JP2006300341A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2006300341A
JP2006300341A JP2005117855A JP2005117855A JP2006300341A JP 2006300341 A JP2006300341 A JP 2006300341A JP 2005117855 A JP2005117855 A JP 2005117855A JP 2005117855 A JP2005117855 A JP 2005117855A JP 2006300341 A JP2006300341 A JP 2006300341A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
supply temperature
oil supply
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117855A
Other languages
English (en)
Inventor
Minoru Kasezawa
実 加瀬沢
Junichi Hirohashi
純一 廣橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005117855A priority Critical patent/JP2006300341A/ja
Publication of JP2006300341A publication Critical patent/JP2006300341A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】冷凍装置において、使用冷媒の種類に応じて油冷却用冷媒量を適正化し、適正な給油温度の確保して信頼性の向上及び効率向上を図ると共に使用途中で異なる種類の冷媒に切換えることを可能にすること。
【解決手段】冷凍装置50は、冷媒を圧縮する圧縮機1と、圧縮機1から吐出された冷媒ガスに含まれる油を分離する油分離器2と、油分離器2から出た冷媒ガスを凝縮する凝縮器4と、圧縮機1に供給する油を油冷却用冷媒で冷却する油冷却器3と、油冷却器3に供給する油冷却用冷媒の供給量を調整する複数の油冷却用減圧機構14と、圧縮機1に供給する給油温度を検出する給油温度センサ16と、油冷却用減圧装置を制御する制御手段17と、使用する冷媒の種類を設定する冷媒種類設定手段18と、を備える。制御手段17は、冷媒種類設定スイッチ18で設定された冷媒の種類に基づいて、複数の油冷却用減圧機構14の流路を制御する。
【選択図】図1

Description

本発明は、冷凍装置に係り、特に、圧縮機の吐出側から分離した油を凝縮器の下流側からバイパスした冷媒で冷却して圧縮機に戻す冷凍装置に好適なものである。
従来の冷凍装置としては、特開平5−126416号公報(特許文献1)に示されたものがある。この冷凍装置は、複数の油冷却用減圧機構を介して油冷却器に湿りガス冷媒を導入し、油分離器から圧縮機に供給する油の温度を制御するものである。
この冷凍装置は、具体的には、冷媒を圧縮する圧縮機と、この圧縮機から吐出された冷媒ガスに含まれる油を分離する油分離器と、この油分離器から出た冷媒ガスを凝縮する凝縮器と、油分離器から圧縮機に給油する油を、凝縮器の下流側からバイパスする湿りガス冷媒で冷却する油冷却器と、油冷却器に供給する湿りガス冷媒の供給量を調整するように並列に接続された複数の油冷却用減圧機構と、油分離器から圧縮機に戻す油の温度を検出して異なる温度で開閉する複数の給油温度開閉器とを備えている。そして、この冷凍装置では、これらの異なる温度で開閉する給油温度開閉器の開閉状態によって複数の油冷却用減圧機構の開閉状態を制御し、湿りガス冷媒の供給量を複数段階に制御するようになっている。
特開平5−126416号公報
現在、この種の冷凍装置に使用される冷媒はHCFC系冷媒からHFC系冷媒への転換時期となっており、HCFC系冷媒を使用した冷凍装置とHFC系冷媒を使用した冷凍装置とがそれぞれの使用冷媒に対応して異なる設計仕様で生産されている状況にある。
ここで、圧縮機の吐出ガス温度を左右する因子である断熱圧縮指数は、HCFC系冷媒が大きく(例えば、R22冷媒では1.184)、HFC系冷媒が小さく(例えば、R404A冷媒では1.115)、冷媒の種類によって大きく異なる。このため、使用冷媒の種類により圧縮機の吐出ガス温度が変化し、同一の凝縮温度・蒸発温度では、HCFC系冷媒(R22冷媒)の吐出ガス温度>HFC系冷媒(R404A冷媒)の吐出ガス温度となる。また、蒸発潜熱が小さい冷媒が設定された場合は、必要な油冷却熱交換量を得るために油冷却用冷媒量が多く必要であり、逆に、蒸発潜熱が大きい冷媒が設定された場合は、必要な油冷却用冷媒量が少なくなる。そして、冷媒の種類が変わっても必要粘度を確保できる給油温度はほぼ一定であるため、油冷却器で必要な油冷却熱交換量は、冷媒の種類が変われば吐出ガス温度の違い及び油冷却用冷媒の蒸発潜熱の違いにより変化させることが必要である。すなわち、適正な給油温度を保つためには、各給油温度に対して必要な油冷却用冷媒量を、冷媒の種類により変化させる必要がある。
しかし、上記の従来技術では、油冷却用減圧機構の流路開閉を冷媒の種類に応じて調整することができないため、ある種類の冷媒(例えばHCFC系冷媒)に対応して複数の油冷却用減圧機構の流路開閉を調整するように設計した冷凍装置に、他の種類の冷媒(例えばHFC系冷媒)を使用しようとすると、上述した理由により適正な給油温度を確保できないという問題が生ずる。このため、油冷却用減圧機構の流路開閉を冷媒の種類に応じて調整するように設定した冷凍装置をそれぞれ生産しなければならなかった。
また、HCFC系冷媒を使用した冷凍装置を、将来、HFC系冷媒に変更して使用したいとのニーズがある。すなわち、R404A,R507A,R407Cなどの冷凍装置用HFC系冷媒は、R22などのHCFC系冷媒に比べ、地球環境の保護に優れると共に、前記の如く同一条件で圧縮機吐出ガス温度が低下し必要な油冷却用冷媒量は少量で済むため、適正流量に制御して圧縮機中間圧力部へ吸入される油冷却用冷媒量を減少させ、圧縮機消費電力を減少させて冷凍装置の効率を向上することができるからである。しかし、上記の従来技術の冷凍装置では、使用途中で、HCFC系冷媒からHFC系冷媒に使用冷媒を切換えると、上述した問題が生ずるため、使用冷媒の切換えができなかった。
更に、従来技術の冷凍装置では、異なる温度で開閉する給油温度開閉器の開閉状態に基づいて油冷却用冷媒量を複数段階に制御するだけであるため、給油温度の安定性に欠けると共に、必要以上に油冷却用冷媒量を使用することとなって冷凍装置の効率が低下してしまう、という問題があった。例えば、低い給油温度領域の開閉状態から給油温度が一時的に急上昇して中間の給油温度領域の開閉状態に切換わった際に、油冷却用冷媒量が増加するまでに応答遅れが生じ、これに伴って油冷却用冷媒量の増加に遅れが生じて高い給油温度領域の開閉状態に直ぐに切換わってしまうことがある。この場合、油冷却用冷媒量が多量に供給されることとなるため、給油温度が急激に低下して中間の給油温度領域の開閉状態に直ぐに切換わることとなる。これによって、給油温度の安定性に欠けると共に、必要以上に油冷却用冷媒量を使用することとなり、圧縮機消費電力が増加し、冷凍装置の効率が低下してしまうものであった。
更に、従来技術の冷凍装置では、流路開閉用に個別の温度開閉器を使用するため、各温度開閉器の作動値の誤差を考慮して開閉設定値をずらすことになり、給油温度の制御幅が広範囲となり、希望する給油温度幅よりも拡大してしまうため、冷凍装置の安定した運転を行なうことができないという問題があった。
本発明の目的は、使用冷媒の種類に応じて油冷却用冷媒量を適正化することができ、適正な給油温度の確保して信頼性の向上及び効率向上を図ることができ、しかも使用途中で異なる種類の冷媒に切換えることが可能な冷凍装置を得ることにある。
前述の目的を達成するために、本発明では、冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒ガスに含まれる油を分離する油分離器と、前記油分離器から出た冷媒ガスを凝縮する凝縮器と、前記油分離器から前記圧縮機に供給する油を前記凝縮器の下流側からバイパスする油冷却用冷媒で冷却する油冷却器と、前記油冷却器に供給する油冷却用冷媒の供給量を調整する複数の油冷却用減圧機構と、前記圧縮機に供給する給油温度を検出する給油温度センサと、前記複数の油冷却用減圧機構を制御する制御手段と、使用する冷媒の種類を設定する冷媒種類設定手段と、を備え、前記制御手段は、前記種類設定手段で設定された冷媒の種類に基づいて、前記複数の油冷却用減圧機構の流路を制御する構成にしたことにある。
係る本発明のより好ましい具体的な構成例は次の通りである。
(1)制御手段は、前記圧縮機の起動時に、前記給油温度センサで検出した給油温度に基づいて、前記複数の油冷却用減圧機構の初期開路を設定すること。
(2)前記制御手段は、予め目標給油温度帯を設定し、前記給油温度が目標給油温度帯以外を所定時間経過した際に、前記複数の油冷却用減圧機構の流路を所定流路となるように選択して油冷却冷媒量を変化させること。
(3)前記制御手段は、予め目標給油温度帯上限よりも高い温度と目標給油温度下限よりも低い温度とを設定し、前記給油温度が前記目標給油温度帯上限よりも高い温度まで上昇した際には所定時間経過を待たずに油冷却冷媒量を増加させるように前記複数の油冷却用減圧機構の流路を選択し、前記給油温度が前記目標給油温度下限よりも低い温度まで低下した際には所定時間経過を待たずに油冷却冷媒量を減少させるように前記複数の油冷却用減圧機構の流路を選択すること。
本発明によれば、使用冷媒の種類に応じて油冷却用冷媒量を適正化することができ、適正な給油温度の確保して信頼性の向上及び効率向上を図ることができ、しかも使用途中で異なる種類の冷媒に切換えることが可能な冷凍装置を得ることができる。
本発明の一実施形態の冷凍装置を図1から図3を用いて説明する。
まず、本実施形態の冷凍装置50の全体に関して図1を参照しながら説明する。図1は本発明の一実施形態の冷凍装置50の冷凍サイクル構成図である。
冷凍装置50は、冷媒を圧縮する圧縮機1と、前記圧縮機1から吐出された冷媒ガスに含まれる油を分離する油分離器2と、油分離器1から出た冷媒ガスを凝縮する凝縮器4と、油分離器2から圧縮機1に供給する油を凝縮器4の下流側からバイパスする油冷却用冷媒で冷却する油冷却器3と、油冷却器3に供給する油冷却用冷媒の供給量を調整する複数の油冷却用減圧機構14と、複数の油冷却用減圧機構14を制御するコントローラ17と、使用冷媒の種類を設定する種類設定スイッチ18とを、本発明の基本的な構成要素として備えている。コントローラ17は制御手段を構成する一例であり、種類設定スイッチ18は種類設定手段を構成する一例である。
圧縮機1から吐出された冷媒ガスは、油分離器2により冷媒ガスと油とに分離される。分離された冷媒ガスは、凝縮器4により冷却されて凝縮し、液冷媒となって受液器5に蓄えられる。受液器5に貯えられた液冷媒は、過冷却器6に導かれて過冷却されて過冷却度を増す。過冷却された液冷媒は、電磁弁7、膨張弁8を通過することで減圧されて湿りガス化した後、蒸発器9で被冷却物を冷却しながら蒸発してガス冷媒となり、圧縮機1に吸入される。
過冷却器6を具体的に説明すると、過冷却器6の下流側から液冷媒の一部を過冷却冷媒配管21により分流し、この液冷媒を過冷却用減圧機構11により減圧して湿りガス化とし、この湿りガス冷媒を受液器5からの液冷媒と熱交換して蒸発させることにより受液器5からの液冷媒を過冷却する。過冷却してガス化された冷媒は、過冷却冷媒配管21を通して、圧縮機1の圧縮工程における中間圧力室15に供給される。なお、この過冷却用減圧機構11は、本実施形態では、キャピラリチューブで構成されているが、膨張弁としてもよい。
上述した油分離器2で分離された高温の油は、給油配管19を通して油冷却器3に供給され、凝縮器の下流側(本実施形態では過冷却器6の下流側)からバイパスする油冷却冷媒配管12を通して供給される低温の油冷却用冷媒で冷却された後、圧縮機1に供給される。
過冷却器6より下流側の液冷媒配管と圧縮機1の圧縮工程における中間圧力室15とは油冷却冷媒配管12で接続されており、この油冷却冷媒配管12には油冷却用冷媒量を可変するための複数の油冷却用減圧機構14が接続されている。この油冷却用減圧機構14は、本実施形態では、キャピラリチューブで構成されているが、膨張弁としてもよい。
ここで、圧縮機1の起動時は、給油温度センサ16で検出された給油温度とコントローラ17内に設定された温度とを比較して、圧縮機1の起動時における油冷却用冷媒量を可変する複数の電磁弁13の初期開路を制御する。このように初期開路を圧縮機1の起動時の給油温度の検出値によって変化させることにより、起動後の急激な給油温度上昇による、冷凍装置50の保護装置作動と冷凍装置50における温度状態のハンチング運転を防止し、起動時に安定した給油冷却制御が行なえるようになる。
更に、圧縮機1への給油温度を給油温度センサ16により検知してコントローラ17に入力し、予めコントローラ17内に設定された目標給油温度帯とこの入力された給油温度とをコントローラ17で比較して目標給油温度帯に収束するように、コントローラ17の指令により油冷却冷媒配管12に設置された複数の電磁弁13を開閉し、減圧機構で湿りガス化させる油冷却用冷媒量の制御を行なうものである。すなわち、給油温度≧目標給油温度帯上限の状態が所定時間経過した場合は、現在開路としている電磁弁13、減圧機構の流路よりも油冷却用冷媒量が増加できるように電磁弁13を開閉し、逆に、給油温度≦目標給油温度帯下限の状態が所定時間経過した場合は、現在開路としている電磁弁13、減圧機構の流路よりも油冷却用冷媒量が減少できるように電磁弁13を開閉するものである。
この際、同一の冷凍装置運転条件においてもHFC系冷媒とHCFC系冷媒とで吐出ガス温度が変化するため、油冷却器3での必要熱交換量も変わり、更に油冷却を行なう冷媒の蒸発潜熱も変わる。このため、コントローラ17では、冷媒種類設定スイッチ18で設定された冷媒種類に応じて、油冷却冷媒配管12に設置された複数の電磁弁13を設定条件に選択し、減圧機構で湿りガス化させる油冷却用冷媒量の制御を行なう。本実施形態では、冷媒種類設定スイッチ18を開路した状態がHCFC系冷媒に設定された状態であり、冷媒種類設定スイッチ18を閉路した状態がHFC系冷媒に設定された状態である。使用する冷媒の種類の数が多くなれば、冷媒種類設定スイッチ18の数を増やせばよい。
このように、コントローラ17で給油温度を目標給油温度帯に収まるように監視して、油冷却用冷媒量を決定する流路の制御が行なえるため、給油温度帯を小さくすることができ、圧縮機1の信頼性向上につながるとともに、不用意な流路の切換えが防止でき、必要以上に油冷却用冷媒量を圧縮機1の中間圧力室15に戻さず、圧縮機1の圧縮冷媒量が減少し消費電力が低減できる。更に、冷凍装置50の本来目的である低圧側機器側の蒸発器9で被冷却物を冷却するための冷媒量が多く確保できるため、油冷却器3を搭載することによる冷凍能力の低下を抑制することができ、冷凍装置50のCOPが向上し、高効率運転が可能となる。
本実施形態の冷凍装置50において、圧縮機1の起動時の油冷却用冷媒量の最適化を図るために、油冷却冷媒配管12に設置された複数の電磁弁13の初期開路を可変制御する方法を図1及び図2を参照しながら説明する。図2は本実施形態の冷凍装置の起動時の制御動作例を示すフローチャート図である。
本実施形態における冷凍装置においては、圧縮機1の起動時、図2に示すように、給油温度センサ16で検出した給油温度Toによって、油冷却冷媒配管12に設置された油冷却用冷媒量を可変するための複数個ある電磁弁13の初期開路を可変させる制御を行なうものである。なお、図1及び図3において、電磁弁13と油冷却用減圧機構14の記号13と14の後ろにある添字は、各流路における油冷却用冷媒量の大小関係を示しており、油冷却用冷媒量は1>2である。図2では、n=2の例で説明する。
図2において、電源投入され(ステップS1)、圧縮機1の起動条件が満たされて圧縮機1が起動すると(ステップS2)、給油温度センサ16で給油温度Toを検出してコントローラ17に入力する(ステップS3)。この入力された給油温度Toを例えば65℃と比較し(ステップS4)、給油温度Toが65℃よりも高ければ、初期開路として電磁弁13−1と電磁弁13−2の両方を開く(ステップS5)。ステップS4で給油温度Toが65℃よりも低ければ、給油温度Toを例えば55℃と比較し(ステップS6)、給油温度Toが55℃よりも高ければ(換言すれば、55℃から65℃の間であれば)、初期開路として電磁弁13−1を開く(ステップS7)。ステップS6で給油温度Toが55℃よりも低ければ、電磁弁13−2を開く(ステップS8)。
上述したように、給油温度センサ16の検出温度が65℃より高い場合は、初期開路として電磁弁13−1と電磁弁13−2の両方を開き、油冷却用冷媒量を多くすることで、起動後に給油温度が異常に上昇することを防止でき、給油温度の異常上昇による冷凍装置50の保護装置の作動を防止することができる。また、給油温度センサ16の検出温度が55℃より低い場合は、初期開路として電磁弁13−2を開き、油冷却用冷媒量を少なくすることで、起動後の給油温度が過冷却されないようにすることができる。また、給油温度センサ16の検出温度が55℃から65℃の間であれば、初期開路として電磁弁13−1を開き、油冷却用冷媒量を適切にすることができる。このように初期開路を圧縮機1の起動時の給油温度の検出値によって変化させることにより、起動時に安定した給油冷却制御が行なえるようになる。
本実施形態の冷凍装置50において、圧縮機1の運転中の油冷却用冷媒量の最適化を図るために、油冷却冷媒配管12に設置された複数の電磁弁13の初期開路を可変制御する方法を図1、図3、表1及び表2を参照しながら説明する。図3は本実施形態の冷凍装置の全体的な制御の動作例を示すフローチャート図である。表1及び表2は本実施形態の冷凍装置における給油冷却制御の油冷却用冷媒量を決定する流路の可変状態を示すものである。図1において、電磁弁13とキャピラリチューブ14の記号13と14の後ろの添字は、各流路における油冷却用冷媒量の大小関係を示しており、油冷却用冷媒量は1>2>3であり、図3では、n=3の例で説明する。
冷凍装置50に設置されたコントローラ17には、上述したように、HFC系冷媒およびHCFC系冷媒に対応可能とするために種類設定スイッチ18を設けており、冷凍装置50の運転を開始する前に使用する冷媒を種類設定スイッチ18にて設定する。蒸発潜熱が小さく断熱圧縮指数が大きい冷媒が設定された場合は、油冷却用冷媒量を多く必要とするため、油冷却流路の切換えを表1に設定し、一方、蒸発潜熱が大きく断熱圧縮指数が小さい冷媒が設定された場合は、油冷却用冷媒量の必要量は少なくてよいため、油冷却流路の切換えを表2に設定する。この設定は、冷凍装置50の製造時に行なわれ、使用途中で冷媒の種類を変更したい場合に変更される。
Figure 2006300341
Figure 2006300341
図3において、電源投入されると(ステップS11)、使用冷媒の種類の確認を行ない(ステップS12)、確認された冷媒の種類に基づいて油冷却流路パターン(表1または表2)を選択する(ステップS13)。そして、圧縮機1の起動条件が満たされて圧縮機1が起動すると(ステップS14)、油冷却用冷媒流路の初期流路の設定を行なう(ステップS15)。このステップS14及びステップS15の制御内容は図2で説明した内容と同じであるので、重複する説明を省略する。
起動後も継続して給油温度センサ16で給油温度Toを検出してコントローラ17に入力する(ステップS16)。入力された給油温度Toが予め設定した目標給油温度帯に収束するようにコントローラ17にて制御する。図3では、目標給油温度帯が40℃〜55℃に設定されている例を示す。
給油温度Toが55℃以上かを判定し(ステップS17)、給油温度Toが55℃以上であれば、55℃以上になってから所定時間、例えば30秒継続したかを判定し(ステップS18)、30秒継続した場合は、設定された表1または表2に示す給油冷却制御の油冷却用冷媒量を決定する開路のステップ数を現状より1ステップ上げて油冷却用冷媒量を多くする(ステップS19)。これによって、給油温度が目標給油温度帯に収束するように制御することができる。
また、給油温度Toが40℃以下かを判定し(ステップS20)、給油温度Toが40℃以下であれば、40℃以下になってから所定時間、例えば30秒継続したかを判定し(ステップS21)、30秒継続した場合は、設定された表1または表2に示す給油冷却制御の油冷却用冷媒量を決定する開路のステップ数を現状より1ステップ下げて油冷却用冷媒量を減少させる(ステップS22)。これによって、給油温度が目標給油温度帯に収束するように制御することができる。
また、上述した目標給油温度帯に収束させる制御において、給油温度Toが65℃以上かを常に判定し(ステップS23)、給油温度Toが65℃以上になった場合は、30秒の経過を待たずに、設定された表1または表2に示す給油冷却制御の油冷却用冷媒量を決定する開路のステップ3に移行する(ステップS24)。そして、上述した目標給油温度帯に収束させる制御において、給油温度Toが30℃以上かを常に判定し(ステップS25)、給油温度Toが30℃以下になった場合は、30秒の経過を待たずに、設定された表1または表2に示す給油冷却制御の油冷却用冷媒量を決定する開路のステップ1に移行する(ステップS26)。このように制御することで、過渡的な冷凍装置50の負荷増減に対しても追従性が増し、給油温度上昇による冷凍装置50の保護装置の無用な作動を防止できる。
また、給油温度センサ16で給油温度を検知し、コントローラ17で給油温度を目標給油温度帯に収束させるように制御するため、従来の個別の温度開閉器を使用した時と比較して給油温度の制御温度幅を小さくでき、温度的に安定した運転による冷凍装置50の信頼性向上が可能となる。
また、使用冷媒の種類に関わらず、安定した給油冷却制御が実施でき、HFC系冷媒およびHCFC系冷媒に対応できる冷凍装置の供給が可能となる。
更に、複数ある電磁弁13の切換えを、圧縮機1への給油温度が目標給油温度帯から所定時間外れた時点で行なうため、油冷却用冷媒量が増加・減少するまでに応答遅れが生じ、給油温度の低下・上昇が遅れた場合でも、頻繁な電磁弁13の切換えを防止し、各々の減圧機構で本来得られる冷媒量を有効に利用できるため、温度的に安定した冷凍装置50の運転が可能となる。
本発明の一実施形態の冷凍装置の冷凍サイクル構成図である。 本実施形態の冷凍装置の起動時の制御動作例を示すフローチャート図である。 本実施形態の冷凍装置の全体的な制御の動作例を示すフローチャート図である。
符号の説明
1…圧縮機、2…油分離器、3…油冷却器、4…凝縮器、5…受液器、6…過冷却器、7…電磁弁、8…膨張弁、9…蒸発器、10…電磁弁、11…過冷却用減圧機構、12…油冷却冷媒配管、13,13−1,13−2,13−n…電磁弁、14−1,14−2,14−n…油冷却用減圧機構、15…圧縮機の中間圧力室、16…給油温度センサ、17…コントローラ(制御手段)、18…種類設定スイッチ(種類設定手段)、19…給油配管、20…油冷却用減圧装置、21…過冷却冷媒配管。

Claims (4)

  1. 冷媒を圧縮する圧縮機と、
    前記圧縮機から吐出された冷媒ガスに含まれる油を分離する油分離器と、
    前記油分離器から出た冷媒ガスを凝縮する凝縮器と、
    前記油分離器から前記圧縮機に供給する油を前記凝縮器の下流側からバイパスする油冷却用冷媒で冷却する油冷却器と、
    前記油冷却器に供給する油冷却用冷媒の供給量を調整する複数の油冷却用減圧機構と、
    前記圧縮機に供給する給油温度を検出する給油温度センサと、
    前記複数の油冷却用減圧機構を制御する制御手段と、
    使用する冷媒の種類を設定する冷媒種類設定手段と、を備え、
    前記制御手段は、前記種類設定手段で設定された冷媒の種類に基づいて、前記複数の油冷却用減圧機構の流路を制御する
    ことを特徴とする冷凍装置。
  2. 請求項1に記載された冷凍装置おいて、制御手段は、前記圧縮機の起動時に、前記給油温度センサで検出した給油温度に基づいて、前記複数の油冷却用減圧機構の初期開路を設定することを特徴とする冷凍装置。
  3. 請求項1または2に記載された冷凍装置おいて、前記制御手段は、予め目標給油温度帯を設定し、前記給油温度が目標給油温度帯以外を所定時間経過した際に、前記複数の油冷却用減圧機構の流路を所定流路となるように選択して油冷却冷媒量を変化させることを特徴とする冷凍装置。
  4. 請求項3に記載された冷凍装置おいて、前記制御手段は、予め目標給油温度帯上限よりも高い温度と目標給油温度下限よりも低い温度とを設定し、前記給油温度が前記目標給油温度帯上限よりも高い温度まで上昇した際には所定時間経過を待たずに油冷却冷媒量を増加させるように前記複数の油冷却用減圧機構の流路を選択し、前記給油温度が前記目標給油温度下限よりも低い温度まで低下した際には所定時間経過を待たずに油冷却冷媒量を減少させるように前記複数の油冷却用減圧機構の流路を選択することを特徴とする冷凍装置。
JP2005117855A 2005-04-15 2005-04-15 冷凍装置 Pending JP2006300341A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117855A JP2006300341A (ja) 2005-04-15 2005-04-15 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117855A JP2006300341A (ja) 2005-04-15 2005-04-15 冷凍装置

Publications (1)

Publication Number Publication Date
JP2006300341A true JP2006300341A (ja) 2006-11-02

Family

ID=37468848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117855A Pending JP2006300341A (ja) 2005-04-15 2005-04-15 冷凍装置

Country Status (1)

Country Link
JP (1) JP2006300341A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127608A (ja) * 2010-12-17 2012-07-05 Yanmar Co Ltd 空調機
WO2015173939A1 (ja) * 2014-05-15 2015-11-19 三菱電機株式会社 冷凍装置
WO2020122615A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 공기조화기

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127608A (ja) * 2010-12-17 2012-07-05 Yanmar Co Ltd 空調機
WO2015173939A1 (ja) * 2014-05-15 2015-11-19 三菱電機株式会社 冷凍装置
CN105917178A (zh) * 2014-05-15 2016-08-31 三菱电机株式会社 冷冻装置
JPWO2015173939A1 (ja) * 2014-05-15 2017-04-20 三菱電機株式会社 冷凍装置
CN105917178B (zh) * 2014-05-15 2018-02-02 三菱电机株式会社 冷冻装置
WO2020122615A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 공기조화기

Similar Documents

Publication Publication Date Title
JP5595245B2 (ja) 冷凍装置
JP5355016B2 (ja) 冷凍装置及び熱源機
JP2008032336A (ja) 二段膨張冷凍装置
CN108369046B (zh) 制冷循环装置
WO2013073065A1 (ja) 冷凍装置
JP2011117626A (ja) 空気調和機
JP5173857B2 (ja) 空気調和装置
KR20110074706A (ko) 냉동장치
WO2011064927A1 (ja) コンテナ用冷凍装置
JP5783783B2 (ja) 熱源側ユニット及び冷凍サイクル装置
KR20110074707A (ko) 냉동장치
JP5812726B2 (ja) ヒートポンプ給湯機
JP2006300341A (ja) 冷凍装置
JP5521924B2 (ja) コンテナ用冷凍装置
JP3481545B2 (ja) 二元冷凍機及びその冷凍能力調整方法
JPH04340046A (ja) 空気調和装置の運転制御装置
CN110709649B (zh) 制冷循环装置
JP2013108649A (ja) 冷凍装置
KR102017405B1 (ko) 히트 펌프
JP6797262B2 (ja) 冷凍サイクル装置
JP6588645B2 (ja) 冷凍サイクル装置
CN113383201B (zh) 制冷循环装置
JPH09210480A (ja) 二段圧縮式冷凍装置
JP2002228284A (ja) 冷凍装置
JP7179445B2 (ja) 冷凍サイクル装置