
  6. 前記第1の材料は、前記加工対象物を構成する材料のうち前記被成型面の熱膨張に支配的な材料の熱膨張係数との差が100K−1以下であることを特徴とする請求項1ないし5のいずれかに記載の型。
  7. 前記第1の材料は、前記加工対象物を構成する材料のうち前記被成型面の熱膨張に支配的な材料と同一の材料であることを特徴とする請求項1ないし5のいずれかに記載の型。
  8. 前記第1の材料は、Si,GaAs,InP,SiC,セラミックス,金属,金属間化合物,金属酸化物,金属窒化物,ガラス状カーボンのいずれかであることを特徴とする請求項1ないし5のいずれかに記載の型。
  9. 前記第2の材料は、金属であることを特徴とする請求項1ないし8のいずれかに記載の型。
JP2005153403A 2005-05-26 2005-05-26 微細加工用型 Pending JP2006327007A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153403A JP2006327007A (ja) 2005-05-26 2005-05-26 微細加工用型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153403A JP2006327007A (ja) 2005-05-26 2005-05-26 微細加工用型

Publications (1)

Publication Number Publication Date
JP2006327007A true JP2006327007A (ja) 2006-12-07

Family

ID=37549212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153403A Pending JP2006327007A (ja) 2005-05-26 2005-05-26 微細加工用型

Country Status (1)

Country Link
JP (1) JP2006327007A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221674A (ja) * 2007-03-14 2008-09-25 Canon Inc モールド、モールドの製造方法、加工装置及び加工方法
JP2009218554A (ja) * 2008-02-15 2009-09-24 Toppan Printing Co Ltd インプリント法およびインプリントモールド、インプリント装置
JP2013091307A (ja) * 2011-10-27 2013-05-16 Sumitomo Bakelite Co Ltd 成形体の製造方法
WO2013099419A1 (ja) * 2011-12-28 2013-07-04 Hoya株式会社 インプリント用モールドブランクおよびインプリント用モールド
JP2014113821A (ja) * 2012-11-19 2014-06-26 Taiyo Kagaku Kogyo Kk 構造体及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221674A (ja) * 2007-03-14 2008-09-25 Canon Inc モールド、モールドの製造方法、加工装置及び加工方法
JP2009218554A (ja) * 2008-02-15 2009-09-24 Toppan Printing Co Ltd インプリント法およびインプリントモールド、インプリント装置
JP2013091307A (ja) * 2011-10-27 2013-05-16 Sumitomo Bakelite Co Ltd 成形体の製造方法
WO2013099419A1 (ja) * 2011-12-28 2013-07-04 Hoya株式会社 インプリント用モールドブランクおよびインプリント用モールド
JP2013136181A (ja) * 2011-12-28 2013-07-11 Hoya Corp インプリント用モールドブランクおよびインプリント用モールド
JP2014113821A (ja) * 2012-11-19 2014-06-26 Taiyo Kagaku Kogyo Kk 構造体及びその製造方法

Similar Documents

Publication Publication Date Title
JP4546315B2 (ja) 微細加工用型の製造方法
JP5188192B2 (ja) モールド、モールドの製造方法、インプリント装置及びインプリント方法、インプリント方法を用いた構造体の製造方法
JP4792096B2 (ja) テンプレートパターンの設計方法、テンプレートの製造方法及び半導体装置の製造方法。
US20100072665A1 (en) Thermal imprinting device and thermal imprinting method
JP4835277B2 (ja) パターン形成体の製造方法およびインプリント転写装置
JP4641321B2 (ja) パターン転写用モールド
JP2006327007A (ja) 微細加工用型
JP2006148055A (ja) 熱間エンボシングリソグラフィーを行う方法
WO2012083578A1 (zh) 整片晶圆纳米压印的装置和方法.
CN101989614A (zh) 半导体基板及其相关制造方法
JP5195074B2 (ja) 成形型
JP2005231247A (ja) モールド、モールドを用いた加工装置及びモールドを用いた加工方法
KR100375335B1 (ko) 다이아몬드막의 제조방법 및 장치
JP4650113B2 (ja) 積層構造体、ドナー基板、および積層構造体の製造方法
JP2007292829A (ja) 近接場露光用マスク、近接場露光用マスクの作製方法、近接場露光装置及びこのマスクを用いた近接場露光方法
JP5214232B2 (ja) プラスチック製微細構造体製造方法
JP5073880B1 (ja) 転写金型の製造方法及びその転写金型
Niimura et al. High-precision nanofabrication technology for metal nanoparticle ensembles using nanotemplate-guided thermal dewetting
JP2010210839A (ja) 偏光分離光学素子の製造方法と偏光分離光学素子
JP2006137019A (ja) 形状転写方法
JP2007112648A (ja) SiCモールド
JP6799007B2 (ja) シード層上に成長層を施す方法
JP5073868B1 (ja) 転写金型の製造方法及びその転写金型
KR102018215B1 (ko) 미세 패턴 및 패턴의 형상 제어방법.
JP5653574B2 (ja) 金属パターンを有するナノプリントされたデバイスおよび金属パターンをナノプリントする方法