JP2006301572A - 偏光板及びこれを用いた液晶表示装置 - Google Patents

偏光板及びこれを用いた液晶表示装置 Download PDF

Info

Publication number
JP2006301572A
JP2006301572A JP2005344484A JP2005344484A JP2006301572A JP 2006301572 A JP2006301572 A JP 2006301572A JP 2005344484 A JP2005344484 A JP 2005344484A JP 2005344484 A JP2005344484 A JP 2005344484A JP 2006301572 A JP2006301572 A JP 2006301572A
Authority
JP
Japan
Prior art keywords
group
mass
polarizing plate
film
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344484A
Other languages
English (en)
Inventor
Eiichiro Aminaka
英一郎 網中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005344484A priority Critical patent/JP2006301572A/ja
Publication of JP2006301572A publication Critical patent/JP2006301572A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高い光学的性能を有しつつ、温湿度変化や液晶表示装置の連続点灯による画面周辺部における光漏れを改善した偏光板及び該偏光板を用いた液晶表示装置の提供。
【解決手段】 偏光子の両側に保護膜を有する偏光板の少なくとも片面に、多官能性化合物(B)に対して反応性を有する官能基を含有する特定の(メタ)アクリル系共重合体(A)、及び多官能性化合物(B)からなる(メタ)アクリル系共重合体の組成物を含有して形成され、且つ特定のゲル分率を有する粘着層が塗設された偏光板。
【選択図】なし

Description

本発明は、温湿度変化や液晶表示装置の連続点灯における画面周辺部における偏光板の収縮応力に起因する光漏れを改良した偏光板およびこれを用いた液晶表示装置に関する。
液晶表示装置は、低電圧・低消費電力で小型化・薄膜化が可能など様々な利点から、パーソナルコンピューターや携帯機器のモニター、テレビ用途に広く利用されている。このような液晶表示装置は、液晶セル内の液晶分子の配列状態により様々なモードが提案されているが、従来は液晶セルの下側基板から上側基板に向かって約90°捩れた配列状態になるTNモードが主流であった。
一般に液晶表示装置は、液晶セル、光学補償シート、偏光子から構成される。光学補償シートは、画像着色を解消したり、視野角を拡大したりするために用いられており、延伸した複屈折フィルムや透明フィルムに液晶を塗布したフィルムが使用されている。
例えば、特許文献1では、ディスコティック液晶をトリアセチルセルロースフィルム上に塗布し配向させて、固定化した光学補償シートをTNモードの液晶セルに適用し、視野角を広げる技術が開示されている。しかしながら、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は、視野角依存性に対する要求が厳しく、前述のような手法をもってしても要求を満足することはできていない。そのため、IPS(In−Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、TNモードとは異なる液晶表示装置が研究されている。特にVAモードはコントラストが高く、比較的製造の歩留まりが高いことからTV用の液晶表示装置として着目されている。
ところで、セルロースアシレートフィルムは、他のポリマーフィルムと比較して、光学的等方性が高い(レターデーション値が低い)という特徴がある。従って、光学的等方性が要求される用途、例えば偏光板には、セルロースアシレートフィルムを用いることが普通である。
一方、液晶表示装置の光学補償シート(位相差フィルム)には、逆に光学的異方性(高いレターデーション値)が要求される。特にVA用の光学補償シートでは20〜200nmの正面レターデーション(Re590)、0〜400nmの膜厚方向レターデーション(Rth590)が必要とされる。従って、光学補償シートとしては、ポリカーボネートフィルムやポリスルホンフィルムのようなレターデーション値が高い合成ポリマーフィルムを用いることが普通であった。
以上のように光学材料の技術分野では、ポリマーフィルムに光学的異方性(高いレターデーション値)が要求される場合には合成ポリマーフィルムを使用し、光学的等方性(低いレターデーション値)が要求される場合にはセルロースアシレートフィルムを使用することが一般的な原則であった。
特許文献2には、従来の一般的な原則を覆して、光学的異方性が要求される用途にも使用できる、高いレターデーション値を有するセルロースアセテートフィルムが提案されている。この提案では、セルローストリアセテートで高いレターデーション値を実現するために、少なくとも2つの芳香環を有する芳香族化合物、中でも1,3,5−トリアジン環を有する化合物を添加し、延伸処理を行っている。一般にセルローストリアセテートは延伸しにくい高分子素材であり、複屈折率を大きくすることは困難であることが知られているが、添加剤を延伸処理で同時に配向させることにより複屈折率を大きくすることを可能にし、高いレターデーション値を実現している。このフィルムは偏光板の保護膜を兼ねることができるため、安価で薄膜な液晶表示装置を提供することができる利点がある。
特許文献3には、炭素数2〜4のアシル基を置換基として有し、アセチル基の置換度をAとし、プロピオニル基又はブチリル基の置換度をBとしたとき、式2.0≦A+B≦3.0及び式A<2.4を同時に満たすセルロースエステルを含有する光学フィルムが開示されている。
特許文献4にはVAモード液晶表示装置に用いられる偏光板において、該偏光板が、偏光子と光学的に二軸性の混合脂肪酸セルロースエステルフィルムとを有し、液晶セルと偏光子の間に該光学的に二軸性の混合脂肪酸セルロースエステルフィルムが配置されていることを特徴とする偏光板が開示されている。
上述の文献に開示されている方法は、安価で且つ薄い液晶表示装置が得られる点で有効である。しかしながら、近年、液晶表示装置は大型化、高輝度化が急速に進んでおり、偏光板の収縮応力による黒表示時の画面周辺部における光漏れが問題となってきている。偏光板は環境の温湿度の変化により収縮しようとするが、粘着層により液晶セルに固定されているため、偏光板の保護膜、粘着層及び液晶セルのガラス基板に局所的(特に画面周辺部)に応力が発生し、それぞれの光弾性による複屈折の変化により光漏れが生じる。
偏光板を貼り付けた液晶セルを高温下で処理した場合には、偏光板中の水分が放出されることによって偏光板の収縮が大きく、高温処理中及び高温処理から常温常湿下に取り出した直後に光漏れが強く発生する。その後偏光板を常温常湿下で放置すると、偏光板が水分を吸収し偏光板の収縮力が減少するのに伴い光漏れも弱くなる。なお常温常湿下であっても、バックライトを連続点灯すると偏光板の温度が上昇し、高温処理と同様の光漏れが発生する。
偏光板を貼り付けた液晶セルを高温高湿下で処理した場合には、偏光板が水分を吸収し、常温常湿下に放置することで偏光板中の水分が放出されることにより偏光板の収縮力が増大する。この収縮力の増大に伴い光漏れが強くなる。
そのため、このような温湿度変化や連続点灯による画面周辺部における光漏れの改善が要望されている。
TNモードでは偏光板を液晶セルに貼合する粘着剤を柔らかくし、光学補償フィルムにかかる収縮応力を緩和することにより、上記のような光漏れを改善してきている。特許文献5乃至7では粘着剤のクリープ値を大きくすることにより、収縮応力を緩和することが開示されている。
その他にも、収縮応力緩和のために偏光板または光学補償フィルムを液晶セルに貼合する粘着剤の各種の弾性率を小さくすることが開示されている。例えば、緩和弾性率(特許文献8)、弾性率(特許文献9乃至12)、剪断弾性率(特許文献13)のようなものが挙げられる。
上記のような収縮応力を緩和させる粘着剤とするために、特許文献14に開示されるように偏光板または光学補償フィルムを液晶セルに貼合する粘着剤のゲル分率は小さくすることが有効と考えられている。
また、従来は上記のような応力緩和をさせるために粘着剤を柔らかくすると共に、特許文献15乃至17で開示されるように偏光板にリワーク性を付与するために、粘着剤の接着力を弱く設計していた。
特許第2587398号公報 欧州特許出願公開第911656号明細書 特開2002−71957号公報 特開2003−270442号公報 特開2001−272541号公報 特開2003−50313号公報 特開2001−350020号公報 特開平11−52133号公報 特開2001−272542号公報 特開2000−321992号公報 特開2000−162584号公報 特開2000−155215号公報 特開2001−272544号公報 特開2000−155213号公報 特開平11−258419号公報 特開2000−9973号公報 特開2004−78171号公報
本発明の目的は、高い光学的性能を有しつつ、温湿度変化や液晶表示装置の連続点灯による画面周辺部における光漏れを改善した偏光板および該偏光板を用いた液晶表示装置を提供することである。さらには、高い光学補償機能を有しつつ、温湿度変化や液晶表示装置の連続点灯による画面周辺部における光漏れを改善した偏光板および該偏光板を用いた液晶表示装置を提供することである。
本発明者らは、鋭意検討した結果、偏光板の収縮に起因する偏光板の保護膜および粘着層にかかる応力を、偏光板を液晶セルのガラス板に貼り付ける側に設けられる粘着層を特定の組成とすることで抑制することができ、温湿度変化や連続点灯による画面周辺部における光漏れが改善できることを見出した。
本発明者らは、また、鋭意検討した結果、液晶セル表裏の偏光板の吸収軸が互いに直交しており、かつ吸収軸が液晶セルの長辺または短辺に平行な液晶表示装置においては、液晶セル表裏の偏光板の吸収軸が互いに直交しており、かつ吸収軸が液晶セルの長辺または短辺と45度をなす液晶表示装置とは異なり、偏光子の収縮応力に起因する画面周辺部の光漏れは、偏光板を液晶セルのガラス板に貼り付ける粘着層を硬くすることにより改善できることを見出した。
さらに、本発明者らは、液晶表示装置のバックライト表面の温度が液晶表示装置の連続点灯時の画面周辺部の光漏れに関連していることを突き止め、表面温度が40℃以下のバックライトを用いることで、連続点灯時の画面周辺部の光漏れを改善できることを見出した。
すなわち、本発明は、下記構成の偏光板及び液晶表示装置であり、これにより本発明の上記目的が達成される。
<1> 偏光子の両側に保護膜を有する偏光板であって、該偏光板が少なくとも片面に粘着層を有し、該粘着層が少なくとも、下記(A)並びに(B)、
(A)(a1)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
(a2)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
(a3)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a1)が75質量部以上で、ビニル基を有する化合物(a2)が25質量部以下であって、且つ官能基含有モノマー(a3)が、該モノマー(a1)と化合物(a2)の和100質量部に対して10質量部以下である共重合体100質量部、並びに
(B)官能基含有モノマー(a3)の官能基と反応して、架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物0.005〜5質量部、
からなる(メタ)アクリル系共重合体の組成物を含有する粘着剤が塗設されて形成されており、さらに該粘着剤のゲル分率が40質量%以上90質量%以下であることを特徴とする偏光板。
<2> 偏光子の両側に保護膜を有する偏光板であって、該偏光板が少なくとも片面に粘着層を有し、該粘着層が少なくとも、下記(A1)、(A2)並びに(B)、
(A1)(a11)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
(a12)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
(a13)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a11)が75質量部以上で、ビニル基を有する化合物(a12)が25質量部以下であって、且つ官能基含有モノマー(a13)が、該モノマー(a11)と化合物(a12)の和100質量部に対して10質量部以下で、質量平均分子量が100万以上である共重合体100質量部、
(A2)(a21)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
(a22)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
(a23)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a21)が75質量部以上で、ビニル基を有する化合物(a22)が25質量部以下であって、且つ官能基含有モノマー(a23)が、該モノマー(a21)と化合物(a22)の和100質量部に対して10質量部以下で、質量平均分子量が10万以下である共重合体20〜200質量部、並びに
(B)官能基含有モノマー(a13)及び(a23)の官能基と反応して架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物0.005〜5質量部、
からなる(メタ)アクリル系共重合体の組成物を含有する粘着剤が塗設されて形成されており、さらに該粘着剤のゲル分率が40質量%以上90質量%以下であり、
さらに(メタ)アクリル系共重合体(A1)及び(A2)における官能基含有モノマー(a13)及び(a23)から誘導される繰返し単位の導入量が、下記数式(1)で定義される官能基分配率0〜15質量%を満足することを特徴とする偏光板。
数式(1):官能基分配率=[(メタ)アクリル系共重合体(A2)中の官能基含有モノマー(a23)から誘導される繰返し単位の質量/(メタ)アクリル系共重合体(A1)中の官能基含有モノマー(a13)から誘導される繰返し単位の質量]×100。
<3> 前記粘着層が(A)(a1)(メタ)アクリル酸エステルモノマー、(a2)ビニル基を有する化合物、及び、(a3)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、からなる(メタ)アクリル系共重合体、並びに、(B)官能基含有モノマー(a3)の官能基と反応して、架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物からなる(メタ)アクリル系共重合体の組成物からなり、該(メタ)アクリル系共重合体Aのガラス転移温度が0℃以下であることを特徴とする<1>又は<2>に記載の偏光板。
<4> 前記粘着層を無アルカリガラス板に幅10mm、長さ10mmの面積を貼り付け、50℃の雰囲気下で200gの荷重を1時間掛けた後のクリープ量が70μm未満であることを特徴とする<1>から<3>のいずれかに記載の偏光板。
<5> 前記粘着層を無アルカリガラス板に幅10mm、長さ10mmの面積を貼り付け、25℃の雰囲気下で200gの荷重を1時間掛けた後のクリープ量が40μm未満であることを特徴とする<1>から<4>のいずれかに記載の偏光板。
<6> 前記粘着層の無アルカリガラス板に対する25℃の雰囲気下における90°剥離接着力が10N/25mm幅以上であることを特徴とする<1>から<5>のいずれかに記載の偏光板。
<7> 前記粘着層の無アルカリガラス板に対する70℃の雰囲気下で5時間処理した後の90°剥離接着力が0〜90℃のいずれの測定温度においても10N/25mm幅以上であることを特徴とする<1>から<6>のいずれかに記載の偏光板。
<8> 前記粘着層の弾性率が0.08MPa以上であることを特徴とする<1>から<7>のいずれかに記載の偏光板。
<9> 前記粘着層の90℃における弾性率が0.06MPa以上であることを特徴とする<1>から<8>のいずれかに記載の偏光板。
<10> 前記粘着層の剪断弾性率が0.1GPa〜100GPaであることを特徴とする<1>から<9>のいずれかに記載の偏光板。
<11> 前記粘着剤のゲル分率が60質量%以上90質量%以下である<1>から<10>のいずれかに記載の偏光板。
<12> 前記粘着層の厚みが5〜30μmである<1>から<11>のいずれかに記載の偏光板。
<13>
前記粘着剤の表面張力γA、極性成分γA p、および少なくとも一方の保護膜の表面張力γF、極性成分γF pがそれぞれ下記数式(20)〜(23)を満たす<1>から<12>のいずれかに記載の偏光板。
数式(20):30≦γA≦45
数式(21):5≦γA p≦15
数式(22):50≦γF≦75
数式(23):20≦γF p≦45
[式中、γA、γA p、γF、γF pの単位はmN/mである。]
<14> 偏光板の、少なくとも一方の保護膜の正面レターデーション値Reλ及び膜厚方向のレターデーション値Rthλが、下記数式(2)及び(3)を満たす<1>から<13>のいずれかに記載の偏光板。
数式(2):0nm≦Re590≦200nm
数式(3):0nm≦Rth590≦400nm
[式中、Re590、Rth590は、波長λ=590nmにおける値(単位:nm)である。]
<15> 保護膜が、セルロースの水酸基がアセチル基及び炭素原子数3以上のアシル基で置換された、セルロースの混合脂肪酸エステルであるセルロースアシレートを主たるポリマー成分とするセルロースアシレートフィルムであって、該セルロースアシレートのアセチル基の置換度Aと、炭素原子数が3以上のアシル基の置換度Bとが下記数式(4)、(5)を満たす<1>から<14>のいずれかに記載の偏光板。
数式(4):2.0≦A+B≦3.0
数式(5):0<B
<16> 炭素原子数が3以上のアシル基がプロピオニル基又はブタノイル基である<15>に記載の偏光板。
<17> セルロースの6位の水酸基の置換度が0.75以上である<15>又は<16>に記載の偏光板。
<18> 保護膜の少なくとも一方が、セルロースを構成するグルコース単位の水酸基を炭素原子数が2以上のアシル基で置換して得られたセルロースアシレートからなるフィルムであって、セルロースを構成するグルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記数式(6)及び(7)を満たすセルロースアシレートフィルムである<1>から<17>のいずれかに記載の偏光板。
数式(6):2.0≦DS2+DS3+DS6≦3.0
数式(7):DS6/(DS2+DS3+DS6)≧0.315
<19> アシル基がアセチル基である<18>に記載の偏光板。
<20> 保護膜が、棒状化合物又は円盤状化合物のレターデーション発現剤を1種以上含有している<1>から<19>のいずれかに記載の偏光板。
<21> 保護膜がシクロオレフィン系ポリマーである<1>から<20>のいずれかに記載の偏光板。
<22> 偏光板の、少なくとも一方の保護膜の正面レターデーション値Reλ及び膜厚方向のレターデーション値Rthλが、下記数式(8)〜(11)を満たす<1>から<21>のいずれかに記載の偏光板。
数式(8):0≦|Re590|≦10
数式(9):|Rth590|≦25
数式(10):|Re400−Re700|≦10
数式(11):|Rth400−Rth700|≦35
[式中、Re590、Rth590は、波長λ=590nmにおける値、Re400、Rth400は、波長λ=400nmにおける値、Re700、Rth700は、波長λ=700nmにおける値(いずれも単位:nm)である。]
<23> 保護膜が、アシル置換度が2.85〜3.00のセルロースアシレートフィルムからなり、且つ該フィルム中にReλ及びRthλを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含む<22>に記載の偏光板。
<24> 少なくとも一方の保護膜の上に光学異方性層が設けられた<1>から<23>のいずれかに記載の偏光板。
<25> 保護膜が、可塑剤、紫外線吸収剤、剥離促進剤、染料、及びマット剤のうち1種以上を含有していることを特徴とする<1>から<24>のいずれかに記載の偏光板。<26> 少なくとも一方の保護膜の表面に、ハードコート層、防眩層又は反射防止層の少なくとも一層が設けられた<1>から<25>のいずれかに記載の偏光板。
<27> 液晶セルと偏光板を有する液晶表示装置であって、該偏光板の少なくとも一が<1>から<26>のいずれかに記載の偏光板であることを特徴とする液晶表示装置。
<28> 液晶セルと偏光板を有する液晶表示装置であって、該偏光板の該液晶セルと反対側の保護膜が<26>に記載の表面にハードコート層、防眩層又は反射防止層の少なくとも一層が設けられた保護膜になるように、<26>に記載の偏光板を配置したことを特徴とする液晶表示装置。
<29> 液晶セルを一対の偏光板で挟んだ液晶表示装置であって、該一対の偏光板の透過軸が互いに直交に配置されており、かつ該透過軸は該偏光板の辺に対して直交または平行であることを特徴とする<27>又は<28>に記載の液晶表示装置。
<30> 液晶セルがVAモードであることを特徴とする<27>から<29>のいずれかに記載の液晶表示装置。
<31> 表面の温度が40℃以下であるバックライトを使用したことを特徴とする<27>から<30>のいずれかに記載の液晶表示装置。
<32> バックライトの光源が発光ダイオード、二次元積層蛍光ランプから選ばれるものの内1つを使用したことを特徴とする<31>に記載の液晶表示装置。
本発明の偏光板および液晶表示装置は、温湿度変化又は液晶示装置の連続点灯時の黒表示の画面周辺部における光漏れが改善される。さらには、高い光学補償機能を有する偏光板が得られる。また、視野角補償効果に優れている。
以下、本発明について更に詳細に説明する。
なお本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。
<粘着層>
まず、本発明に関する粘着層について説明する。
液晶表示装置を高温下に放置した場合、高温高湿から低温低湿へ環境を変化させた場合、連続してバックライトを表示させた場合などには、偏光板の寸法変化が生じ、この寸法変化に伴い、粘着層の発泡や、液晶セルなどの被着体からのハガレが生じやすくなる。従来の粘着層は、粘着剤の分子量を上げたり、架橋度を上げたりして、粘着層を上記のような過酷な条件下における使用に耐えるように改良されている。
一方、TNモードのように液晶セル表裏の偏光板の吸収軸が互いに直交しており、かつ吸収軸が液晶セルの長辺または短辺と45度をなす液晶表示装置においては、偏光板の長期間の使用での偏光板の寸法変化によって生ずる内部応力が、偏光板周縁部に集中することによる液晶表示装置の画面周辺部の光漏れが生じることが問題となってきた。この光漏れは偏光板の寸法変化による内部応力を緩和することで改善することができ、このような緩和は粘着層を偏光板の寸法変改に追随させることにより実現されてきた。
ところが、発明者らの検討の結果、VAモードのような液晶セル表裏の偏光板の吸収軸が互いに直交しており、かつ吸収軸が液晶セルの長辺または短辺と平行な液晶表示装置偏光板では、偏光子の収縮応力に起因する画面周辺部の光漏れは、逆に偏光板を液晶セルのガラス板に貼り付ける粘着層を硬くすることにより改善できることが明らかとなった。
しかし上記のように粘着層を硬くすると、粘着力が低下し過酷な条件下において発生する発泡やハガレが生じる。今回本発明の発明者らは粘着層を三次元架橋(ゲル化)することで粘着層を硬くし、偏光板の寸法変化を防止した上で、ホモポリマーとした場合のTgが低い、つまり柔らかい(メタ)アクリル酸エステルを使用することで粘着力も確保出来ることを見出した。また、上記のような接着性能と硬さのバランスは分子量分布(高分子量成分と低分子量成分の比)、共重合体を構成するモノマー成分(低Tg、高Tg)の構成比、三次元架橋の程度(ゲル分率)により調整できる。
〔(メタ)アクリル系共重合体:(A){並びにA1およびA2}〕
(a1)(a11)(a21)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー
内部応力を緩和させるためには、ホモポリマーとした場合のTgが−30℃未満の(メタ)アクリル酸エステルモノマーを使用する。好ましくは−40℃未満であり、更に好ましくは−50℃未満のものを使用することである。Tgが−30℃未満の(メタ)アクリル酸エステルとしては、エチルアクリレート、プロピルアクリレート、n−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、n−ヘプチルアクリレート、n−オクチルアクリレート、n−ノニルアクリレート、n−デシルアクリレート、2−メトキシエチルアクリレート、エトキシメチルアクリレート、2−エトキシエチルアクリレート、3−エトキシプロピルアクリレート、n−オクチルメタクリレート、n−ノニルメタクリレート、n−デシルメタクリレート、n−ウンデカシルメタクリレート、n−ドデシルメタクリレート、n−ドリデシルメタクリレート等が挙げられる。
(a2)(a12)(a22)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物
ホモポリマーとした場合のTgが−30℃以上のビニル化合物としては、メチルアクリレート、i−ブチルアクリレート、t−ブチルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、n−ウンデカシルアクリレート、n−ドデシルアクリレート、n−トリデシルアクリレート、n−テトラデシルアクリレート、n−ペンタデシルアクリレート、n−ヘキサデシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、n−ブチルメタクリレート、i−ブチルメタクリレート、t−ブチルメタクリレート、n−ペンチルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、n−ヘプチルメタクリレート、n−テトラデシルメタクリレート、n−ペンタデシルメタクリレート、n−ヘキサデシルメタクリレート等の(メタ)アクリレートが挙げられる。その他のビニル化合物として、酢酸ビニル、スチレン、メチルスチレン、ビニルトルエン、アクリロニトリル、(メタ)アクリルアミド及びN−メチルアクリルアミドなどを挙げることができる。
[Tgの測定]
ホモポリマーとした場合のTgの測定は、示差熱走査熱量計(DSC2910、TA Instruments社製)を用いて行った。アルミニウム製のパンにポリマーを入れ、−160℃から+100℃まで10℃/minで昇温し、その後+100℃から−160℃まで10℃/minで降温し、降温過程のデータからTgを求めた。
本発明では、ホモポリマーとした場合のTgが−30℃未満の、上記の(メタ)アクリル酸エステルから誘導される繰り返し単位RUSと、Tgが−30℃以上のビニル化合物から誘導される繰り返し単位RUHの割合は、モノマー単位の質量比で、RUS75質量部以上でRUH25質量部以下である。RUS100質量部でRUH0質量部であってもよいが、本発明では、ホモポリマーとした場合のTgが−30℃未満の上記の(メタ)アクリル酸エステルと、Tgが−30℃以上のビニル化合物の共重合体とすることが好ましい。これにより粘着層の凝集性を高め、粘着性、耐水性、透明性、加工性などの粘着層の性能を向上することができる。
さらには、RUS85質量部以上でRUH15質量部以下であることが好ましく、RUS95質量部以上でRUH5質量部以下であることが最も好ましい。
(a3)(a13)(a23)多官能性化合物(B)に対して反応性を有する官能基含有モノマー
多官能性化合物に対して反応性を有する官能基含有モノマーの例としては、(メタ)アクリル酸、β−カルボキシエチルアクリレート、イタコン酸、クロトン酸、マレイン酸、無水マレイン酸及びマレイン酸ブチルなどのカルボキシル基を含有するモノマー;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、クロロ−2−ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート及びアリルアリコールなどの水酸基を含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート及びビニルピリジンなどのアミノ基を含有するモノマー;グリシジル(メタ)アクリレートなどのエポキシ基を含有するモノマー及びアセトアセトキシエチル(メタ)アクリレートなどのアセトアセチル基を含有するモノマーなどを挙げることができる。これらは単独であるいは組み合わせて使用することができる。
これらの中でも、カルボキシル基を含有するモノマー及び水酸基を含有するモノマーが好ましい。
本発明における、粘着層を形成する(メタ)アクリル系共重合体の組成物の主要成分としての(メタ)アクリル系共重合体(A){及び後述する(A1)、(A2)}は、ホモポリマーとした場合のTgが−30℃未満の上記の(メタ)アクリル酸エステル(a1){または(a11)、(a21)}と、Tgが−30℃以上のビニル化合物(a2){または(a12)、(a22)}の合計100質量部に対して10質量部以下、好ましくは0.5〜10質量部の、後記する多官能性化合物(B)に対する反応性を有する官能基含有モノマー(a3){または(a13)、(a23)}との共重合体である。
上記のような量で、(メタ)アクリル酸エステル(a1){または(a11)、(a21)}及びビニル化合物(a2){または(a12)、(a22)}と、多官能性化合物に対する反応性を有する官能基含有モノマー(a3){または(a13)、(a23)}とを共重合させることにより、多官能性化合物(B)と結合して良好な接着性を有する共重合体の組成物を形成することができる。
〔多官能性化合物:(B)〕
本発明の偏光板用粘着層は、反応性官能基を有する多官能性化合物(B)を含有する。
この化合物の有する官能基は、上記(メタ)アクリル系重合体(A){及び(A1)、(A2)}の反応性を有する官能基と反応するものであり、一分子内に官能基を少なくとも2個、好ましくは2〜4個有している。
このような多官能性化合物(B)の例としては、イソシアネート系化合物、エポキシ系化合物、アミン系化合物、金属キレート系化合物及びアジリジン系化合物などを挙げることができる。
イソシアネート系化合物の例としては、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート、ポリメチレンポリフェニルイソシアネート及びこれらのトリメチロールプロパンなどポリオールとのアダクト体などを挙げることができる。
また、エポキシ系化合物の例としては、ビスフェノールA、エピクロルヒドリン型のエポキシ系樹脂、エチレングリコールグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン及び1,3−ビス(N,N’−ジグリシジルアミノメチル)シクロヘキサンなどを挙げることができる。
さらに、アミン系化合物の例としては、ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン、ヘキサメチレンテトラミン、ジエチレントリアミン、トリエチルテトラミン、イソホロンジアミン、尿素樹脂、メラミン樹脂等のアミノ樹脂及びメチレン樹脂などを挙げることができる。
またさらに、金属キレート化合物の例としては、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、バナジウム、クロム及びジルコニウムなどの多価金属がアセチルアセトンやアセト酢酸エチルに配位した化合物などを挙げることができる。
さらに、アジリジン系化合物の例としては、N,N’−ジフェニルメタン-4,4’−ビス(1-アジリジンカルボキシド)、N,N’−トルエン−2,4−ビス(1−アジリジンカルボキサミド)、トリエチレンメラミン、ビスイソフタロイル−1−(2−メチルアジリジン)、トリ−1−アジリジニルホスフィンオキシド、N,N’−ヘキサメチレン−1,6−ビス(1−アジリジンカルボキシド)、トリメチロールプロパン−トリ−β−アジリジニルプロピオネート及びテトラメチロールメタン−トリ−β−アジリジニルプロピオネートなどを挙げることができる。
その他にも、ジアルデヒド、メチロールポリマー、酸類、酸無水物、アミン酸等を使用することができる。
このような多官能性化合物(B)は、上記高分子量(メタ)アクリル系共重合体(A){または(A1)、(A2)}100質量部に対して、通常は0.005〜5質量部、好ましくは0.01〜3質量部の量で使用される。このような量で多官能性化合物(B)を使用することにより、上記高分子量(メタ)アクリル系共重合体との間で好適な三次元架橋構造が形成される。なお、これら多官能性化合物(B)は、単独で又は組み合わせて使用することができる。
〔(メタ)アクリル系共重合体の製造〕
本発明の偏光板用粘着層を構成する(メタ)アクリル系共重合体(A)の製造には、公知の任意の方法を採用することができる。
例えば質量平均分子量が100万以上の高分子量(メタ)アクリル系共重合体(A1)は、原料モノマー100質量部に対して、0.01〜1質量部の重合開始剤(アゾビスイソビチロニトリル、アゾビスシクロヘキサンカルボニトリルなどのアゾ系重合開始剤、過酸化ベンゾイル、過酸化アセチルなどの過酸化物、ジフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オンなどの光重合開始剤など)を用い、塊状重合、溶液重合、乳化重合、懸濁重合などの方法により合成され、好ましくは溶液重合で合成される。
溶液重合法の場合、重合溶媒として酢酸エチル、トルエン、ヘキサン、アセトンなどが用いられ、反応温度は50〜150℃、好ましくは50〜110℃、反応時間は3〜15時間、好ましくは5〜10時間である。
また、重合平均分子量が10万以下の低分子量(メタ)アクリル系(共)重合体(A2)は、高分子量アクリル系共重合体(A1)と同様、塊状重合、溶液重合、乳化重合、懸濁重合などの方法により合成され、好ましくは、溶液重合で合成される。但し、質量平均分子量10万以下にするため、重合開始剤の使用量を高分子量アクリル系共重合体の場合の10〜100倍程度にし、さらに好ましくはラウリルメルカプタン、n−ドデシルメルカプタン、n−オクチルメルカプタンなどのメルカプタン、α−メチルスチレンダイマー及びリモネンなどの連鎖移動剤が使用される。
〔偏光板用粘着剤〕
本発明の偏光板用粘着剤は、上記のようにして製造した(メタ)アクリル系共重合体(A)及び多官能性化合物(B)を混合することにより製造することができる。(A)としては(A1)、(A2)のどちらを用いてもよい。
また、本発明の偏光板用粘着剤は、上記のようにして製造した高分子量(メタ)アクリル系共重合体(A1)、低分子量(メタ)アクリル系(共)重合体(A2)及び多官能性化合物(B)を混合することにより製造することができる。すなわち、(A)として、(A1)および(A2)の両方を用いてもよい。
この際、低分子量(メタ)アクリル系(共)重合体(A2)は、上記高分子量(メタ)アクリル系共重合体(A1)100質量部に対して、20〜200質量部、好ましくは30〜150質量部;多官能性化合物(B)は、上記高分子量(メタ)アクリル系共重合体(A1)100質量部に対して、0.005〜5質量部、好ましくは0.01〜3質量部の量で含有する。
内部応力の緩和は、ホモポリマーとした場合のTgが低い(メタ)アクリル酸エステルを使用することに加えて、高分子量の(メタ)アクリレート共重合体(A1)で三次元架橋構造を作り、その三次元架橋構造中で、低分子量の(メタ)アクリレート共重合体(A2)が動く(滑る)ことによっても行うことができることが特許第3533589号公報に記載されている。本発明においては、このような内部応力の緩和の程度は、高分子量(質量平均分子量が100万以上)の(メタ)アクリル系共重合体(A1)と低分子量(質量平均分子量が10万以下)の(メタ)アクリル系共重合体(A2)における官能基含有モノマー(a13)及び(a23)から誘導される繰返し単位の導入量により調整することができ、下記数式(1)で定義される官能基分配率=0〜15質量%とすることが好ましく、0〜10質量%とすることがさらに好ましい。
数式(1):官能基分配率=[(メタ)アクリル系共重合体(A2)中の官能基含有モノマー(a23)から誘導される繰返し単位の質量/(メタ)アクリル系共重合体(A1)中の官能基含有モノマー(a13)から誘導される繰返し単位の質量]×100。
三次元架橋の程度(ゲル分率)は、粘着剤において、40質量%以上90質量%以下であり、60質量%以上90質量%以下であることが好ましい。より好ましくは、70質量%以上90質量%以下である。
上記の範囲内とすることで、接着性能と緩和のバランスをより有意に調整することが可能となり好ましい。三次元架橋の程度は、多官能性化合物に対する反応性を有する重合性モノマーの量や多官能性化合物の量により調整できる。
本発明の偏光板用粘着剤は、上記のように(メタ)アクリル系共重合体(A){又は高分子量(メタ)アクリル系共重合体(A1)と低分子量(メタ)アクリル系(共)重合体(A2)}及び多官能性化合物(B)からなる(メタ)アクリル系共重合体の組成物を主要成分とするが、さらに、この偏光板用粘着剤には、通常粘着剤に配合される、耐候安定剤、タッキファイヤー、可塑剤、軟化剤、染料、顔料、シランカップリング剤及び導電性微粒子・光散乱性微粒子等の無機フィラー等を配合することができる。
上記の(メタ)アクリル系共重合体(A)のガラス転移温度は0℃以下であることが好ましく、より好ましくは−80〜−5℃であり、特に好ましくは−60〜−10℃である。(メタ)アクリル系共重合体(A)のガラス転移温度は高すぎると、高温における粘着剤層の発泡や剥離時の凝集破壊に対する耐性は高いが、接着力が低くなる。逆にガラス転移点が低すぎると接着力は高くなるが、高温における粘着剤層の発泡や剥離時の凝集破壊に対する耐性が低くなる。したがって、接着力と高温における粘着剤層の発泡や剥離時の凝集破壊に対する耐性のバランスを取るために上記のガラス転移温度に調整することが必要となる。
<保護膜>
本発明の偏光板は、偏光子の両側に保護膜を有する。保護膜としては、偏光板に保護膜として通常用いられる保護膜のいずれも使用できる。本発明においては、セルロースアシレートフィルムまたはシクロオレフィン系ポリマーを用いることが好ましい。偏光子の両側の保護膜は同じであっても異なっていてもよい。例えば、偏光子の両側の保護膜のうち、片側を前述のセルロースアシレートフィルム、もう片側をシクロオレフィン系ポリマーを用いることもできる。また、お互いに異なる組成や異なる光学特性のフィルムを用いることも出来る。さらに、セルロースアシレートフィルムやシクロオレフィン系ポリマーフィルムなどの上にポリマー層を設けて保護膜としてもよい。例えば、セルロースアシレートフィルムの上にポリイミド層を設けて保護膜とすることができる。そして、本発明の偏光板は、少なくとも片面(偏光子の片側)の保護膜の上または保護膜との間に他の機能層を介して粘着層が設けられる。
{セルロースアシレートフィルム}
次に、本発明に好ましく用いられるセルロースアシレートフィルムについて説明する。
本発明に好ましく用いられるセルロースアシレートフィルムは、特定のセルロースアシレートを原料として用いて形成されている。光学異方性の発現性を大きくする場合と、小さくする場合で使用するセルロースアシレートを使い分ける。
〔光学異方性を大きくする場合のセルロースアシレート〕
まず、本発明において用いられる光学異方性の発現性を大きくする場合のセルロースアシレートについて詳細に記載する。
本発明においては異なる2種類以上のセルロースアシレートを混合して用いてもよい。
前記の特定のセルロースアシレートは、セルロースの水酸基をアセチル基及び炭素原子数が3以上のアシル基で置換して得られたセルロースの混合脂肪酸エステルであって、セルロースの水酸基への置換度が下記数式(4)及び(5)を満足するセルロースアシレートであることが好ましい。
数式(4):2.0≦A+B≦3.0
数式(5):0<B
ここで、式中A及びBはセルロースの水酸基に置換されているアシル基の置換度を表し、Aはアセチル基の置換度、またBは炭素原子数3以上のアシル基の置換度である。
セルロースを構成するβ−1,4結合しているグルコース単位は、2位、3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部又は全部をアシル基によりエステル化した重合体(ポリマー)である。アシル置換度は、2位、3位及び6位のそれぞれについて、セルロースがエステル化している割合(100%のエステル化は置換度1)を意味する。
本発明では、水酸基のAとBとの置換度の総和(A+B)は、上記数式(4)に示すように、2.0〜3.0であることが好ましく、より好ましくは2.2〜2.9であり、特に好ましくは2.40〜2.85である。また、Bの置換度は上記数式(5)に示すように、0より大きいことが好ましく、0.6以上であることがさらに好ましい。(A+B)が2.0以上であれば、親水性が強くなりすぎて環境湿度の影響を受けやすくなるなどの不都合が生じないので好ましい。
さらに上記数式(5)におけるBは、その28%以上が6位水酸基の置換基であるのが好ましいが、より好ましくは30%以上が6位水酸基の置換基であり、31%以上がさらに好ましく、特には32%以上が6位水酸基の置換基であることが好ましい。
また更に、セルロースアシレートの6位のAとBの置換度の総和が0.75以上であるのが好ましく、さらには0.80以上が、特には0.85以上が好ましい。これらのセルロースアシレートフィルムにより溶解性、濾過性の好ましいフィルム調製用の溶液が作製でき、非塩素系有機溶媒においても、良好な溶液の作製が可能となる。更に粘度が低く濾過性のよい溶液の作成が可能となる。
また、セルロースアシレートフィルムが偏光板の液晶セル側に配置される保護膜である場合、セルロースを構成するグルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記数式(6)及び(7)を満たすことが好ましい。
数式(6):2.0≦DS2+DS3+DS6≦3.0
数式(7):DS6/(DS2+DS3+DS6)≧0.315
上記数式(6)及び(7)を満たすことにより、セルロースアシレートフィルムの溶媒への溶解性が向上し、また光学異方性の湿度依存性が小さくなるので好ましい。
さらに、上記のアシル基はアセチル基であることが、鹸化が進行しやすい、弾性率が高い、寸度変化が小さい、耐久性が高い、コストが安いという点で好ましい。
前記炭素原子数3以上のアシル基としては、脂肪族基でも芳香族炭化水素基でもよく特に限定されない。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステル又は芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。
好ましい炭素原子数3以上のアシル基としては、としては、プロピオニル、ブタノイル、ケプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、i−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることができる。これらの中でも、好ましくはプロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などである。特に好ましくはプロピオニル、ブタノイル基である。
また、プロピオニル基の場合には置換度Bは1.3以上であるのが好ましい。
前記混合脂肪酸セルロースアシレートとしては、具体的には、セルロースアセテートプロピオネート、セルロースアセテートブチレートが挙げられる。
〔光学異方性を小さくする場合のセルロースアシレート〕
光学異方性を小さくする場合、セルロースの水酸基へのアシル置換度が2.50〜3.00であることが望ましい。さらには置換度が2.75〜3.00であることが望ましい、2.85〜3.00であることがより望ましい。
セルロースの水酸基に置換する炭素原子数2〜22のアシル基のうち、炭素数2〜22のアシル基としては、脂肪族基でもアリール基でもよく、特に限定されず、単一でも2種類以上の混合物でもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステル又は芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。
これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることができる。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどが好ましく、アセチル、プロピオニル、ブタノイルがより好ましい。
上述のセルロースの水酸基に置換するアシル置換基のうちで、アセチル基、プロピオニル基及びブタノイル基の少なくとも2種類から実質的になる場合、その全置換度が2.50〜3.00であることが好ましい。より好ましいアシル置換度は2.75〜3.00であり、さらに望ましくは2.85〜3.00である。上記の範囲内であれば、セルロースアシレートフィルムの光学異方性を充分に低下することができ、好ましい。
〔セルロースアシレートの合成方法〕
セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物−酢酸−硫酸触媒による液相酢化法である。
前記セルロースアシレートを得るには、具体的には、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入してエステル化し、完全セルロースアシレート(2位、3位及び6位のアシル置換度の合計が、ほぼ3.00)を合成する。
上記カルボン酸化混液は、一般に溶媒としての酢酸、エステル化剤としての無水カルボン酸及び触媒としての硫酸を含む。無水カルボン酸は、これと反応するセルロース及び系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。エステル化反応終了後に、系内に残存している過剰の無水カルボン酸の加水分解及びエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウム又は亜鉛の炭酸塩、酢酸塩又は酸化物)の水溶液を添加する。
次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことによりケン化熟成し、所望のアシル置換度及び重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは中和することなく水もしくは希硫酸中にセルロースアシレート溶液を投入(又は、セルロースアシレート溶液中に、水もしくは希硫酸を投入)してセルロースアシレートを分離し、洗浄及び安定化処理を行う等して、前記の特定のセルロースアシレートを得ることができる。
前記セルロースアシレートフィルムは、フィルムを構成するポリマー成分が、実質的に上記の特定のセルロースアシレートからなることが好ましい。
ここで『実質的に』とは、ポリマー成分の55質量%以上(好ましくは70質量%以上、さらに好ましくは80質量%以上)を意味する。
前記セルロースアシレートは、粒子状で使用することが好ましい。使用する粒子の90質量%以上が0.5〜5mmの粒子径を有することが好ましい。また使用する粒子の50質量%以上が1〜4mmの粒子径を有することが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが好ましい。
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で、好ましくは200〜700、より好ましくは250〜550、更に好ましくは250〜400であり、特に好ましくは250〜350である。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。更に特開平9−95538号公報に詳細に記載されている。
低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため、前記セルロースアシレートとしては低分子成分を除去したものが有用である。
低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロースアシレート100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。
セルロースアシレートをフィルムの製造に使用する際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下である。一般に、セルロースアシレートは、水を含有しており含水率2.5〜5質量%が知られている。本発明では、セルロースアシレートの含水率を上記好適範囲とするためには、乾燥することが必要であり、その方法は目的とする含水率になる方法であれば特に限定されない。
前記セルロースアシレートの原料綿や合成方法は、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.7−12に詳細に記載されている原料綿や合成方法を採用できる。
本発明に好ましく用いられるセルロースアシレートフィルムは、前記の特定のセルロースアシレートと必要に応じて添加剤とを有機溶媒に溶解させた溶液を用いてフィルム化することにより得ることができる。
〔添加剤〕
本発明において前記セルロースアシレート溶液に用いることができる添加剤としては、例えば、可塑剤、紫外線吸収剤、劣化防止剤、レターデーション(光学異方性)発現剤、レターデーション(光学異方性)低下剤、波長分散調整剤、染料、微粒子、剥離促進剤、赤外吸収剤などを挙げることができる。本発明においては、レターデーション発現剤を用いるのが好ましい。また、可塑剤、紫外線吸収剤及び剥離促進剤の少なくとも1種以上を用いるのが好ましい。
それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収剤を混合して用いたり、同様に可塑剤を混合して用いたりすることができ、例えば特開2001−151901号公報などに記載されている。
[紫外線吸収剤]
紫外線吸収剤としては、目的に応じ任意の種類のものを選択することができ、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、シアノアクリレート系、ニッケル錯塩系等の吸収剤を用いることができ、好ましくはベンゾフェノン系、ベンゾトリアゾール系、サリチル酸エステル系である。
ベンゾフェノン系紫外線吸収剤の例として、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−アセトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4,4’−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メタクリロキシ)プロポキシベンゾフェノン等を挙げることができる。
ベンゾトリアゾール系紫外線吸収剤としては、2(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−t−アミルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール等を挙げることができる。
サリチル酸エステル系としては、フェニルサリシレート、p−オクチルフェニルサリシレート、p−tert−ブチルフェニルサリシレート等を挙げることができる。
これら例示した紫外線吸収剤の中でも、特に2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4,4’−メトキシベンゾフェノン、2(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−t−アミルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロルベンゾトリアゾールが特に好ましい。
紫外線吸収剤は、吸収波長の異なる複数の吸収剤を複合して用いることが、広い波長範囲で高い遮断効果を得ることができるので好ましい。液晶用紫外線吸収剤は、液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れ、且つ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。特に好ましい紫外線吸収剤は、先に上げたベンゾトリアゾール系化合物やベンゾフェノン系化合物、サリチル酸エステル系化合物である。中でも、ベンゾトリアゾール系化合物は、セルロースエステルに対する不用な着色が少ないことから、好ましい。
また、紫外線吸収剤については、特開昭60−235852号、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号、同6−118233号、同6−148430号、同7−11056号、同7−11055号、同7−11056号、同8−29619号、同8−239509号、特開2000−204173号の各公報に記載の化合物も用いることができる。
紫外線吸収剤の添加量は、セルロースアシレートに対し0.001〜5質量%が好ましく、0.01〜1質量%がより好ましい。添加量が0.001質量%以上であれば添加効果が十分に発揮されうるので好ましく、添加量が5質量%以下であればフィルム表面への紫外線吸収剤のブリードアウトを抑制できるので好ましい。
また紫外線吸収剤は、セルロースアシレート溶解時に同時に添加してもよいし、溶解後のドープに添加してもよい。特にスタティックミキサ等を用い、流延直前にドープに紫外線吸収剤溶液を添加する形態が、分光吸収特性を容易に調整することができるので好ましい。
[劣化防止剤]
前記劣化防止剤は、セルローストリアセテート等が劣化、分解するのを防止することができる。劣化防止剤としては、ブチルアミン、ヒンダードアミン化合物(特開平8−325537号公報)、グアニジン化合物(特開平5−271471号公報)、ベンゾトリアゾール系UV吸収剤(特開平6−235819号公報)、ベンゾフェノン系UV吸収剤(特開平6−118233号公報)などの化合物がある。
[可塑剤]
可塑剤としては、リン酸エステル、カルボン酸エステルであることが好ましい。リン酸エステル系可塑剤としては、例えばトリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート(BDP)、トリオクチルホスフェート、トリブチルホスフェート等;カルボン酸エステル系可塑剤としては、例えばジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)、ジエチルヘキシルフタレート(DEHP)、O−アセチルクエン酸トリエチル(OACTE)、O−アセチルクエン酸トリブチル(OACTB)、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等を挙げることができ、本発明に用いられる可塑剤はこれら例示の可塑剤から選ばれたものであることがより好ましい。さらに、前記可塑剤が、(ジ)ペンタエリスリトールエステル類、グリセロールエステル類、ジグリセロールエステル類であることが好ましい。
[剥離促進剤]
剥離促進剤としては、クエン酸のエチルエステル類が例として挙げられる。
[赤外吸収剤]
さらに赤外吸収剤としては例えば特開2001−194522号公報に記載されている。
[添加時期等]
これらの添加剤を添加する時期は、ドープ作製工程において何れで添加してもよいが、ドープ調製工程の最後の調製工程に、添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。
また、セルロースアシレートフィルムが多層である場合、各層の添加物の種類や添加量が異なってもよい。例えば、特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。
これら添加剤の種類や添加量の選択によって、セルロースアシレートフィルムの動的粘弾性測定機「バイブロン:DVA−225」{アイティー計測制御(株)製)}で測定するガラス転移点Tgを70〜150℃に、引張試験機「ストログラフ−R2」{(株)東洋精機製作所製}で測定する弾性率を1500〜4000MPaすることが好ましい。より好ましくは、ガラス転移点Tgが80〜135℃、弾性率が1500〜3000MPaである。すなわち、本発明に好ましく用いられるセルロースアシレートフィルムは、偏光板加工や液晶表示装置組立ての工程適性の点で、ガラス転移点Tg、弾性率を上記の範囲とすることが好ましい。
さらに添加剤については、前記公技番号2001−1745号p.16以降に詳細に記載されているものを適宜用いることができる。
[レターデーション発現剤]
本発明では光学異方性を大きく発現させる場合には、好ましいレターデーション値を実現するために、レターデーション発現剤を用いるのが好ましい。本発明において用いることができるレターデーション発現剤としては、棒状又は円盤状化合物からなるものを挙げることができる。棒状又は円盤状化合物としては、少なくとも2つの芳香族環を有する化合物を用いることができる。
棒状化合物からなるレターデーション発現剤の添加量は、セルロースアシレートを含むポリマー成分100質量部に対して0.1〜30質量部であることが好ましく、0.5〜20質量部であることがさらに好ましい。
円盤状のレターデーション発現剤は、前記セルロースアシレートを含むポリマー成分100質量部に対して、0.05〜20質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがより好ましく、0.2〜5質量部の範囲で使用することがさらに好ましく、0.5〜2質量部の範囲で使用することが最も好ましい。
円盤状化合物は、Rthレターデーション発現性において棒状化合物よりも優れているため、特に大きなRthレターデーションを必要とする場合には好ましく使用される。
2種類以上のレターデーション発現剤を併用してもよい。
棒状又は円盤状化合物からなる前記レターデーション発現剤は、250〜400nmの波長領域に最大吸収を有することが好ましく、可視領域に実質的に吸収を有していないことが好ましい。
(円盤状化合物)
以下、円盤状化合物について説明する。
円盤状化合物としては少なくとも二つの芳香族環を有する化合物を用いることができる。
本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。
芳香族性ヘテロ環は、一般に最多の二重結合を有する。
ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環及び1,3,5−トリアジン環が含まれる。芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環及び1,3,5−トリアジン環が好ましく、特に1,3,5−トリアジン環が好ましく用いられる。具体的には例えば特開2001−166144号公報に開示の化合物が円盤状化合物として好ましく用いられる。
前記円盤状化合物が有する芳香族環の数は、2〜20であることが好ましく、2〜12であることがより好ましく、2〜8であることがさらに好ましく、2〜6であることが最も好ましい。
2つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。
(a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ビフェニレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環及びチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環及びキノリン環が好ましい。
(b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環又は非芳香族性複素環を形成してもよい。
(c)の連結基も、二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、−CO−、−O−、−NH−、−S−又はそれらの組み合わせであることが好ましい。
組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。
1:−CO−O−
2:−CO−NH−
3:−アルキレン−O−
4:−NH−CO−NH−
5:−NH−CO−O−
6:−O−CO−O−
7:−O−アルキレン−O−
8:−CO−アルケニレン−
9:−CO−アルケニレン−NH−
10:−CO−アルケニレン−O−
11:−アルキレン−CO−O−アルキレン−O−CO−アルキレン−
12:−O−アルキレン−CO−O−アルキレン−O−CO−アルキレン−O−
13:−O−CO−アルキレン−CO−O−
14:−NH−CO−アルケニレン−
15:−O−CO−アルケニレン−
芳香族環及び連結基は、置換基を有していてもよい。
置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、ニトロ基、スルホ基、カルバモイル基、スルファモイル基、ウレイド基、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基及び非芳香族性複素環基が含まれる。
アルキル基の炭素原子数は1〜8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、さらに置換基(例えば、ヒドロキシ基、カルボキシ基、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル基、エチル基、n−ブチル基、n−ヘキシル基、2−ヒドロキシエチル基、4−カルボキシブチル基、2−メトキシエチル基及び2−ジエチルアミノエチル基が含まれる。
アルケニル基の炭素原子数は2〜8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル基、アリル基及び1−ヘキセニル基が含まれる。
アルキニル基の炭素原子数は2〜8であることが好ましい。環状アルキケニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル基、1−ブチニル基及び1−ヘキシニル基が含まれる。
脂肪族アシル基の炭素原子数は1〜10であることが好ましい。脂肪族アシル基の例には、アセチル基、プロパノイル基及びブタノイル基が含まれる。
脂肪族アシルオキシ基の炭素原子数は1〜10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシ基が含まれる。
アルコキシ基の炭素原子数は1〜8であることが好ましい。アルコキシ基は、さらに置換基(例えば、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ基、エトキシ基、ブトキシ基及びメトキシエトキシ基が含まれる。
アルコキシカルボニル基の炭素原子数は2〜10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル基及びエトキシカルボニル基が含まれる。
アルコキシカルボニルアミノ基の炭素原子数は2〜10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ基及びエトキシカルボニルアミノ基が含まれる。
アルキルチオ基の炭素原子数は1〜12であることが好ましい。アルキルチオ基の例には、メチルチオ基、エチルチオ基及びオクチルチオ基が含まれる。
アルキルスルホニル基の炭素原子数は1〜8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル基及びエタンスルホニル基が含まれる。
脂肪族アミド基の炭素原子数は1〜10であることが好ましい。脂肪族アミド基の例には、アセトアミド基が含まれる。
脂肪族スルホンアミド基の炭素原子数は1〜8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド基、ブタンスルホンアミド基及びn−オクタンスルホンアミド基が含まれる。
脂肪族置換アミノ基の炭素原子数は1〜10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ基、ジエチルアミノ基及び2−カルボキシエチルアミノ基が含まれる。
脂肪族置換カルバモイル基の炭素原子数は2〜10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル基及びジエチルカルバモイル基が含まれる。
脂肪族置換スルファモイル基の炭素原子数は1〜8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル基及びジエチルスルファモイル基が含まれる。
脂肪族置換ウレイド基の炭素原子数は2〜10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイド基が含まれる。
非芳香族性複素環基の例には、ピペリジノ基及びモルホリノ基が含まれる。
円盤状化合物からなるレターデーション発現剤の分子量は、300乃至800であることが好ましい。
(棒状化合物)
本発明では前述の円盤状化合物の他に、直線的な分子構造を有する棒状化合物も好ましく用いることができる。
直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析又は分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト{例えば、“WinMOPAC2000”富士通(株)製}を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造で主鎖の構成する角度が140゜以上であることを意味する。
棒状化合物としては、少なくとも2つの芳香族環を有するものが好ましく、少なくとも2つの芳香族環を有する棒状化合物としては、下記一般式(1)で表される化合物が好ましい。
一般式(1):Ar1−L1−Ar2
上記一般式(1)において、Ar1及びAr2は、それぞれ独立に、芳香族基である。
本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基を含む。アリール基及び置換アリール基の方が、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基よりも好ましい。
芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性へテロ環は、一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子又は硫黄原子がさらに好ましい。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環及びピラジン環が好ましく、ベンゼン環が特に好ましい。
置換アリール基及び置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ブチルアミノ基、ジメチルアミノ基)、ニトロ基、スルホ基、カルバモイル基、アルキルカルバモイル基(例えば、N−メチルカルバモイル基、N−エチルカルバモイル基、N,N−ジメチルカルバモイル基)、スルファモイル基、アルキルスルファモイル基(例えば、N−メチルスルファモイル基、N−エチルスルファモイル基、N,N−ジメチルスルファモイル基)、ウレイド基、アルキルウレイド基(例えば、N−メチルウレイド基、N,N−ジメチルウレイド基、N,N,N'−トリメチルウレイド基)、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、イソプロピル基、s−ブチル基、t−アミル基、シクロヘキシル基、シクロペンチル基)、アルケニル基(例えば、ビニル基、アリル基、ヘキセニル基)、アルキニル基(例えば、エチニル基、ブチニル基)、アシル基(例えば、ホルミル基、アセチル基、ブチリル基、ヘキサノイル基、ラウリル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基、ヘキサノイルオキシ基、ラウリルオキシ基)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘプチルオキシ基、オクチルオキシ基)、アリールオキシ基(例えば、フェノキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘプチルオキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)、アルコキシカルボニルアミノ基(例えば、ブトキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘプチルチオ基、オクチルチオ基)、アリールチオ基(例えば、フェニルチオ基)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基)、アミド基(例えば、アセトアミド基、ブチルアミド基、ヘキシルアミド基、ラウリルアミド基)及び非芳香族性複素環基(例えば、モルホリル基、ピラジニル基)が含まれる。
置換アリール基及び置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ基、カルボキシル基、ヒドロキシル基、アミノ基、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基及びアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基及びアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分及びアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基及び非芳香族性複素環基が含まれる。アルキル部分及びアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基及びアルコキシ基が好ましい。
前記一般式(1)において、L1は、アルキレン基、アルケニレン基、アルキニレン基、−O−、−CO−及びそれらの組み合わせからなる基から選ばれる2価の連結基である。
アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。アルキレン基の炭素原子数は、1〜20であることが好ましく、より好ましくは1〜15であり、さらに好ましくは1〜10であり、さらに好ましくは1〜8であり、最も好ましくは1〜6である。
アルケニレン基及びアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルケニレン基及びアルキニレン基の炭素原子数は、好ましくは2〜10であり、より好ましくは2〜8であり、さらに好ましくは2〜6であり、さらに好ましくは2〜4であり、最も好ましくは2(ビニレン又はエチニレン)である。
アリーレン基は、炭素原子数は6〜20であることが好ましく、より好ましくは6〜16であり、さらに好ましくは6〜12である。
一般式(1)の分子構造において、L1を挟んで、Ar1とAr2とが形成する角度は、140゜以上であることが好ましい。
棒状化合物としては、下記一般式(2)で表される化合物がさらに好ましい。
一般式(2):Ar1−L2−X−L3−Ar2
上記一般式(2)において、Ar1及びAr2は、それぞれ独立に、芳香族基である。
芳香族基の定義及び例は、一般式(1)のAr1及びAr2と同様である。また、L2及びL3は、それぞれ独立に、アルキレン基、−O−、−CO−及びそれらの組み合わせからなる基より選ばれる2価の連結基である。
アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルキレン基の炭素原子数は1〜10であることが好ましく、より好ましくは1〜8であり、さらに好ましくは1〜6であり、さらに好ましくは1〜4であり、1又は2(メチレン又はエチレン)であることが最も好ましい。
2及びL3は、−O−CO−又は−CO−O−であることが特に好ましい。
一般式(2)において、Xは、1,4−シクロへキシレン、ビニレン又はエチニレンである。
一般式(1)又は(2)で表される化合物の具体例としては、特開2004−109657号公報の[化1]〜[化11]に記載の化合物が挙げられる。
その他、下記一般式(3)で表される化合物もまた好ましい。
一般式(3):
Figure 2006301572
(式中、R1、R2、R3、R4、R5、R6、R7、R9及びR10は、それぞれ独立に水素原子又は置換基を表し、R1、R2、R3、R4及びR5のうち少なくとも1つは電子供与性基を表す。R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表す。)
レターデーション発現剤のうち、一般式(3)で表される棒状化合物の具体例を以下に示す。
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
溶液の紫外線吸収スペクトルにおいて、最大吸収波長(λmax)が250nmより短波長である棒状化合物を、2種類以上併用してもよい。
棒状化合物は、文献記載の方法により合成できる。
文献としては、“Mol.Cryst.Liq.Cryst.”,53巻、p229(1979年)、同89巻、p93(1982年)、同145巻、p111(1987年)、同170巻、p43(1989年)、“J.Am.Chem.Soc.”,113巻、p1349(1991年)、同118巻、p5346(1996年)、同92巻、p1582ページ(1970年)、“J.Org.Chem.”,40巻、p420(1975年)、“Tetrahedron”,48巻16号、p3437(1992年)を挙げることができる。
[レターデーション低下剤]
セルロースアシレートフィルムの光学的異方性を低下させる場合に使用するレターデーション低下剤について説明する。
フィルム中のセルロースアシレートが、面内及び膜厚方向に配向するのを抑制する化合物を用いて、光学的異方性を十分に低下させ、Re及びRthをゼロ又はゼロに近くにすることができる。このためには、光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(LogP値)
光学的異方性の低いセルロースアシレートフィルムを作製するにあたっては、上述のように、フィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物が好ましい。化合物のlogP値が7以下であれば、セルロースアシレートとの相溶性が良好で、フィルムの白濁や粉吹きなどの不具合を生じにくいので好ましい。
また化合物のlogP値が0以上であれば、親水性が高くなりすぎることがなく、セルロースアシレートフィルムの耐水性を悪化させることがないので好ましい。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS Z−7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法又は経験的方法により見積もることも可能である。
計算方法としては、Crippen’s fragmentation法{“J.Chem.Inf.Comput.Sci.”,27巻、p21(1987年)}、Viswanadhan’s fragmentation法{“J.Chem.Inf.Comput.Sci.”,29巻、p163(1989年)}、Broto’s fragmentation法{“Eur.J.Med.Chem.−Chim.Theor.”,19巻、p71(1984年)}などが好ましく用いられるが、Crippen’s fragmentation法{“J.Chem.Inf.Comput.Sci.”,27巻、p21(1987年)}がより好ましい。
ある化合物のlogPの値が測定方法又は計算方法により異なる場合に、該化合物が上記の範囲内であるかどうかは、Crippen’s fragmentation法により判断することが好ましい。
(光学的異方性を低下する化合物の物性)
光学異方性を低下させる化合物は、芳香族基を含有してもよいし、含有しなくてもよい。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であってもよいし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学異方性を低下させる化合物の添加量は、セルロースアシレートの0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上の化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期は、ドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
光学異方性を低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80〜99%であることが好ましい。光学異方性を低下させる化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより、表面及び中心部の化合物量を測定して求めることができる。
(光学異方性を低下させる化合物の具体例)
以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学異方性を低下させる化合物の具体例を示すが、本発明はこれら化合物に限定されない。
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
Figure 2006301572
[波長分散調整剤]
次ぎに、セルロースアシレートフィルムの波長分散を低下させる化合物について説明する。200〜400nmの紫外領域に吸収を持ち、フィルムの|Re400−Re700|及び|Rth400−Rth700|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことが好ましい。波長分散調整剤の含有により、セルロースアシレートフィルムのRe、Rthの波長分散を調整することができる。ここで、Re400、Rth400は、波長λ=400nmにおける値、Re700、Rth700は、波長λ=700nmにおける値(いずれも単位:nm)を表す。このような化合物の添加量としては、0.1〜30質量%含むことによってセルロースアシレートフィルムのRe、Rthの波長分散を調整できる。
セルロースアシレートフィルムのRe、Rthの値は、一般に短波長側よりも長波長側が大きい波長分散特性となる。従って、相対的に小さい短波長側のRe、Rthを大きくすることによって、波長分散を平滑にすることが要求される。一方、200〜400nmの紫外領域に吸収を持つ化合物は、短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は、吸光度の波長分散と同様に短波長側が大きいと想定される。
従って、上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側で大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには、波長分散を調整する化合物は、セルロースアシレートに十分均一に相溶することが要求される。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。
また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置では、より少ない電力で輝度を高めるために、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re400−Re700|及び|Rth400−Rth700|を低下させる化合物を、セルロースアシレートフィルムに添加する場合、分光透過率が優れていることが要求される。本発明に好ましく用いられるセルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%以上95%以下であり、且つ波長350nmにおける分光透過率が10%以下であることがのぞましい。
上述のような、本発明で好ましく用いられる波長分散調整剤は、揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、更に好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であってもよいし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
(波長分散調整剤の添加量)
上記の本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレートの固形分に対して0.01〜30質量%であることが好ましく、0.1〜20質量%であることがより好ましく、0.2〜10質量%であることが特に好ましい。
(波長分散調整剤の添加の方法)
またこれら波長分散調整剤は、単独で用いても、2種以上の化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期は、ドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれらの化合物だけに限定されるものではない。
[染料]
また本発明では、色相調整のための染料を添加してもよい。染料の含有量は、セルロースアシレートに対する質量割合で10〜1000ppmが好ましく、50〜500ppmが更に好ましい。この様に染料を含有させることにより、セルロースアシレートフィルムのライトパイピングが減少でき、黄色味を改良することができる。これらの化合物は、セルロースアシレート溶液の調製の際に、セルロースアシレートや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。またインライン添加する紫外線吸収剤液に添加してもよい。特開平5−34858号公報に記載の染料を用いることができる。
[マット剤微粒子]
本発明に好ましく用いられるセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は、珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見掛け比重は90〜200g/L以上が好ましく、100〜200g/L以上がさらに好ましい。見掛け比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
マット剤として二酸化珪素微粒子を用いる場合の、その使用量は、セルロースアシレートを含むポリマー成分100質量部に対して0.01〜0.3質量部とするのが好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成するが、フィルム中では1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次粒子の平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。該平均粒子径が1.5μm以下であればヘイズが強くなりすぎることがなく、また0.2μm以上であればきしみ防止効果が十分に発揮されるので好ましい。
微粒子の1次、2次粒子径は、フィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とする。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
二酸化珪素の微粒子は、例えば、「アエロジル」R972、R972V、R974、R812、200、200V、300、R202、OX50、TT600{以上、日本アエロジル(株)製}などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、「アエロジル」R976及びR811{以上、日本アエロジル(株)製}の商品名で市販されており、使用することができる。
これらの中で「アエロジル200V」、「アエロジルR972V」が、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において、2次平均粒子径の小さな粒子を含有するセルロースアシレートフィルムを得るためには、微粒子の分散液を調製する際いくつかの手法が考えられる。例えば、溶媒と微粒子を撹拌混合した微粒子分散液を予め作製し、この微粒子分散液を、別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶媒に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明においては、これらの方法に限定されるものではないが、二酸化珪素微粒子を溶媒などと混合して分散するときの、二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。
分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2当たり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶媒は、低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては、特に限定されないが、セルロースエステルの製膜時に用いられる溶媒を用いることが好ましい。
次に、本発明に好ましく用いられるセルロースアシレートが溶解される前記有機溶媒について記述する。
本発明においては、有機溶媒として、塩素系有機溶媒を主溶媒とする塩素系溶媒と、塩素系有機溶媒を含まない非塩素系溶媒とのいずれをも用いることができる。
〔塩素系溶媒〕
本発明において好ましく用いられるセルロースアシレートの溶液を作製するに際しては、主溶媒として塩素系有機溶媒が好ましく用いられる。本発明においては、セルロースアシレートが溶解し、流延・製膜できる範囲において、その目的が達成できる限りは、その塩素系有機溶媒の種類は特に限定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムである。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合することも特に問題ない。その場合ジクロロメタンは、有機溶媒全体量中少なくとも50質量%使用することが好ましい。
本発明で塩素系有機溶媒と併用される他の有機溶媒について以下に記す。
すなわち、好ましい他の有機溶媒としては、炭素原子数が3〜12のエステル、ケトン、エーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケトン、エーテル及びアルコールは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを2つ以上有する化合物も、溶媒として用いることができ、例えばアルコール性水酸基のような他の官能基を同時に有していてもよい。2種類以上の官能基を有する溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテート等が挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトール等が挙げられる。2種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノール等が挙げられる。
また塩素系有機溶媒と併用されるアルコールとしては、好ましくは、直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエン及びキシレンが含まれる。
塩素系有機溶媒と他の有機溶媒との組合せ例としては、以下の組成を挙げることができるが、これらに限定されるものではない。
ジクロロメタン/メタノール/エタノール/ブタノール=80/10/5/5(質量部)、
ジクロロメタン/アセトン/メタノール/プロパノール=80/10/5/5(質量部)、
ジクロロメタン/メタノール/ブタノール/シクロヘキサン=80/10/5/5(質量部)、
ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/10/5/5(質量部)、
ジクロロメタン/アセトン/メチルエチルケトン/エタノール/イソプロパノール=75/8/5/5/7(質量部)
ジクロロメタン/シクロペンタノン/メタノール/イソプロパノール=80/7/5/8(質量部)、
ジクロロメタン/酢酸メチル/ブタノール=80/10/10(質量部)、
ジクロロメタン/シクロヘキサノン/メタノール/ヘキサン=70/20/5/5(質量部)、
ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、
ジクロロメタン/1、3ジオキソラン/メタノール/エタノール=70/20/5/5(質量部)、
ジクロロメタン/ジオキサン/アセトン/メタノール/エタノール=60/20/10/5/5(質量部)、
ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン=65/10/10/5/5/5(質量部)、
ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール=70/10/10/5/5(質量部)、
ジクロロメタン/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン=65/10/10/5/5/5(質量部)、
ジクロロメタン/アセト酢酸メチル/メタノール/エタノール=65/20/10/5(質量部)、
ジクロロメタン/シクロペンタノン/エタノール/ブタノール=65/20/10/5(質量部)。
〔非塩素系溶媒〕
次に、本発明において好ましく用いられるセルロースアシレートの溶液を作製するに際して、好ましく用いられる非塩素系有機溶媒について記載する。本発明においては、セルロースアシレートが溶解し、流延・製膜できる範囲において、その目的が達成できる限りは、非塩素系有機溶媒は特に限定されない。本発明で用いられる非塩素系有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを2つ以上有する化合物も、主溶媒として用いることができ、例えばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数は、いずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル及び酢酸ペンチルが挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン及びアセチル酢酸メチルが挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノールが挙げられる。
以上の、セルロースアシレートに用いられる非塩素系有機溶媒については、前述のいろいろな観点から選定されるが、好ましくは以下のとおりである。
すなわち、非塩素系溶媒としては、上記非塩素系有機溶媒を主溶媒とする混合溶媒が好ましく、互いに異なる3種類以上の溶媒の混合溶媒であって、第1の溶媒が酢酸メチル、酢酸エチル、蟻酸メチル、蟻酸エチル、アセトン、ジオキソラン、ジオキサンから選ばれる少なくとも1種又はそれらの混合液であり、第2の溶媒が炭素原子数4〜7のケトン類又はアセト酢酸エステルから選ばれ、第3の溶媒が炭素数1〜10のアルコール又は炭化水素、より好ましくは炭素数1〜8のアルコールから選ばれる混合溶媒である。なお第1の溶媒が、2種以上の溶媒の混合液である場合は、第2の溶媒がなくてもよい。第1の溶媒は、さらに好ましくは、酢酸メチル、アセトン、蟻酸メチル、蟻酸エチル又はこれらの混合物であり、第2の溶媒は、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、アセチル酢酸メチルが好ましく、これらの混合溶媒であってもよい。
第3の溶媒であるアルコールは、その炭化水素鎖が直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素鎖であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノールが含まれる。なおアルコールとしては、その炭化水素鎖の水素の一部又は全部がフッ素で置換されたフッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。
さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエン及びキシレンが含まれる。
これらの第3の溶媒であるアルコール及び炭化水素は、単独で用いてもよいし、2種類以上の混合物で用いてもよく特に限定されない。第3の溶媒としては、好ましい具体的化合物は、アルコールとして、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、及びシクロヘキサノール、炭化水素として、シクロヘキサン、ヘキサンなどを挙げることができ、特に好ましくはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールである。
以上の3種類の混合溶媒の混合割合は、混合溶媒全体量中、第1の溶媒が20〜95質量%、第2の溶媒が2〜60質量%、そして第3の溶媒が2〜30質量%の比率で含まれることが好ましく、さらに第1の溶媒が30〜90質量%であり、第2の溶媒が3〜50質量%、そして第3のアルコールが3〜25質量%含まれることが好ましい。また特に第1の溶媒が30〜90質量%であり、第2の溶媒が3〜30質量%、第3の溶媒がアルコールであって3〜15質量%含まれることが好ましい。
以上の本発明で用いられる非塩素系有機溶媒は、さらに詳細には前記公技番号2001−1745号p.12−16に詳細に記載されている。
本発明の好ましい非塩素系有機溶媒の組合せは以下挙げることができるが、これらに限定されるものではない。
酢酸メチル/アセトン/メタノール/エタノール/ブタノール=75/10/5/5/5(質量部)、
酢酸メチル/アセトン/メタノール/エタノール/プロパノール=75/10/5/5/5(質量部)、
酢酸メチル/アセトン/メタノール/ブタノール/シクロヘキサン=75/10/5/5/5(質量部)、
酢酸メチル/アセトン/エタノール/ブタノール=81/8/7/4(質量部)、
酢酸メチル/アセトン/エタノール/ブタノール=82/10/4/4(質量部)、
酢酸メチル/アセトン/エタノール/ブタノール=80/10/4/6(質量部)、
酢酸メチル/メチルエチルケトン/メタノール/ブタノール=80/10/5/5(質量部)、
酢酸メチル/アセトン/メチルエチルケトン/エタノール/イソプロパノール=75/8/5/5/7(質量部)、
酢酸メチル/シクロペンタノン/メタノール/イソプロパノール=80/7/5/8(質量部)、
酢酸メチル/アセトン/ブタノール=85/10/5(質量部)、
酢酸メチル/シクロペンタノン/アセトン/メタノール/ブタノール=60/15/14/5/6(質量部)、
酢酸メチル/シクロヘキサノン/メタノール/ヘキサン=70/20/5/5(質量部)、
酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、
酢酸メチル/1、3−ジオキソラン/メタノール/エタノール=70/20/5/5(質量部)、
酢酸メチル/ジオキサン/アセトン/メタノール/エタノール=60/20/10/5/5(質量部)、
酢酸メチル/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン=65/10/10/5/5/5(質量部)、
ギ酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、
ギ酸メチル/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン=65/10/10/5/5/5(質量部)、
アセトン/アセト酢酸メチル/メタノール/エタノール=65/20/10/5(質量
部)、
アセトン/シクロペンタノン/エタノール/ブタノール=65/20/10/5(質量部)、
アセトン/1,3−ジオキソラン/エタノール/ブタノール=65/20/10/5(質量部)、
1、3−ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/ブタノール=55/20/10/5/5/5(質量部)
などをあげることができる。
更に、下記の方法で調整したセルロースアシレート溶液を用いることもできる。
酢酸メチル/アセトン/エタノール/ブタノール=81/8/7/4(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に2質量部のブタノールを追加添加する方法、
酢酸メチル/アセトン/エタノール/ブタノール=84/10/4/2(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に4質量部のブタノールを追加添加する方法、
酢酸メチル/アセトン/エタノール=84/10/6(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に5質量部のブタノールを追加添加する方法、
本発明に用いるドープには、上記本発明の非塩素系有機溶媒以外に、ジクロロメタンを本発明の全有機溶媒量の10質量%以下含有させてもよい。
〔セルロースアシレート溶液特性〕
セルロースアシレートの溶液は、前記有機溶媒にセルロースアシレートを溶解させた溶液であり、その濃度は10〜30質量%の範囲であることが、製膜流延適性の点で好ましく、より好ましくは13〜27質量%であり、特に好ましくは15〜25質量%である。
セルロースアシレート溶液をこのような濃度範囲にする方法は、溶解する段階で所定の濃度になるようにしてもよく、また予め低濃度溶液(例えば9〜14質量%)として作製した後に、後述する濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースアシレート溶液とした後に、種々の添加物を添加することで所定の低濃度のセルロースアシレート溶液としてもよく、いずれの方法でも本発明において好ましく用いられるセルロースアシレート溶液濃度になるように実施されれば特に問題ない。
次に、本発明では、セルロースアシレート溶液を同一組成の有機溶媒で0.1〜5質量%にしたときの、希釈溶液中のセルロースアシレートの会合体分子量が15万〜1500万であることが、溶媒への溶解性の点で好ましい。会合分子量は18万〜900万であることがさらに好ましい。この会合分子量は、静的光散乱法で求めることができる。その際に、同時に求められる慣性半径は10〜200nmになるように溶解することが好ましい。さらに好ましい慣性半径は20〜200nmである。更にまた、第2ビリアル係数が−2×10-4〜+4×10-4となるように溶解することが好ましく、より好ましくは第2ビリアル係数が−2×10-4〜+2×10-4である。
ここで、本発明での会合分子量、さらに慣性半径及び第2ビリアル係数の定義について述べる。これらは下記方法に従って、静的光散乱法を用いて測定する。測定は装置の都合上希薄領域で測定するが、これらの測定値は本発明の高濃度域でのドープの挙動を反映するものである。
まず、セルロースアシレートをドープに使用する溶媒に溶かし、0.1質量%、0.2質量%、0.3質量%、0.4質量%の溶液を調製する。なお秤量は、吸湿を防ぐため、セルロースアシレートは、120℃で2時間乾燥したものを用い、25℃、10%RHで行う。溶解方法は、ドープ溶解時に採用した方法(常温溶解法、冷却溶解法、高温溶解法)に従って実施する。続いてこれらの溶液、及び溶媒を0.2μmのテフロン(登録商標)製フィルターで濾過する。そして、濾過した溶液の静的光散乱を、光散乱測定装置“DLS−700”{大塚電子(株)製}を用い、25℃において30゜から140゜まで10゜間隔で測定する。得られたデータをBERRYプロット法にて解析する。なお、この解析に必要な屈折率は、アッベ屈折系で求めた溶媒の値を用い、屈折率の濃度勾配(dn/dc)は、示差屈折計“DRM−1021”{大塚電子(株)製}を用い、光散乱測定に用いた溶媒及び溶液を用いて測定する。
〔ドープの調製〕
次に、セルロースアシレートの流延・製膜用の溶液(ドープ)の調製について述べる。
セルロースアシレートの溶解方法は、特に限定されず、室温溶解法でもよく、また冷却溶解法又は高温溶解法、さらにはこれらの組み合わせで実施されてもよい。これらに関しては、例えば特開平5−163301号、特開昭61−106628号、特開昭58−127737号、特開平9−95544号、特開平10−95854号、特開平10−45950号、特開2000−53784号、特開平11−322946号、さらに特開平11−322947号、特開平2−276830号、特開2000−273239号、特開平11−71463号、特開平04−259511号、特開2000−273184号、特開平11−323017号、特開平11−302388号などの各公報にセルロースアシレート溶液の調製法として記載されている。
以上記載した、これらのセルロースアシレートの有機溶媒への溶解方法は、適宜本発明の範囲であれば、本発明においてもこれらの技術を適用できるものである。これらの詳細、特に非塩素系溶媒系については、前記公技番号2001−1745号p.22−25に詳細に記載されており、その方法に従って実施することができる。さらに本発明において好ましく用いられるセルロースアシレートのドープ溶液については、通常、溶液濃縮、濾過が実施されるが、これらについては同様に前記公技番号2001−1745号p.25に詳細に記載されている。なお、高温度で溶解する場合には、使用する有機溶媒の沸点以上の場合がほとんどであり、その場合は加圧状態で行われる。
セルロースアシレート溶液は、その溶液の粘度と動的貯蔵弾性率が以下に述べる範囲であることが、流延しやすく好ましい。これらの値は、試料溶液1mLをレオメーター“CLS 500”に、直径4cm/2°の“Steel Cone”(共にTA Instruments社製)を用いて測定する。測定条件はOscillation Step/Temperature Rampで40℃〜−10℃の範囲を2℃/分で可変して測定し、40℃の静的非ニュートン粘度n*(Pa・s)及び−5℃の貯蔵弾性率G'(Pa)を求める。なお試料溶液は、予め測定開始温度にて液温一定となるまで保温した後に測定を開始する。
本発明では、40℃での粘度が1〜400Pa・sであり、15℃での動的貯蔵弾性率が500Pa以上であることが好ましく、より好ましくは40℃での粘度が10〜200Pa・sで、15℃での動的貯蔵弾性率が100〜100万であるのがよい。さらには、低温での動的貯蔵弾性率は大きいほど好ましく、例えば流延支持体が−5℃の場合は、動的貯蔵弾性率が−5℃で1万〜100万Paであることが好ましく、支持体が−50℃の場合は、−50℃での動的貯蔵弾性率が1万〜500万Paであることが好ましい。
本発明においては、前述の特定のセルロースアシレートを用いているので、高濃度のドープが得られるのが特徴であり、濃縮という手段に頼らずとも高濃度で、しかも安定性の優れたセルロースアシレート溶液が得られる。更に溶解し易くするために、低い濃度で溶解してから濃縮手段を用いて濃縮してもよい。濃縮の方法としては、特に限定するものはないが、例えば、低濃度溶液を筒体とその内部の周方向に回転する回転羽根外周の回転軌跡との間に導くとともに、溶液との間に温度差を与えて、溶媒を蒸発させながら高濃度溶液を得る方法(例えば、特開平4−259511号公報等)、加熱した低濃度溶液をノズルから容器内に吹き込み、溶液をノズルから容器内壁に当たるまでの間で溶媒をフラッシュ蒸発させるとともに、溶媒蒸気を容器から抜き出し、高濃度溶液を容器底から抜き出す方法(例えば、米国特許第2,541,012号、米国特許第2,858,229号、米国特許第4,414,341号、米国特許第4,504,355号各明細書等などに記載の方法)等で実施できる。
ドープ溶液は、流延に先だって金網やネルなどの適当な濾材を用いて、未溶解物やゴミ、不純物などの異物を濾過除去しておくのが好ましい。セルロースアシレート溶液の濾過には、絶対濾過精度が0.1〜100μmのフィルターを用いることが好ましく、さらには絶対濾過精度が0.5〜25μmであるフィルターを用いることが好ましい。フィルターの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、濾過圧力は1.6MPa以下が好ましく、より好ましくは1.2MPa以下、更には1.0MPa以下、特に0.2MPa以下で濾過することが好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知である材料を好ましく用いることができ、特にセラミックス、金属等が好ましく用いられる。セルロースアシレート溶液の製膜直前の粘度は、製膜の際に流延可能な範囲であればよく、通常10Pa・s〜2000Pa・sの範囲に調製されることが好ましく、30Pa・s〜1000Pa・sがより好ましく、40Pa・s〜500Pa・sが更に好ましい。なお、この時の温度はその流延時の温度であれば特に限定されないが、好ましくは−5〜+70℃であり、より好ましくは−5〜+55℃である。
〔製膜〕
本発明に好ましく用いられるセルロースアシレートフィルムは、前記セルロースアシレート溶液(ドープ)を用いて製膜を行うことにより得ることができる。製膜方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)から、エンドレスに走行している流延部の金属支持体の上に均一に流延し、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して、巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。電子ディスプレイ用機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。以下に各製造工程について簡単に述べるが、これらに限定されるものではない。
ソルベントキャスト法によりセルロースアシレートフィルムを作製するに際しては、まず、調製したセルロースアシレート溶液(ドープ)を、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が5〜40質量%となるように濃度を調整しておくことが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が30℃以下のドラム又はバンド上に流延する方法が好ましく採用され、特には金属支持体温度が−10〜20℃の範囲であることが好ましい。さらに本発明では、特開2000−301555号、特開2000−301558号、特開平07−032391号、特開平03−193316号、特開平05−086212号、特開昭62−037113号、特開平02−276607号、特開昭55−014201号、特開平02−111511号、及び特開平02−208650号の各公報に記載の方法を用いることができる。
[重層流延]
セルロースアシレート溶液は、金属支持体としての平滑なバンド上又はドラム上に単層液として流延してもよいし、2層以上の複数のセルロースアシレート液を流延してもよい。複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口から、セルロースアシレートを含む溶液をそれぞれ流延させて、積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、及び特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってフィルム化することもでき、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、及び特開平6−134933号の各公報に記載の方法で実施できる。さらに、特開昭56−162617号公報に記載の、高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高粘度及び低粘度のセルロースアシレート溶液を同時に押出す、セルロースアシレートフィルム流延方法でもよい。更にまた、特開昭61−94724号及び特開昭61−94725号の各公報に記載の、外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。あるいはまた2個の流延口を用い、第一の流延口により金属支持体上に形成したフィルムを剥離した後、そのフィルムの金属支持体面に接していた側に第二の流延を行うことでより、複数の層のフィルムを作製することもでき、例えば特公昭44−20235号公報に記載されている方法を挙げることができる。流延するセルロースアシレート溶液は、同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく、特に限定されない。複数のセルロースアシレート層に機能を持たせるためには、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらにセルロースアシレート溶液は、他の機能層(例えば、粘着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
従来の単層液では、必要なフィルム厚さにするためには、高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が悪くなりがちで固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決法として、複数のセルロースアシレート溶液を、複数の流延口から相対的に少量ずつ流延することにより、高粘度の溶液を同時に金属支持体上に押出すことが可能になり、平面性も改善されて優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合には、金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さとして定義する。共流延の場合、前記の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロースアシレート溶液を共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。またコア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び紫外線吸収剤の少なくともいずれかを含ませ、コア層に可塑性に優れた可塑剤、あるいは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。さらに剥離促進剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。さらにまた、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていてもよく、スキン層のTgよりコア層のTgが低いことが好ましい。またさらに流延時のセルロースアシレートを含む溶液の粘度も、スキン層とコア層で異なっていてもよく、スキン層の粘度がコア層の粘度よりも小さいことが好ましいが、コア層の粘度がスキン層の粘度より小さくてもよい。
[流延方法]
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるが、いずれも好ましく用いることができる。またここで挙げた方法以外にも、従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施することができ、用いる溶媒の沸点等の違いを考慮して各条件を設定することにより、それぞれの公報に記載の内容と同様の効果が得られる。
本発明に好ましく用いられるセルロースアシレートフィルムを製造するのに使用される、エンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。使用される加圧ダイは、金属支持体の上方に1基又は2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には、流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は−10〜55℃が好ましく、より好ましくは25〜50℃である。その場合、工程のすべての溶液温度が同一でもよく、又は工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
[乾燥]
セルロースアシレートフィルムの製造に係わる、金属支持体上におけるドープの乾燥は、一般的には、金属支持体(ドラム又はベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム又はベルトの裏面から熱風を当てる方法、温度コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム又はベルトを加熱し表面温度をコントロールする裏面液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度は、ドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するためには、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1〜10℃低い温度に設定することが好ましい。なお流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
[延伸処理]
本発明に好ましく用いられるセルロースアシレートフィルムは、延伸処理によりレターデーションを調整することが好ましい。特に、セルロースアシレートフィルムの面内レターデーション値を高い値とする場合には、積極的に幅方向に延伸する方法、例えば、特開昭62−115035号、特開平4−152125号、特開平4−284211号、特開平4−298310号、及び特開平11−48271号の各公報などに記載されている、製造したフィルムを延伸する方法を用いることができる。
フィルムの延伸は、常温又は加熱条件下で実施する。加熱温度は、フィルムのガラス転移温度以下であることが好ましい。フィルムの延伸は、縦又は横だけの一軸延伸でもよく、同時又は逐次2軸延伸でもよい。通常は1〜200%の延伸を行うが、好ましくは1〜100%、特に好ましくは1〜50%の延伸を行うのがよい。
液晶セルの光学異方性の補償及び偏光板を斜めから見た場合の光漏れの抑制のためには、面内レターデーション値が30nm以上の保護膜を用いることが好ましく、そのためには延伸処理を行ったセルロースアシレートフィルムが用いられる。具体的には、延伸倍率10%以上のものが好ましく、さらに好ましくは15%以上のものである。
上記の偏光板を斜めから見たときの光漏れの抑制のためには、偏光子の透過軸とセルロースアシレートフィルムの面内の遅相軸を平行に配置する必要がある。連続的に製造されるロールフィルム状の偏光子の透過軸は、一般的に、ロールフィルムの幅方向に平行であるので、前記ロールフィルム状の偏光子とロールフィルム状のセルロースアシレートフィルムからなる保護膜を連続的に貼り合せるためには、ロールフィルム状の保護膜の面内遅相軸は、フィルムの幅方向に平行であることが必要となる。従って幅方向により多く延伸することが好ましい。また延伸処理は、製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理してもよい。前者の場合には残留溶媒を含んだ状態で延伸を行ってもよく、残留溶媒量が2〜30質量%で好ましく延伸することができる。
乾燥後得られる、本発明に好ましく用いられるセルロースアシレートフィルムの膜厚は、使用目的によって異なり、通常、5〜500μmの範囲であることが好ましく、更に20〜300μmの範囲が好ましく、特に30〜150μmの範囲が好ましい。また、光学用、特にVA液晶表示装置用としては、40〜110μmであることが好ましい。フィルム厚さの調整は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。
以上のようにして得られた、セルロースアシレートフィルムの幅は0.5〜3mが好ましく、より好ましくは0.6〜2.5m、さらに好ましくは0.8〜2.2mである。長さは、1ロール当たり100〜10000mで巻き取るのが好ましく、より好ましくは500〜7000mであり、さらに好ましくは1000〜6000mである。巻き取る際、少なくとも片端にナーリングを付与するのが好ましく、ナーリングの幅は3mm〜50mmが好ましく、より好ましくは5mm〜30mm、高さは0.5〜500μmが好ましく、より好ましくは1〜200μmである。これは片押しであっても両押しであってもよい。
フィルムの幅方向のRe590値のばらつきは、±5nmであることが好ましく、±3nmであることが更に好ましい。また幅方向のRth590値のバラツキは±10nmが好ましく、±5nmであることが更に好ましい。また、長さ方向のRe値、及びRth値のバラツキも、幅方向のバラツキの範囲内であることが好ましい。
〔セルロースアシレートフィルムの光学特性〕
本明細書において、Reλ、Rthλは、それぞれ波長λにおける面内のリターデーション及び厚さ方向のリターデーションを表す。Reλは“KOBRA 21ADH”{王子計測機器(株)製}において、波長λnmの光をフィルムの法線方向に入射させて測定される。Rthλは、前記Reλ、面内の遅相軸(“KOBRA 21ADH”により判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、及び面内の遅相軸を傾斜軸(回転軸)として、フィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の、合計3つの方向で測定したレターデーション値を基に“KOBRA 21ADH”が算出する。
ここで平均屈折率の仮定値は、ポリマーハンドブック(John Wiley & Sons,Inc.)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:
セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。
また、これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHによりnx(遅相軸方向の屈折率)、ny(進相軸方向の屈折率)、nz(厚み方向の屈折率)を算出する。また“KOBRA 21ADH”は、面内の遅相軸を傾斜軸とした場合の、フィルム内部を伝播する光に対してレターデーション値が最小となるフィルム法線方向に対する角度βも算出する。
Reλレターデーション値、Rthλレターデーション値が、それぞれ、以下の数式(2)、(3)を満たすことが、液晶表示装置、特にVAモード液晶表示装置の視野角を広くするために好ましい。また特にセルロースアシレートフィルムが、偏光板の液晶セル側の保護膜に用いられる場合に好ましい。
数式(2):0nm≦Re590≦200nm
数式(3):0nm≦Rth590≦400nm
[式中、Re590、Rth590は、波長λ=590nmにおける値(単位:nm)である。]
また、セルロースアシレートフィルムの光学異方性の影響を小さくしたい場合は、液晶セル側に配置される保護膜(セルロースアシレートフィルム)のReλ及びRthλが、数式(8)〜(11)を満たすことが好ましい。
数式(8):0≦Re590≦10
数式(9):|Rth590|≦25
数式(10):|Re400−Re700|≦10
数式(11):|Rth400−Rth700|≦35
[式中、Re590、Rth590は、波長λ=590nmにおける値、Re400、Rth400は、波長λ=400nmにおける値、Re700、Rth700は、波長λ=700nmにおける値(いずれも単位:nm)である。]
本発明に好ましく用いられるセルロースアシレートフィルムをVAモードに使用する場合、セルの両側に1枚ずつ合計2枚使用する形態(2枚型)と、セルの上下のいずれか一方の側にのみ使用する形態(1枚型)の2通りがある。
2枚型の場合、Re590は20〜100nmが好ましく、30〜70nmがさらに好ましい。Rth590については70〜300nmが好ましく、100〜200nmがさらに好ましい。
1枚型の場合、Re590は30〜150nmが好ましく、40〜100nmがさらに好ましい。Rth590については100〜300nmが好ましく、150〜250nmがさらに好ましい。
本発明に好ましく用いられるセルロースアシレートフィルムの、フィルム面内の遅相軸角度のバラつきは、ロールフィルムの基準方向に対して−2゜〜+2゜の範囲にあることが好ましく、−1゜〜+1゜の範囲にあることがさらに好ましく、−0.5゜〜+0.5゜の範囲にあることが最も好ましい。ここで、基準方向とは、セルロースアシレートフィルムを縦延伸する場合にはロールフィルムの長手方向であり、横延伸する場合にはロールフィルムの幅方向である。
また、本発明に好ましく用いられるセルロースアシレートフィルムは、25℃、10%RHにおけるRe値と、25℃、80%RHにおけるRe値との差ΔRe(=Re10%−Re80%)が0〜10nmであり、25℃、10%RHにおけるRth値と、25℃、80%RHにおけるRth値との差ΔRth(=Rth10%−Rth80%)が0〜30nmであるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
さらに本発明に好ましく用いられるセルロースアシレートフィルムは、25℃、80%RHにおける平衡含水率が3.2%以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
含水率の測定法は、セルロースアシレートフィルム試料7mm×35mmを、水分測定器、試料乾燥装置{“CA−03”、“VA−05”、共に三菱化学(株)}を用いてカールフィッシャー法で測定する。水分量(g)を試料質量(g)で除して算出する。
さらにまた、本発明に好ましく用いられるセルロースアシレートフィルムは、60℃、95%RH、24時間の透湿度(膜厚80μm換算)が、400g/m2・24hr以上1800g/m2・24hr以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
透湿度は、セルロースアシレートフィルムの膜厚が厚ければ小さくなり、膜厚が薄ければ大きくなる。そこで、どのような膜厚のサンプルでも基準となる膜厚を設け換算する必要がある。本発明においては、基準となる膜厚を80μmとして、次の数式(13)に従って膜厚を換算した。
数式(13):80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができる。
ガラス転移温度の測定は、セルロースアシレートフィルム試料(未延伸)5mm×30mmを、25℃、60%RHで2時間以上調湿した後に、動的粘弾性測定装置「バイブロン:DVA−225」{アイティー計測制御(株)製)}を用いて、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる、貯蔵弾性率の急激な減少を示す温度をガラス転移温度Tgとした。具体的には、得られたチャート上において、固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2の交点が、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラス転移領域に移行し始める温度であることから、ガラス転移温度Tg(動的粘弾性)とした。
弾性率の測定は、セルロースアシレートフィルム試料10mm×150mmを、25℃、60%RHで2時間以上調湿した後、引張り試験機「ストログラフ−R2」{(株)東洋精機製作所製)}で、チャック間距離100mm、温度25℃、延伸速度10mm/分で行った。
吸湿膨張係数の測定は、25℃、80%RH下に2時間以上放置したフィルムの寸法をピンゲージで測定した値L80%と、25℃、10%RH下に2時間以上放置したフィルムの寸法をピンゲージで測定した値L10%とから、次の数式(14)により求めた。
数式(14):(L80%−L10%)/(80%RH−10%RH)×106
また、本発明に好ましく用いられるセルロースアシレートフィルムは、そのヘイズが0.01〜2%の範囲であるのが好ましい。ここでヘイズは、以下のようにして測定できる。
ヘイズの測定は、セルロースアシレートフィルム試料40mm×80mmを、25℃、60%RHでヘイズメーター“HGM−2DP”{スガ試験機(株)製}でJIS K−6714に従って測定する。
さらに本発明に好ましく用いられるセルロースアシレートフィルムは、80℃、90%RHの条件下に48時間静置した場合の質量変化が、0〜5質量%の範囲であるのが、好ましい。
またさらに、本発明に好ましく用いられるセルロースアシレートフィルムは、60℃、95%RHの条件下に24時間静置した場合の寸度変化、及び90℃、5%RHの条件下に24時間静置した場合の寸度変化が、いずれも0〜5%の範囲であるのが好ましい。
光弾性係数は、50×10-13cm2/dyne以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
具体的な測定方法としては、セルロースアシレートフィルム試料10mm×100mmの、長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター“M150”{日本分光(株)}で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
{シクロオレフィン系ポリマー}
また、保護膜としては、セルロースアシレートの代わりにシクロオレフィン系ポリマーを用いることもできる。シクロオレフィン系ポリマーとしては特開平1−132625号公報、特開平1−132626号公報、特開平1−240517号公報、特開昭63−145324号公報、特開昭63−264626号公報、特開昭63−218726号公報、特開平2−133413号公報、特開昭60−168708号公報、特開昭61−120816号公報、特開昭60−115912号公報、特開昭62−252406号公報、特開昭60−252407号公報、国際公開第2004/049011A1号パンフレット、国際公開第2004/068226A1号パンフレット、国際公開第2004/070463A1号パンフレットに記載のものを使用することができる。また、上市されているシクロオレフィン系ポリマーとしては、ARTON(JSR(株)製)、ZEONOR(日本ゼオン(株)製)、ZEONEX(日本ゼオン(株)製)、エスシーナ(積水化学工業(株)製)を使用することができる。
該シクロオレフィン系ポリマーフィルムは、その光学異方性の影響を小さくしたい場合は、液晶セル側に配置される保護膜(シクロオレフィン系ポリマーフィルム)のReλ及びRthλが、前述の数式(8)〜(11)を満たすことが好ましい。
<偏光板>
次に、本発明に関する偏光板について説明する。
本発明に関する偏光板は、液晶セル側に配置される保護膜の厚みd1と、液晶セルと反対側に配置される保護膜の厚みd2が、下記数式(15)を満たすことが好ましい。
数式(15):0.3×d1≦d2≦1.3×d1
上記数式(15)を満たすことにより、弾性率、吸湿膨張係数がほぼ同じ保護膜を組み合わせる場合に、偏光板のカールが−30mm〜+15mmの範囲となり、好ましい結果が得られる。
また、本発明に関する偏光板は、液晶セル側に配置される保護膜の弾性率E1と、液晶セルと反対側に配置される保護膜の弾性率E2が下記数式(16)を満たすことが好ましい。それにより、厚み、吸湿膨張係数がほぼ同じ保護膜を組み合わせる場合に偏光板のカールが−30mm〜+15mmの範囲となり、好ましい結果が得られる。
数式(16):0.3×E1≦E2≦1.3×E1
さらに、液晶セル側に配置される保護膜の厚みd1及び弾性率E1と、液晶セルと反対側に配置される保護膜の厚みd2及び弾性率E2が下記式(17)を満たすことが好ましい。
数式(17):0.3×E1×d1≦E2×d2≦1.3×E1×d1
数式(17)を満たすことにより、厚み、弾性率が異なる保護膜を組み合わせる場合にも偏光板のカールが−30mm〜+15mmの範囲となる。
さらに、本発明に関する偏光板は、液晶セル側に配置される保護膜の吸湿膨張係数C1と、液晶セルと反対側に配置される保護膜の吸湿膨張係数C2が下記数式(18)を満たすことが好ましい。
数式(18):0.3×C1≦C2≦1.3×C1
上記数式を満たすことにより、偏光板作製時に対して偏光板を液晶セルに貼り合せる時の湿度が高くなった場合の偏光板カールを−30mm〜+15mmの範囲がとなり、好ましい結果が得られる。
偏光板の偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子がある。ヨウ素系偏光子及び染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。
本発明に好ましく用いられるセルロースアシレートフィルムを偏光板保護膜として用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。例えば、得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に、完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。保護膜処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
シクロオレフィン系ポリマーフィルムを偏光板保護膜として用いる場合には、接着剤としては、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックスに加えて、アクリル系ポリマー、エポキシ系ポリマー、変成オレフィン系ポリマー、スチレンブタジエン系ポリマー、特殊合成ゴム等の接着剤を用いることができる。
接着性を高めるために表面処理を行っても良い。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましい。フィルムの平面性を保持する観点から、これら処理においてポリマーフィルムの温度をTg(ガラス転移温度)以下とすることが好ましい。
偏光板は、偏光子及びその両面を保護する保護膜、および少なくとも片面に粘着層を有して構成されており、さらにまた、粘着層面にセパレートフィルムを、該偏光板のセパレートフィルムとは反対面にプロテクトフィルムを貼合して構成してもよい。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶セルへ貼合する面の反対面側に用いられる。またセパレートフィルムは偏光板を液晶セルへ貼合するための粘着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
粘着層は(メタ)アクリル系共重合体(A){又は高分子量(メタ)アクリル系共重合体(A1)と低分子量(メタ)アクリル系(共)重合体(A2)}及び多官能性化合物(B)からなる(メタ)アクリル系共重合体を含む組成物の溶液をダイコーター等のコーターでセパレートフィルム上に塗布し、乾燥させた後、偏光板保護フィルムにセパレートフィルムごと転写することにより形成される。上記組成物の溶液を偏光板保護フィルム上に塗布し、乾燥させた後、セパレートフィルムで粘着層を覆っても良い。
前記した延伸したセルロースアシレートフィルムを用いる場合の偏光子への貼り合せ方は、図1に示すように、偏光子1の透過軸2とセルロースアシレートフィルム(TAC1)3の遅相軸4を一致させるように貼り合せることが好ましい。
なお、偏光板クロスニコル下で作製した偏光板は、本発明に好ましく用いられるセルロースアシレートフィルムの遅相軸と偏光子の吸収軸(透過軸と直交する軸)との直交精度が1゜以内であれば、偏光板クロスニコル下での偏光度性能が低下して、光抜けが生じたり、液晶セルと組み合わせた場合に、十分な黒レベルやコントラストが得られなかったりするなどの不具合が生じにくいので、本発明に好ましく用いられるセルロースアシレートフィルムの遅相軸の方向と偏光板の透過軸の方向とは、そのずれが1゜以内であることが好ましく、0.5゜以内であることがさらに好ましい。
液晶セルへの偏光板の貼り付けは、一般的には多数の穴の開いた吸引治具に偏光板を取り付け、粘着剤が塗設されて形成された粘着層表面のセパレートフィルムを剥がし、粘着層表面を液晶セルに接触させ、ローラーで加圧することにより貼り付けを行う。この際、偏光板が液晶セル側に凹になるようにカールしていると、吸引治具への吸着が十分に行われず、吸引治具への取り付け角度のズレが生じ、液晶セルへの貼り付け角度がずれ、設計どおりの表示特性が得られない。また、液晶セルへの貼り付け途中に偏光板が吸引治具から脱落し、貼り付け作業を続けることができず、作業中断となる場合もある。
このような偏光板貼り付け不良を生じさせないためには、偏光板のカール量を−30mm〜+15mmの範囲とすることが好ましく、−20mm〜+5mmの範囲とすることがさらに好ましく、−10mm〜0mmの範囲とすることが最も好ましい。ここで、液晶セルに貼り付ける面(粘着剤塗設面=粘着層表面)側に凹となる場合を+(プラス)カール、凸となる場合を−(マイナス)カールと呼ぶ。カール量の制御は、液晶セル側の保護膜と、液晶セルと反対側の保護膜の厚み、弾性率、吸湿膨張係数の関係を調整によって行うことができる。
カールの測定は、230mm×305mmの大きさの偏光板を、平らな台の上で、端部が持ち上がる面を下にして置き、25℃、60%RHの環境に2時間以上を放置した後に、台の面を基準とし偏光板端部の最も離れた位置の高さを測定し、カール量とする。セパレートフィルム、プロテクトフィルムがついている場合は、それらのフィルムはつけたままで測定した。
〔セルロースアシレートフィルムの表面処理〕
本発明に好ましく用いられるセルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層及びバック層)との接着の向上を達成することができる。表面処理としては、例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が前記公技番号2001−1745号p.30−32に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。
[アルカリ鹸化処理]
アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液の槽に直接浸漬する方法、又は鹸化液をセルロースアシレートフィルムに塗布する方法により実施することが好ましい。塗布方法としては、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法及びE型塗布法を挙げることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液をセルロースアシレートフィルムに対して塗布するために、濡れ性がよく、また鹸化液溶媒によってセルロースアシレートフィルム表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上5分以下が好ましく、5秒以上5分以下がさらに好ましく、20秒以上3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。
また、本発明に関する偏光板は、保護膜の上に光学異方性層を設けることが好ましい。
光学異方性層は、液晶性化合物、非液晶性化合物、無機化合物、有機/無機複合化合物等、材料は限定されない。液晶性化合物としては、重合性基を有する低分子化合物を配向させた後に光または熱による重合により配向を固定化するものや、液晶性高分子を加熱し配向させた後に冷却しガラス状態で配向固定化するものを使うことができる。液晶性化合物としては円盤状構造を有するもの、棒状構造を有するもの、光学的二軸性を示す構造を有するものを使うことができる。非液晶性化合物としては、ポリイミド、ポリエステル等の芳香族環を有する高分子を使うことができる。
光学異方性層の形成方法は、塗布、蒸着、スパッタリング等種々の手法を使用することができる。
偏光板の保護膜の上に光学異方性層を設ける場合、粘着層は偏光子側からさらに該光学異方性層の外側に設けられる。
さらに本発明に関する偏光板は、偏光板の少なくとも一方の側の保護膜の表面に、ハードコート層、防眩層又は反射防止層の少なくとも一層を設けられたものであるのが好ましい。すなわち、図2に示すように、偏光板の液晶表示装置への使用時において、液晶セルと反対側に配置される保護膜(TAC2)には、反射防止層などの機能性膜を設けることが好ましく、かかる機能性膜としては、ハードコート層、防眩層又は反射防止層の少なくとも一層を設けるのが好ましい。なお、各層はそれぞれ別個の層として設ける必要はなく、例えば、反射防止層やハードコート層に防眩性の機能を持たせることにより、反射防止層及び防眩層の二層を設ける代わりに、防眩性反射防止層として機能させてもよい。
〔反射防止層〕
本発明では、偏光板の保護膜上に、少なくとも光散乱層と低屈折率層がこの順で積層されてなる反射防止層、又は保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に設けられる。以下にそれらの好ましい例を記載する。なお前者の構成では、一般的に鏡面反射率は1%以上となり、Low Reflection(LR)フィルムと呼ばれる。後者の構成では、鏡面反射率0.5%以下を実現するものが可能となり、Anti Reflection(AR)フィルムと呼ばれる。
[LRフィルム]
偏光板の保護膜上に、光散乱層と低屈折率層を設けた反射防止層(LRフィルム)の好ましい例について述べる。
光散乱層には、マット粒子が分散されているのが好ましく、光散乱層のマット粒子以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.20〜1.49の範囲にあることが好ましい。本発明において光散乱層は、防眩性とハードコート性を兼ね備えており、一層でもよいし、複数層、例えば二層〜四層で構成されていてもよい。
反射防止層は、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均凹凸間距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均凹凸間距離Smの標準偏差が20μm以下、傾斜角0〜5゜の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成されるので好ましい。
また、C光源下での反射光の色味がa*値−2〜2、b*値−3〜3、380nm〜780nmの範囲内での反射率の、最小値と最大値の比0.5〜0.99であることで、反射光の色味がニュートラルとなるので好ましい。さらにC光源下での透過光のb*値が0〜3とすることで、表示装置に適用した際の白表示の黄色味が低減されるので好ましい。さらにまた、面光源上と反射防止層の間に120μm×40μmの格子を挿入して、フィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明の偏光板を適用したときのギラツキが低減されるので好ましい。
本発明で用いることができる反射防止層は、その光学特性として、鏡面反射率2.5%以下、透過率90%以上、60゜光沢度70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%
以下であることが最も好ましい。ヘイズ20%〜50%、内部ヘイズ/全ヘイズ値の比が0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20%〜50%、垂直透過光/垂直から2゜傾斜方向の透過率比が1.5〜5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成されるので好ましい。
(低屈折率層)
本発明で用いることができる低屈折率層の屈折率は、好ましくは1.20〜1.49であり、更に好ましくは1.30〜1.44の範囲にある。さらに、低屈折率層は下記数式(19)を満たすことが低反射率化の点で好ましい。
数式(19):(m/4)λ×0.7<nLL<(m/4)λ×1.3
式中、mは正の奇数であり、nLは低屈折率層の屈折率であり、そして、dLは低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
低屈折率層を形成する素材について以下に説明する。
低屈折率層は、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。
フッ素ポリマーとしては、動摩擦係数0.03〜0.20、水に対する接触角90〜120゜、純水の滑落角が70゜以下の、熱又は電離放射線により架橋する含フッ素ポリマーが好ましい。本発明に関する偏光板を画像表示装置に装着した時、市販の接着テープと
の剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、引張試験機で測定した場合、該剥離力が500gf以下であることが好ましく、300gf以下であることがより好ましく、100gf以下であることが最も好ましい。また、微小硬度計で測定した表面硬度が高いほど傷がつき難く、該表面硬度は0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
低屈折率層に用いられる含フッ素ポリマーとしては、ペルフルオロアルキル基含有シラン化合物{例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン}の加水分解物、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
含フッ素モノマーの具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ペルフルオロオクチルエチレン、ヘキサフルオロプロピレン、ペルフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類[例えば「ビスコート6FM」{大阪有機化学工業(株)製}や“M−2020”{ダイキン工業(株)製}等]、完全又は部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはペルフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
架橋反応性付与のための構成単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように、分子内に予め自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー{例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等}の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶媒への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−t−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
上記のポリマーに対しては、特開平10−25388号及び特開平10−147739号各公報に記載のごとく、適宜硬化剤を併用してもよい。
(光散乱層)
光散乱層は、表面散乱及び内部散乱の少なくともいずれかによる光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに付与する目的で形成される。従って、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、及び必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。また、このような光散乱層を設けることにより、該光散乱層が防眩層としても機能し、偏光板が防眩層を有することになる。
光散乱層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。光散乱層の膜厚が該下限値以上であれば、ハード性が不足するなどの問題が生じにくく、該上限値以下であれば、カールや脆性が悪化して加工適性が不足するなどの不都合が生じにくいので好ましい。
光散乱層のバインダーとしては、飽和炭化水素鎖又はポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。またバインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、且つ架橋構造を有するバインダーポリマーとしては、2個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。
2個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル{例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート}、上記のエチレンオキシド変性体、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。これらのモノマーは2種以上併用してもよい。
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤又は熱ラジカル開始剤の存在下、電離放射線の照射又は加熱により行うことができる。従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤又は熱ラジカル開始剤、マット粒子及び無機フィラーを含有する塗布液を調製し、該塗布液を保護膜上に塗布後、電離放射線又は熱による重合反応により硬化して反射防止層を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。
ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤又は熱酸発生剤の存在下、電離放射線の照射又は加熱により行うことができる。従って、多官能エポシキシ化合物、光酸発生剤又は熱酸発生剤、マット粒子及び無機フィラーを含有する塗布液を調製し、該塗布液を保護膜上に塗布後電離放射線又は熱による重合反応により硬化して反射防止層を形成することができる。
2個以上のエチレン性不飽和基を有するモノマーの代わりに、又はそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が1〜10μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子又は樹脂粒子が含有される。マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。
さらに、上記マット粒子の粒子径分布としては、単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほどよい。例えば、平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2となるように光散乱層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2及びZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
光散乱層のバインダー及び無機フィラーの混合物のバルクの屈折率は、1.50〜2.00であることが好ましく、より好ましくは1.51〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、又はその両者を光散乱層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明において好ましく用いられる反射防止層の塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。
[ARフィルム]
次に保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層された反射防止層(ARフィルム)について述べる。
保護膜上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成からなる反射防止層は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>保護膜の屈折率>低屈折率層の屈折率
また、保護膜と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよく、例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等に記載の反射防止層が挙げられる。
さらに各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例えば、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止層のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の表面強度は、JIS K−5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(高屈折率層及び中屈折率層)
反射防止層の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物微粒子及びマトリックスバインダーを少なくとも含有する硬化膜からなる。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(特開2001−166104号公報等)、特定の分散剤併用(例えば、特開平11−153703号公報、米国特許第6210858号明細書、特開2002−277609号公報等)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に好ましい材料としては、ラジカル重合性及びカチオン重合性の少なくともいずれかの重合性基を2個以上有する多官能性化合物含有組成物、加水分解性基を含有する有機金属化合物を含有する組成物、及びその部分縮合体を含有する組成物から選ばれる少なくとも1種の組成物が挙げられ、例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。また、厚さは5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
(低屈折率層)
低屈折率層は、高屈折率層の上に順次積層してなる。低屈折率層の屈折率は1.20〜1.55であることが好ましい。より好ましくは1.30〜1.50である。
低屈折率層は、耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等からなる薄膜層の手段を適用できる。
含フッ素化合物は、フッ素原子を35〜80質量%の範囲で含む架橋性又は重合性の官能基を含む化合物が好ましく、例えば、特開平9−222503号公報段落番号[0018]〜[0026]、同11−38202号公報段落番号[0019]〜[0030]、特開2001−40284号公報段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。
シリコーン化合物としては、ポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン[例えば、「サイラプレーン」{チッソ(株)製等}]、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋又は重合性基を有する、含フッ素ポリマー及びシロキサンポリマーの少なくともいずれかの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時に、又は塗布後に光照射や加熱することにより低屈折率層を形成することが好ましい。
またシランカップリング剤等の有機金属化合物と、特定のフッ素含有炭化水素基含有のシランカップリング剤とを、触媒共存下に縮合反応で硬化するゾル/ゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物又はその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ(ペルフルオロアルキルエーテル)基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
低屈折率層は、上記以外の添加剤として、充填剤{例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等}、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されてもよい。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
(ハードコート層)
ハードコート層は、反射防止層を設けた保護膜に物理強度を付与するために、保護膜の表面に設ける。特に、保護膜と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性化合物における硬化性官能基としては、光重合性官能基が好ましい。また加水分解性官能基含有の有機金属化合物や有機アルコキシシリル化合物も好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。
ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが
好ましい。
ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層を兼ねることもできる。
ハードコート層の膜厚は、用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
ハードコート層の表面強度は、JIS K−5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。またJIS K−5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
(反射防止層の他の層)
さらに、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
(帯電防止層)
帯電防止層を設ける場合には、体積抵抗率が10-8(Ωcm-3)以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8(Ωcm-3)の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色しているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が着色してしまい好ましくない。着色のない金属酸化物を形成する金属として、Zn、Ti、Sn、Al、In、Si、Mg、Ba、Mo、W又はVをあげることができ、これらを主成分とした金属酸化物を用いることが好ましい。
上記金属酸化物の具体的な例としては、ZnO、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO3、WO3、V25等、又はこれらの複合酸化物がよく、特にZnO、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加物、SnO2に対してはSb、Nb、ハロゲン元素等の添加、またTiO2に対してはNb、Ta等の添加が効果的である。
更にまた、特公昭59−6235号公報に記載の如く、他の結晶性金属粒子又は繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用してもよい。なお体積抵抗値と表面抵抗値は別の物性値であり、単純に比較することはできないが、体積抵抗値で10-8(Ωcm-3)以下の導電性を確保するためには、該帯電防止層が概ね10-10(Ω/□)以下の表面抵抗値を有していればよく、更に好ましくは10-8(Ω/□)である。帯電防止層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、積層フィルムを形成する途中の段階で測定することができる。
<液晶表示装置>
本発明の液晶表示装置は、本発明の偏光板を少なくとも有するものである。好ましくは、一対の偏光板を液晶セルの上下に1枚ずつ用いた液晶表示装置であり、特に好ましくは本発明の一対の偏光板をVAモード液晶セルの上下に1枚ずつ用いた液晶表示装置である。また、該偏光板の少なくとも一方の保護膜が前記の保護膜、すなわち、前記のセルロースアシレートフィルムまたはシクロオレフィン系ポリマーフィルムであることが好ましい。さらにまた、液晶表示装置の偏光板の液晶セル側に配置される保護膜が、前記数式(6)および(7)を満たす保護膜であることが好ましい。また、保護膜の上に光学異方性層を設けた態様、及び/または保護膜の上に反射防止層を設けた態様も好ましい。このような構成とすることで、軽くて薄い液晶表示装置を得ることができる。
以下に、本発明の偏光板を用いて液晶表示装置とすることの出来る液晶セルの例を挙げる。
本発明の偏光板は、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−Ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)及びHAN(Hybrid Aligned Nematic)のような様々な表示モードを挙げることができる。このうち、VAモード又はOCBモードに好ましく用いることができ、特にVAモードに用いることが好ましい。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードを突起によりマルチドメイン化した(MVAモードの)液晶セル{“SID97、Digest of tech. Papers”(予稿集)28集(1997)p.845記載}、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード、CPAモード)の液晶セル{日本液晶討論会の予稿集p.58〜59(1998)、シャープ技報第80号11頁記載}及び、(4)斜め電界によりマルチドメイン配向させるSURVAIVALモードの液晶セル{月刊ディスプレイ5月号14頁(1999年)}、PVAモードの液晶セル{“18th,IDRC Proceedings”, p.383(1998年)}が含まれる。
VAモードの液晶表示装置としては、図3に示すように、液晶セル(VAモードセル)及び、その両側に2枚の偏光板{TAC1(22)、TAC2(23、33)、TAC3(32)、偏光子(21、31)および粘着層(不図示)を有する偏光板}を有するものが挙げられる。液晶セルは、特に図示しないが2枚の電極基板の間に液晶を担持している。
図3に示す本発明の透過型液晶表示装置の態様では、保護膜として用いられるセルロースアシレートフィルムのうち、液晶セル側に用いられる保護膜TAC1とTAC3は同じフィルムであっても良いし、異なったフィルムであっても良い。またTAC1およびTAC3は保護膜兼光学補償シートとして用いられてもよい。
図3の保護膜(TAC2)は、通常のセルレートアシレートフィルムでもよく、本発明に好ましく用いられるセルロースアシレートフィルムより薄いことが好ましい。例えば、40〜80μmが好ましく、市販の“KC4UX2M”{コニカオプト(株)製40μm}、“KC5UX”{コニカオプト(株)製60μm}、“TD80UL”{富士写真フイルム(株)製80μm}等が挙げられるが、これらに限定されない。
本発明の液晶表示装置に用いられるバックライトの光源としては、表面温度が40℃以下のものであれば特に方式は限定しない。投入電力に対して発光強度が高いものが好まし
いが、特に光源の形式は限定しない。例としては発光ダイオード(参考文献1、2、3)、二次元積層蛍光ランプ(参考文献4)、その他参考文献5〜8に記載の光源を使用することができる。光源としての発熱があっても、液晶パネルへ熱が伝わらない構造とすることが好ましい。
参考文献1 W.Folkerts,SID 04 DIGEST,p.1226(2004)
参考文献2 S.Sakai et.al,SID 04 DIGEST,p.1218(2004)
参考文献3 M.J.Zwanenburg et.al,SID 04 DIGEST,p.1222(2004)
参考文献4 J.H.Kim,IMID’04 DIGEST,p.795(2004)参考文献5 T.Shiga et.al,J.of SID,p.151(1999)参考文献6 M.Anandan,“LCD backlighting”,Seminar Lecture Notes(Seminar F−2) of SID’01.参考文献7 M.Anandan et.al,Proc. of SID,p.137,Vol.32(1991)
参考文献8 L.Hitsche,SID’04 DIGEST,p.1322(2004)
表面張力は、その発現性の起源により分散力成分と極性力成分に分けて考えることができ、表面張力γ、分散力成分γd、極性力成分γpは下記式の関係で表される。
γ=γd+γp
分散力成分は分子の無極性部分に起因する分子同士の長距離レンジに及ぶ引力であり、極性力成分は分子の極性部分に起因する比較的ショートレンジの引力である。有機物質の多くは総体としては電気的に中性であるが、微視的には原子の電気陰性度の違いに起因して、分子中に電荷の偏りを生じる極性部分(永久双極子)を有するものがある。永久双極子同士は相互作用(Keesom相互作用)を持ち、これが前記極性力成分を引き起こす。また、無極性分子の集団中に永久双極子が存在する場合には、これが無極性分子を誘起して誘起双極子を生じさせる。これらの間には、永久双極子−誘起双極子相互作用(Debye相互作用)が働く。したがって、極性力成分はカルボニル基やヒドロキシル基などの極性の強い基を有する分子で大きく、ポリイミド、ポリアミド、エポキシ樹脂などが大きな値を示す。さらに、無極性分子でも分子内電子の移動が瞬間的な双極子を発生させ、他の分子を分極させて分散力(London相互作用)を起こす。したがって、分散力は電子移動性に富む共役結合を多く含む分子ほど大きくなり、ポリアセチレンやポリブタジエンなどが大きな値を示す。分散力成分、極性力成分共にフッ素原子を含む分子では小さく、アクリル樹脂やメタクリル樹脂で水素原子をフッ素原子に置換したものが例として挙げられる。ポリマーフィルムのような基材と粘着材のような流動性のあるものとを接触させ接着させるためには、基材の表面張力に対して粘着材の表面張力が小さいことが好ましい。
本件では、粘着剤の表面張力γA、極性成分γA p、基材すなわち保護膜の表面張力γF、極性成分γF pがそれぞれ下記数式(20)〜(23)を満たすことが好ましい。
数式(20):30≦γA≦45
数式(21):5≦γA p≦15
数式(22):50≦γF≦75
数式(23):20≦γF p≦45
[なお、粘着剤の分散力成分γA d、保護膜の分散力成分γF dとすると、それぞれ、γA=γA d+γA p、γF=γF d+γF pの関係となる。また、各式中、γA、γA d、γA p、γF、γF d、γF pの単位はmN/mである。]
基材および粘着材の表面張力を上記数式(20)〜(23)の関係とすることで、高温下あるいは高温高湿下における基材と粘着層との剥れを防止することができる。
表面張力の分散力成分と極性力成分の見積もりは、分散力成分と極性力成分が既知の複数の液体の測定対象固体上における接触角の測定によって行うことができる。その一例は、水(H2O)と塩化メチレン(CH2Cl2)の接触角から下記2式の連立方程式を解くことにより求めるOwensらの方法(D.K.Owens and R.C.Wendt:J.Appl.Polym.Sci,13,1941(1969))が提案されている。
1+cosθH2O=2×(γs d0.5×(γH2O d0.5/γH2O+2×(γs p0.5×(γH2O p0.5/γH2O
1+cosθCH2Cl2=2×(γs d0.5×(γCH2Cl2 d0.5/γCH2Cl2+2×(γs p0.5×(γCH2Cl2 p0.5/γCH2Cl2
ここで、θH2OおよびθCH2Cl2はそれぞれ固体S上の水と塩化メチレンの接触角、γs d、γH2O d、γCH2Cl2 dはそれぞれ固体S、水、塩化メチレンの分散力成分、γs p、γH2O p、γCH2Cl2 pはそれぞれ固体S、水、塩化メチレンの極性力成分である。γH2O d、γCH2Cl2 d、γH2O p、γCH2Cl2 pは既知の値であり、それぞれ21.8mN/m、49.5mN/m、51.0mN/m、1.3mN/mである。
以下、本発明を実施例、製造例及び合成例に基づき具体的に説明するが、本発明はこれら実施例等に限定されない。
製造例1:バンド流延機によるセルロースアシレートフィルムの製膜(フィルム1〜17)
(1)セルロースアシレート
表1に記載のように、アシル基の種類、置換度の異なるセルロースアシレートを調製した。これは、触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40℃でアシル化反応を行った。この時、硫酸触媒量、水分量及び熟成時間を調整することでアシル基の種類、全置換度と6位置換度を調整した。熟成温度は40℃で行った。またアシル化後40℃で熟成を行った。さらにこのセルロースアシレートの低分子量成分をアセトンで洗浄し除去した。
なお、表中CABとは、セルロースアセテートブチレート(アシル基がアセチル基とブタノイル基からなるセルロースエステル誘導体)の略称であり、CAPとは、セルロースアセテートプロピオネート(アシル基がアセチル基とプロピオニル基からなるセルロースエステル誘導体)の略称であり、CTAとは、セルローストリアセテート(アシル基がアセチル基のみからなるセルロースエステル誘導体)を意味する。
Figure 2006301572
(2)ドープの調製
[1−1.セルロースアシレート溶液]
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、更に90℃に約10分間加熱した後、平均孔径34μmの濾紙及び平均孔径10μmの焼結金属フィルターで濾過した。
(セルロースアシレート溶液の組成)
表1記載のセルロースアシレート 100.0質量部
トリフェニルホスフェート 8.0質量部
ビフェニルジフェニルホスフェート 4.0質量部
メチレンクロリド 403.0質量部
メタノール 60.2質量部
[1−2.マット剤分散液]
次に、上記方法で作製したセルロースアシレート溶液を含む下記組成物を分散機に投入し、マット剤分散液を調製した。
(マット剤分散液の組成)
シリカ粒子(平均粒径16nm) 2.0質量部
“aerosil R972”{日本アエロジル(株)製}
メチレンクロリド 72.4質量部
メタノール 10.8質量部
上記セルロースアシレート溶液 10.3質量部
[1−3.レターデーション発現剤溶液A]
次に、上記方法で作製したセルロースアシレート溶液を含む下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、レターデーション発現剤溶液Aを調製した。なお下記組成物中、レターデーション発現剤(RP1)は後記[化19]に示す化合物である。
(レターデーション発現剤溶液Aの組成)
レターデーション発現剤(RP1) 20.0質量部
メチレンクロリド 58.3質量部
メタノール 8.7質量部
上記セルロースアシレート溶液 12.8質量部
上記セルロースアシレート溶液を100質量部、マット剤分散液を1.35質量部、更にレターデーション発現剤溶液Aを表2に示す割合になるように混合し、製膜用ドープを調製した。本ドープをフィルム1〜15のフィルム作製に供した。レターデーション発現剤溶液Aは、セルロースアシレート量を100質量部とした時のレターデーション発現剤の質量部で表2に示した。
[1−4.レターデーション発現剤溶液B]
更に上記方法で作製したセルロースアシレート溶液を含む、下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、レターデーション発現剤溶液Bを調製した。なお下記組成物中、レターデーション発現剤(RP1)は後記[化19]に示す化合物であり、レターデーション発現剤(30)は前記[化5](30)に示す化合物である。
(レターデーション発現剤溶液Bの組成)
レターデーション発現剤(RP1) 7.8質量部
レターデーション発現剤(30) 12.2質量部
メチレンクロリド 58.3質量部
メタノール 8.7質量部
上記セルロースアシレート溶液 12.8質量部
上記セルロースアシレート溶液を100質量部、マット剤分散液を1.35質量部、更にレターデーション発現剤溶液Bを表2に示す割合になるように混合し、製膜用ドープを調製した。本ドープをフィルムのフィルム16作製に供した。レターデーション発現剤溶液Bは、セルロースアシレート量を100質量部とした時のレターデーション発現剤の質量部で表2に示した。
[1−5.レターデーション低下剤溶液]
更に上記方法で作製したセルロースアシレート溶液を含む下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、レターデーション低下剤溶液及び波長分散調整剤用液を調製した。なお下記組成物中、レターデーション低下剤(119)は前記[化10](119)に示す化合物である。また下記組成物中、波長分散調整剤HOBPは2−ヒドロキシ−4−n−オクトキシベンゾフェノンを意味する。
(レターデーション低下剤溶液の組成)
レターデーション低下剤(119) 20.0質量部
メチレンクロリド 58.3質量部
メタノール 8.7質量部
上記セルロースアシレート溶液 12.8質量部
(波長分散調整剤溶液の組成)
波長分散調整剤HOBP 20.0質量部
メチレンクロリド 58.3質量部
メタノール 8.7質量部
上記セルロースアシレート溶液 12.8質量部
上記セルロースアシレート溶液を100質量部、マット剤分散液を1.35質量部、更にレターデーション低下剤溶液及び波長分散調整剤溶液を表2に示す割合になるように混合し、製膜用ドープを調製した。本ドープをフィルムのフィルム17作製に供した。
レターデーション発現剤溶液Aは、セルロースアシレート量を100質量部とした時のレターデーション発現剤の質量部で表2に示した。
表2おいて、紫外線吸収剤UV1は2−[2'−ヒドロキシ−3',5'−ジ−t−ブチルフェニル]ベンゾトリアゾール]、UV2は2−[2'−ヒドロキシ−3',5'−ジ−アミルフェニル]−5−クロルベンゾトリアゾール]を意味する。
Figure 2006301572
(3)流延
上記のドープを、バンド流延機を用いて流延した。残留溶媒量が25〜35質量%でバンドから剥ぎ取ったフィルムを、延伸温度がセルロースアシレートフィルムのガラス転移温度に対し約5℃低い温度から約5℃高い温度までの範囲(以下、約Tg−5〜Tg+5℃の範囲と表記することがある)の条件で、テンターを用いて0%〜30%の延伸倍率(表2参照)で幅方向に延伸して、セルロースアシレートフィルムを製膜した。巻取り部前で両端部を切り落とし幅2000mmとし、長さ4000mのロールフィルムとして巻き取った。表2に、テンターの延伸倍率を示してある。作製したセルロースアシレートフィルムについて、複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用い、25℃、60%RHで波長590nmにおけるRe590値及びRth590値を測定した。Rth590値の計算には平均屈折率として1.48を入力した。また前記に従って、弾性率及び吸湿膨張係数を求めた。結果を表2に示した。さらにフィルム17については波長400nmおよび700nmにおいて、Re400値、Re700値、Rth400値およびRth700値を測定した。Rth400値およびRth700値の計算には平均屈折率として1.48を入力した。その結果はそれぞれ、Re400は−1nm、Re700値は3nm、Rth400値は−3nmおよびRth700値は6nmであった。
本製造例で得られたフィルムのヘイズは、全て0.1〜0.9、マット剤の2次平均粒子径が1.0μm以下であり、80℃90%RHの条件下に48時間静置した場合の質量変化は0〜3質量%であった。また60℃、95%RH及び90℃、5%RHの条件下に24時間静置した場合の寸度変化は、0〜4.5%であった。さらに、どのサンプルも光弾性係数は50×10-13cm2/dyne以下であった。
Figure 2006301572
製造例2:ドラム流延機によるセルロースアシレートフィルムの製膜(フィルム18)
(1)溶解
下記の組成物をミキシングタンクに投入し、30℃に加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
(セルロースアセテート溶液の組成)
(質量部) 内層 外層
セルロースアセテート(酢化度60.9%) 100 100
トリフェニルホスフェート(可塑剤) 7.8 7.8
ビフェニルジフェニルホスフェート(可塑剤) 3.9 3.9
メチレンクロリド(第1溶媒) 293 314
メタノール(第2溶媒) 71 76
1−ブタノール(第3溶媒) 1.5 1.6
シリカ微粒子 0 0.8
“AEROSIL R972”{日本アエロジル(株)製}
レターデーション発現剤(RP2) 1.4 0
上記セルロースアセテートの置換度は次の通りであった。
置換度A 2.87、置換度B 0、全置換度A+B 2.87、6位置換度0.907、6位置換度/全置換度 0.316
Figure 2006301572
得られた内層用ドープ及び外層用ドープを、三層共流延ダイを用いて0℃に冷却したドラム上に流延した。残留溶媒量が70質量%のフィルムをドラムから剥ぎ取り、両端をピンテンターにて固定して搬送方向のドロー比を110%(延伸倍率10%)として搬送しながら80℃で乾燥させ、残留溶媒量が10質量%となったところで110℃で乾燥させた。その後140℃の温度で30分乾燥し、巻取り部前で両端部を切り落とし幅2000mmとし、長さ4000mのロールフィルムとして巻き取った。このようにして残留溶媒が0.3質量%のフィルム18(外層:3μm、内層:74μm、外層:3μm)を作製した。作製したセルロースアシレートフィルムについて、複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、25℃、60%RHで波長590nmにおけるRe590値及びRth590値を測定した。Rth590値の計算には平均屈折率として
1.48を入力した。また前記に従って、弾性率及び吸湿膨張係数を求めた。この結果、Re590=8nm、Rth590=80nm、弾性率2950MPa、吸湿膨張係数55ppm/%RHであった。
また製造例2で得られたフィルムのヘイズは0.3、マット剤の2次平均粒子径が1.0μm以下であり、80℃、90%RHの条件下に48時間静置した場合の質量変化は0.5質量%であった。また60℃、95%RH及び90℃、5%RHの条件下に24時間静置した場合の寸度変化は0.1%以内であった。さらに光弾性係数は13×10-13cm2/dyneであった。
製造例3:シクロオレフィン系二軸延伸フィルムの作製(フィルム19)
「ゼオノア1420R」{日本ゼオン(株)製、厚み100μm}を、縦一軸延伸機において、給気温度140℃、フィルム膜面温度130℃で、延伸倍率20%で縦延伸した。その後、テンター延伸機において、給気温度140℃、フィルム膜面温度130℃で延伸倍率10%で横延伸し、巻取り部前で両端部を切り落とし幅1500mmとし、長さ4000mのロールフィルムとして巻き取った。二軸延伸したフィルム19を作製した。得られたフィルムの厚みは75μmであった。作製したフィルムについて、複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、25℃、60%RHで波長590nmにおけるRe590値及びRth590値を測定した。Rth590値の計算には平均屈折率として1.51を入力した。また前記に従って、弾性率及び吸湿膨張係数を求めた。この結果、Re590=47nm、Rth590=128nm、弾性率1600MPa、吸湿膨張係数1ppm/%RHであった。
製造例4:保護膜(フィルム20=光学異方性層を有する光学補償シート20)の作製
(1)鹸化処理
基体フィルムとして、製造例2で作製したフィルム15を用い、これを温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記の組成のアルカリ溶液を、バーコーターを用いて14mL/m2塗布し、110℃に加熱したスチーム式遠赤外線ヒーター{(株)ノリタケカンパニー製}の下に10秒間滞留させた後、同じくバーコーターを用いて純水を3mL/m2塗布した。このときのフィルム温度は40℃であった。次いでファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返して後に、70℃の乾燥ゾーンに2秒滞留させて乾燥した。
(アルカリ溶液の組成)
水酸化カリウム 4.7質量部
水 15.7質量部
イソプロパノール 64.8質量部
プロピレングリコール 14.9質量部
1633O(CH2CH2O)10H(界面活性剤) 1.0質量部
(2)配向膜の形成
上記(1)にて表面処理を施したセルロースアセテートフィルム上に、下記の組成の塗布液を#14のワイヤーバーコーターで24mL/m2塗布した。60℃の温風で60秒
、さらに90℃の温風で150秒乾燥した。次に、セルロースアセテートフィルムの長手方向(搬送方向)を0°とし、時計方向の135°方向に、形成した膜にラビング処理を実施した。
(配向膜塗布液の組成)
下記の変性ポリビニルアルコール 40質量部
水 728質量部
メタノール 228質量部
グルタルアルデヒド(架橋剤) 2質量部
クエン酸エステル(AS3、三共化学(株)) 0.69質量部
Figure 2006301572
(3)光学異方性層の形成
配向膜上に、下記のディスコティック液晶化合物41.01kg、エチレンオキシド変成トリメチロールプロパントリアクリレート“V#360”{大阪有機化学(株)製}4.06kg、セルロースアセテートブチレート“CAB531-1”(イーストマンケミカル社製)0.29kg、光重合開始剤「イルガキュア907」{チバ・スペシャルティ・ケミカルズ(株)製}1.35kg、増感剤「カヤキュアーDETX」{日本化薬(株)製}0.45kg、クエン酸エステル“AS3”{三協化学(株)製}0.45kgを、102kgのメチルエチルケトンに溶解した塗布液に、フルオロ脂肪族基含有共重合体「メガファックF780」{大日本インキ(株)製}を0.1kg加え、#2.7のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているフィルム18の配向膜面に連続的に塗布した。室温から100℃に連続的に加温する工程で、溶媒を乾燥させ、その後、135℃の乾燥ゾーンで、ディスコティック液晶化合物層にあたる膜面風速がフィルム搬送方向に平行に1.5m/秒となるようにし、約90秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、ディスコティック液晶化合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。このようにして、ロール状の、光学異方性層を有する光学補償シートフィルム20を作製した。
自動複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、波長589nmで測定した光学異方性層のReレターデーション値は27nmであった。さらに、サンプルから光学異方性層のみを剥離し、β値及び光学異方性層の分子対称軸の平均方向を自動複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}により測定したところ、β値は33°、分子対称軸の平均方向はフィルム20の長手方向に対して、45.5°であった。β値の計算には平均屈折率として1.6を入力した。
Figure 2006301572
製造例5:保護膜(フィルム21)の作製
2,2'−ビス(3,4−ジスカルボキシフェニル)ヘキサフルオロプロパンと、2,2'−ビス(トリフルオロメチル)−4,4'−ジアミノビフェニルから合成されたポリイミドをシクロヘキサノン中に溶解させ、15質量%の溶液を調製した。このポリイミド溶液を、製造例1で作製したフィルム17を基体フィルムとして、その上に乾燥後の膜厚で6μm分塗布し、150℃で5分間乾燥させた後、150℃の雰囲気下で、テンター延伸機で幅方向に15%延伸し、巻取り部前で両端部を切り落とし幅1800mmとし、長さ4000mのロールフィルムとして巻き取り、フィルム21を得た。フィルム21の膜厚は75μmであった。作製したフィルムについて、複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、25℃、60%RHで波長590nmにおけるRe590値及びRth590値を測定した。Rth590値の計算には平均屈折率として1.58を入力した。また前記に従って、弾性率及び吸湿膨張係数を求めた。この結果、Re590=60nm、Rth590=230nm、弾性率2930MPa、吸湿膨張係数45ppm/%RHであった。
製造例6:保護膜(フィルム22)の作製
基体フィルムをフィルム17から「フジタックTD80UL」{富士写真フイルム(株)製}に変え、乾燥後の膜厚で5.5μmとなるようにポリイミド溶液を塗布した以外は製造例5と同様にしてフィルム22を作製した。巻取り部前で両端部を切り落とし幅1450mmとし、長さ3800mのロールフィルムとして巻き取った。フィルム22の膜厚は75μmであった。作製したフィルム22について、複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、また前記に従って、弾性率及び吸湿膨張係数を求めた。この結果、Re590=59nm、Rth590=234nm、弾性率3045MPa、吸湿膨張係数47ppm/%RHであった。
製造例7:保護膜(フィルム23=光学異方性層を有する光学補償シート23)の作製
製造例2で作製したフィルム18を使用し、製造例4と同様に鹸化処理及び配向膜作製を行った。次に、セルロースアセテートフィルムの長手方向(搬送方向)を0°とし、時計方向の180°方向に、形成した膜にラビング処理を実施した。
配向膜上に、前記ディスコティック液晶化合物91.0kg、エチレンオキシド変成トリメチロールプロパントリアクリレート“V#360”{大阪有機化学(株)製}9.0kg、セルロースアセテートブチレート“CAB551-0.2”(イーストマンケミカル社製)2.0kg、セルロースアセテートブチレート“CAB531-1”(イーストマンケミカル社製)0.5kg、光重合開始剤「イルガキュア907」{チバ・スペシャルティ・ケミカルズ(株)製}3.0kg、増感剤「カヤキュアーDETX」{日本化薬(株)製}1.0kgを、207kgのメチルエチルケトンに溶解した塗布液に、フルオロ脂肪族基含有共重合体「メガファックF780」{大日本インキ(株)製}を0.4kg加え、#3.2のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているフィルム18の配向膜面に連続的に塗布した。
室温から100℃に連続的に加温する工程で、溶媒を乾燥させ、その後、135℃の乾燥ゾーンで、ディスコティック液晶化合物層にあたる膜面風速がフィルム搬送方向に平行に5.0m/秒となるようにし、約90秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、ディスコティック液晶化合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。このようにして、ロール状の、光学異方性層を有する光学補償シートフィルム23を作製した。
自動複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}を用いて、波長589nmで測定した光学異方性層のReレターデーション値は46nmであった。さらに、サンプルから光学異方性層のみを剥離し、β値及び光学異方性層の分子対称軸の平均方向を自動複屈折測定装置“KOBRA 21ADH”{王子計測器(株)製}により測定したところ、β値は38°、分子対称軸の平均方向は光学補償フィルム22の長手方向に対して、−0.3°であった。β値の計算には平均屈折率として1.6を入力した。
製造例8:反射防止層を有する保護膜(フィルム24)の作製
[光散乱層用塗布液の調製]
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物“PETA”{日本化薬(株)製}50gをトルエン38.5gで希釈した。更に、重合開始剤「イルガキュア184」{チバ・スペシャルティ・ケミカルズ(株)製}を2g添加し、混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子“SX−350”{屈折率1.60、綜研化学(株)製}の30質量%トルエン分散液を1.7g及び平均粒径3.5μmの架橋アクリル−スチレン粒子{屈折率1.55、綜研化学(株)製}の30質量%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−1)0.75g、シランカップリング剤“KBM−5103”{信越化学工業(株)製}を10g加えて、得られた混合液を孔径30μmのポリプロピレン製フィルターで濾過して光散乱層の塗布液を調製した。
Figure 2006301572
[低屈折率層用塗布液の調製]
まず始めに、次のようにしてゾル液aを調製した。
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120質量部、アクリロイルオキシプロピルトリメトキシシラン“KBM5103”{信越化学工業(株)製}100質量部、ジイソプロポキシアルミニウムエチルアセトアセテート3質量部を加え混合したのち、イオン交換水30質量部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100質量%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
屈折率1.42の熱架橋性含フッ素ポリマー“JN−7228”{固形分濃度6質量%、JSR(株)製}13g、シリカゾル{シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30質量%、日産化学(株)製}1.3g、上記のように調製したゾル液a0.6g及びメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターで濾過して、低屈折率層用塗布液を調製した。
[反射防止層を有する保護膜の作製]
基体フィルムである80μmの厚さのトリアセチルセルロースフィルム「フジタックTD80UL」{富士写真フイルム(株)製}をロール形態で巻き出して、上記の機能層(光散乱層)用塗布液を、線数180本/インチ、深度40μmのグラビアパターンを有する、直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの機能層を形成し、巻き取った。
上記の機能層(光散乱層)を塗設したトリアセチルセルロースフィルムを再び巻き出して、その光散乱層側に、前記で調製した低屈折率層用塗布液を、線数180本/インチ、深度40μmのグラビアパターンを有する、直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取り、反射防止層を有する保護膜(フィルム24)を作製した。
製造例9:反射防止層を有する保護膜(フィルム25)の作製
[ハードコート層用塗布液の調製]
トリメチロールプロパントリアクリレート(TMPTA){日本化薬(株)製}750.0質量部に、質量平均分子量3000のポリ(グリシジルメタクリレート)270.0質量部、メチルエチルケトン730.0g、シクロヘキサノン500.0g及び光重合開始剤「イルガキュア184」{チバ・スペシャルティ・ケミカルズ(株)製}50.0gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用の塗布液を調製した。
[二酸化チタン微粒子分散液の調製]
二酸化チタン微粒子としては、コバルトを含有し、且つ水酸化アルミニウムと水酸化ジルコニウムを用いて表面処理を施した二酸化チタン微粒子“MPT−129”{石原産業(株)製}を使用した。
この粒子257.1gに、下記分散剤38.6g、及びシクロヘキサノン704.3gを添加してダイノミルにより分散し、質量平均径70nmの二酸化チタン分散液を調製した。
Figure 2006301572
[中屈折率層用塗布液の調製]
上記の二酸化チタン分散液88.9gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物“DPHA”58.4g、光重合開始剤「イルガキュア907」3.1g、光増感剤「カヤキュアーDETX」{日本化薬(株)製}1.1g、メチルエチルケトン482.4g及びシクロヘキサノン1869.8gを添加して攪拌した。十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液を調製した。
[高屈折率層用塗布液の調製]
上記の二酸化チタン分散液586.8gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物“DPHA”{日本化薬(株)製}47.9g、光重合開始剤「イルガキュア907」{チバ・スペシャルティ・ケミカルズ(株)製}4.0g、光増感剤「カヤキュアー−DETX」{日本化薬(株)製}1.3g、メチルエチルケトン455.8g、及びシクロヘキサノン1427.8gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用の塗布液を調製した。
[低屈折率層用塗布液の調製]
下記共重合体(P−1)を、メチルイソブチルケトンに7質量%の濃度になるように溶解し、末端メタクリレート基含有シリコーン樹脂“X−22−164C”{信越化学(株)製}を固形分に対して3質量%、光ラジカル発生剤「イルガキュア907」(商品名)を固形分に対して5質量%添加し、低屈折率層用塗布液を調製した。
Figure 2006301572
[反射防止層を有する保護膜の作製]
基体フィルムである膜厚80μmのトリアセチルセルロースフィルム「フジタックTD80U」{富士写真フイルム(株)製}上に、ハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ8μmのハードコート層を形成した。
次いでハードコート層の上に、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層用塗布液を3つの塗布ステーションを有するグラビアコーターを用いて連続して塗布した。
中屈折率層の乾燥条件は100℃、2分間とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら180W/cm2の空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量400mJ/cm2の照射量とした。硬化後の中屈折率層は屈折率1.630、膜厚67nmであった。
高屈折率層及び低屈折率層の乾燥条件は、いずれも90℃、1分の後、100℃、1分とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら240W/cm2の空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度600mW/cm2、照射量600mJ/cm2の照射量とした。
硬化後の高屈折率層は屈折率1.905、膜厚107nm、低屈折率層は屈折率1.440、膜厚85nmであった。このようにして、反射防止層を有する保護膜(フィルム25)を作製した。
以上の製造例4〜9で作製した保護膜の構成及び形成された機能性層について、表3にまとめる。
Figure 2006301572
合成例1
(1)(メタ)アクリル系共重合体(A)溶液の調製
表4に示す組成比で、ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステル(a1)、ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物(a2)、多官能性化合物に対して反応性を有する官能基含有モノマー(a3)及び重合開始剤を反応容器に入れ、この反応容器を窒素ガスで置換した後、攪拌しつつ窒素雰囲気化で、表4に示す反応温度及び時間で反応させた。(メタ)アクリル系共重合体No.1、2、3、5、6については反応後に酢酸エチルで希釈し、固形分濃度20質量%としポリマー溶液を得た。(メタ)アクリル系共重合体No.4、7については反応後にトルエンで希釈し、固形分濃度20質量%とし、(メタ)アクリル系共重合体溶液を得た。
[質量平均分子量の測定]
上記(メタ)アクリル系共重合体溶液における各共重合体の、スチレン換算の質量平均分子量(Mw)をゲル浸透クロマトグラフ法(GPC)により求めた。測定条件を下記に示す。また得られた結果を表4に示す。
装置名:“HLC−8120”{東ソー(株)製}
カラム:“G7000HXL”7.8mmID×30cm 1本{東ソー(株)製}
“GMHXL”7.8mmID×30cm 2本{東ソー(株)製}
“G2500HXL”7.8mmID×30cm 1本{東ソー(株)製}
サンプル濃度:1.5mL/mLになるようにテトラヒドロフランで希釈
移動相溶媒:テトラヒドロフラン
流量:1.0mL/分
カラム温度:40℃
Figure 2006301572
(2)粘着剤溶液の調製
合成例1で調製した(メタ)アクリル系共重合体(A)溶液を、表5に示す固形分比となるように混合し、表5に示す多官能性化合物(架橋剤)(B)を添加し、十分に攪拌して粘着剤溶液を得た。
[ゲル分率の測定]
ゲル分率の測定は下記のように行った。粘着剤溶液を25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。乾燥後の厚みが25μmになるように粘着剤溶液の塗布量を調整した。乾燥した粘着層約20mLをクロロホルム約10mLに浸漬し、不溶成分を0.45μmのフィルターで濾過し、フィルターに残ったものを乾燥し、質量を測りゲル分(架橋成分)の質量Mgとした。さらに、濾液を乾燥して残渣の質量を測り、ゾル分(未架橋成分)の質量Msとし、下記式によりゲル分率を算出した。
ゲル分率(%)=Mg/(Mg+Ms)×100
ゲル分率は粘着層を塗工後直後、塗工後1ケ月後のもの、および塗工後1ケ月後にさらに80℃で500時間加熱したものの3条件を測定した。
Figure 2006301572
合成例2:粘着剤溶液13の調製
アクリル酸ブチル100質量部、アクリル酸5質量部、2、2’−アゾビスブチロニトリル0.5質量部をモノマー濃度60質量%となるように酢酸エチルに溶解した後、60℃で8時間重合してポリマー1の溶液を得た。ポリマー1の固形分100質量部に対して、1質量部のイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン工業株式会社製)を加えて十分に攪拌し粘着剤溶液13を作製した。
合成例3:粘着剤溶液14の調製
アクリル酸ブチル100質量部、アクリル酸5質量部、過酸化ベンゾイル0.5質量部をモノマー濃度60質量%となるように酢酸エチルに溶解した後、60℃で8時間重合してポリマー2の溶液を得た。ポリマー2の固形分100質量部に対して、1質量部のイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン工業株式会社製)を加えて十分に攪拌し粘着剤溶液14を作製した。
合成例4:粘着剤溶液15の調製
アクリル酸ブチル100質量部、アクリル酸5質量部、2、2’−アゾビスブチロニトリル0.5質量部をモノマー濃度60質量%となるように酢酸エチルに溶解した後、60℃で8時間重合してポリマー3の溶液を得た。ポリマー3の固形分100質量部に対して、0.2質量部のイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン工業株式会社製)を加えて十分に攪拌し粘着剤溶液15を作製した。
合成例5:粘着剤溶液16の調製
アクリル酸ブチル70質量部、アクリル酸メチル30質量部、アクリル酸5質量部、2、2’−アゾビスブチロニトリル0.5質量部をモノマー濃度60質量%となるように酢酸エチルに溶解した後、60℃で8時間重合してポリマー4の溶液を得た。ポリマー4の固形分100質量部に対して、1質量部のイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン工業株式会社製)を加えて十分に攪拌し粘着剤溶液16を作製した。
(粘着層の塗設)
偏光板への粘着層の塗設は次のように行った。
粘着剤溶液1〜16の溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を偏光板に転写し、25℃、60%RHで7日間熟成させた。粘着剤溶液1〜16を塗設して粘着剤層1〜16を形成した。粘着剤17としてはゴム系の粘着剤を用いた。
[クリープ値の測定]
水洗・乾燥を行った無アリカリガラス板(品番1737、コーニング製)70に粘着層80を形成した偏光板90を図4に示すように貼り付けた。貼り付け面積は横aが10mm、縦bが10mmとした。初期接着圧力は5kg/cm2とした。その後、接着圧力を除き、50℃の雰囲気下で200gの荷重Wを1時間掛け、室温雰囲気下に取り出し荷重を取り除き粘着剤のクリープ量を測定した。粘着層を形成した偏光板を未試験のものに取り替えて、雰囲気の温度を25℃、70℃、90℃として、50℃の場合と同様にクリープ量を測定した。
[接着力の測定]
JIS Z 0237「粘着テープ、粘着シート試験方法」に基づいて、粘着層の接着力を測定する。具体的には、長さ100mm×幅25mmの粘着層を形成した偏光板を作製し、これを水洗・乾燥を行った無アリカリガラス板(品番1737、コーニング製)に貼り付ける。次いで2kgローラーを1往復させた後に、25℃で20分間放置した。前記ガラス板と偏光板を25℃、剥離速度300mm/min、90°ピールの条件で、前記JIS規定に基づき、引っ張り試験機(TMC−1kNB、ミネベア(株)製)を用いて、前記偏光板をガラス板から剥離する際の力を測定することにより、前記粘着層の接着力を測定する。
偏光板をガラス板に貼り付けた後の熱処理なしの場合と、50℃、5気圧のオートクレーブ中に15分間放置して接着状態を熟成した後、70℃で5時間加熱した場合の2通りについて接着力を測定した。
[弾性率の測定方法]
粘着剤溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、粘着層上にPETフィルムをかぶせて、25℃、60%RHで7日間熟成させた。前記の粘着層を厚さが1mmとなるように積層し、長さ20mm×幅5mmのサイズに切り出し、前記の引っ張り試験機を用いて引っ張り速度300mm/min、チャック間距離10mmの条件で応力−歪曲線を求め、弾性率を求めた。測定時の雰囲気温度は25℃と90℃の2条件とした。
[剪断弾性率の測定]
JIS K 6850の接着剤の引っ張り剪断接着強さ試験方法に従い、引っ張り速度1mm/minで引っ張り、引っ張り応力−歪曲線を求めた。JIS K 6850には弾性率の計算方法が示されていないので、JIS K 7127のプラスチックフィルムおよびシートの引っ張り試験方法の8項の(3)に示された計算方法により導き出された値を粘着層の剪断弾性率とした。
粘着剤13〜17の物性値を表6にまとめた。
Figure 2006301572
[偏光板の作製]
実施例1−1〜1−51及び比較例1−1〜1−18
(偏光子の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光子を得た。
(セルロースアシレートフィルムの表面処理)
製造例1、4〜9で作製した保護膜及び以下に挙げる市販のセルロースアシレートフィルムを、濃度1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、濃度0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
(偏光板の作製)
上記のように鹸化処理を行った保護膜及び市販のセルロースアシレートフィルムを、表7、8に示す組合せで前記の偏光子を挟むようにポリビニルアルコール系接着剤を用いて貼り合せ偏光板を作製した。
ここで市販のセルロースアシレートフィルムとしては、「フジタックT40UZ」、「フジタックT80UZ」、「フジタックTF80UL」、「フジタックTD80UL」、「フジタックTDY80UL」{以上、富士写真フイルム(株)製}、及び“KC80UVSFD”{コニカオプト(株)製}を用いた。
このとき、偏光子及び偏光子両側の保護膜はロール形態で作製されているため、各ロールフィルムの長手方向が平行となっており、連続的に貼り合わされる。また図1に示すように、偏光板のセル側に配置される保護膜(TAC1に相当)においては、偏光子1の透過軸2と実施例1で作製したセルロースアシレートフィルム3の遅相軸4とは平行になっている。
(粘着層の塗設)
偏光板への粘着層の塗設は次のように行った。
粘着剤溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を上記で作製した偏光板に表7、8の組合せで転写し、25℃、60%RHで7日間熟成させた。
上記のようにして作製した偏光板の粘着層側にはPETのセパレーターを取り付け、粘着層と逆側にはPET製のプロテクトフィルムを取り付けた。
実施例2
実施例1と同様に作製した偏光子の片面に、実施例1と同様に鹸化処理を行った市販のセルロースアセテートフィルムを、ポリビニルアルコール系接着剤を用いて貼り合わせ、他方の面に製造例3で作製したフィルム19をアクリル系接着剤“DD624”{ノガワケミカル(株)製}を用いて貼り合わせ偏光板を作製し、以下実施例1と同様にして粘着層の塗設を行った。
上記実施例1及び2で作製した偏光板の構成について、表7及び表8にまとめる。
Figure 2006301572
Figure 2006301572
[反射率の測定]
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を機能性膜側から測定し、450〜650nmの積分球平均反射率を求めたところ、反射防止層を有する保護膜であるフィルム24を使用した偏光板では2.3%、反射防止層を有する保護膜であるフィルム25を使用した偏光板では0.4%であった。ここで反射防止層を有する保護膜上のプロテクトフィルムは剥がして反射率測定を行った。
実施例3−1〜3−26及び比較例3−1〜3−6
(1)VAパネルへの実装
実施例1、比較例1及び実施例2で作製した偏光板を、視認側偏光板は26"ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。VAモードの液晶TV“KDL−L26RX2”{ソニー(株)製}の、表裏の偏光板及び位相差板を剥し、表と裏側に実施例1、比較例1及び実施例2で作製した偏光板を表8に示す組合せで貼り付け、液晶表示装置VA−1〜VA−27及びVA−R1〜VA−R6を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
[耐久試験による光漏れ及び偏光板剥がれ]
実施例3で作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表8に示す。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。
光漏れの評価は以下のように行った。
光漏れ発生状況 実用上の問題 光漏れ度
発生無し なし 1
非常に弱い なし 2
弱い なし 3
強い あり 4
非常に強い あり 5
作製したVAモード液晶表示装置への偏光板の組合せ、及び該表示装置の特性値を表9に示す。
Figure 2006301572
実施例4及び比較例4
(2)OCBパネルへの実装
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた2枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを5.7μmに設定した。セルギャップにΔnが0.1396の液晶性化合物“ZLI1132”(メルク社製)を注入し、セルを作製した。
実施例1及び比較例1で作製した偏光板を、視認側偏光板、バックライト側偏光板共に、23"ワイドのサイズで打抜き後の偏光板の長辺に対して吸収軸が45゜長辺となるように、長方形に打抜いた。作製したOCBセルを挟むように、作製した偏光板を2枚貼り付けた。偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置し、液晶表示装置OCB−1及びOCB−R1を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。
作製した液晶表示装置をバックライト上に配置し、液晶セルに白表示電圧2V、黒表示電圧4.5Vを印加し、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
得られたOCBモード液晶表示装置について、実施例3及び比較例3と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表10に示す。
Figure 2006301572
実施例5及び比較例5
(3)TNパネルへの実装
実施例1及び比較例1で作製した偏光板を、視認側偏光板、バックライト側偏光板共に、17"のサイズで打抜き後の偏光板の長辺に対して吸収軸が45゜長辺となるように、長方形に打抜いた。TNモードの液晶モニター“SyncMaster 172X”(サムソン社製)の表裏の偏光板及び位相差板を剥し、表と裏側に、実施例1及び比較例1で作製した偏光板を表11に示す組合せで貼り付け、液晶表示装置TN−1及びTN−R1を作製した。偏光板貼り付け後、50℃、5kg/cm2で20分間保持し、接着させた。この際、偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角60゜以上の良好な視野角特性が得られた。
得られたTNモード液晶表示装置について、実施例3及び比較例3と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表11に示す。
Figure 2006301572
実施例6及び比較例6
(4)IPSパネルへの実装
実施例1及び比較例1で作製した偏光板を、視認側偏光板は32"ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。IPSモードの液晶TV“W32−L5000”{日立製作所(株)製}の表裏の偏光板及び位相差板を剥し、表と裏側に実施例1及び比較例1で作製した偏光板を、表12に示す組合せで貼り付け、液晶表示装置IPS−1及びIPS−R1を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着層表面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
得られたIPSモード液晶表示装置について、実施例3及び比較例3と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表12に示す。
Figure 2006301572
実施例7および比較例7
[偏光板の作製]
(偏光子の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光子を得た。
(セルロースアシレートフィルムの表面処理)
製造例1、3〜9で作製した保護膜及び以下に挙げる市販のセルロースアシレートフィルムを、濃度1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、濃度0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。表面張力を測定した。結果を表16の鹸化後の欄に示した。
(偏光板の作製)
上記のように鹸化処理を行った保護膜及び市販のセルロースアシレートフィルムを、表5に示す組合せで前記の偏光子を挟むようにポリビニルアルコール系接着剤を用いて貼り合せ偏光板を作製した。
ここで市販のセルロースアシレートフィルムとしては、「フジタックT40UZ」、「フジタックT80UZ」、「フジタックTF80UL」、「フジタックTD80UL」、「フジタックTDY80UL」{以上、富士写真フイルム(株)製}、及び“KC80UVSFD”{コニカオプト(株)製}を用いた。
このとき、偏光子及び偏光子両側の保護膜はロール形態で作製されているため、各ロールフィルムの長手方向が平行となっており、連続的に貼り合わされる。また図1に示すように、偏光板のセル側に配置される保護膜(TAC1に相当)においては、偏光子1の透過軸2と実施例1で作製したセルロースアシレートフィルム3の遅相軸4とは平行になっている。
(粘着層の塗設)
偏光板への粘着層の塗設は次のように行った。
粘着剤13の溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を上記で作製した偏光板に表13の組合せで転写し、25℃、60%RHで7日間熟成させた。また粘着剤14に関しては、25℃、60%RHで7日間熟成させた後、さらに25℃、60%RHで21日間(合計1ヶ月間)熟成させたもの、前記1ヶ月の熟成の後にさらに80℃で500時間熱処理した偏光板サンプルも作製した。
上記のようにして作製した偏光板の粘着層側にはPETのセパレーターを取り付け、粘着層と逆側にはPET製のプロテクトフィルムを取り付けた。
実施例8
実施例7と同様に作製した偏光子の片面に、実施例7と同様に鹸化処理を行った市販のセルロースアセテートフィルムを、ポリビニルアルコール系接着剤を用いて貼り合わせ、他方の面に製造例3で作製したフィルム19をアクリル系接着剤“DD624”{ノガワケミカル(株)製}を用いて貼り合わせ偏光板を作製し、以下実施例7と同様にして粘着剤13の溶液の塗設を行った。
上記実施例7、実施例8及び比較例7で作製した偏光板の構成について、表13にまとめる。
Figure 2006301572
[反射率の測定]
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を機能性膜側から測定し、450〜650nmの積分球平均反射率を求めたところ、反射防止層を有する保護膜であるフィルム24を使用した偏光板では2.3%、反射防止層を有する保護膜であるフィルム25を使用した偏光板では0.4%であった。ここで反射防止層を有する保護膜上のプロテクトフィルムは剥がして反射率測定を行った。
実施例9および比較例9
(1)VAパネルへの実装
実施例7、実施例8及び比較例7で作製した偏光板を、視認側偏光板は26”ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。VAモードの液晶TV“KDL−L26HVX”{ソニー(株)製}の、表裏の偏光板及び位相差板を剥し、表と裏側に実施例7、実施例8及び比較例7で作製した偏光板を表13に示す組合せで貼り付け、液晶表示装置1〜33を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。
この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
[耐久試験による光漏れ及び偏光板剥がれ]
実施例9及び比較例9で作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表13に示す。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表13に示す。
光漏れの評価は以下のように行った。
光漏れ発生状況 実用上の問題 光漏れ度
発生無し なし 1
非常に弱い なし 2
弱い なし 3
強い あり 4
非常に強い あり 5
作製したVAモード液晶表示装置への偏光板の組合せ、及び該表示装置の特性値を表13に示す。
実施例10及び比較例10
(2)OCBパネルへの実装
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた2枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを5.7μmに設定した。セルギャップにΔnが0.1396の液晶性化合物“ZLI1132”(メルク社製)を注入し、セルを作製した。ここで、セルのラビング方向はセル基板の画面水平方向に対して45度方向とした。
実施例7及び比較例7で作製した偏光板を、視認側偏光板は23”ワイドのサイズで打抜き後の偏光板の長辺に対して視認側の偏光板の長辺が平行になるように、視認側偏光板は23”ワイドのサイズで打抜き後の偏光板の短辺が吸収軸に平行になるように、長方形に打抜いた。作製したOCBセルを挟むように、作製した偏光板を2枚貼り付けた。偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置し、液晶表示装置33及び34を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。
作製した液晶表示装置をバックライト上に配置し、液晶セルに白表示電圧2V、黒表示電圧4.5Vを印加し、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
得られたOCBモード液晶表示装置について、実施例9及び比較例9と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表13に示す。
実施例11及び比較例11
(3)TNパネルへの実装
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた2枚のガラス基板をラビング方向が90度となる配置で向かい合わせ、セルギャップを4.9μmに設定した。セルギャップにΔnが0.075で正の誘電率異方性を有する液晶性化合物およびカイラル剤を注入し、セルを作製した。ここで、セルのラビング方向はバックライト側は画面の上から下方向に、視認側のラビング方向は画面の右から左方向とした。
実施例8及び比較例8で作製した偏光板を、視認側偏光板は19”のサイズで打抜き後の偏光板の長辺に対して視認側の偏光板の短辺が平行になるように、視認側偏光板は19”のサイズで打抜き後の偏光板の長辺が吸収軸に平行になるように、長方形に打抜いた。作製したTNセルを挟むように、作製した偏光板を2枚貼り付けた。偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置し、液晶表示装置36及び37を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。
作製した液晶表示装置をバックライト上に配置し、液晶セルに白表示電圧1V、黒表示電圧4.5Vを印加し、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、画面水平方向および画面垂直方向で極角80゜以上の良好な視野角特性が得られた。
得られたTNモード液晶表示装置について、実施例9及び比較例9と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表13に示す。
実施例12及び比較例12
(4)IPSパネルへの実装
実施例8及び比較例8で作製した偏光板を、視認側偏光板は32”ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。IPSモードの液晶TV“W32−L5000”{日立製作所(株)製}の表裏の偏光板及び位相差板を剥し、表と裏側に実施例1及び比較例1で作製した偏光板を、表13に示す組合せで貼り付け、液晶表示装置38及び39を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着層表面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
得られたIPSモード液晶表示装置について、実施例9及び比較例9と同様にその特性を評価した。該液晶表示装置への偏光板の組合せ及び、該表示装置の特性値を表13に示す。
実施例13
[偏光板の作製]
(偏光子の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光子を得た。
(セルロースアシレートフィルムの表面処理)
製造例8で作製した保護膜及び市販のセルロースアシレートフィルムフジタックTD80ULを、濃度1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、濃度0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
(偏光板の作製)
上記のように鹸化処理を行った保護膜及び市販のセルロースアシレートフィルムを、表13に示す組合せで前記の偏光子を挟むようにポリビニルアルコール系接着剤を用いて貼り合せ偏光板を作製した。
このとき、偏光子及び偏光子両側の保護膜はロール形態で作製されているため、各ロールフィルムの長手方向が平行となっており、連続的に貼り合わされる。
(粘着層の塗設)
偏光板への粘着層の塗設は次のように行った。
粘着剤13の溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を上記で作製した偏光板に転写した。
上記のようにして作製した偏光板に製造例3で作製したフィルム19を、偏光板の透過軸とフィルム19の遅相軸が平行になるように連続して貼り合せた。さらに、粘着剤13の溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を上記で作製した偏光板に転写し、25℃、60%RHで7日間熟成させた。
上記のようにして作製した偏光板の粘着層側にはPETのセパレーターを取り付け、粘着層と逆側にはPET製のプロテクトフィルムを取り付けた。
(1)VAパネルへの実装
実施例13で作製した偏光板を、視認側偏光板は26”ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。VAモードの液晶TV“KDL−L26HVX”{ソニー(株)製}の、表裏の偏光板及び位相差板を剥し、表と裏側に実施例13で作製した偏光板を表13に示す組合せで貼り付け、液晶表示装置40を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
[耐久試験による光漏れ及び偏光板剥がれ]
実施例13で作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表13に示す。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表13に示す。
実施例14
(1)VAパネルへの実装
実施例9で作製した液晶表示装置17に使用したのと同じ偏光板を、視認側偏光板は46”ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。液晶TV“LT46G15W”{SAMSUNG製、バックライトの光源が冷陰極菅[CCFL]}の液晶パネルから表裏の偏光板及び位相差板を剥し、表と裏側に上記偏光板を表14に示す組合せで貼り付け、液晶表示装置41を作製した。
上記液晶TV“LT46G15W”{SAMSUNG製}の液晶パネルから表裏の偏光板及び位相差板を剥し、表と裏側に上記偏光板を表14に示す組合せで貼り付けた液晶パネルをもう一台作製し、QUALIA005 KDX−46Q005{ソニー(株)製、バックライトの光源がLED}液晶表示装置42を作製した。
なお、液晶パネルを取り外した状態におけるバックライトの表面温度は、液晶表示装置41で45℃、液晶表示装置42で35℃であった。
上記2台の液晶表示装置41および42を偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの液晶表示装置においても、全方位で極角80゜以上の良好な視野角特性が得られた。
[耐久試験による光漏れ及び偏光板剥がれ]
実施例14で作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表14に示す。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表14に示す。
Figure 2006301572
実施例15
[偏光板の作製]
(偏光子の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光子を得た。
(セルロースアシレートフィルムの表面処理)
製造例8で作製した保護膜及び市販のセルロースアシレートフィルムフジタックを、濃度1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、濃度0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
また、製造例1および2で作製した保護膜の表面に保護フィルムSAT−106T((株)サンエー化研製)を全面に貼り合わせた後に、濃度1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、濃度0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。乾燥終了後に保護フィルムSAT−106Tを剥離した。上記操作において保護フィルムSAT−106Tが貼られていた側は、水酸化ナトリウム水溶液の影響を受けず、鹸化されていない。表面張力を測定した。結果を表16の鹸化前の欄に示した。
鹸化されたフィルム表面と鹸化されていないフィルム表面の表面張力の違いを調べるべく、実施例で用いた他のフィルムの鹸化前後の表面張力もそれぞれ測定した。結果を表16の鹸化前、鹸化後の欄に示す。
(偏光板の作製)
上記のように鹸化処理を行った保護膜及び市販のセルロースアシレートフィルムを、表15に示す組合せで前記の偏光子を挟むようにポリビニルアルコール系接着剤を用いて貼り合せ偏光板を作製した。この時、製造例1および2で作製した保護膜は、鹸化時に保護フィルムSAT−106Tを貼り合わせなかった面を偏光子側にして偏光板を作製した。すなわちこのようにして作成された偏光板は偏光板の両面が鹸化されていない保護膜表面を有することとなる。
なおこのとき、偏光子及び偏光子両側の保護膜はロール形態で作製されているため、各ロールフィルムの長手方向が平行となっており、連続的に貼り合わされる。
(粘着層の塗設)
偏光板への粘着層の塗設は次のように行った。
粘着剤13または14の溶液を、25μm厚のPETフィルム上にダイコーターを用いて塗布した後、乾燥させた。ここで、乾燥後の粘着層の厚さが25μmとなるように調整した。さらに、PETフィルム上に塗設された粘着層を上記で作製した偏光板に転写した。粘着層を転写後に、PETフィルムを剥離し、粘着層の表面張力を測定した。結果を表16に示した。
(1)VAパネルへの実装
実施例15で作製した偏光板を、視認側偏光板は26”ワイドのサイズで偏光子の吸収軸が長辺となるように、バックライト側偏光板は偏光子の吸収軸が短辺となるように長方形に打抜いた。VAモードの液晶TV“KDL−L26HVX”{ソニー(株)製}の、表裏の偏光板及び位相差板を剥し、表と裏側に実施例15で作製した偏光板を表15に示す組合せで貼り付け、液晶表示装置40を作製した。偏光板貼り付け後、50℃5kg/cm2で20分間保持し、接着させた。この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
プロテクトフィルムを剥した後、測定機“EZ−Contrast 160D”(ELDIM社製)を用いて、黒表示及び白表示の輝度測定から視野角(コントラスト比が10以上の範囲)を算出した。いずれの偏光板を使用した場合も、全方位で極角80゜以上の良好な視野角特性が得られた。
[耐久試験による光漏れ及び偏光板剥がれ]
実施例15で作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表15に示す。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度及び偏光板の液晶パネルからの剥がれの有無を評価した。結果を表15に示す。
Figure 2006301572
Figure 2006301572
本発明に関する偏光板の製造時におけるセルロースアシレートフィルムの貼り合わせ方法の一例を示す模式図である。 本発明に関する偏光板の断面構造の一例を模式的に示す図である。 本発明の液晶表示装置の断面構造の一例を模式的に示す図である。 本発明の粘着剤のクリープ量を測定する説明図である。
符号の説明
1:偏光子
2:透過軸
3:TAC1:保護膜(本発明に好ましく用いられるセルロースアシレートフィルム)
4:遅相軸
11:偏光子
12:TAC1又はTAC3:(液晶セル側)保護膜(本発明に好ましく用いられるセルロースアシレートフィルム
13:TAC2:(液晶セルとは反対側の)保護膜
14:機能性膜(ハードコート層、防眩層、反射防止層)
(22−21−23:視認側偏光板)
21:偏光子
22:TAC1:液晶セル側保護膜
23:TAC2:液晶セルとは反対側の保護膜
(32−31−33:バックライト側偏光板)
31:偏光子
32:TAC3:液晶セル側保護膜
33:TAC2:液晶セルとは反対側の保護膜
40:VAモード液晶セル
50:視認側
60:バックライト側
70:ガラス板
80:粘着層
90:偏光板

Claims (32)

  1. 偏光子の両側に保護膜を有する偏光板であって、該偏光板が少なくとも片面に粘着層を有し、該粘着層が少なくとも、下記(A)並びに(B)、
    (A)(a1)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
    (a2)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
    (a3)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
    からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a1)が75質量部以上で、ビニル基を有する化合物(a2)が25質量部以下であって、且つ官能基含有モノマー(a3)が、該モノマー(a1)と化合物(a2)の和100質量部に対して10質量部以下である共重合体100質量部、並びに
    (B)官能基含有モノマー(a3)の官能基と反応して、架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物0.005〜5質量部、からなる(メタ)アクリル系共重合体の組成物を含有する粘着剤が塗設されて形成されており、さらに該粘着剤のゲル分率が40質量%以上90質量%以下であることを特徴とする偏光板。
  2. 偏光子の両側に保護膜を有する偏光板であって、該偏光板が少なくとも片面に粘着層を有し、該粘着層が少なくとも、下記(A1)、(A2)並びに(B)、
    (A1)(a11)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
    (a12)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
    (a13)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
    からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a11)が75質量部以上で、ビニル基を有する化合物(a12)が25質量部以下であって、且つ官能基含有モノマー(a13)が、該モノマー(a11)と化合物(a12)の和100質量部に対して10質量部以下で、質量平均分子量が100万以上である共重合体100質量部、
    (A2)(a21)ホモポリマーとした時のTgが−30℃未満の(メタ)アクリル酸エステルモノマー、
    (a22)ホモポリマーとした時のTgが−30℃以上のビニル基を有する化合物、及び、
    (a23)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、
    からなる(メタ)アクリル系共重合体であって、モノマー単位の質量比で(メタ)アクリル酸エステル(a21)が75質量部以上で、ビニル基を有する化合物(a22)が25質量部以下であって、且つ官能基含有モノマー(a23)が、該モノマー(a21)と化合物(a22)の和100質量部に対して10質量部以下で、質量平均分子量が10万以下である共重合体20〜200質量部、並びに
    (B)官能基含有モノマー(a13)及び(a23)の官能基と反応して架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物0.005〜5質量部、
    からなる(メタ)アクリル系共重合体の組成物を含有する粘着剤が塗設されて形成されており、さらに該粘着剤のゲル分率が40質量%以上90質量%以下であり、
    さらに(メタ)アクリル系共重合体(A1)及び(A2)における官能基含有モノマー(a13)及び(a23)から誘導される繰返し単位の導入量が、下記数式(1)で定義される官能基分配率0〜15質量%を満足することを特徴とする偏光板。
    数式(1):官能基分配率=[(メタ)アクリル系共重合体(A2)中の官能基含有モノマー(a23)から誘導される繰返し単位の質量/(メタ)アクリル系共重合体(A1)中の官能基含有モノマー(a13)から誘導される繰返し単位の質量]×100。
  3. 前記粘着層が(A)(a1)(メタ)アクリル酸エステルモノマー、(a2)ビニル基を有する化合物、及び、(a3)多官能性化合物(B)に対して反応性を有する官能基含有モノマー、からなる(メタ)アクリル系共重合体、並びに、(B)官能基含有モノマー(a3)の官能基と反応して、架橋構造を形成可能な官能基を分子内中に少なくとも2個有する多官能性化合物からなる(メタ)アクリル系共重合体の組成物からなり、該(メタ)アクリル系共重合体Aのガラス転移温度が0℃以下であることを特徴とする請求項1又は2に記載の偏光板。
  4. 前記粘着層を無アルカリガラス板に幅10mm、長さ10mmの面積を貼り付け、50℃の雰囲気下で200gの荷重を1時間掛けた後のクリープ量が70μm未満であることを特徴とする請求項1から3のいずれかに記載の偏光板。
  5. 前記粘着層を無アルカリガラス板に幅10mm、長さ10mmの面積を貼り付け、25℃の雰囲気下で200gの荷重を1時間掛けた後のクリープ量が40μm未満であることを特徴とする請求項1から4のいずれかに記載の偏光板。
  6. 前記粘着層の無アルカリガラス板に対する25℃の雰囲気下における90°剥離接着力が10N/25mm幅以上であることを特徴とする請求項1から5のいずれかに記載の偏光板。
  7. 前記粘着層の無アルカリガラス板に対する70℃の雰囲気下で5時間処理した後の90°剥離接着力が0〜90℃のいずれの測定温度においても10N/25mm幅以上であることを特徴とする請求項1から6のいずれかに記載の偏光板。
  8. 前記粘着層の弾性率が0.08MPa以上であることを特徴とする請求項1から7のいずれかに記載の偏光板。
  9. 前記粘着層の90℃における弾性率が0.06MPa以上であることを特徴とする請求項1から8のいずれかに記載の偏光板。
  10. 前記粘着層の剪断弾性率が0.1GPa〜100GPaであることを特徴とする請求項1から9のいずれかに記載の偏光板。
  11. 前記粘着剤のゲル分率が60質量%以上90質量%以下である請求項1から10のいずれかに記載の偏光板。
  12. 前記粘着層の厚みが5〜30μmである請求項1から11のいずれかに記載の偏光板。
  13. 前記粘着剤の表面張力γA、極性成分γA p、および少なくとも一方の保護膜の表面張力γF、極性成分γF pがそれぞれ下記数式(20)〜(23)を満たす請求項1から12のいずれかに記載の偏光板。
    数式(20):30≦γA≦45
    数式(21):5≦γA p≦15
    数式(22):50≦γF≦75
    数式(23):20≦γF p≦45
    [式中、γA、γA p、γF、γF pの単位はmN/mである。]
  14. 偏光板の、少なくとも一方の保護膜の正面レターデーション値Reλ及び膜厚方向のレターデーション値Rthλが、下記数式(2)及び(3)を満たす請求項1から13のいずれかに記載の偏光板。
    数式(2):0nm≦Re590≦200nm
    数式(3):0nm≦Rth590≦400nm
    [式中、Re590、Rth590は、波長λ=590nmにおける値(単位:nm)である。]
  15. 保護膜が、セルロースの水酸基がアセチル基及び炭素原子数3以上のアシル基で置換された、セルロースの混合脂肪酸エステルであるセルロースアシレートを主たるポリマー成分とするセルロースアシレートフィルムであって、該セルロースアシレートのアセチル基の置換度Aと、炭素原子数が3以上のアシル基の置換度Bとが下記数式(4)、(5)を満たす請求項1から14のいずれかに記載の偏光板。
    数式(4):2.0≦A+B≦3.0
    数式(5):0<B
  16. 炭素原子数が3以上のアシル基がプロピオニル基又はブタノイル基である請求項15に記載の偏光板。
  17. セルロースの6位の水酸基の置換度が0.75以上である請求項15又は16に記載の偏光板。
  18. 保護膜の少なくとも一方が、セルロースを構成するグルコース単位の水酸基を炭素原子数が2以上のアシル基で置換して得られたセルロースアシレートからなるフィルムであって、セルロースを構成するグルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記数式(6)及び(7)を満たすセルロースアシレートフィルムである請求項1から17のいずれかに記載の偏光板。
    数式(6):2.0≦DS2+DS3+DS6≦3.0
    数式(7):DS6/(DS2+DS3+DS6)≧0.315
  19. アシル基がアセチル基である請求項18に記載の偏光板。
  20. 保護膜が、棒状化合物又は円盤状化合物のレターデーション発現剤を1種以上含有している請求項1から19のいずれかに記載の偏光板。
  21. 保護膜がシクロオレフィン系ポリマーである請求項1から20のいずれかに記載の偏光板。
  22. 偏光板の、少なくとも一方の保護膜の正面レターデーション値Reλ及び膜厚方向のレターデーション値Rthλが、下記数式(8)〜(11)を満たす請求項1から21のいずれかに記載の偏光板。
    数式(8):0≦|Re590|≦10
    数式(9):|Rth590|≦25
    数式(10):|Re400−Re700|≦10
    数式(11):|Rth400−Rth700|≦35
    [式中、Re590、Rth590は、波長λ=590nmにおける値、Re400、Rth400は、波長λ=400nmにおける値、Re700、Rth700は、波長λ=700nmにおける値(いずれも単位:nm)である。]
  23. 保護膜が、アシル置換度が2.85〜3.00のセルロースアシレートフィルムからなり、且つ該フィルム中にReλ及びRthλを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含む請求項22に記載の偏光板。
  24. 少なくとも一方の保護膜の上に光学異方性層が設けられた請求項1から23のいずれかに記載の偏光板。
  25. 保護膜が、可塑剤、紫外線吸収剤、剥離促進剤、染料、及びマット剤のうち1種以上を含有していることを特徴とする請求項1から24のいずれかに記載の偏光板。
  26. 少なくとも一方の保護膜の表面に、ハードコート層、防眩層又は反射防止層の少なくとも一層が設けられた請求項1から25のいずれかに記載の偏光板。
  27. 液晶セルと偏光板を有する液晶表示装置であって、該偏光板の少なくとも一が請求項1から26のいずれかに記載の偏光板であることを特徴とする液晶表示装置。
  28. 液晶セルと偏光板を有する液晶表示装置であって、該偏光板の該液晶セルと反対側の保護膜が請求項26に記載の表面にハードコート層、防眩層又は反射防止層の少なくとも一層が設けられた保護膜になるように、請求項26に記載の偏光板を配置したことを特徴とする液晶表示装置。
  29. 液晶セルを一対の偏光板で挟んだ液晶表示装置であって、該一対の偏光板の透過軸が互いに直交に配置されており、かつ該透過軸は該偏光板の辺に対して直交または平行であることを特徴とする請求項27又は28に記載の液晶表示装置。
  30. 液晶セルがVAモードであることを特徴とする請求項27から29のいずれかに記載の液晶表示装置。
  31. 表面の温度が40℃以下であるバックライトを使用したことを特徴とする請求項27から30のいずれかに記載の液晶表示装置。
  32. バックライトの光源が発光ダイオード、二次元積層蛍光ランプから選ばれるものの内1つを使用したことを特徴とする請求項31に記載の液晶表示装置。
JP2005344484A 2004-11-30 2005-11-29 偏光板及びこれを用いた液晶表示装置 Pending JP2006301572A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344484A JP2006301572A (ja) 2004-11-30 2005-11-29 偏光板及びこれを用いた液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004347003 2004-11-30
JP2005081847 2005-03-22
JP2005344484A JP2006301572A (ja) 2004-11-30 2005-11-29 偏光板及びこれを用いた液晶表示装置

Publications (1)

Publication Number Publication Date
JP2006301572A true JP2006301572A (ja) 2006-11-02

Family

ID=37469877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344484A Pending JP2006301572A (ja) 2004-11-30 2005-11-29 偏光板及びこれを用いた液晶表示装置

Country Status (1)

Country Link
JP (1) JP2006301572A (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003556A (ja) * 2006-05-26 2008-01-10 Sumitomo Chemical Co Ltd 粘着剤付き偏光フィルム、光学積層体及び偏光フィルムのセット
JP2008122863A (ja) * 2006-11-15 2008-05-29 Nitto Denko Corp 偏光板、その製造方法、光学フィルムおよび画像表示装置
WO2008078812A1 (ja) * 2006-12-27 2008-07-03 Gunze Limited 偏光板保護フィルム、偏光板及び抵抗膜式タッチパネル
JP2008203400A (ja) 2007-02-19 2008-09-04 Nitto Denko Corp 表面保護フィルム付偏光板、表面保護フィルム付液晶パネル、および画像表示装置
JP2008249901A (ja) * 2007-03-29 2008-10-16 Fujifilm Corp 偏光板、及び液晶表示装置
JPWO2008123347A1 (ja) * 2007-03-28 2010-07-15 新日鐵化学株式会社 位相差フィルム及び位相差フィルム積層体並びにこれらの製造方法
KR101305561B1 (ko) 2009-02-18 2013-09-09 닛토덴코 가부시키가이샤 양면 점착 시트 및 점착형 광학 부재
JP2013240993A (ja) * 2012-04-23 2013-12-05 Toray Ind Inc 積層フィルムおよびその製造方法
US8722182B2 (en) 2007-04-16 2014-05-13 Nitto Denko Corporation Polarizing plate, optical film and image display
KR20140078539A (ko) * 2012-12-17 2014-06-25 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20140107592A (ko) 2011-12-28 2014-09-04 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 광학 부재용 점착제 조성물 그리고 그것을 사용한 점착 시트, 점착제층 부착 광학 부재 및 플랫 패널 디스플레이
KR20140120262A (ko) * 2013-04-02 2014-10-13 동우 화인켐 주식회사 점착제 조성물
WO2014203792A1 (ja) * 2013-06-19 2014-12-24 綜研化学株式会社 偏光板用粘着剤組成物、偏光板用粘着シート、粘着剤層付き偏光板、積層体及びフラットパネルディスプレイ
KR20150105276A (ko) * 2012-12-17 2015-09-16 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
WO2015141379A1 (ja) * 2014-03-18 2015-09-24 綜研化学株式会社 偏光板用粘着剤組成物、粘着シートおよび粘着剤層付き偏光板
JP2015212815A (ja) * 2014-04-16 2015-11-26 富士フイルム株式会社 偏光板ならびに画像表示装置および液晶表示装置
WO2016203935A1 (ja) * 2015-06-15 2016-12-22 綜研化学株式会社 偏光板用の粘着剤組成物、粘着剤層および粘着シート、ならびに粘着剤層付き偏光板
WO2018105673A1 (ja) * 2016-12-09 2018-06-14 東亞合成株式会社 粘着剤組成物及びその利用
JP2019010885A (ja) * 2018-10-11 2019-01-24 リンテック株式会社 表示体
KR20190060569A (ko) * 2017-11-24 2019-06-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
US10669450B2 (en) 2014-11-01 2020-06-02 Samsung Sdi Co., Ltd. Flexible display device
US10676654B2 (en) 2016-04-22 2020-06-09 Samsung Sdi Co., Ltd. Adhesive film, optical member comprising the same and optical display comprising the same
US10745597B2 (en) 2014-11-01 2020-08-18 Samsung Sdi Co., Ltd. Adhesive composition, adhesive film prepared from the same and display member including the same
US10829671B2 (en) 2015-06-30 2020-11-10 Samsung Sdi Co., Ltd. Adhesive film and display member comprising the same
US11492516B2 (en) 2014-12-23 2022-11-08 Samsung Sdi Co., Ltd. Adhesive film and display member including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279907A (ja) * 1997-04-09 1998-10-20 Soken Chem & Eng Co Ltd 偏光板用粘着剤組成物および偏光板
JP2002121521A (ja) * 2000-10-13 2002-04-26 Nippon Carbide Ind Co Inc 偏光フィルム用粘着剤組成物及び偏光フィルム
JP2004323543A (ja) * 2003-04-21 2004-11-18 Nitto Denko Corp 光学部材用粘着剤組成物、光学部材用粘着剤層、粘着型光学部材および画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279907A (ja) * 1997-04-09 1998-10-20 Soken Chem & Eng Co Ltd 偏光板用粘着剤組成物および偏光板
JP2002121521A (ja) * 2000-10-13 2002-04-26 Nippon Carbide Ind Co Inc 偏光フィルム用粘着剤組成物及び偏光フィルム
JP2004323543A (ja) * 2003-04-21 2004-11-18 Nitto Denko Corp 光学部材用粘着剤組成物、光学部材用粘着剤層、粘着型光学部材および画像表示装置

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003556A (ja) * 2006-05-26 2008-01-10 Sumitomo Chemical Co Ltd 粘着剤付き偏光フィルム、光学積層体及び偏光フィルムのセット
JP2008122863A (ja) * 2006-11-15 2008-05-29 Nitto Denko Corp 偏光板、その製造方法、光学フィルムおよび画像表示装置
JP5366557B2 (ja) * 2006-12-27 2013-12-11 グンゼ株式会社 偏光板保護フィルム、偏光板及び抵抗膜式タッチパネル
WO2008078812A1 (ja) * 2006-12-27 2008-07-03 Gunze Limited 偏光板保護フィルム、偏光板及び抵抗膜式タッチパネル
JPWO2008078812A1 (ja) * 2006-12-27 2010-04-30 グンゼ株式会社 偏光板保護フィルム、偏光板及び抵抗膜式タッチパネル
JP2008203400A (ja) 2007-02-19 2008-09-04 Nitto Denko Corp 表面保護フィルム付偏光板、表面保護フィルム付液晶パネル、および画像表示装置
JPWO2008123347A1 (ja) * 2007-03-28 2010-07-15 新日鐵化学株式会社 位相差フィルム及び位相差フィルム積層体並びにこれらの製造方法
JP5091230B2 (ja) * 2007-03-28 2012-12-05 新日鐵化学株式会社 位相差フィルム及び位相差フィルム積層体並びにこれらの製造方法
KR101377651B1 (ko) 2007-03-28 2014-03-25 신닛테츠 수미킨 가가쿠 가부시키가이샤 위상차 필름 및 위상차 필름 적층체 및 이들의 제조방법
JP2008249901A (ja) * 2007-03-29 2008-10-16 Fujifilm Corp 偏光板、及び液晶表示装置
US8722182B2 (en) 2007-04-16 2014-05-13 Nitto Denko Corporation Polarizing plate, optical film and image display
KR101305561B1 (ko) 2009-02-18 2013-09-09 닛토덴코 가부시키가이샤 양면 점착 시트 및 점착형 광학 부재
KR20140107592A (ko) 2011-12-28 2014-09-04 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 광학 부재용 점착제 조성물 그리고 그것을 사용한 점착 시트, 점착제층 부착 광학 부재 및 플랫 패널 디스플레이
JP2013240993A (ja) * 2012-04-23 2013-12-05 Toray Ind Inc 積層フィルムおよびその製造方法
KR101701891B1 (ko) 2012-12-17 2017-02-02 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20180079280A (ko) * 2012-12-17 2018-07-10 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101968917B1 (ko) 2012-12-17 2019-04-15 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20150105276A (ko) * 2012-12-17 2015-09-16 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101908291B1 (ko) 2012-12-17 2018-10-16 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20180084023A (ko) * 2012-12-17 2018-07-24 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101622945B1 (ko) 2012-12-17 2016-05-20 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20160068716A (ko) * 2012-12-17 2016-06-15 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101643178B1 (ko) 2012-12-17 2016-07-27 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101879620B1 (ko) * 2012-12-17 2018-07-18 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR102088171B1 (ko) 2012-12-17 2020-03-12 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101697302B1 (ko) 2012-12-17 2017-01-17 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20140078539A (ko) * 2012-12-17 2014-06-25 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20170129655A (ko) * 2012-12-17 2017-11-27 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101799801B1 (ko) 2012-12-17 2017-11-21 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR101777708B1 (ko) 2012-12-17 2017-09-12 후지모리 고교 가부시키가이샤 점착제층 및 점착 필름
KR20140120262A (ko) * 2013-04-02 2014-10-13 동우 화인켐 주식회사 점착제 조성물
KR101991974B1 (ko) 2013-04-02 2019-06-21 동우 화인켐 주식회사 점착제 조성물
JPWO2014203792A1 (ja) * 2013-06-19 2017-02-23 綜研化学株式会社 偏光板用粘着剤組成物、偏光板用粘着シート、粘着剤層付き偏光板、積層体及びフラットパネルディスプレイ
WO2014203792A1 (ja) * 2013-06-19 2014-12-24 綜研化学株式会社 偏光板用粘着剤組成物、偏光板用粘着シート、粘着剤層付き偏光板、積層体及びフラットパネルディスプレイ
JPWO2015141379A1 (ja) * 2014-03-18 2017-04-06 綜研化学株式会社 偏光板用粘着剤組成物、粘着シートおよび粘着剤層付き偏光板
WO2015141379A1 (ja) * 2014-03-18 2015-09-24 綜研化学株式会社 偏光板用粘着剤組成物、粘着シートおよび粘着剤層付き偏光板
US9459490B2 (en) 2014-04-16 2016-10-04 Fujifilm Corporation Polarizing plate, image display apparatus, and liquid crystal display apparatus
JP2015212815A (ja) * 2014-04-16 2015-11-26 富士フイルム株式会社 偏光板ならびに画像表示装置および液晶表示装置
US10745597B2 (en) 2014-11-01 2020-08-18 Samsung Sdi Co., Ltd. Adhesive composition, adhesive film prepared from the same and display member including the same
US10669450B2 (en) 2014-11-01 2020-06-02 Samsung Sdi Co., Ltd. Flexible display device
US11492516B2 (en) 2014-12-23 2022-11-08 Samsung Sdi Co., Ltd. Adhesive film and display member including the same
WO2016203935A1 (ja) * 2015-06-15 2016-12-22 綜研化学株式会社 偏光板用の粘着剤組成物、粘着剤層および粘着シート、ならびに粘着剤層付き偏光板
US10829671B2 (en) 2015-06-30 2020-11-10 Samsung Sdi Co., Ltd. Adhesive film and display member comprising the same
US10676654B2 (en) 2016-04-22 2020-06-09 Samsung Sdi Co., Ltd. Adhesive film, optical member comprising the same and optical display comprising the same
JPWO2018105673A1 (ja) * 2016-12-09 2020-01-16 東亞合成株式会社 粘着剤組成物及びその利用
CN110050051A (zh) * 2016-12-09 2019-07-23 东亚合成株式会社 粘合剂组合物及其利用
TWI732971B (zh) * 2016-12-09 2021-07-11 日商東亞合成股份有限公司 黏著劑組成物及其利用
CN110050051B (zh) * 2016-12-09 2022-04-12 东亚合成株式会社 粘合剂组合物及其利用
US11421134B2 (en) 2016-12-09 2022-08-23 Toagosei Co., Ltd. Pressure-sensitive adhesive composition and use therefor
WO2018105673A1 (ja) * 2016-12-09 2018-06-14 東亞合成株式会社 粘着剤組成物及びその利用
KR20190060569A (ko) * 2017-11-24 2019-06-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR102146992B1 (ko) 2017-11-24 2020-08-21 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
JP2019010885A (ja) * 2018-10-11 2019-01-24 リンテック株式会社 表示体

Similar Documents

Publication Publication Date Title
JP4759317B2 (ja) 偏光板及びこれを用いた液晶表示装置
JP2006301572A (ja) 偏光板及びこれを用いた液晶表示装置
KR20070089140A (ko) 편광판 및 이를 포함하는 액정표시장치
JP2007538269A (ja) 偏光板及び液晶表示装置
JP2006308936A (ja) 偏光板および液晶表示装置
JP4802067B2 (ja) 偏光板及びこれを用いた液晶表示装置
JP2008505195A (ja) 光学用セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2006030962A (ja) 光学用セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2007079533A (ja) 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
JP2008003126A (ja) 偏光板、液晶表示装置及び偏光板用保護膜の製造方法
JP2008020895A (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP2006257380A (ja) セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置
JP2006243132A (ja) 偏光板及び液晶表示装置
JP2007292944A (ja) 液晶表示装置
JP4686247B2 (ja) ポリマーフィルム並びにそれを用いた光学フィルム、偏光板及び画像表示装置
JP5016834B2 (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2007101678A (ja) 偏光板及びそれを用いた液晶表示装置
JP5010883B2 (ja) 液晶表示装置
JP2006091369A (ja) 偏光板及び液晶表示装置
JP2007062350A (ja) セルロースアシレートフイルムの製造方法、セルロースアシレートフイルム、位相差フイルム、偏光板及び液晶表示装置
JP2006028479A (ja) 光学用セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2006126585A (ja) 粘着剤付偏光板及び液晶表示装置
JP2007326244A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、位相差フィルム、偏光板及び液晶表示装置
JP2007003788A (ja) 光学フィルム、偏光板および液晶表示装置
JP2006091374A (ja) 偏光板及び液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110705