JP2006297714A - Metal thin film sheet for transfer - Google Patents

Metal thin film sheet for transfer Download PDF

Info

Publication number
JP2006297714A
JP2006297714A JP2005121329A JP2005121329A JP2006297714A JP 2006297714 A JP2006297714 A JP 2006297714A JP 2005121329 A JP2005121329 A JP 2005121329A JP 2005121329 A JP2005121329 A JP 2005121329A JP 2006297714 A JP2006297714 A JP 2006297714A
Authority
JP
Japan
Prior art keywords
thin film
metal thin
transfer
synthetic resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005121329A
Other languages
Japanese (ja)
Inventor
Moichi Sugihara
茂一 杉原
Toru Takegawa
徹 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2005121329A priority Critical patent/JP2006297714A/en
Publication of JP2006297714A publication Critical patent/JP2006297714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal thin film sheet for transfer which has excellent electromagnetic wave shielding performance as an electromagnetic wave shielding tape material, is very thin, and does not spoil the flexibility of an adherend and a metal thin film sheet for transfer with a conductive adhesive layer in which the conductive adhesive layer obtained by dispersing metal powder and/or carbon powder in a resin composition is laminated on the surface of the metal thin film of the metal thin film sheet. <P>SOLUTION: In the metal thin film sheet for transfer which can be transferred easily to FPC etc., a metal thin film layer is laminated on at least one side of a synthetic resin sheet substrate, and the peel strength between the metal thin film layer and a synthetic resin sheet is 5 N/cm or below. In the metal thin film sheet for transfer with the conductive adhesive layer, the conductive adhesive layer obtained by dispersing the metal powder and/or the carbon powder in the resin composition is laminated on the surface of the metal thin film layer of the metal thin film sheet. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器から発生する電磁波の遮蔽や静電気対策などのために、電磁波シールド材として用いられる金属薄膜シートに関し、詳しくは、例えばフレキシブルプリント基板(FPC)といったEMI(電磁気干渉:Electro Magnetic Interference)及び/又はEMC(電磁環境両立性:Electro Magnetic Compatibility)対策が必要な材料を被覆するために、容易に剥離可能な金属薄膜層を積層した合成樹脂シートに関する。更に、該金属薄膜層の表面に、合成樹脂接着剤と金属粉末及び/又はカーボン粉末からなる導電性接着剤層を積層させた、導電性接着層付き転写用金属薄膜シートに関するものである。 The present invention relates to a metal thin film sheet used as an electromagnetic wave shielding material for shielding electromagnetic waves generated from electronic devices and countermeasures against static electricity. More specifically, the present invention relates to EMI (Electro Magnetic Interference) such as a flexible printed circuit board (FPC). ) And / or EMC (electromagnetic compatibility: Electro Magnetic Compatibility) The present invention relates to a synthetic resin sheet having a metal thin film layer that can be easily peeled to cover a material that requires countermeasures. Furthermore, the present invention relates to a transfer metal thin film sheet with a conductive adhesive layer, in which a conductive adhesive layer made of a synthetic resin adhesive and metal powder and / or carbon powder is laminated on the surface of the metal thin film layer.

オフィスや家庭において、各種情報端末やデジタル家電を主とする電子機器が急速に普及するのに伴い、これら電子機器から発生する電磁波や静電気による、他の電子機器や人体への影響が危惧されている。これら電磁波や静電気による障害を防ぐために、優れた電磁波遮蔽性能を有するEMI/EMC対策材料が求められている。近年、デジタルカメラ、デジタルビデオ、ノートパソコン等に代表されるモバイル電子機器類は、小型・軽量化が進み、EMI/EMC対策が必要となる基板類やケーブル類も小型・軽量化されており、それに必要とされるEMI/EMC対策材料も、薄く、柔軟で、軽量なものが求められている。 As electronic devices such as various information terminals and digital home appliances rapidly spread in offices and homes, there are concerns about the effects of electromagnetic waves and static electricity generated by these electronic devices on other electronic devices and the human body. Yes. In order to prevent troubles caused by these electromagnetic waves and static electricity, an EMI / EMC countermeasure material having excellent electromagnetic wave shielding performance is required. In recent years, mobile electronic devices such as digital cameras, digital video, and notebook computers have become smaller and lighter, and boards and cables that require EMI / EMC countermeasures have also become smaller and lighter. The EMI / EMC countermeasure material required for it is also required to be thin, flexible and lightweight.

代表的な、EMI/EMC対策材料として、電磁波シールドガスケットと、電磁波シールドテープがある。電磁波シールドガスケットの一例としては、芯材に柔軟な発泡材を使用し、これに導電性を有する布帛を巻きつけて接着させたものがある。電磁波シールドガスケットは、主に、電子機器内の基板や筐体の間にできる間隙に挿入され、その間隙から漏れ出す電磁波を遮蔽したり、基板のグラウンディング性を向上させたりするのに用いられる。また、電磁波シールドテープの一例としては、導電性を有する布帛及び又は金属箔の片面に、金属粉末及び/又はカーボン粉末を分散した感圧導電粘着剤を積層したものがある。電磁波シールドテープは、主に、電気信号が高速に伝達されるケーブルに貼り付けて使用され、ケーブルから発生する電磁波が外部へ漏れるのを遮蔽し、またケーブル内を伝達される信号への外部からの電磁波の影響を遮断するために用いられる。 Typical EMI / EMC countermeasure materials include an electromagnetic shielding gasket and an electromagnetic shielding tape. As an example of the electromagnetic shielding gasket, there is one in which a flexible foam material is used as a core material, and a conductive fabric is wound around and adhered to the core material. The electromagnetic shielding gasket is mainly inserted in a gap formed between a substrate and a housing in an electronic device, and is used to shield electromagnetic waves leaking from the gap and improve the grounding property of the substrate. . Moreover, as an example of the electromagnetic wave shielding tape, there is one in which a pressure-sensitive conductive adhesive in which metal powder and / or carbon powder is dispersed is laminated on one side of a conductive cloth and / or metal foil. The electromagnetic shielding tape is mainly used by being attached to a cable where electric signals are transmitted at high speed, shielding the leakage of electromagnetic waves generated from the cable to the outside, and from the outside to signals transmitted in the cable. It is used to block the influence of electromagnetic waves.

近年、モバイル電子機器の小型化が進み、FPCに総称されるフレキシブルプリント基板の使用が増えるに従い、FPCに貼付して使用される電磁波シールドテープとして、従来の導電性布帛や金属箔で構成されたものを使用したのでは、厚く、硬くなりすぎて、FPC自体の柔軟性を損なってしまう。そこで、従来の電磁波シールドテープ素材よりも、遙かに薄く、柔軟な材料が望まれている。 In recent years, as mobile electronic devices have been miniaturized and the use of flexible printed circuit boards collectively called FPCs has increased, electromagnetic shielding tapes that are used by being attached to FPCs have been composed of conventional conductive fabrics and metal foils. If a thing is used, it will become thick and hard too much, and the flexibility of FPC itself will be impaired. Therefore, a material that is much thinner and more flexible than the conventional electromagnetic shielding tape material is desired.

本発明は、このような現状に鑑みてなされたもので、電磁波シールドテープ材料として、優れた電磁波遮蔽性能を有し、非常に薄く、被着体の柔軟性を損なわない転写用金属薄膜シート及び、上記転写用金属薄膜シートの金属薄膜層表面に、樹脂組成物に金属粉末及び/又はカーボン粉末を分散してなる導電性接着層を積層させた、導電性接着層付き転写用金属薄膜シートを提供することを目的とする。 The present invention has been made in view of such a current situation, and as an electromagnetic shielding tape material, it has excellent electromagnetic shielding performance, is very thin, and does not impair the flexibility of an adherend, and a transfer metal thin film sheet and A transfer metal thin film sheet with a conductive adhesive layer, in which a conductive adhesive layer formed by dispersing metal powder and / or carbon powder in a resin composition is laminated on the surface of the metal thin film layer of the transfer metal thin film sheet. The purpose is to provide.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、合成樹脂シート基材の少なくとも一方の表面に、金属薄膜層を積層し、該金属薄膜層と合成樹脂シートの剥離強度が、5N/cm以下になるように設計することで、容易にFPCなどに転写可能な転写用金属薄膜シートを形成出来ることを見出し、本発明を完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors have laminated a metal thin film layer on at least one surface of a synthetic resin sheet substrate, and the peel strength between the metal thin film layer and the synthetic resin sheet is high. The present invention has been completed by finding that a transfer metal thin film sheet that can be easily transferred to an FPC or the like can be formed by designing it to be 5 N / cm or less.

また、合成樹脂シート基材の少なくとも一方の表面に、光沢度が5〜30%となるように、微少な凹凸を付けることが好ましい。
さらに、銅及び/又はニッケルなどに代表される電磁波遮蔽性の高い金属材料が、0.01〜5μmの厚みで積層され、且つ、表面抵抗値が1Ω/sq以下であることが好ましい。また、本発明は、該転写用金属薄膜シートの金属箔膜層表面に、合成樹脂接着剤成分に金属粉末及び/又はカーボン粉末を分散してなる導電性接着剤が積層された、導電性接着剤付き転写用金属薄膜シートである。
Moreover, it is preferable to give a micro unevenness | corrugation to the at least one surface of a synthetic resin sheet base material so that glossiness may be 5 to 30%.
Furthermore, it is preferable that a metal material having high electromagnetic shielding properties represented by copper and / or nickel is laminated with a thickness of 0.01 to 5 μm and a surface resistance value is 1 Ω / sq or less. Further, the present invention provides a conductive adhesive in which a conductive adhesive formed by dispersing metal powder and / or carbon powder in a synthetic resin adhesive component is laminated on the surface of the metal foil film layer of the metal thin film sheet for transfer. It is a metal thin film sheet for transfer with an agent.

本発明によれば、優れた電磁波遮蔽性能はもちろんのこと、非常に薄く柔軟であり、FPC等の非着体の柔軟性を損なうことのない、EMI/EMC対策用電磁波シールド材を提供することができる。 According to the present invention, it is possible to provide an electromagnetic shielding material for EMI / EMC countermeasures that is not only excellent in electromagnetic shielding performance but also very thin and flexible, and does not impair the flexibility of non-adherents such as FPC. Can do.

以下、本発明について詳細に説明する。
本発明は、合成樹脂シート基材の少なくとも一方の表面に、金属薄膜層を積層し、該金属薄膜層と合成樹脂シートとの剥離強度が、5N/cm以下であるように設計することで、上記課題を解決することのできる、転写用金属薄膜シートに関するものである。
Hereinafter, the present invention will be described in detail.
The present invention is designed by laminating a metal thin film layer on at least one surface of a synthetic resin sheet substrate and designing the peel strength between the metal thin film layer and the synthetic resin sheet to be 5 N / cm or less. The present invention relates to a transfer metal thin film sheet that can solve the above-mentioned problems.

本発明において用いられる合成樹脂シート基材としては、5〜200μmのフィルム形態のものを挙げることができ、特に限定されない。また、織物、編物、不織布などの形態のものを使うこともできるが、転写後の金属薄膜の連続性を向上するために、合成樹脂材料を表面にコーティング手法等で積層して、表面を平坦化してから使用すると良い。また、用いられる合成樹脂素材としては、ポリエステル系(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、ポリアミド系(ナイロン6、ナイロン66など)、ポリオレフィン系(ポリエチレン、ポリプロピレンなど)、ポリアクリロニトリル系、ポリビニルアルコール系、ポリウレタン系などを挙げることができ、これらが2種類以上組み合わされていてもよい。なかでも、加工性および耐久性を考慮すると、ポリエステル系が好ましい。 The synthetic resin sheet substrate used in the present invention may be in the form of a film having a thickness of 5 to 200 μm, and is not particularly limited. In addition, woven fabrics, knitted fabrics, non-woven fabrics, etc. can be used, but in order to improve the continuity of the metal thin film after transfer, a synthetic resin material is laminated on the surface by a coating method, etc. It is good to use after converting. Moreover, as a synthetic resin material used, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polyamide (nylon 6, nylon 66, etc.), polyolefin (polyethylene, polypropylene, etc.), polyacrylonitrile, polyvinyl alcohol, Examples thereof include polyurethane, and two or more of these may be combined. Of these, polyesters are preferred in view of processability and durability.

上記、合成樹脂シート基材の表面を金属で被覆するには、蒸着法、スパッタリング法、電気メッキ法、無電解メッキ法など従来公知の方法により行うことができる。なかでも、形成される金属被膜層の均一性、および生産性を考慮すると、無電解メッキ法、あるいは、無電解メッキ法と電気メッキ法の併用が好ましい。また、具体的なメッキ処理の手法としては、生産性を考慮すると、メッキ液を張った水槽内に設置されたガイドロール間を、複数回にわたりターン進行してから巻き取られる、ロール・トゥ・ロール型連続メッキ手法が好ましい。 The surface of the synthetic resin sheet substrate can be coated with a metal by a conventionally known method such as vapor deposition, sputtering, electroplating, or electroless plating. Among these, in consideration of the uniformity and productivity of the metal coating layer to be formed, the electroless plating method or the combined use of the electroless plating method and the electroplating method is preferable. In addition, as a specific plating method, considering productivity, the roll-to-roller is wound up after a plurality of turns between guide rolls installed in a water tank filled with a plating solution. A roll type continuous plating method is preferred.

合成樹脂シート基材の表面に均一な金属薄膜層を形成するために、また、その合成樹脂シート基材と金属薄膜層間の剥離強度が、5N/cm以下になるように設計するために、上記合成樹脂シート基材の表面には、0.01〜5μmの微少な凹凸を形成させることもできる。凹凸のサイズが0.01μm未満では、均一な金属薄膜層を形成できない虞があり、5μmを超える場合は、金属薄膜層の連続性が悪くなる虞がある。合成樹脂シート基材と金属薄膜層間の剥離強度が5N/cmを超えると、該金属薄膜をFPCに転写した際に、完全に転写されない虞がある。微少な凹凸を形成させる方法としては、成形後のフィルム表面をサンドブラスト法で荒らす方法や、成形後のフィルム表面に、合成樹脂に微粒子を分散させた塗工剤をコーティングするケミカルマット法、成形前の樹脂材料に予め微粒子を混入して成形する練り込み法などが挙げられる。 In order to form a uniform metal thin film layer on the surface of the synthetic resin sheet substrate, and to design the peel strength between the synthetic resin sheet substrate and the metal thin film layer to be 5 N / cm or less, the above A minute unevenness of 0.01 to 5 μm can be formed on the surface of the synthetic resin sheet substrate. If the size of the unevenness is less than 0.01 μm, there is a possibility that a uniform metal thin film layer cannot be formed, and if it exceeds 5 μm, the continuity of the metal thin film layer may be deteriorated. If the peel strength between the synthetic resin sheet substrate and the metal thin film layer exceeds 5 N / cm, the metal thin film may not be completely transferred when transferred to the FPC. As a method for forming minute irregularities, a method of roughening the film surface after molding by a sand blast method, a chemical mat method for coating a film agent after molding with a coating agent in which fine particles are dispersed in a synthetic resin, or before molding For example, a kneading method may be used in which fine particles are mixed in the resin material in advance.

さらに、合成樹脂シート基材の表面に微少な凹凸を形成することは、ロール・トゥ・ロール型連続メッキ手法において、合成樹脂シート基材表面に形成される金属薄膜層の欠陥を無くすことに寄与する。すなわち、微少な凹凸が形成されていない場合には、合成樹脂シート基材とメッキ液を張った水槽内のロールとの間にメッキ液が進入して、ロールが回転したり空回りしたりを間欠的に繰り返し、結果的に金属薄膜層表面に、合成樹脂シートの走行方向と平行な傷跡(擦り傷)を生成してしまう。 Furthermore, forming minute irregularities on the surface of the synthetic resin sheet substrate contributes to eliminating defects in the metal thin film layer formed on the surface of the synthetic resin sheet substrate in the roll-to-roll type continuous plating method. To do. That is, when minute irregularities are not formed, the plating solution enters between the synthetic resin sheet base material and the roll in the water tank filled with the plating solution, and the roll rotates or idles intermittently. As a result, a scar (scratch) parallel to the running direction of the synthetic resin sheet is generated on the surface of the metal thin film layer.

上記、合成樹脂シート基材表面の、微少な凹凸を定量化する方法として、光沢度が採用される。光沢度は、斜め方向から入射した光量と、表面で反射される光量の割合で表し、光沢度が小さい程、基材の表面の凹凸が多いことになり、反対に、光沢度が大きい程、表面の凹凸が少ないことになる。本発明の合成樹脂シート基材の表面状態は、光沢度で5〜30%が好ましい。光沢度が5%未満では、合成樹脂シート基材と金属薄膜層間の物理的結合力(アンカー効果)が大きくなり、転写する際に、基材側に金属薄膜層の一部が残留してしまう虞がある。また、光沢度が30%を越えると、物理的結合力(アンカー効果)が小さくなり、加工途中にロールに沿って湾曲するだけで、金属薄膜層が基材から剥離してしまう虞がある。 The glossiness is employed as a method for quantifying the fine irregularities on the surface of the synthetic resin sheet substrate. Glossiness is expressed as the ratio of the amount of light incident from an oblique direction and the amount of light reflected from the surface.The smaller the glossiness, the more irregularities on the surface of the base material, and conversely, the higher the glossiness, There will be less surface irregularities. The surface state of the synthetic resin sheet substrate of the present invention is preferably 5 to 30% in terms of gloss. If the glossiness is less than 5%, the physical bonding force (anchor effect) between the synthetic resin sheet substrate and the metal thin film layer increases, and a part of the metal thin film layer remains on the substrate side during transfer. There is a fear. On the other hand, when the glossiness exceeds 30%, the physical bonding force (anchor effect) becomes small, and the metal thin film layer may be peeled off from the substrate simply by bending along the roll during processing.

本発明で、金属薄膜層に用いられる金属としては、金、銀、銅、亜鉛、ニッケル、およびそれらの合金などを挙げることができるが、導電性および製造コストを考慮すると、銅及び/又は、ニッケルが好ましい。これらの金属によって形成される薄膜は1層あるいは2層であることが好ましい。3層以上になると金属被膜の厚みが大きくなり、布帛の風合いが硬くなるばかりか、製造コストも高くなるなど好ましくない。金属被膜を2層に積層する場合は、同種の金属を2層に積層してもよく、また、異なる金属を積層してもよい。これらは、求められる電磁波シールド性や耐久性を考慮して適宜に設定することができる。 In the present invention, examples of the metal used for the metal thin film layer include gold, silver, copper, zinc, nickel, and alloys thereof. However, considering conductivity and manufacturing cost, copper and / or Nickel is preferred. The thin film formed of these metals is preferably one layer or two layers. When the number of layers is three or more, the thickness of the metal coating increases, which is not preferable because the texture of the fabric becomes hard and the manufacturing cost increases. When the metal film is laminated in two layers, the same kind of metal may be laminated in two layers, or different metals may be laminated. These can be appropriately set in consideration of the required electromagnetic shielding properties and durability.

本発明の転写用金属薄膜シートは、上記合成樹脂シート基材の少なくとも一方の表面に、金属薄膜層を0.01μm〜5μmの厚さで形成したものが好ましい。金属薄膜層の厚さが、0.01μm未満では、転写の際に金属薄膜層に、割れなどの欠陥が生じる虞がある。また、金属薄膜層の厚さが、5μmを超えると、柔軟性が損なわれる虞がある。更に、金属薄膜層の表面抵抗値は、1Ω/sq以下であることが好ましい。表面抵抗値が1Ω/sqを超える場合は、十分に電磁波を遮蔽する効果が得られない。 The metal thin film sheet for transfer of the present invention preferably has a metal thin film layer formed at a thickness of 0.01 μm to 5 μm on at least one surface of the synthetic resin sheet substrate. If the thickness of the metal thin film layer is less than 0.01 μm, defects such as cracks may occur in the metal thin film layer during transfer. Moreover, when the thickness of the metal thin film layer exceeds 5 μm, flexibility may be impaired. Furthermore, the surface resistance value of the metal thin film layer is preferably 1 Ω / sq or less. When the surface resistance value exceeds 1 Ω / sq, the effect of sufficiently shielding electromagnetic waves cannot be obtained.

本発明の転写用金属薄膜シートには、金属薄膜層表面に、導電性接着剤を積層した構成のものも含まれる。本発明に用いられる導電性接着剤において、ベースの接着剤樹脂としては、アクリル、ウレタン、エポキシ系が挙げられる。また、導電性粒子としては、金、銀、ニッケル、カーボンが挙げられる。ベースの接着剤樹脂と導電性粒子との配合比率は、目的とする接着性及び導電性を得るために、適宜、設定することができる。 The transfer metal thin film sheet of the present invention includes a structure in which a conductive adhesive is laminated on the surface of the metal thin film layer. In the conductive adhesive used in the present invention, examples of the base adhesive resin include acrylic, urethane, and epoxy. Examples of the conductive particles include gold, silver, nickel, and carbon. The blending ratio of the base adhesive resin and the conductive particles can be appropriately set in order to obtain the desired adhesiveness and conductivity.

以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。また、得られた転写用金属薄膜シートの性能は、次の方法により評価した。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited at all by the following examples. Moreover, the performance of the obtained metal thin film sheet for transfer was evaluated by the following method.

(1)表面抵抗値
三菱化学(株)製のLoresta−EP MCP−T360 ESPタイプの抵抗値測定器を用い、転写前又は転写後の金属薄膜層表面の表面抵抗値を測定した。
(2)電磁波シールド性
転写前又は転写後の金属薄膜層について、関西電子工業振興センターによるKEC法に準拠し、10MHz〜1GHzにおける電磁波の減衰を、日本ヒューレットパッカード(株)製のトラッキングジェネレーター付きスペクトラムアナライザーHP8591EMを用いて測定した。
(3)剛軟性
JIS L 1096 剛軟性 A法(45°カンチレバー法)に従い、金属薄膜層が転写されたFPCまたは、導電性織物が接着されたFPCの、剛軟性を測定した。ここで、数値が小さいほど風合いが柔軟であることを意味する。
(4)剥離強度
金属薄膜の表面に、更に、電気メッキで同種の金属を30μm積層して、JIS C 5016 導体の引きはがし強さ 方法A に従い、この厚くなった金属膜と基材間の剥離強度を測定した。
(5)光沢度
JIS Z 8741に従い、光沢度計(「HG268」、スガ試験機株式会社製)を用いて60°光沢を測定した。
(1) Surface Resistance Value Using a Loresta-EP MCP-T360 ESP type resistance value measuring instrument manufactured by Mitsubishi Chemical Corporation, the surface resistance value of the surface of the metal thin film layer before or after transfer was measured.
(2) Electromagnetic wave shielding properties Before and after transfer of the metal thin film layer, in accordance with the KEC method by the Kansai Electronics Industry Promotion Center, the electromagnetic wave attenuation at 10 MHz to 1 GHz is measured with a tracking generator spectrum manufactured by Hewlett-Packard Japan. It measured using analyzer HP8591EM.
(3) Bending / softening According to JIS L 1096 Bending / softening A method (45 ° cantilever method), the bending / softening of the FPC to which the metal thin film layer was transferred or the FPC to which the conductive fabric was bonded was measured. Here, the smaller the value, the softer the texture.
(4) Peel strength Further, 30 μm of the same kind of metal is laminated on the surface of the metal thin film, and the peel strength between the thick metal film and the substrate is determined according to JIS C 5016 conductor peeling strength Method A. The strength was measured.
(5) Glossiness According to JIS Z 8741, 60 ° gloss was measured using a gloss meter (“HG268”, manufactured by Suga Test Instruments Co., Ltd.).

[実施例1]ポリエステルフィルム(75μm)の一方の表面に、サンドブラスト法で凹凸を形成したフィルムを2本準備し、この2本のフィルムの平坦な面同士を向かい合わせ、その間に溶融押し出ししたポリエチレンフィルムを挟み込み、3層構造の転写用金属薄膜シート基材を得た。このとき、ポリエステルフィルム表面の凹凸の程度は、光沢度で12%であった。次いで、得られた3層構造の転写用金属薄膜シート基材を、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む40℃の水溶液に2分間浸漬後水洗した。続いて、酸濃度0.1N、30℃のホウ沸化水素酸に5分間浸漬後水洗した。次に、硫酸ニッケル125g/L、クエン酸アンモニウム135g/L、次亜リン酸ナトリウム110g/Lの無電解ニッケルメッキ液に5分間浸漬し、ニッケルを積層させた。続いて、硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lを含む30℃の無電解銅メッキ液に10分間浸漬後、水洗した。水洗後、3層構造のそれぞれのフィルムを引き剥がし、一方の表面に金属薄膜層が形成された転写用金属薄膜シートを2本得た。ポリエステルフィルム表面には、銅とニッケルを合わせて、厚さ1μmの金属薄膜層が形成されており、その目付は、それぞれ、銅が3g/m、ニッケルが0.5g/mであった。金属薄膜層とポリエステルフィルム基材との剥離強度は、0.5N/cmであった。
得られた転写用金属薄膜シートの金属薄膜表面に、厚さ10μmでエポキシ系接着剤を塗布した後、厚さ30μmのポリイミドフィルムに貼り合わせ、その後、ポリエステルフィルム基材を引き剥がして、ポリイミドフィルムの一方の表面に金属薄膜層を転写して、電磁波シールド層付きのポリイミドフィルムを得た。
[Example 1] Polyethylene film (75 μm) having two irregularities formed by sandblasting on one surface, the flat surfaces of the two films facing each other, and melt-extruded polyethylene between them A film was sandwiched to obtain a metal thin film sheet substrate for transfer having a three-layer structure. At this time, the degree of unevenness on the surface of the polyester film was 12% in terms of gloss. Next, the obtained metal thin film sheet substrate for transfer having a three-layer structure was immersed in an aqueous solution at 40 ° C. containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid for 2 minutes. After washing with water. Subsequently, it was immersed in borohydric acid having an acid concentration of 0.1 N and 30 ° C. for 5 minutes and then washed with water. Next, it was immersed in an electroless nickel plating solution of 125 g / L of nickel sulfate, 135 g / L of ammonium citrate, and 110 g / L of sodium hypophosphite for 5 minutes to laminate nickel. Subsequently, it was immersed in an electroless copper plating solution at 30 ° C. containing 7.5 g / L of copper sulfate, 30 ml / L of 37% formalin and 85 g / L of Rochelle salt, and then washed with water. After washing with water, each film having a three-layer structure was peeled off to obtain two metal thin film sheets for transfer having a metal thin film layer formed on one surface. On the polyester film surface, copper and nickel were combined to form a metal thin film layer having a thickness of 1 μm, and the basis weight was 3 g / m 2 for copper and 0.5 g / m 2 for nickel, respectively. . The peel strength between the metal thin film layer and the polyester film substrate was 0.5 N / cm.
After applying an epoxy adhesive with a thickness of 10 μm to the metal thin film surface of the obtained metal thin film sheet for transfer, it is bonded to a polyimide film with a thickness of 30 μm, and then the polyester film substrate is peeled off to obtain a polyimide film. A metal thin film layer was transferred to one surface of the film to obtain a polyimide film with an electromagnetic wave shielding layer.

[比較例1]ポリエステル系繊維織物(経糸56dtex/36f、緯糸56dtex/36f)を精練、乾燥、熱処理した後、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む40℃の水溶液に2分間浸漬後水洗した。続いて、酸濃度0.1N、30℃のホウ沸化水素酸に5分間浸漬後水洗した。次に、硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lを含む30℃の無電解銅メッキ液に5分間浸漬後水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/Lを含む、pH3.7、35℃の電気ニッケルメッキ液に10分間、電流密度5A/dmで浸漬しニッケルを積層させた後水洗した。織物には銅が10g/m、ニッケルが4g/mメッキされた。得られた、金属被覆を持つ導電性織物の目付は64g/mであった。この導電性織物は、比較的に柔軟ではあるが、厚さが130μmであった。
得られた導電性織物の金属薄膜表面に、厚さ30μmでエポキシ系接着剤を塗布した後、厚さ30μmのポリイミドフィルムの一方の表面に貼り合わせて、電磁波シールド織物付きのポリイミドフィルムを得た。
[Comparative Example 1] A polyester fiber fabric (warp 56 dtex / 36f, weft 56 dtex / 36f) was scoured, dried and heat-treated, and then palladium chloride 0.3 g / L, stannous chloride 30 g / L, 36% hydrochloric acid 300 ml / It was immersed in a 40 ° C. aqueous solution containing L for 2 minutes and then washed with water. Subsequently, it was immersed in borohydric acid having an acid concentration of 0.1 N and 30 ° C. for 5 minutes and then washed with water. Next, it was immersed in an electroless copper plating solution at 30 ° C. containing 7.5 g / L of copper sulfate, 30 ml / L of 37% formalin and 85 g / L of Rochelle salt, and then washed with water. Subsequently, the nickel was immersed in an electric nickel plating solution containing nickel sulfamate 300 g / L, boric acid 30 g / L, nickel chloride 15 g / L, pH 3.7, 35 ° C. for 10 minutes at a current density of 5 A / dm 2. After laminating, it was washed with water. Copper 10 g / m 2 in the fabric, the nickel is 4g / m 2 Plating. The obtained conductive fabric having a metal coating had a basis weight of 64 g / m 2 . This conductive fabric was relatively flexible but had a thickness of 130 μm.
After applying an epoxy adhesive with a thickness of 30 μm to the surface of the metal thin film of the obtained conductive fabric, it was bonded to one surface of a polyimide film with a thickness of 30 μm to obtain a polyimide film with an electromagnetic shielding fabric. .

Figure 2006297714
Figure 2006297714


Claims (4)

合成樹脂シート基材の少なくとも一方の表面に、金属薄膜層が積層されており、該金属薄膜層と合成樹脂シート基材との剥離強度が、5N/cm以下であることを特徴とする、転写用金属薄膜シート。 A metal thin film layer is laminated on at least one surface of the synthetic resin sheet base material, and the peel strength between the metal thin film layer and the synthetic resin sheet base material is 5 N / cm or less. Metal thin film sheet. 合成樹脂シート基材の表面に、光沢度が5〜30%となるように、微少な凹凸を形成させることを特徴とする、請求項1記載の転写用金属薄膜シート。 The metal thin film sheet for transfer according to claim 1, wherein minute irregularities are formed on the surface of the synthetic resin sheet substrate so that the glossiness is 5 to 30%. 金属薄膜層の厚さが、0.01μm〜5μmであり、且つ、表面抵抗値が1Ω/sq以下であることを特徴とする、請求項1または2に記載の転写用金属薄膜シート。 The metal thin film sheet for transfer according to claim 1, wherein the metal thin film layer has a thickness of 0.01 μm to 5 μm and a surface resistance value of 1 Ω / sq or less. 請求項1〜3のいずれか1項に記載の転写用金属薄膜シートの金属薄膜層表面に、樹脂組成物に金属粉末及び/又はカーボン粉末を分散してなる導電性接着層を積層させることを特徴とする、導電性接着層付き転写用金属薄膜シート。


A conductive adhesive layer formed by dispersing metal powder and / or carbon powder in a resin composition is laminated on the surface of the metal thin film layer of the metal thin film sheet for transfer according to claim 1. A metal thin film sheet for transfer with a conductive adhesive layer.


JP2005121329A 2005-04-19 2005-04-19 Metal thin film sheet for transfer Pending JP2006297714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121329A JP2006297714A (en) 2005-04-19 2005-04-19 Metal thin film sheet for transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121329A JP2006297714A (en) 2005-04-19 2005-04-19 Metal thin film sheet for transfer

Publications (1)

Publication Number Publication Date
JP2006297714A true JP2006297714A (en) 2006-11-02

Family

ID=37466384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121329A Pending JP2006297714A (en) 2005-04-19 2005-04-19 Metal thin film sheet for transfer

Country Status (1)

Country Link
JP (1) JP2006297714A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019963A1 (en) * 2007-08-03 2009-02-12 Tatsuta System Electronics Co., Ltd. Shield film for printed wiring board, and printed wiring board
JP2011224835A (en) * 2010-04-16 2011-11-10 Achilles Corp Method for manufacturing thermal transfer medium
WO2014171387A1 (en) * 2013-04-19 2014-10-23 Dic株式会社 Conductive adhesive sheet, method for manufacturing same and electronic terminal obtained by using same
WO2015063681A1 (en) * 2013-10-28 2015-05-07 Uniwersytet Wroclawski Coating for absorbing energy, especially the energy of electromagnetic and mechanical waves, and its use
WO2016080174A1 (en) * 2014-11-19 2016-05-26 帝人デュポンフィルム株式会社 Biaxially oriented polyester film
JP2016097522A (en) * 2014-11-19 2016-05-30 帝人デュポンフィルム株式会社 Biaxial oriented polyester film
WO2016133101A1 (en) * 2015-02-20 2016-08-25 東洋紡株式会社 Asperity transfer film
JP2017071107A (en) * 2015-10-06 2017-04-13 帝人フィルムソリューション株式会社 Biaxially oriented polyester film having matte layer
KR102674708B1 (en) 2014-11-19 2024-06-12 도요보 가부시키가이샤 Biaxially oriented polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446998A (en) * 1987-08-17 1989-02-21 Reiko Kk Conductive transfer sheet
JPH02141233A (en) * 1988-11-22 1990-05-30 Toyo Metaraijingu Kk Laminated transfer film for printed wiring board
JP2000017424A (en) * 1998-07-03 2000-01-18 Nitto Denko Corp Metal transfer film
JP2001184845A (en) * 1999-12-24 2001-07-06 Kobe Steel Ltd Coating film coated aluminum alloy material for recording medium drive case

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446998A (en) * 1987-08-17 1989-02-21 Reiko Kk Conductive transfer sheet
JPH02141233A (en) * 1988-11-22 1990-05-30 Toyo Metaraijingu Kk Laminated transfer film for printed wiring board
JP2000017424A (en) * 1998-07-03 2000-01-18 Nitto Denko Corp Metal transfer film
JP2001184845A (en) * 1999-12-24 2001-07-06 Kobe Steel Ltd Coating film coated aluminum alloy material for recording medium drive case

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019963A1 (en) * 2007-08-03 2009-02-12 Tatsuta System Electronics Co., Ltd. Shield film for printed wiring board, and printed wiring board
JP2011224835A (en) * 2010-04-16 2011-11-10 Achilles Corp Method for manufacturing thermal transfer medium
WO2014171387A1 (en) * 2013-04-19 2014-10-23 Dic株式会社 Conductive adhesive sheet, method for manufacturing same and electronic terminal obtained by using same
CN105164223A (en) * 2013-04-19 2015-12-16 Dic株式会社 Conductive adhesive sheet, method for manufacturing same and electronic terminal obtained by using same
WO2015063681A1 (en) * 2013-10-28 2015-05-07 Uniwersytet Wroclawski Coating for absorbing energy, especially the energy of electromagnetic and mechanical waves, and its use
WO2016080174A1 (en) * 2014-11-19 2016-05-26 帝人デュポンフィルム株式会社 Biaxially oriented polyester film
JP2016097522A (en) * 2014-11-19 2016-05-30 帝人デュポンフィルム株式会社 Biaxial oriented polyester film
KR20170088828A (en) * 2014-11-19 2017-08-02 데이진 필름 솔루션스 가부시키가이샤 Biaxially oriented polyester film
KR102674708B1 (en) 2014-11-19 2024-06-12 도요보 가부시키가이샤 Biaxially oriented polyester film
WO2016133101A1 (en) * 2015-02-20 2016-08-25 東洋紡株式会社 Asperity transfer film
JPWO2016133101A1 (en) * 2015-02-20 2017-11-30 東洋紡株式会社 Uneven transfer film
JP2017071107A (en) * 2015-10-06 2017-04-13 帝人フィルムソリューション株式会社 Biaxially oriented polyester film having matte layer

Similar Documents

Publication Publication Date Title
JP2006297714A (en) Metal thin film sheet for transfer
JP2019083205A (en) Shield film, shielded printed wiring board, and method for manufacturing shield film
JP3306665B2 (en) Conductive material and method of manufacturing the same
JP2020524414A (en) Electromagnetic shield film, circuit board, and method for manufacturing electromagnetic shield film
JP6435540B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
CN108323143B (en) Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
US20150250080A1 (en) Shield film and shield printed wiring board
JP2015133474A (en) Electromagnetic shield film and method of manufacturing circuit board including shield film
CN104350816A (en) Shield film and shield printed wiring board
US20050173145A1 (en) Electromagnetic wave shield gasket and its manufacturing method
TWI270341B (en) Electronic assembly unit with conductive film, conductive film and method of making the same thereof
JP5659379B1 (en) Printed wiring board
CN110839339A (en) Bendable electromagnetic shielding film and preparation method thereof
KR20130078185A (en) Method for producing conductive non-woven fabric and multi-fuctional electro magnetic interference shield tape using conductive non-woven fabric
JP5151162B2 (en) Noise suppression sheet
TW201121405A (en) Electro-magnetic wave shielding film and wiring board
KR20090038994A (en) Conductive double-faced tape supported on nonconductor
KR100841042B1 (en) Method for manufacturing ultra-thin conductive double-coated tape using nonwoven fabric and the conductive double-coated tape by the same
JP2017220641A (en) Printed wiring board and electronic apparatus
KR100903434B1 (en) Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
KR101411978B1 (en) The fabrication method of adhesive tape for thin electromagnetic shield with color layer in polymer film and adhesive tape thereby
JP5692501B2 (en) Method for producing conductive coating film
CN110149790B (en) Graphene electromagnetic shielding film and preparation method thereof
JP2008266814A (en) Metal-covered fabric and method for producing the same
JP5565764B2 (en) Electromagnetic wave interference prevention transfer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100331