JP2006324254A - Manufacturing method of gas discharge display device - Google Patents
Manufacturing method of gas discharge display device Download PDFInfo
- Publication number
- JP2006324254A JP2006324254A JP2006167679A JP2006167679A JP2006324254A JP 2006324254 A JP2006324254 A JP 2006324254A JP 2006167679 A JP2006167679 A JP 2006167679A JP 2006167679 A JP2006167679 A JP 2006167679A JP 2006324254 A JP2006324254 A JP 2006324254A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric layer
- film
- layer
- substrate
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
本発明は、PDP、PALCなどの放電のための電極群及びそれを覆う誘電体層を有したガス放電表示デバイスの製造方法に関する。 The present invention relates to an electrode group for discharge such as PDP and PALC, and a method for manufacturing a gas discharge display device having a dielectric layer covering the electrode group.
PDPは、カラー表示の実用化を機に大画面のテレビジョン映像やコンピュータ出力の表示デバイスとして普及しつつある。市場ではより大画面でより高品位のデバイスが求められている。 PDP is becoming widespread as a display device for large-screen television images and computer output with the practical use of color display. The market demands larger screens and higher quality devices.
カラー表示デバイスとして3電極面放電構造のAC型PDPが商品化されている。これは、マトリクス表示の行(ライン)毎に点灯維持のための一対の主電極(第1及び第2の電極)が配置され、列毎にアドレス電極(第3の電極)が配置されたものである。AC型であるので、表示に際しては主電極を覆う誘電体層のメモリ機能が利用される。すなわち、線走査形式で表示内容に応じた帯電状態を形成するアドレッシングを行い、その後に全ての主電極対に対して一斉に交番極性の点灯維持電圧Vsを印加する。これにより、壁電荷の存在するセルのみにおいて実効電圧(セル電圧ともいう)Veffが放電開始電圧Vfを越えて基板面に沿った面放電が生じる。点灯維持電圧Vsの印加周期を短くすれば、見かけの上で連続した点灯状態が得られる。 An AC type PDP having a three-electrode surface discharge structure has been commercialized as a color display device. This is one in which a pair of main electrodes (first and second electrodes) for maintaining lighting is arranged for each row (line) of the matrix display, and an address electrode (third electrode) is arranged for each column. It is. Since it is an AC type, a memory function of a dielectric layer covering the main electrode is used for display. That is, addressing is performed to form a charged state according to the display content in a line scanning format, and thereafter, the lighting sustaining voltage Vs having an alternating polarity is applied to all the main electrode pairs simultaneously. As a result, the effective voltage (also referred to as the cell voltage) Veff exceeds the discharge start voltage Vf only in the cells having wall charges, and surface discharge along the substrate surface occurs. If the application period of the lighting sustaining voltage Vs is shortened, an apparently continuous lighting state can be obtained.
面放電形式のPDPでは、カラー表示のための蛍光体層を主電極対を配置した基板と対向する他方の基板上に設けることによって、放電時のイオン衝撃による蛍光体層の劣化を軽減し、長寿命化を図ることができる。蛍光体層を背面側の基板上に配置したものは“反射型”と呼称され、逆に前面側の基板上に配置したものは“透過型”と呼称されている。発光効率に優れるのは、蛍光体層における前面側表面が発光する反射型である。 In the surface discharge type PDP, the phosphor layer for color display is provided on the other substrate facing the substrate on which the main electrode pair is disposed, thereby reducing deterioration of the phosphor layer due to ion bombardment during discharge, Long life can be achieved. Those in which the phosphor layer is disposed on the back side substrate are referred to as “reflection type”, and conversely, those in which the phosphor layer is disposed on the front side substrate are referred to as “transmission type”. What is excellent in luminous efficiency is a reflective type in which the front surface of the phosphor layer emits light.
従来において、AC駆動のための誘電体層は、低融点ガラスペーストをベタ膜状に印刷して焼成する厚膜手法によって形成されていた。なお、主電極間の静電容量を低減するため、低融点ガラスよりも比誘電率の小さい材料からなる誘電体層の形成が検討されており、その例として特開平9−35641号公報にポリイミドをスクリーン印刷し、又はスピナーで塗布する旨の記載がある。
従来の厚膜手法による誘電体層では、焼成時に気泡が発生し、画面の全体にわたって膜質を均一にするのが難しいという問題があった。気泡は主電極とアドレス電極との間の耐圧を低下させる。加えて、気泡によって透明性が低下するので、誘電体層が放電空間の前面側に位置する反射型のPDPでは、誘電体層によって輝度が損なわれていた。 In the dielectric layer by the conventional thick film method, there is a problem that bubbles are generated during firing and it is difficult to make the film quality uniform over the entire screen. Bubbles reduce the breakdown voltage between the main electrode and the address electrode. In addition, since transparency is lowered by bubbles, in the reflective PDP in which the dielectric layer is located on the front side of the discharge space, the luminance is impaired by the dielectric layer.
また、低融点ガラスの比誘電率が大きいことから電極間の静電容量の充電に多くの電力を費やすという問題、及び焼成時に基板に熱歪みが生じるという問題もあった。電極間の静電容量については誘電体層を薄くすることが考えられるが、薄くすると塗布むらが生じ易くなり、放電特性のばらつきが顕著になるとともに電極群の一部が露出するおそれが高まる。 In addition, since the relative dielectric constant of the low melting point glass is large, there is a problem that a large amount of electric power is consumed for charging the capacitance between the electrodes, and that a thermal distortion occurs in the substrate during firing. Regarding the capacitance between the electrodes, it is conceivable to make the dielectric layer thin. However, if the thickness is made thin, uneven coating tends to occur, the variation in discharge characteristics becomes remarkable, and the possibility that a part of the electrode group is exposed increases.
さらに、従来のPDPの要部断面構造を模式的に示す図8のように、スクリーン印刷やスピンコートによる誘電体層17pの上面は、下地面の起伏に係わらずほぼ平坦になる。このため、対をなす主電極Xp,Ypのそれぞれが透明導電膜41pとその一部に重なる金属膜42pとからなる反射型においては、誘電体層17pのうちの金属膜42pを覆う部分が透明導電膜41pを覆う部分より薄くなるので、放電ギャップから遠いにも係わらず金属膜42pの上方で強い放電が起こる。この放電は、それによる発光が金属膜42pで遮光されるので、表示に寄与しない無駄な電力消費となる。 Further, as shown in FIG. 8 schematically showing a cross-sectional structure of a main part of a conventional PDP, the upper surface of the dielectric layer 17p by screen printing or spin coating becomes substantially flat regardless of the undulation of the base surface. For this reason, in the reflective type in which each of the paired main electrodes Xp and Yp is composed of the transparent conductive film 41p and the metal film 42p overlapping therewith, the portion of the dielectric layer 17p that covers the metal film 42p is transparent. Since it is thinner than the portion covering the conductive film 41p, a strong discharge occurs above the metal film 42p despite being far from the discharge gap. This discharge results in useless power consumption that does not contribute to display because light emitted by the discharge is shielded by the metal film 42p.
これらの問題を解決するため、薄膜手法によって誘電体層を形成する試みがなされたが、蒸着法及び常圧CVD法ではクラックを生じさせずに十分な厚さの成膜を行うことができなかった。 In order to solve these problems, attempts have been made to form a dielectric layer by a thin film technique. However, the vapor deposition method and the atmospheric pressure CVD method cannot form a film having a sufficient thickness without causing cracks. It was.
本発明は、比誘電率の小さい均質な誘電体層を有したガス放電表示デバイスの製造を可能にすることを目的としている。 An object of the present invention is to make it possible to manufacture a gas discharge display device having a homogeneous dielectric layer having a small relative dielectric constant.
本発明においては、誘電体層の形成にプラズマ気相成長法(プラズマCVD法)を用いる。成膜条件を適切に選定して膜の応力を制御することにより、クラック耐性の高い所定厚さの層を得ることができる。焼成によらないので誘電体層を低融点ガラス以外の物質からなる層とすることもでき、例えば二酸化珪素(SiO2 )、酸化窒化珪素(SiON)、窒化珪素(SiN)などの珪素化合物、又は有機酸化珪素(RSiO:Rはアルキル基、アリル基を示す)の層とすれば、低融点ガラス層の場合よりも比誘電率は大幅に小さくなる。 In the present invention, a plasma vapor deposition method (plasma CVD method) is used for forming the dielectric layer. By appropriately selecting the film formation conditions and controlling the stress of the film, a layer having a predetermined thickness with high crack resistance can be obtained. Does not depend on the firing can also be a layer composed of a dielectric layer of a material other than the low melting glass, for example, silicon dioxide (SiO 2), silicon oxynitride (SiON), silicon compound such as silicon nitride (SiN), or When a layer of organic silicon oxide (RSiO: R represents an alkyl group or an allyl group) is used, the relative dielectric constant is significantly smaller than that of a low-melting glass layer.
また、プラズマCVD法によれば、下地面に対して等方的に堆積が進行するので、電極の上面に段差があっても電極の覆う誘電体層の厚さは均等になる。したがって、電極が透明導電膜と金属膜との積層構造である場合に、金属膜の上方での無用の放電を抑えることができる。 In addition, according to the plasma CVD method, the deposition proceeds isotropically with respect to the base surface, so that even if there is a step on the upper surface of the electrode, the thickness of the dielectric layer covered by the electrode becomes uniform. Therefore, when the electrode has a laminated structure of a transparent conductive film and a metal film, useless discharge above the metal film can be suppressed.
請求項1の発明の方法は、ガラス基板上に配列された電極を覆って表示領域の全域に拡がる誘電体層を有したガス放電表示デバイスの製造方法であって、前記誘電体層の形成以前に、前記表示領域のうちの放電間隙を除いた電極間部分に遮光層を設け、前記電極の配列を終えた段階以降の基板構体の表面に、前記誘電体層としてプラズマ気相成長法によって成膜の下地面を等方的に覆う珪素化合物からなる層を形成するものである。 The method of the invention of claim 1 is a method of manufacturing a gas discharge display device having a dielectric layer that covers an electrode arranged on a glass substrate and extends over the entire display region, and before the formation of the dielectric layer. In addition, a light-shielding layer is provided in the display area between the electrodes excluding the discharge gap, and the dielectric layer is formed by plasma vapor deposition on the surface of the substrate structure after the electrodes are arranged. A layer made of a silicon compound isotropically covering the lower ground of the film is formed.
請求項2の発明の製造方法においては、前記誘電体層として二酸化珪素または有機酸化珪素からなる層を形成する。 In the manufacturing method of the invention of claim 2, a layer made of silicon dioxide or organic silicon oxide is formed as the dielectric layer.
請求項1または請求項2の発明によれば、比誘電率の小さい均質な誘電体層を有したガス放電表示デバイスの製造が可能になるとともに、表示のコントラストを高めることができる。 According to the first or second aspect of the present invention, it is possible to manufacture a gas discharge display device having a homogeneous dielectric layer having a small relative dielectric constant, and to increase the display contrast.
〔第1実施形態〕
図1は本発明に係るPDP1の電極配列を示す平面図である。
[First Embodiment]
FIG. 1 is a plan view showing an electrode arrangement of a PDP 1 according to the present invention.
例示のPDP1は、対をなす第1及び第2の主電極X,Yが平行配置され、各セルCにおいて主電極X,Yと第3の電極としてのアドレス電極Aとが交差する3電極面放電構造のAC型PDPである。主電極X,Yはともに画面の行方向(水平方向)に延び、一方の主電極Yはアドレッシングに際して行単位にセルCを選択するためのスキャン電極として用いられる。アドレス電極Aは列方向(垂直方向)に延びており、列単位にセルCを選択するためのデータ電極として用いられる。基板面のうちの主電極群とアドレス電極群とが交差する範囲が表示領域(画面)ESとなる。 In the illustrated PDP 1, a pair of first and second main electrodes X and Y are arranged in parallel, and in each cell C, the main electrodes X and Y intersect with an address electrode A as a third electrode. This is an AC type PDP having a discharge structure. Both the main electrodes X and Y extend in the row direction (horizontal direction) of the screen, and one main electrode Y is used as a scan electrode for selecting cells C in units of rows at the time of addressing. The address electrode A extends in the column direction (vertical direction), and is used as a data electrode for selecting the cell C for each column. A range in which the main electrode group and the address electrode group intersect on the substrate surface is a display area (screen) ES.
図2は本発明に係るPDPの内部の基本構造を示す分解斜視図である。 FIG. 2 is an exploded perspective view showing the basic structure inside the PDP according to the present invention.
PDP1は反射型であって、一対の基板構体10,20からなる。PDP1において、主電極X,Yは前面側の基板構体10の基材であるガラス基板11の内面に、行毎に一対ずつ配列されている。行は水平方向のセル列である。主電極X,Yは、それぞれが透明導電膜41と金属膜(バス導体)42とからなり、厚さ10μm程度の誘電体層17で被覆されている。誘電体層17の表面にはマグネシア(MgO)からなる厚さ数千オングストロームの保護膜18が設けられている。アドレス電極Aは、背面側の基板構体20の基材であるガラス基板21の内面に配列されており、誘電体層24によって被覆されている。誘電体層24の上には、高さ150μmの平面視直線帯状の隔壁29が各アドレス電極Aの間に1つずつ設けられている。これらの隔壁29によって放電空間30が行方向にサブピクセル(単位発光領域)毎に区画され、且つ放電空間30の間隙寸法が規定されている。そして、アドレス電極Aの上方及び隔壁29の側面を含めて背面側の内面を被覆するように、カラー表示のためのR,G,Bの3色の蛍光体層28R,28G,28Bが設けられている。放電空間30には主成分のネオンにキセノンを混合した放電ガスが充填されており、蛍光体層28R,28G,28Bは放電時にキセノンが放つ紫外線によって局部的に励起されて発光する。表示の1ピクセル(画素)は行方向に並ぶ3個のサブピクセルで構成される。各サブピクセル内の構造体がセル(表示素子)Cである。隔壁29の配置パターンがストライプパターンであることから、放電空間30のうちの各列に対応した部分は全ての行Lに跨がって列方向に連続している。 The PDP 1 is a reflection type and includes a pair of substrate structures 10 and 20. In the PDP 1, a pair of main electrodes X and Y are arranged for each row on the inner surface of the glass substrate 11 which is a base material of the substrate structure 10 on the front side. A row is a horizontal cell column. The main electrodes X and Y each consist of a transparent conductive film 41 and a metal film (bus conductor) 42 and are covered with a dielectric layer 17 having a thickness of about 10 μm. A protective film 18 made of magnesia (MgO) and having a thickness of several thousand angstroms is provided on the surface of the dielectric layer 17. The address electrodes A are arranged on the inner surface of the glass substrate 21 which is the base material of the substrate structure 20 on the back side, and are covered with the dielectric layer 24. On the dielectric layer 24, one partition wall 29 having a height of 150 μm in a straight line in plan view is provided between the address electrodes A. These partition walls 29 divide the discharge space 30 into sub-pixels (unit light-emitting regions) in the row direction and define the gap size of the discharge space 30. Then, phosphor layers 28R, 28G, and 28B of three colors R, G, and B for color display are provided so as to cover the inner surface on the back side including the upper side of the address electrode A and the side surface of the partition wall 29. ing. The discharge space 30 is filled with a discharge gas in which xenon is mixed with neon as a main component, and the phosphor layers 28R, 28G, and 28B are locally excited by ultraviolet rays emitted by xenon during discharge to emit light. One pixel (pixel) for display is composed of three sub-pixels arranged in the row direction. A structure in each sub-pixel is a cell (display element) C. Since the arrangement pattern of the barrier ribs 29 is a stripe pattern, the portion corresponding to each column in the discharge space 30 extends across all rows L in the column direction.
図3は第1実施形態に係るPDPの要部断面構造の模式図である。同図では誘電体層17の形状の理解を容易にするため、PDP1の前面側を図の下側としてある。また、保護膜の図示を省略してある。後述する他の実施形態に係るPDPの要部断面構造についても図示の要領は同様である。 FIG. 3 is a schematic diagram of a cross-sectional structure of a main part of the PDP according to the first embodiment. In the figure, in order to facilitate understanding of the shape of the dielectric layer 17, the front side of the PDP 1 is the lower side of the figure. Further, the protective film is not shown. The manner of illustration is the same for the cross-sectional structure of the main part of a PDP according to another embodiment to be described later.
図3のように、金属膜42は、透明導電膜41における面放電ギャップと反対の側の端部に寄せて配置されている。誘電体層17は、このような主電極X,Yを等方的に覆うように形成されており、圧縮応力Fを有している。誘電体層17の厚さが均等であるので、面放電ギャップから遠い金属膜42の上方での不要の放電は起こりにくい。したがって、駆動電圧の選定によって放電範囲を適正化するのが容易である。また、圧縮応力Fによりクラックの発生が抑制されている。 以上の構成のPDP1は、各ガラス基板11,21について別個に所定の構成要素を設けて前面側及び背面側の基板構体10,20を作製し、両基板構体10,20を重ね合わせて対向間隙の周縁を封止し、内部の排気及び放電ガスの充填を行う一連の工程によって製造される。その際、基板構体10の構成要素である誘電体層17は薄膜形成法の一種であるプラズマCVD法によって形成される。 図4は本発明に係るプラズマCVD装置の概略図である。 As shown in FIG. 3, the metal film 42 is arranged close to the end of the transparent conductive film 41 on the side opposite to the surface discharge gap. The dielectric layer 17 is formed so as to cover the main electrodes X and Y isotropically and has a compressive stress F. Since the thickness of the dielectric layer 17 is uniform, unnecessary discharge hardly occurs above the metal film 42 far from the surface discharge gap. Therefore, it is easy to optimize the discharge range by selecting the drive voltage. Further, the occurrence of cracks is suppressed by the compressive stress F. In the PDP 1 having the above configuration, predetermined constituent elements are separately provided for the glass substrates 11 and 21 to produce the front and rear substrate structures 10 and 20, and the two substrate structures 10 and 20 are overlapped to face each other. Is manufactured by a series of processes for sealing the periphery of the gas and filling the inside with exhaust gas and discharge gas. At that time, the dielectric layer 17 which is a component of the substrate structure 10 is formed by a plasma CVD method which is a kind of thin film forming method. FIG. 4 is a schematic view of a plasma CVD apparatus according to the present invention.
プラズマCVD装置100は平行平板型である。真空チャンバ内に主電極X,Yの配列を終えた段階の基板構体10’を配置し、プラズマを発生させて下地面sに所定の物質を堆積させる。下地面sは主電極X,Y及びガラス基板11の露出面である。例えば、ソースガスとしてテトラエトキシシラン〔TEOS:Si(C2 H5 O)4 〕を導入するとともに反応ガスとしてと酸素(O2 )とを導入し、SiO2 からなる誘電体層17を形成する。 The plasma CVD apparatus 100 is a parallel plate type. The substrate structure 10 ′ at the stage where the arrangement of the main electrodes X and Y is finished is placed in the vacuum chamber, and plasma is generated to deposit a predetermined substance on the base surface s. The lower ground s is the exposed surfaces of the main electrodes X and Y and the glass substrate 11. For example, tetraethoxysilane [TEOS: Si (C 2 H 5 O) 4 ] is introduced as a source gas and oxygen (O 2 ) is introduced as a reactive gas to form the dielectric layer 17 made of SiO 2. .
平行平板型のプラズマCVD装置100を用い、シリコン基板とソーダライムガラス基板とにそれぞれ次の条件でSiO2 膜を成膜した。 Using a parallel plate type plasma CVD apparatus 100, SiO 2 films were formed on a silicon substrate and a soda lime glass substrate, respectively, under the following conditions.
導入ガスと流量 :TEOS/800SCCM
導入ガスと流量 :O2 /2000SCCM
高周波出力 :1.5kW
基板温度 :350℃
真空度 :1.0Torr
得られたSiO2 膜は、シリコン基板では−0.7×109 dyn/cm2 、ソーダライムガラス基板では−1.9×109 dyn/cm2 の圧縮応力を有しており、比誘電率は4.1であった。
Introduction gas and flow rate: TEOS / 800SCCM
Introduction gas and flow rate: O 2 / 2000SCCM
High frequency output: 1.5 kW
Substrate temperature: 350 ° C
Degree of vacuum: 1.0 Torr
The obtained SiO 2 film has a compressive stress of −0.7 × 10 9 dyn / cm 2 for a silicon substrate and −1.9 × 10 9 dyn / cm 2 for a soda lime glass substrate, and has a relative dielectric constant. The rate was 4.1.
同一の条件で表1の材質のガラス基板及び主電極からなる基板構体に厚さ10μmのSiO2 膜を成膜した。 Under the same conditions, a SiO 2 film having a thickness of 10 μm was formed on a substrate structure made of a glass substrate and a main electrode made of the materials shown in Table 1.
成膜により基板構体は成膜面を上側に向けた状態で凸状に約5mm反った。SiO2 膜の上に厚さ0.5μmのMgO膜を蒸着法によって成膜し、それにより得られた基板構体と別途に作製した背面側の基板構体とを張り合わせてPDPを完成させた。発光効率の測定結果は1.5lm/Wであった。 Due to the film formation, the substrate structure warped in a convex shape by about 5 mm with the film formation surface facing upward. An MgO film having a thickness of 0.5 μm was formed on the SiO 2 film by a vapor deposition method, and the substrate structure obtained thereby was bonded to a separately manufactured back side substrate structure to complete a PDP. The measurement result of luminous efficiency was 1.5 lm / W.
平行平板型のプラズマCVD装置100を用い、シリコン基板とソーダライムガラス基板とにそれぞれ次の条件でSiO2 膜を成膜した。 Using a parallel plate type plasma CVD apparatus 100, SiO 2 films were formed on a silicon substrate and a soda lime glass substrate, respectively, under the following conditions.
導入ガスと流量 :SiH4 /900SCCM
導入ガスと流量 :N2 O/4000SCCM
高周波出力 :1.0kW
基板温度 :340℃
真空度 :1.2Torr
得られたSiO2 膜は、シリコン基板では+1.0×109 dyn/cm2 の引張応力を有し、ソーダライムガラス基板では−0.2×109 dyn/cm2 の圧縮応力を有しており、比誘電率は4.1であった。
Introduction gas and flow rate: SiH 4 / 900SCCM
Introduction gas and flow rate: N 2 O / 4000 SCCM
High frequency output: 1.0kW
Substrate temperature: 340 ° C
Degree of vacuum: 1.2 Torr
The obtained SiO 2 film has a tensile stress of + 1.0 × 10 9 dyn / cm 2 for a silicon substrate and a compressive stress of −0.2 × 10 9 dyn / cm 2 for a soda lime glass substrate. The relative dielectric constant was 4.1.
同一の条件で実施例1と同じ表1の材質のガラス基板及び主電極からなる基板構体に、厚さ10μmのSiO2 膜を成膜した。成膜により基板構体は成膜面を上側に向けた状態で凸状に約1mm反った。SiO2 膜の上に厚さ0.5μmのMgO膜を蒸着法によって成膜して得られた基板構体と、別途に作製した背面側の基板構体とを張り合わせてPDPを完成させた。発光効率の測定結果は1.5lm/Wであった。 A SiO 2 film having a thickness of 10 μm was formed on a substrate structure composed of a glass substrate and a main electrode made of the same material as in Example 1 under the same conditions as in Example 1. As a result of the film formation, the substrate structure warped about 1 mm in a convex shape with the film formation surface facing upward. A PDP was completed by laminating a substrate structure obtained by depositing a 0.5 μm thick MgO film on the SiO 2 film by a vapor deposition method and a separately manufactured substrate structure on the back side. The measurement result of luminous efficiency was 1.5 lm / W.
平行平板型のプラズマCVD装置100を用い、試料基板に次の条件で有機酸化珪素膜(CH3 SiO)を成膜した。 Using a parallel plate type plasma CVD apparatus 100, an organic silicon oxide film (CH 3 SiO) was formed on the sample substrate under the following conditions.
導入ガスと流量 :Si(CH3 )4 /800SCCM
導入ガスと流量 :H2 O/4000SCCM
高周波出力 :2.0kW
基板温度 :400℃
真空度 :1.0Torr
得られた有機酸化珪素膜の比誘電率は2.6であった。
Introduction gas and flow rate: Si (CH 3 ) 4 / 800SCCM
Introduction gas and flow rate: H 2 O / 4000 SCCM
High frequency output: 2.0kW
Substrate temperature: 400 ° C
Degree of vacuum: 1.0 Torr
The obtained organic silicon oxide film had a relative dielectric constant of 2.6.
同一の条件で実施例1と同じ表1の材質のガラス基板及び主電極からなる基板構体に、厚さ10μmのCH3 SiO膜を成膜した。このCH3 SiO膜の上に厚さ0.5μmのMgO膜を蒸着法によって成膜して得られた基板構体と、別途に作製した背面側の基板構体とを張り合わせてPDPを完成させた。発光効率の測定結果は1.7lm/Wであった。
〔比較例1〕
常圧CVD装置100を用い、シリコン基板とソーダライムガラス基板とにそれぞれ次の条件でSiO2 膜(熱CVD膜)を成膜した。
A CH 3 SiO film having a thickness of 10 μm was formed on a substrate structure including a glass substrate and a main electrode made of the same material as in Example 1 under the same conditions as in Example 1. A substrate structure obtained by depositing an MgO film having a thickness of 0.5 μm on the CH 3 SiO film by vapor deposition and a separately manufactured back-side substrate structure were bonded to complete a PDP. The measurement result of luminous efficiency was 1.7 lm / W.
[Comparative Example 1]
Using an atmospheric pressure CVD apparatus 100, SiO 2 films (thermal CVD films) were formed on a silicon substrate and a soda lime glass substrate, respectively, under the following conditions.
導入ガスと流量 :SiH4 /900SCCM
導入ガスと流量 :H2 O/6000SCCM
基板温度 :450℃
得られたSiO2 膜は、シリコン基板では+4.0×109 dyn/cm2 、ソーダライムガラス基板では+2.3×109 dyn/cm2 の引張応力を有していた。
Introduction gas and flow rate: SiH 4 / 900SCCM
Introduction gas and flow rate: H 2 O / 6000 SCCM
Substrate temperature: 450 ° C
The obtained SiO 2 film had a tensile stress of + 4.0 × 10 9 dyn / cm 2 for a silicon substrate and + 2.3 × 10 9 dyn / cm 2 for a soda lime glass substrate.
同一の条件で実施例1と同じ表1の材質のガラス基板及び主電極とからなる基板構体に、厚さ10μmのSiO2 膜を成膜した。膜面に多数のクラックが発生し、PDPを組み立てることができなかった。
〔比較例2〕
平行平板型のプラズマCVD装置100を用い、シリコン基板とソーダライムガラス基板とにそれぞれ次の条件でSiO2 膜を成膜した。
A SiO 2 film having a thickness of 10 μm was formed on a substrate structure composed of a glass substrate and a main electrode made of the same material as shown in Table 1 under the same conditions as in Example 1. Many cracks occurred on the film surface, and the PDP could not be assembled.
[Comparative Example 2]
Using a parallel plate type plasma CVD apparatus 100, SiO 2 films were formed on a silicon substrate and a soda lime glass substrate, respectively, under the following conditions.
導入ガスと流量 :SiH4 /900SCCM
導入ガスと流量 :N2 O/5000SCCM
高周波出力 :1.8kW
基板温度 :380℃
真空度 :0.7Torr
得られたSiO2 膜は、シリコン基板では−3.3×109 dyn/cm2 の圧縮応力を有し、ソーダライムガラス基板では−4.6×109 dyn/cm2 の圧縮応力を有していた。
Introduction gas and flow rate: SiH 4 / 900SCCM
Introduction gas and flow rate: N 2 O / 5000 SCCM
High frequency output: 1.8kW
Substrate temperature: 380 ° C
Degree of vacuum: 0.7 Torr
The obtained SiO 2 film has a compressive stress of −3.3 × 10 9 dyn / cm 2 for a silicon substrate and a compressive stress of −4.6 × 10 9 dyn / cm 2 for a soda lime glass substrate. Was.
同一の条件で実施例1と同じ表1の材質のガラス基板及び主電極とからなる基板構体に、厚さ10μmのSiO2 膜を成膜した。成膜により基板構体は成膜面を上側に向けた状態で凸状に約12mm反った。反りが過大であるため、背面側の基板構体と張り合わせることができなかった。
〔比較例3〕
従来の厚膜手法により誘電体層を形成した。すなわち、実施例1と同じ表1の材質のガラス基板及び主電極とからなる基板構体に、PbO−BO−SiO系フリットガラスをロールコータで30μmの厚さに印刷し、コンベア炉を用いて大気雰囲気で焼成した(580℃,60min)。得られた低融点ガラス層は無数の泡を含んでおり、比誘電率の測定値は12.0であった。低融点ガラス層の上に厚さ0.5μmのMgO膜を蒸着法によって成膜し、得られた基板構体と別途に作製した背面側の基板構体とを張り合わせてPDPを完成させた。発光効率の測定結果は0.8lm/Wであった。
〔第2実施形態〕
図5は第2実施形態に係るPDPの要部断面構造の模式図である。
A SiO 2 film having a thickness of 10 μm was formed on a substrate structure composed of a glass substrate and a main electrode made of the same material as in Example 1 under the same conditions as in Example 1. As a result of the film formation, the substrate structure warped in a convex shape by about 12 mm with the film formation surface facing upward. Since the warpage was excessive, it could not be bonded to the substrate structure on the back side.
[Comparative Example 3]
A dielectric layer was formed by a conventional thick film technique. That is, PbO—BO—SiO-based frit glass was printed on a substrate structure composed of a glass substrate and a main electrode made of the same materials as in Example 1 in Table 1 with a roll coater, and the atmosphere was formed using a conveyor furnace. Firing was performed in an atmosphere (580 ° C., 60 min). The obtained low-melting-point glass layer contained innumerable bubbles, and the measured value of relative dielectric constant was 12.0. An MgO film having a thickness of 0.5 μm was formed on the low melting point glass layer by a vapor deposition method, and the obtained substrate structure was bonded to a separately prepared back side substrate structure to complete a PDP. The measurement result of luminous efficiency was 0.8 lm / W.
[Second Embodiment]
FIG. 5 is a schematic diagram of a cross-sectional structure of a main part of a PDP according to the second embodiment.
PDP2では、前面側のガラス基板11bの上に透明導電膜41bと金属膜42bとを順に設けて主電極Xb,Ybを形成した後、薄膜手法で誘電体層17bを成膜する以前に、金属膜42bの上に絶縁体層50が設けられている。これにより、主電極Xb,Ybのうちの金属膜42bの重なる部分を被覆する層が他の部分より厚くなるので、金属膜42bの上方での不要の放電が抑えられて発光効率が高まる。
〔第3実施形態〕
図6は第3実施形態に係るPDPの要部断面構造の模式図である。図7は第3実施形態に係るPDPの表示領域の平面図である。
In the PDP 2, a transparent conductive film 41b and a metal film 42b are sequentially formed on the front glass substrate 11b to form the main electrodes Xb and Yb, and then before the dielectric layer 17b is formed by a thin film technique, An insulator layer 50 is provided on the film 42b. As a result, the layer covering the portion of the main electrodes Xb, Yb that overlaps the metal film 42b is thicker than the other portions, so that unnecessary discharge above the metal film 42b is suppressed and the luminous efficiency is increased.
[Third Embodiment]
FIG. 6 is a schematic diagram of a cross-sectional structure of a main part of a PDP according to the third embodiment. FIG. 7 is a plan view of the display area of the PDP according to the third embodiment.
PDP3においては、前面側のガラス基板11cの上に透明導電膜41cと金属膜42cとを順に設けて主電極Xc,Ycを形成した後、薄膜手法で誘電体層17cを成膜する以前に、金属膜42cと逆スリットS2とを覆うように暗色の絶縁体層55が設けられている。逆スリットS2は隣接する行どうしの電極配列間隙であり、面放電ギャップである行内の電極配列間隙(スリット)S1より幅広である。絶縁体層55により、図7のように表示領域EScの全体ではストライプ状の遮光パターンが形成され、行間において蛍光体層が隠れて表示のコントラストが高まる。加えて、主電極Xc,Ycのうちの金属膜42cの重なる部分を被覆する層が他の部分より厚くなるので、金属膜42cの上方での不要の放電が抑えられて発光効率が高まる。 In the PDP 3, after forming the main electrodes Xc and Yc by sequentially providing the transparent conductive film 41c and the metal film 42c on the front glass substrate 11c, before forming the dielectric layer 17c by a thin film technique, A dark insulator layer 55 is provided so as to cover the metal film 42c and the reverse slit S2. The reverse slit S2 is an electrode arrangement gap between adjacent rows, and is wider than the electrode arrangement gap (slit) S1 in the row which is a surface discharge gap. As shown in FIG. 7, the insulating layer 55 forms a stripe-shaped light shielding pattern in the entire display area ESc, and the phosphor layer is hidden between the rows to increase the display contrast. In addition, since the layer covering the portion of the main electrodes Xc, Yc that overlaps the metal film 42c is thicker than the other portions, unnecessary discharge above the metal film 42c is suppressed, and the luminous efficiency is increased.
以上の実施形態によれば、焼成に比べて低い温度で誘電体層17,17b,17cを設けることができ、基板の熱歪みを低減することができる。また、誘電体層17,17b,17cの比誘電率が従来の低融点ガラス層より低いので電極間容量が低減されて消費電力が少なくなる。さらに、誘電体層17,17b,17cが鉛、亜鉛などの金属を含まないので、製造の作業安全性が高まり、リサイクル性に優れたPDP1,2,3が得られる。 According to the above embodiment, the dielectric layers 17, 17b, and 17c can be provided at a lower temperature than firing, and the thermal distortion of the substrate can be reduced. Moreover, since the dielectric constants of the dielectric layers 17, 17b and 17c are lower than those of the conventional low melting point glass layer, the capacitance between the electrodes is reduced and the power consumption is reduced. Furthermore, since the dielectric layers 17, 17b, and 17c do not contain metals such as lead and zinc, the work safety of manufacturing is increased, and PDPs 1, 2, and 3 that are excellent in recyclability are obtained.
本発明は、電極間の静電容量の低減に有効な比誘電率の小さい均質な誘電体層をもつガス放電表示デバイスの製造に適している。 INDUSTRIAL APPLICABILITY The present invention is suitable for manufacturing a gas discharge display device having a homogeneous dielectric layer having a small relative dielectric constant that is effective for reducing the capacitance between electrodes.
1,2,3 PDP(ガス放電表示デバイス)
11,11b,11c ガラス基板(基板)
X,Y,Xb,Yb,Xc,Yc 主電極(電極)
ES,ESc 表示領域
17,17b,17c 誘電体層
s 下地面
F 圧縮応力
50 絶縁体層
55 絶縁体層(遮光層)
S1 スリット(放電間隙)
S2 逆スリット(電極間部分)
1,2,3 PDP (Gas Discharge Display Device)
11, 11b, 11c Glass substrate (substrate)
X, Y, Xb, Yb, Xc, Yc Main electrode (electrode)
ES, ESc Display area 17, 17b, 17c Dielectric layer s Underground F Compressive stress 50 Insulator layer 55 Insulator layer (light-shielding layer)
S1 slit (discharge gap)
S2 Reverse slit (interelectrode area)
Claims (2)
前記誘電体層の形成以前に、前記表示領域のうちの放電間隙を除いた電極間部分に遮光層を設け、
前記電極の配列を終えた段階以降の基板構体の表面に、前記誘電体層としてプラズマ気相成長法によって成膜の下地面を等方的に覆う珪素化合物からなる層を形成する
ことを特徴とするガス放電表示デバイスの製造方法。 A method for manufacturing a gas discharge display device having a dielectric layer covering an electrode arranged on a glass substrate and extending over the entire display region,
Prior to the formation of the dielectric layer, a light shielding layer is provided in a portion between the electrodes excluding a discharge gap in the display region,
A layer made of a silicon compound isotropically covering the lower surface of the film by plasma vapor deposition is formed as the dielectric layer on the surface of the substrate structure after the step of arranging the electrodes. A method for manufacturing a gas discharge display device.
請求項1に記載のガス放電表示デバイスの製造方法。 The method for manufacturing a gas discharge display device according to claim 1, wherein a layer made of silicon dioxide or organic silicon oxide is formed as the dielectric layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167679A JP3886523B2 (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing gas discharge display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167679A JP3886523B2 (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing gas discharge display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003320074A Division JP3835555B2 (en) | 2003-09-11 | 2003-09-11 | Method for manufacturing gas discharge display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006324254A true JP2006324254A (en) | 2006-11-30 |
JP3886523B2 JP3886523B2 (en) | 2007-02-28 |
Family
ID=37543745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006167679A Expired - Fee Related JP3886523B2 (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing gas discharge display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3886523B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7675235B2 (en) | 2006-04-12 | 2010-03-09 | Sony Corporation | Plasma display panel |
-
2006
- 2006-06-16 JP JP2006167679A patent/JP3886523B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7675235B2 (en) | 2006-04-12 | 2010-03-09 | Sony Corporation | Plasma display panel |
Also Published As
Publication number | Publication date |
---|---|
JP3886523B2 (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3481142B2 (en) | Gas discharge display device | |
JP4097480B2 (en) | Substrate structure for gas discharge panel, manufacturing method thereof and AC type gas discharge panel | |
JP3835555B2 (en) | Method for manufacturing gas discharge display device | |
JP3886523B2 (en) | Method for manufacturing gas discharge display device | |
JP2003331734A (en) | Plasma display device | |
JP4085223B2 (en) | Plasma display device | |
JP2001155647A (en) | Gas discharge display device and its manufacturing method | |
KR100759561B1 (en) | Plasma display panel | |
US7538492B2 (en) | Plasma display panel | |
JP3440921B2 (en) | Gas discharge panel and method of manufacturing the same | |
JP3152628B2 (en) | Method of forming transparent thick film dielectric on conductive film | |
JP2004288401A (en) | Tabular display panel | |
US7187127B2 (en) | Plasma display panel having exothermal inhibition layer | |
EP2037480A1 (en) | Plasma display panel and manufacturing method therefor | |
KR20060104536A (en) | Green sheet for plasma display panel and manufacturing method thereof | |
KR100562876B1 (en) | Plasma Display Panel and Making Method thereof | |
JP2011222325A (en) | Method for manufacturing plasma display panel, and plasma display panel | |
JP2001135241A (en) | Gas-discharge panel and manufacturing method therefor | |
KR20060131566A (en) | Plasma display panel | |
US20070152585A1 (en) | Plasma display panel | |
JP2004335339A (en) | Plasma display panel and its manufacturing method | |
JP2003123655A (en) | Plasma display device and its manufacturing method | |
KR20040085763A (en) | Plasma display panel and method of fabricating the same | |
KR20070095495A (en) | Plasma display panel | |
JP2004296145A (en) | Ac type gas discharge display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061121 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20061121 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20121201 |
|
LAPS | Cancellation because of no payment of annual fees |