JP2006307863A - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
JP2006307863A
JP2006307863A JP2006160867A JP2006160867A JP2006307863A JP 2006307863 A JP2006307863 A JP 2006307863A JP 2006160867 A JP2006160867 A JP 2006160867A JP 2006160867 A JP2006160867 A JP 2006160867A JP 2006307863 A JP2006307863 A JP 2006307863A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
engine
air flow
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160867A
Other languages
English (en)
Other versions
JP4298722B2 (ja
Inventor
Shinya Igarashi
信弥 五十嵐
Atsushi Sugaya
菅家  厚
Rintaro Minamitani
林太郎 南谷
Keiichi Nakada
圭一 中田
Izumi Watanabe
渡辺  泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006160867A priority Critical patent/JP4298722B2/ja
Publication of JP2006307863A publication Critical patent/JP2006307863A/ja
Application granted granted Critical
Publication of JP4298722B2 publication Critical patent/JP4298722B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度の向上した空気流量測定装置を提供することにある。
【解決手段】発熱抵抗体1を用いて内燃機関に吸入される空気流量を検出する。電源管理回路4は、内燃機関を停止した後、内燃機関及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度が内燃機関の駆動中と同じ温度かそれ以上に維持する。電源管理回路4は、内燃機関に吸入される空気の温度を検出する感温抵抗体2によって空気温度を検出し、この温度に基づいて、内燃機関の停止後も、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持する。
【選択図】図1

Description

本発明は、内燃機関の吸入空気通路を流れる空気流量を測定する空気流量測定装置を用いるエンジン制御装置に係り、特に、発熱抵抗体を用いて空気流量を測定する発熱抵抗の空気流量測定装置を用いるエンジン制御装置に関する。
従来の発熱抵抗式の空気流量測定装置においては、吸入空気の温度を検出する感温抵抗体に対して、発熱抵抗体の温度を所定温度高くなるように、発熱抵抗体に流れる電流を制御して、この発熱抵抗体に流れる電流から吸入空気流量を測定していた。
特許第3146850号公報
ここで、従来の空気流量測定装置においては、エンジンが停止して、吸気系の空気の流れが止まった場合、発熱抵抗式空気流量測定装置の下流のエンジンあるいはその吸気系に装着された装置等から、拡散や蒸発によってガス状物質が発熱抵抗式空気流量測定装置の装着部位に及び、空気流量検出素子である発熱抵抗体に付着するという問題があることが判明した。特に、オイルベーパ等の揮発性ガスは、エンジン停止後にエンジンあるいはその吸気系に装着された装置等が、その気化温度以上にある時蒸発拡散し、発熱抵抗式空気流量測定装置の装着部にも逆流して来るため、吸入空気に晒される発熱抵抗体にも付着する。これらの付着物は、発熱抵抗体の腐食や、発熱抵抗体が汚損することによる発熱抵抗式空気流量測定装置の計測精度劣化の原因となる。また、その付着物により、発熱抵抗体へのダスト等の異物付着を加速させる原因と成り得る。その結果、空気流量測定装置の測定精度が低下するという問題があった。なお、本願発明に関連するものとして、例えば、特許第3146850号公報に記載されているように、エンジン始動直後の空気流量測定装置の計測精度劣化を低減するために、エンジン停止時にも空気流量測定装置に継続して通電するものが知られている。しかし、空気流量測定装置への通電はエンジン停止中は継続して行うものであり、その目的も、エンジン始動直後の計測精度劣化のためである。
本発明の目的は、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度の向上した空気流量測定装置を用いるエンジン制御装置を提供することにある。
上記目的を達成するために、本発明は、内燃機関に吸入される空気の流量を検出する発熱抵抗体と、この発熱抵抗体と電気的に接続され、上記発熱抵抗体を用いて吸入空気の流量に応じた信号を出力する電子回路とを有する発熱抵抗式流量測定装置によって検出された吸入空気流量信号に基づいて、内燃機関を制御するエンジン制御装置であって、 上記内燃機関を停止した後に上記発熱抵抗体の温度を内燃機関の駆動中と同じ温度かそれ以上にし、上記内燃機関及びその吸気系に装着された装置の温度がオイルベーパの発生温度以下となるまで、上記発熱抵抗体の温度を内燃機関の駆動中と同じ温度かそれ以上に維持する温度維持手段を備えようにしたものである。
かかる構成とすることにより、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上し得るものとなる。
また、上記目的を達成するために、本発明は、内燃機関の吸気管路に設置される発熱抵抗体と感温抵抗体と、上記発熱抵抗体の加熱温度を上記感温抵抗体が検出した温度に対してほぼ一定温度差に制御する制御回路とからなり、上記吸気管路を流れる空気流量を測定する空気流量測定装置によって検出された吸入空気流量信号に基づいて、内燃機関を制御するとともに、上記制御回路に電源を供給する電源供給手段とを有するエンジン制御装置であって、上記電源供給手段が、上記内燃機関を停止した後に上記制御回路に電源を供給し、上記内燃機関及びその吸気系に装着された装置の温度がオイルベーパの発生温度以下となるまで、上記供給を維持するようにしたものである。
さらに、上記目的を達成するために、本発明は、温抵抗体と、上記発熱抵抗体の加熱温度を上記感温抵抗体が検出した温度に対してほぼ一定温度差に制御する制御回路ととからなり、上記吸気管路を流れる空気流量を測定する空気流量測定装置によって検出された吸入空気流量信号に基づいて、内燃機関を制御するとともに、上記制御回路に電源を供給する電源供給手段とを有するエンジン制御装置であって、上記電源供給手段が、上記内燃機関を停止した後に上記制御回路に電源を供給し、上記内燃機関及びその吸気系に装着された装置の温度がオイルベーパの発生温度以下であると判断されるまで、上記供給を維持するようにしたものである。
本発明によれば、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
以下、図1を用いて、本発明の第1の実施形態による空気流量測定装置の構成及び動作について説明する。
図1は、本発明の第1の実施形態による空気流量測定装置の構成を示すブロック構成図である。
発熱抵抗式空気流量測定装置3は、発熱抵抗体1と、感温抵抗体2と、電源管理回路4と、発熱抵抗体加熱制御回路5(以下、「制御回路5」と称する)と、出力調整回路6とから構成されている。
発熱抵抗体1及び感温抵抗体2は、内燃機関の吸気管路11の内部に配置されている。発熱抵抗体1及び感温抵抗体2は、制御回路5に接続されている。発熱抵抗体加熱制御回路5は、発熱抵抗体1の加熱温度を、感温抵抗体2が検出する吸気温度に対してほぼ一定温度差になるよう制御している。従って、発熱抵抗体1から吸入空気12への放熱量により、制御回路5は、吸入空気流量を検出可能なものである。制御回路5は、吸気管路11を流れる空気流量を表す流量信号8aと、吸入空気の温度を表す吸気温信号9aとを、出力調整回路6に出力する。吸気温信号9aは、感温抵抗体2の抵抗値により求めることができる。
出力調整回路6は、流量信号8aと吸気温信号9aを、燃料噴射量や点火時期等を制御するエンジン制御ユニット(以下、「ECU」と称する)等の外部機器へ出力するのに適した信号となるように、0−スパンや感度等を調整して、外部出力用の流量信号8cや吸気温信号9cを出力する。端子10は、グランド端子である。
さらに、本実施形態においては、電源管理回路4を備えている。電源回路4は、電源端子7aから電力が供給される。外部からの電力は、電源管理回路4を介して、電力供給線7b,7cにより、それぞれ、制御回路5及び出力調整回路6に供給される。電源管理回路4(電源端子7a)は、イグニッションスイッチを介せずバッテリーと直接(フューズ等を介することはある)接続されており、エンジン停止中を含め、常に電源と接続されている。一方、制御回路5や出力調整回路6には、電源管理回路5により電源供給を制限される構成としている。
電源管理回路4は、制御回路5、あるいは制御回路5と出力調整回路6の両方に、エンジンを停止後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで電源供給するように制御する。これにより、エンジン停止後も、所定の間は、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持される構成となっている。したがって、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度の向上できる。エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下になれば、揮発性ガスの発生もなくなるため、発熱抵抗体への付着物もなくなるため、発熱抵抗体への通電を停止しても、差し支えないものである。
電源管理回路4には、出力調整回路6から、流量信号8b及び吸気温信号9bが供給されている。流量信号8b及び吸気温信号9bは、それぞれ、流量信号8c及び吸気温信号9cと同じもの,すなわち、出力調整回路6により外部機器のために出力が調整されたものでもよく、また、加熱制御回路5が出力する流量信号8a及び吸気温信号9aそのものでもよいものである。電源管理回路4は、流量信号8bに基づいて、エンジン停止を判断する。すなわち、流量がほぼゼロになったことによって、エンジン停止と判断できる。また、吸気温信号9bから吸気管路内の温度を得て、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下であるかを判断できる。電源管理回路4は、これらの情報を基に、エンジンが停止した後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、制御回路5と出力調整回路6への電源供給を行い、発熱抵抗体1の温度がエンジンの駆動中と同じ温度かそれ以上に維持されるように制御する。
なお、以上の説明では、感温抵抗体2によって吸気温を検出しているものとしてが、感温抵抗体2とは別に、吸気温を測定する吸気温センサ2Aを吸気管路11の内部や吸気管路11の近傍に備え、電源管理回路4は、この吸気温センサ2Aにより吸気温測定して、発熱抵抗体1への電源供給を維持するようにしてもよいものである。
さらには、通常のエンジン制御システムには、エンジンの冷却水温を検出する水温センサが設けられているため、電源管理回路4は、この水温センサの出力を水温信号9dとして取込み、水温に基づいて、エンジン及びその吸気系に装着された装置の温度を推定して、揮発性ガスの発生温度以下となるまで、制御回路5と出力調整回路6への電源供給を行い、発熱抵抗体1の温度がエンジンの駆動中と同じ温度かそれ以上に維持されるように制御することもできる。
また、さらに、発熱抵抗式空気流量測定装置3の流量検出方式は、加熱ヒータとそれにより加熱された温度検出抵抗により検出するものなど他の方式もあるが、これらの別方式のものについて、本発明は同様に適用できるものである。
なお、発熱抵抗体に一度オイル等の揮発性ガスとなる物質が付着した後、発熱抵抗体を再加熱することによる付着物除去は、オイル等のワニス化成分、付着物の化学反応による生成物、ダスト等の異物が付着しやすくなるための異物等が残留するため、また、付着中の発熱抵抗体の腐食,劣化等が生じるため、揮発性ガスの発生中に発熱抵抗体の加熱を維持しておき、発熱抵抗体への付着を防止することが発熱抵抗体の汚損,劣化の防止には極めて有効である。
以上説明したように、本実施形態では、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、制御回路5、あるいは制御回路5と出力調整回路6の両方に電源供給するようにしているので、エンジン停止後も、所定の間は、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持される。したがって、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
同じく、図1を用いて、本発明の第2の実施形態による空気流量測定装置の構成及び動作について説明する。
図1に示した各構成の基本的な動作は、図1に示したものと同様である。図1に示したように、電源管理回路4には、外部のECUから発熱抵抗体加熱停止信号7bが入力するように構成する。ECUは、エンジンの停止も制御しているため、合わせて、発熱抵抗体の加熱・停止を制御する。ECUは、エンジンの停止後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで電源供給するように、電源管理回路4に発熱抵抗体の加熱信号を供給し、所定温度以下になると、発熱抵抗体加熱停止信号を電源管理回路4に供給する。電源管理回路4は、この発熱抵抗体加熱停止信号を受けて、発熱抵抗体1への電源供給を停止する。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
同じく、図1を用いて、本発明の第3の実施形態による空気流量測定装置の構成及び動作について説明する。
図1に示した各構成の基本的な動作は、図1に示したものと同様である。図1に示したように、電源管理回路4には、外部のECUからエンジン停止信号7cが入力するように構成する。ECUは、エンジンの停止時には、エンジン停止信号を、電源管理回路4に供給する。電源管理回路4は、エンジン停止信号7cを受けた後も、発熱抵抗体1への電源供給を継続する。一方、電源管理回路4は、吸気温信号9bにより発熱抵抗体1の付近の温度を検出し、検出された温度がエンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまでは、発熱抵抗体1に電源を供給し、加熱を継続する。所定温度以下になると、電源管理回路4は、発熱抵抗体1への電源供給を停止する。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
次に、図1及び図2を用いて、本発明の第4の実施形態による空気流量測定装置の構成及び動作について説明する。
図1に示した各構成の基本的な動作は、図1に示したものと同様である。図2は、発熱抵抗式空気流量測定装置の発熱抵抗体へのオイル付着量を実測した実験データ図である。
図1に示したように、電源管理回路4には、外部のECUからエンジン停止信号7cが入力するように構成する。ECUは、エンジンの停止時には、エンジン停止信号を、電源管理回路4に供給する。電源管理回路4は、エンジン停止信号を受けて後、内部に設けられたクロックによりエンジン停止後の経過時間を計測し、計測された時間が所定時間(エンジンの停止後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまでの時間)が経過するまでは、発熱抵抗体1に電源を供給し、加熱を継続する。所定時間経過後、電源管理回路4は、発熱抵抗体1への電源供給を停止する。
ここで、図2を用いて、所定時間(エンジンの停止後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまでの時間)について説明する。図2は、発熱抵抗式空気流量測定装置の発熱抵抗体が加熱されていない時の、エンジン停止後の発熱抵抗体へのオイル付着量を実測した実験データを示している。
実験に用いた車輌は、2.5Lディーゼルエンジン、ターボチャージャ付きであり、夏期(気温約28℃)に高負荷(ギヤ2速)で約10km走行、エンジン停止後から発熱抵抗式空気流量測定装置の発熱抵抗体に付着するオイルの重量を測定している。
図2に示すように、エンジン停止後から5分後まではオイル付着率が高く、約10分後までは付着量増加が継続し、12分程度でほぼ飽和した。本実験データは、一例ではあるが、発熱抵抗体へのオイル付着を防止するには、エンジン停止後も15分程度発熱抵抗体の加熱を継続することが必要である。また、無風時に発熱抵抗体を加熱することによる発熱抵抗体等の劣化を懸念する場合には、最低5分間加熱維持することで、オイル付着を60%以上低減できる。逆に、最大加熱継続時間は、車輌やエンジンによる違い、走行状態や環境による違い等を考慮すると、30分程度発熱抵抗体の加熱を続ければ、オイル付着を防止できる。さらに、発熱抵抗体の加熱温度、オイルの成分、オイルの劣化、オイル以外の揮発性ガス等を考慮しても、1時間程度加熱維持すればエンジン停止後の発熱抵抗体の汚損は大幅に低減できる。すなわち、エンジン停止後の加熱時間を時間制御とする時には、最低5分間、最大1時間の範囲で加熱維持時間を設定することが望ましいものである。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
次に、図3を用いて、本発明の第5の実施形態による空気流量測定装置の構成及び動作について説明する。図3は、本発明の第1の実施形態による空気流量測定装置を備えたエンジン制御システムのシステム構成図である。
本実施形態では、図1の例では、発熱抵抗式空気流量測定装置3の内部に備えられていた電源管理回路4を、ECU24の中に備えるようにしている。従って、図3に示した発熱抵抗式空気流量測定装置3Aは、図1に示した制御回路5と、出力調整回路6とを備えている。
以下、図3に示したエンジン制御システムの全体システム構成について説明する。エンジン19に吸入される空気12は、エアクリーナ23によりダスト等を除去された後、発熱抵抗体1を吸気管路内に配置した発熱抵抗式空気流量測定装置3によりその流量を検出される。発熱抵抗式空気流量測定装置3Aの設置部の下流には、吸入空気を圧縮しエンジンヘの吸気効率を高めるターボチャージャ13が装着されており、アクセル等に連動して吸気管路の絞り率を変化させるスロットルボディ17により吸入空気流量が制御され、インジェクタ16から噴射されるガソリンとの混合気としてエンジンに吸入される。この混合気は、エンジンにて爆発、燃焼し、排気25として排出される。
発熱抵抗式空気流量測定装置3Aは、吸入空気流量信号8や吸気温度信号をECU24に出力する。ECU24は、スロットルセンサ18にて検出されたスロットル開度信号,酸素濃度センサ21により検出された排気中の未聞酸素浸度信号,エンジンの回転数やクランク角度を検出するクランク角センサ20の角度信号,水温センサ22にて検出されたエンジンの冷却水温度信号等を入力し、適切なガソリン噴射量,点火時期等を求め、インジェクタ16等を制御する。
内燃機関は、混合気の爆発,燃焼によりエネルギーを得るものであるため、エンジン19自体、その排気ガス25は加熱される。また、ターボチャージャ13は、排気ガス25によりタービンの回転力を得ているため、かなりの高温になる。エンジンや吸気系の装着部品が高温となれば、エンジンのクランク室やターボチャージャには潤滑のためのオイルがあるので、その部分のみならずそこから吸気系内に飛散したオイルや、インジェクタから噴出した燃料等の揮発性ガスが発生する。さらには、クランク室の圧力を調整するPCVポート14や排気ガスを吸気系に還流するEGR15等により、オイルやオイルベーパ、排気自体が吸気系に導入される。エンジン駆動中は、これらのガスは吸入空気と混合し、エンジンに吸入されて燃焼するが、エンジン停止後は、蒸発、拡散により発熱抵抗式空気流量測定装置3Aの装着部にまで到着する。当然その量は、エンジンや吸気系に装着された装置の温度が高いほど多くなる。エンジン等の発熱量は、エンジンが高負荷で長時間運転されるほど大きくなり、また、オイル等の飛散量も多くなり、エンジンを停止すると吸入空気による冷却効果が無くなることもあって、エンジン等はかなりの高温となり、オイルベーパ等の揮発性ガスが多く発生する。
すなわち、エンジン停止により吸気系の空気の流れが止まることにより、発熱抵抗式空気流量測定装置3Aより下流のエンジン19あるいはその吸気系に装着されたターボチャージャ13等の装置、あるいはオイル、ガソリン等が飛散していた吸気管路から、拡散や蒸発によってガス状物質が発熱抵抗式空気流量測定装置3Aの装着部位に及び、空気流量検出素子である発熱抵抗体1に付着する。特に、オイルベーパ等の揮発性ガスは、エンジン停止後にエンジンあるいはその吸気系に装着された装置等が、その気化温度以上にある時蒸発拡散し、発熱抵抗式空気流量測定装置3Aの装着部にも逆流して来るため、吸入空気に晒される発熱抵抗体1にも付着する。これらの付着物は、発熱抵抗体1の腐食や、発熱抵抗体1が汚損することによる発熱抵抗式空気流量測定装置3Aの計測精度劣化の原因となる。また、その付着物により、再びエンジンを駆動した時のエアクリーナ23で除去しきれなかったダスト等が、より発熱抵抗体1へ付着しやすくなり、発熱抵抗体1への異物付着を加速させる原因と成り得る。
発熱抵抗式空気流量測定装置3Aの発熱抵抗体1は、流量計測中、すなわちエンジン駆動中は加熱制御されている。エンジン流量計測用の発熱抵抗式空気流量測定装置3Aは、発熱抵抗体1の加熱温度を機種により異なるものの、通常、吸入空気温度より120℃〜220℃高くなるように制御される。一方、最も懸念される揮発性ガスであるオイルベーパの場合、その主成分の気化温度は170℃〜200℃である。つまり、発熱抵抗体1がこの気化温度より高い場合、オイルベーパが発熱抵抗体1まで到達しても発熱抵抗体1に付着することはないものである。オイルベーパを含む気体の温度は通常40℃以上になっているので、加熱温度を低く設定している発熱抵抗式空気流量測定装置3Aでも、電源が供給されていれば発熱抵抗体1の温度は160℃以上となる。つまり、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されれば、オイルベーパにより発熱抵抗体1にオイルが付着することを防止できる。上記のように、発熱抵抗体1の加熱温度がオイルの気化温度以上にならないことや、オイルの種類によって気化温度のさらに高いものも考えられるが、それでも、発熱抵抗体1が加熱されている状態では非加熱状態よりも大幅にオイル付着を低減できる。また、ここではオイル気化温度を基に説明してきたが、燃料蒸気や排気中の成分も発熱抵抗体1が加熱している方が付着し難く、特に通常発生が懸念される揮発性ガスでは、オイルが最も気化温度が高いので、オイルの気化温度を考慮しておくことにより、種種のガスの発熱抵抗体1への付着低減が可能となる。
本実施形態では、ECU24の内部に、発熱抵抗式空気流量測定装置3Aの電源管理回路4を設け、エンジン停止後、オイルペーパ等の揮発性ガスの蒸発が止まるまで、電源ライン7を介して、発熱抵抗式空気流量測定装置3Aに電源供給を継続するようにしている。電源管理回路4は、エンジン停止後、オイルベーパ等の揮発性ガスの蒸発が止まるまでの時間をあらかじめ規定しておき、エンジン停止後一定時間経過後に、発熱抵抗式空気流量測定装置3Aへの電源供給を停止するように動作する。ここでいう一定時間は、図2を用いて説明した所定時間(エンジンの停止後、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまでの時間)である。
これによって、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度の向上できる。エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下になれば、揮発性ガスの発生もなくなるため、発熱抵抗体への付着物もなくなるため、発熱抵抗体への通電を停止しても、差し支えないものである。
なお、エンジン停止後、一定時間後発熱抵抗式空気流量測定装置3Aに電源供給を停止する代わりに、エンジンの停止後、エンジンの冷却水あるいは吸気温度が規定温度以下になるまで電源供給を継続することにより、発熱抵抗体1の加熱温度を維持するようにしてもよいものである。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
次に、図4を用いて、本発明の第6の実施形態による空気流量測定装置の構成及び動作について説明する。
図4は、本発明の第6の実施形態による空気流量測定装置を備えたエンジン制御システムのシステム構成図である。なお、図3と同一符号は、同一部分を示している。
発熱抵抗式空気流量測定装置3Aと、電源であるバッテリー26との接続7aは、イグニッションスイッチ27を介して行なわれるとともに、新たに、リレー28を経由した電源接続7cを付加している。同様に、ECU24にも、バッテリー26との接続は、イグニッションスイッチ27を介したものと、リレー28を経由した接続としてある。このような電源接続とすることにより、ECU24及び発熱抵抗式空気流量測定装置3Aは、イグニッションスイッチ27がONされると電源供給が開始される。また、イグニッションスイッチ27がOFFされても、リレー28がON状態ならば電源供給が継続される。リレー28のON/OFFは、ECU24によって制御される。すなわち、エンジン停止後も、ECU24が、リレー28をON状態に保つことにより、発熱抵抗式空気流量測定装置3Aに電源供給を継続することができ、また、ECU24により、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下であるか否か判断することで、適切な時間に発熱抵抗式空気流量測定装置3Aへの電源供給を切ることができる。
ECU24の内部には、電源管理回路4が備えられており、エンジン停止後の発熱抵抗式空気流量測定装置3Aへの通電継続と、通電停止を制御する。電源管理回路4は、発熱抵抗式空気流量測定装置3Aから得られる吸気温信号9によって、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下になったか否かを判定し、この温度以下になると、ECU24は、リレー28をOFF状態として、発熱抵抗式空気流量測定装置3Aへの通電を停止する。このとき、ECU24が図3に示した水温センサ22の信号によって通電を停止してもいいし、また、スイッチ27がオフになった後所定時間を計測して、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となったと考えられる所定時間経過後、通電を停止するようにしてもよいものである。
ここで、発熱抵抗式空気流量測定装置3への電源接続を、イグニッションスイッチ27を介したものと、リレー28を経由したものの両方としている理由について説明する。
本実施形態の制御を行なうためには、発熱抵抗式空気流量測定装置3Aへの電源接続は、リレー28を介したものだけでも可能である。しかし、リレー28を介した接続は、エンジン駆動時、すなわち発熱抵抗式空気流量測定装置3Aに電源供給が開始される時に、その電源接続が一瞬遅れることが考えられる。エンジン始動後速やかに発熱抵抗式空気流量測定装置3Aが適切な流量検出を開始するには、イグニッションスイッチ27と直接接続されていることが望ましいものである。また、エンジン駆動中は、発熱抵抗式空気流量測定装置3Aには、常時電源供給されている必要があるが、冷却ファン29は、停止させたい場合も有り得る。この冷却ファン29のON/OFFは、リレー28により制御するのが容易であり、エンジン駆動中の発熱抵抗式空気流量測定装置3Aへの電源供給はイグニッションスイッチ27を介して行なうことで可能になる。ちなみに、ECU24も両系統の電源接続としている。エンジン停止後のECU24への電源供給はリレー28を介して行なわれ、ECU24は自らのリレー制御信号で電源を切る、いわゆるセルフシャットオフとなっている。また、エンジン始動時には、イグニッションスイッチ27を介して電源供給され、リレー制御も開始する。こうすることにより、エンジン停止時は電力ロスを押さえ、バッテリー26の劣化防止をするとともに、ECU自体の常時ONとなる時に懸念される劣化も防止できる。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
次に、同じく、図4を用いて、本発明の第7の実施形態による空気流量測定装置の構成及び動作について説明する。
さらに、本実施形態では、図4に示すように、リレー28を経由した電源接続7cをエンジン冷却用の冷却ファン29の電源接続と共通にする。エンジン停止後のエンジン自体あるいはエンジンに装着された装置の加熱による劣化を低減するためには、エンジン停止後も冷却ファン29の駆動を継続し、エンジン等の温度を問題とならない程度まで下げた後、停止することが望ましいものである。このエンジン停止後の冷却ファンON時間は、エンジン温度に依存するため、発熱抵抗式空気流量測定装置3の電源供給を維持しておくのに適する時間とほぼ一致する。従って、ECU24は、エンジン停止後も接続を維持しておくべきふたつの装置の電源管理を、ひとつのOFF時間の設定、及び、ひとつのリレー制御によって実施できる。このOFFタイミングの設定は、前述のように、エンジン停止後一定時間経過後に電源を切る時間制御や、エンジンの停止後エンジンの冷却水あるいは吸気温度が規定温度以下になるまで電源供給を継続する温度制御とすることができる。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
次に、図5及び図6を用いて、本発明の第8の実施形態による空気流量測定装置の構成及び動作について説明する。
図5は、本発明の第6の実施形態による空気流量測定装置の要部の回路図であり、図6は、本発明の第6の実施形態による空気流量測定装置の発熱抵抗体加熱温度の空気流量依存性の特性図である。図6において、横軸は空気流量を示し、縦軸は発熱抵抗体の加熱温度を示している。なお、図1と同一符号は、同一部分を示している。
本実施形態では、図1,図3,図4に示した方式により、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持する構成とする。
さらに、本実施形態では、低流量側での発熱抵抗体の加熱温度が急に高くなるように設定するようにしている。
発熱抵抗体1及び感温抵抗体2は、制御回路5の中に備えた抵抗R1,R2とともに、ブリッジ回路を構成している。ブリッジ回路の各辺の中点の電圧は、オペアンプOP1の2入力に入力する。オペアンプOP1は、2つの入力の差が零になるように、フィードバック抵抗Rfを介してブリッジ回路にフィードバックして、発熱抵抗体1の加熱電流を可変制御する。発熱抵抗体1を流れる電流が、流量信号8aとして、図1に示した出力調整回路6に出力する。
さらに、本実施形態では、オペアンプOP1の入力にブリッジ回路の外部から電圧を印加する電源回路Vbを備えている。電源回路Vbからは常に一定の電圧がオペアンプOP1の一方の入力端子に加えられるため、常に一定電圧差を加えることができる。電源回路Vbによる印加電圧の影響は、ブリッジの両端電圧が低い低流量ほど大きくなる。このように構成することにより、発熱抵抗体の加熱温度は、図6に示すように、極低流量で加熱温度が急に高くなるように設定することができる。従って、低流量ほど加熱温度が高くなる流量依存性を持たせることができる。
このように、低流量側での加熱温度が急に高くなるように設定することにより、エンジン停止中の流量ゼロ、実際には自然対流等による極低流速では、エンジン駆動中の中流速、高流速時に比べて加熱温度が高くなる。例えば、エンジン駆動中の空気流量範囲での発熱抵抗体加熱温度を吸気温十140℃〜150℃に設定し、極低流量での加熱温度を180℃程度に設定すれば、例えば、エンジン駆動中の吸気温度が25℃の時、発熱抵抗体の温度は165℃〜175℃であるのに対して、エンジン停止後のオイルベーパ等が生じる状態では、空気温度は40℃以上になっており、発熱抵抗体の温度は220℃以上になる。オイルの主成分の気化温度は、170℃〜200℃であるから、エンジン停止後の発熱抵抗体の温度はオイルペーパ等の揮発性ガスの発生温度以上となる。また、気化温度がさらに高いオイルや添加物を用いることもあるが、例えば、気化温度が250℃であっても、発熱抵抗体が220℃程度まで加熱されていれば、そのオイルが発熱抵抗体に付着することはほとんど無いものである。また、気化温度が高い成分がガス化するような状態では、空気温度もさらに高くなっているので、発熱抵抗体の温度も高くなる。空気温度が70℃以上であれば、発熱抵抗体温度は250℃以上であり、気化温度以上となる。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
さらに、本実施形態では、エンジン停止中の発熱抵抗体の温度を中高流量時の加熱温度よりも高くすることにより、さらに効果的に付着物の影響を低減し得るものとなる。
次に、同じく、図5を用いて、本発明の第9の実施形態による空気流量測定装置の構成及び動作について説明する。本実施形態では、感温抵抗体も若干空気温度以上に加熱するようにある程度の電流が流れるように、フィードバック回路の定数(例えば、図5のフィードバック抵抗Rfの抵抗値)を設定する。感温抵抗体に流れる電流を調整し、極低流量では感温抵抗体も若干発熱する状態とする。しかし、若干の発熱量であれば、ある程度の空気流量になると空気への放熱により、感温抵抗体の温度は空気温度とほぼ同じになる。発熱抵抗体の温度は、実際には感温抵抗体の温度に対して一定温度高くなるように制御されているので、このように設定することにより、エンジン停止中の発熱抵抗体の温度をエンジン駆動中より高くすることができる。特に、この実施形態の場合には、感温抵抗体の放熱率を発熱抵抗体よりも大きくなる構造とすると効果が明確になる。
以上説明したように、本実施形態でも、エンジンを停止後も、エンジン及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、発熱抵抗体1の温度がエンジン駆動中と同じ温度かそれ以上に維持されるので、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
さらに、本実施形態では、エンジン停止中の発熱抵抗体の温度を中高流量時の加熱温度よりも高くすることにより、さらに効果的に付着物の影響を低減し得るものとなる。
なお、上述の各実施形態において、発熱抵抗式空気流量測定装置に用いる発熱抵抗体としては、発熱抵抗体の加熱温度をあまり高温にすることができず、また流量変化に対して高感度な発熱抵抗体に用いる場合に効果的である。このような発熱抵抗体としては、シリコンのダイヤフラム上に形成された拡散抵抗体を発熱抵抗体として用いる半導体式の発熱抵抗体が上げられる。半導体式の発熱抵抗体の場合、抵抗体の加熱温度をあまり高温にすると、シリコン基板や拡散抵抗の劣化が生じる恐れがあるので、あまり高温に加熱できないものがある。発熱抵抗体を高温にし難いばあい、それだけ、付着物が付着しやすい状況にある。
さらに、シリコンのダイヤフラム上に拡散抵抗を形成することにより、発熱抵抗体の部分の熱容量が小さいため、流量変化に対して高感度な空気流量測定装置となる。このような高感度な空気流量測定装置は、発熱抵抗体の上流と下流にそれぞれ感温抵抗体を設置することにより、順流方向の空気流量だけでなく、逆流方向の空気流量を測定するために用いることができる。このような高感度な空気流量測定装置は、熱容量が小さい分、付着物が付着するとそれだけ熱容量が大きくなり、感度が低下することになる。このような高温にすることができず、高感度な発熱抵抗体に本実施形態を適用することにより、特に、エンジン停止時に生じる発熱抵抗体等への付着物の影響を低減して、測定精度を向上することができる。
本発明の第1の実施形態による空気流量測定装置の構成を示すブロック構成図である。 発熱抵抗式空気流量測定装置の発熱抵抗体へのオイル付着量を実測した実験データ図である。 本発明の第1の実施形態による空気流量測定装置を備えたエンジン制御システムのシステム構成図である。 本発明の第6の実施形態による空気流量測定装置を備えたエンジン制御システムのシステム構成図である。 本発明の第6の実施形態による空気流量測定装置の要部の回路図である。 本発明の第6の実施形態による空気流量測定装置の発熱抵抗体加熱温度の空気流量依存性の特性図である。
符号の説明
1…発熱抵抗体
2…感温抵抗体
3…発熱抵抗式空気流量測定装置
4…電源管理回路
5…制御回路
6…出力調整回路
7…電源ライン
8…流量信号
9…吸気温信号
10…グランドライン
11…吸気管路
12…吸入空気
13…ターボチャージャー
14…PCVポート
15…EGR
16…インジェクタ
17…スロットルボディ
18…スロットル開度センサ
19…エンジン
20…クランク角センサ
21…酸素濃度センサ
22…水温センサ
23…エアクリーナ
24…ECU
25…排気ガス
26…バッテリー
27…イグニッションスイッチ
28…リレー
29…冷却ファン

Claims (7)

  1. 内燃機関に吸入される空気の流量を検出する発熱抵抗体と、この発熱抵抗体と電気的に接続され、上記発熱抵抗体を用いて吸入空気の流量に応じた信号を出力する電子回路とを有する発熱抵抗式流量測定装置において、
    上記内燃機関を停止した後、上記内燃機関及びその吸気系に装着された装置の温度がオイルベーパ等の揮発性ガスの発生温度以下となるまで、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持する温度維持手段を備えたことを特徴とする空気流量測定装置。
  2. 請求項1記載の空気流量測定装置において、
    上記内燃機関に吸入される空気の温度を検出する温度検出手段を備え、
    上記温度維持手段は、この温度検出手段によって検出された温度に基づいて、内燃機関の停止後も、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持することを特徴とする空気流量測定装置。
  3. 請求項1記載の空気流量測定装置において、
    上記内燃機関の冷却水温を検出する水温検出手段を備え、
    上記温度維持手段は、この水温検出手段によって検出された温度に基づいて、内燃機関の停止後も、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持することを特徴とする空気流量測定装置。
  4. 請求項1記載の空気流量測定装置において、
    上記温度維持手段は、内燃機関の停止後の時間に基づいて、内燃機関の停止後も、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持することを特徴とする空気流量測定装置。
  5. 請求項4記載の空気流量測定装置において、
    上記温度維持手段は、内燃機関の冷却ファンのエンジン停止後に駆動される時間と同じ時間だけ、内燃機関の停止後も、上記発熱抵抗体の温度が内燃機関の駆動中と同じ温度かそれ以上に維持することを特徴とする空気流量測定装置。
  6. 請求項1記載の空気流量測定装置において、
    上記温度維持手段は、上記発熱抵抗体によって検出される空気流量に基づいて、内燃機関の停止を判定することを特徴とする空気流量測定装置。
  7. 請求項1記載の空気流量測定装置において、
    上記発熱抵抗体の加熱温度が、極低流量側で高くなるような空気流量依存性をもたせる手段を備えたことを特徴とする空気流量測定装置。
JP2006160867A 2006-06-09 2006-06-09 エンジン制御装置 Expired - Fee Related JP4298722B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160867A JP4298722B2 (ja) 2006-06-09 2006-06-09 エンジン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160867A JP4298722B2 (ja) 2006-06-09 2006-06-09 エンジン制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001370783A Division JP3828794B2 (ja) 2001-12-05 2001-12-05 空気流量測定装置

Publications (2)

Publication Number Publication Date
JP2006307863A true JP2006307863A (ja) 2006-11-09
JP4298722B2 JP4298722B2 (ja) 2009-07-22

Family

ID=37474995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160867A Expired - Fee Related JP4298722B2 (ja) 2006-06-09 2006-06-09 エンジン制御装置

Country Status (1)

Country Link
JP (1) JP4298722B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175150A (ja) * 2007-01-19 2008-07-31 Hitachi Ltd 空気流量測定装置
JP2010223747A (ja) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd 熱式流量計

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486461B (zh) * 2020-05-09 2021-01-26 温岭市博惠热能设备股份有限公司 一种石油蒸汽燃烧处理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175150A (ja) * 2007-01-19 2008-07-31 Hitachi Ltd 空気流量測定装置
JP2010223747A (ja) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd 熱式流量計

Also Published As

Publication number Publication date
JP4298722B2 (ja) 2009-07-22

Similar Documents

Publication Publication Date Title
US7526914B2 (en) Heater control device for gas sensor
US6718960B2 (en) Diagnostic apparatus for gas mixture supply apparatus and diagnostic method thereof
JP2007154696A (ja) 内燃機関の吸入空気量算出装置
US20040086023A1 (en) Method and apparatus to control an exhaust gas sensor to a predetermined temperature
US8014930B2 (en) System and method for determining oxygen sensor heater resistance
JP2013163978A (ja) エンジンの制御装置
JP3828794B2 (ja) 空気流量測定装置
JP4298722B2 (ja) エンジン制御装置
JP2012172535A (ja) エンジンの制御装置
JPH07209054A (ja) 吸入空気量を測定する方法
JP2005042638A (ja) 内燃機関の空燃比制御装置
JP2008151004A (ja) 燃料含水率検出方法およびこれを用いたヒータ通電開始時期設定方法
US7370518B2 (en) Heating resistor type fluid flow rate measuring apparatus and control apparatus for internal combustion engine having the measuring apparatus
JP3316924B2 (ja) 内燃機関の電子制御装置
JP2004324450A (ja) 内燃機関の制御システム
JP4923012B2 (ja) 内燃機関の制御装置
JP4253307B2 (ja) 内燃機関の二次空気供給装置の診断装置
JPS60125751A (ja) 燃料噴射制御装置
JP2020020676A (ja) 空燃比センサの温度制御装置
JP2007056832A (ja) 空燃比センサの活性判定装置
JP2004353469A (ja) 内燃機関の制御装置
JPS60216255A (ja) 酸素濃度センサ用ヒ−タの制御装置
JP2006052678A (ja) 内燃機関の制御装置
JP2009162089A (ja) 内燃機関の吸入空気量演算装置
JPH0544985B2 (ja)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees