JP5565764B2 - Electromagnetic wave interference prevention transfer film - Google Patents

Electromagnetic wave interference prevention transfer film Download PDF

Info

Publication number
JP5565764B2
JP5565764B2 JP2009088829A JP2009088829A JP5565764B2 JP 5565764 B2 JP5565764 B2 JP 5565764B2 JP 2009088829 A JP2009088829 A JP 2009088829A JP 2009088829 A JP2009088829 A JP 2009088829A JP 5565764 B2 JP5565764 B2 JP 5565764B2
Authority
JP
Japan
Prior art keywords
layer
film
metal thin
thin film
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009088829A
Other languages
Japanese (ja)
Other versions
JP2010240863A (en
Inventor
雅弘 須田
寛 東郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP2009088829A priority Critical patent/JP5565764B2/en
Publication of JP2010240863A publication Critical patent/JP2010240863A/en
Application granted granted Critical
Publication of JP5565764B2 publication Critical patent/JP5565764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Description

本発明は電磁波障害対策用のシールド用シート基材に関するものであり、特にフレキシブル基板などに用いられる金属薄膜転写フィルムに関するものである。 The present invention relates to a shielding sheet base material for electromagnetic wave interference countermeasures, and particularly to a metal thin film transfer film used for a flexible substrate or the like.

我々の生活の中に様々な電子機器が多数普及して、それらは無くてはならないものとなってきた。それらの動作安定性が重要になるに伴い、電子機器同士で電磁波障害(以下、EMIと記する)を起こさないことや影響を受けないことが要求されるようになってきた。特にパソコンのような情報端末は、エラー回避のために優れたEMI対策が求められる一方、製品寿命の短縮化でEMIについて入念に配慮した回路設計が難しくなっており、簡便に取り付けられるEMI対策用材料が要望されている。さらに携帯電話や小型のノートパソコンのような携帯式情報端末ではフレキシブル基板を使うので、軽量で薄く柔軟性に富んでいる必要があり、従来のような金属箔を用いたEMIシールドテープでは要求を満たせなくなっている。 A lot of various electronic devices have spread in our lives, and they have become indispensable. As their operational stability becomes important, it has been required that electronic devices do not cause electromagnetic interference (hereinafter referred to as EMI) or are not affected. Especially for information terminals such as personal computers, excellent EMI countermeasures are required to avoid errors. On the other hand, circuit design that carefully considers EMI is difficult due to shortened product life, and it can be easily installed. Material is desired. In addition, since portable information terminals such as mobile phones and small notebook PCs use flexible substrates, they must be lightweight, thin and flexible, and conventional EMI shield tapes using metal foil are required. I can't meet.

そこで、導電性接着層付き転写用金属シートが開示されている(特許文献1)。しかし、基材フィルム上に直接形成した金属薄膜層に導電性接着剤を塗布して転写する方式は、薄膜化は実現できるが、金属薄膜層と基材フィルム間の剥離力が大きいうえに、基材フィルム表面の凹凸をそのまま転写するために剥離力を均一に保つことが難しく、金属薄膜層の割れやハガレが生ずることがあり、問題であった。   Therefore, a transfer metal sheet with a conductive adhesive layer is disclosed (Patent Document 1). However, the method of applying and transferring a conductive adhesive to the metal thin film layer directly formed on the base film can achieve thinning, but the peeling force between the metal thin film layer and the base film is large, Since the unevenness on the surface of the substrate film is transferred as it is, it is difficult to keep the peeling force uniform, and the metal thin film layer may be cracked or peeled off, which is a problem.

これに対し、基材フィルムに離型材層を設けた上に金属薄膜層を形成することで剥離力を均一化する方法が開示されている(特許文献2)。EMI用途の金属シートでは、周辺の回路との接触による短絡を防ぐために、金属薄膜層の接着剤塗布面の反対面に絶縁材を塗布するなどの後加工をする必要があり、金属薄膜層の両面において表面塗工のしやすさが求められる。特許文献2のような離型材層を設けた上に金属薄膜層を形成する方法は、剥離力を均一化し、かつ軽く剥がれるようにして作業性をよくする効果があるが、一方で、凝集破壊して金属薄膜層表面に離型材が残留することがあり、残留した離型材が接着剤や絶縁材の塗工時にハジキ欠点となる問題があった。   On the other hand, a method of making the peeling force uniform by forming a metal thin film layer on a base film provided with a release material layer is disclosed (Patent Document 2). In the metal sheet for EMI use, in order to prevent short circuit due to contact with surrounding circuits, it is necessary to perform post-processing such as applying an insulating material to the opposite side of the adhesive coating surface of the metal thin film layer. Ease of surface coating is required on both sides. The method of forming the metal thin film layer on the release material layer as disclosed in Patent Document 2 has the effect of improving the workability by making the peeling force uniform and lightly peeling off. As a result, the release material may remain on the surface of the metal thin film layer, and there is a problem that the remaining release material becomes a repellency defect when an adhesive or an insulating material is applied.

特開2006−297714号公報JP 2006-297714 A 特開2003−053888号公報JP 2003-053888 A

そこで本発明の目的は、金属薄膜層と基材フィルム間の剥離力が均一で容易に剥離できる軽剥離性を持ち、かつ、高い耐屈曲性を有するEMI防止用転写フィルムを提供することにある。   Accordingly, an object of the present invention is to provide an EMI-preventing transfer film that has a light peeling property that can be easily and easily peeled between the metal thin film layer and the base film, and that has a high bending resistance. .

かかる課題を解決するための本発明は、次の(1)〜(3)の構成を特徴とするものである。
(1)基材フィルムの少なくとも片面に、離型材層と中間層とからなる離型層と金属薄膜層が積層され、該離型層表面にプラズマ処理後、金属薄膜層を蒸着してなる電磁波障害防止用転写フィルムであって、基材フィルム、離型材層、中間層、金属薄膜層の順に積層されており、該離型材層が熱硬化型メラミン系樹脂からなり、中間層がアクリル樹脂からなり、中間層の離型材層と反対側表面にプラズマ処理が施こされ、該中間層と該離型層の間の剥離強度が0.001〜0.1N/cmであることを特徴とする電磁波障害防止用転写フィルム。
(2)前記金属薄膜層は、厚さが0.1〜5μm、かつ抵抗値が1Ω以下であり、Cu、Ag、Al、Cr、Fe、Ni、Pd、ZnおよびSnからなる群より選ばれた少なくとも1種類の金属からなり、蒸着法によって形成された、(1)に記載の電磁波障害防止用転写フィルム。
(3)基材フィルムに積層された離型層に対してプラズマ処理を施し、該型層のプラズマ処理面に金属薄膜層を蒸着する(1)または(2)に記載の電磁波障害防止用転写フィルムの製造方法。
The present invention for solving this problem is characterized by the following configurations (1) to (3).
(1) on at least one surface of a substrate film, a release layer and a metal thin film layer made of a release material layer and the intermediate layer is a product layer, after the plasma treatment the releasing layer surface, by depositing a metal thin film layer a wave transfer film for failure prevention comprising, a base film, release material layer, the intermediate layer, are laminated in this order of the metal thin film layer, Ri the releasing material layer Do from thermosetting melamine resin, an intermediate layer Ri Do acrylic resin, a plasma treatment is strained facilities on the opposite side surface and the release agent layer of the intermediate layer, peel strength between the intermediate layer and the mold release layer is 0.001~0.1N / cm A transfer film for preventing electromagnetic interference.
(2) The metal thin film layer has a thickness of 0.1 to 5 μm and a resistance value of 1Ω or less, and is selected from the group consisting of Cu, Ag, Al, Cr, Fe, Ni, Pd, Zn and Sn. The transfer film for preventing electromagnetic interference according to (1), comprising at least one kind of metal and formed by vapor deposition.
(3) the plasma processing on the substrate film a release layer laminated on, depositing a metal thin film layer to a plasma treated surface of the release layer (1) or for electromagnetic interference prevention according to (2) A method for producing a transfer film.

本発明の電磁波障害防止用転写フィルムによれば、適切な中間層を選択することによって、基材フィルムとの間の軽剥離性と、高い耐屈曲性を両立させることが出来る。   According to the transfer film for preventing electromagnetic interference of the present invention, by selecting an appropriate intermediate layer, it is possible to achieve both light peelability from the base film and high bending resistance.

図1は、本発明である転写フィルムの実施の形態を示す部分断面図である。本転写フィルムの使用法としては、6面に絶縁物等の保護コートを貼合し、しかる後に離型材層2と中間層3の間で5面を境に剥離せしめ、その後に5面に接着剤を塗工し、FPC等の成型品に転写するものである。FIG. 1 is a partial sectional view showing an embodiment of a transfer film according to the present invention. As a method of using this transfer film, a protective coat such as an insulator is bonded to 6 surfaces, and then the 5 release surfaces are separated between the release material layer 2 and the intermediate layer 3, and then bonded to 5 surfaces. The agent is applied and transferred to a molded product such as FPC.

本発明の電磁波障害防止用転写フィルムは、基材となるフィルム上に離型材層、中間層、金属薄膜層を順に有する構成である。   The transfer film for preventing electromagnetic interference according to the present invention has a structure having a release material layer, an intermediate layer, and a metal thin film layer in this order on a film serving as a substrate.

本発明での基材となるフィルムは、薄膜を形成するための各種加工に耐えうる充分な強度を持つことが望まれる。具体的にはポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、ポリウレタン系樹脂等が該当するが、ハンドリングのしやすさや熱や張力に対する耐久性、単価の安さなどの点からポリエステル系樹脂、特にポリエチレンテレフタレートが好ましい。フィルムの厚さは12μm〜188μmであることが好ましく、さらには25μm〜100μmであることがより好ましい。薄すぎればハンドリング時に折れやシワ、ハガレが生じる可能性が高くなり、厚すぎると柔軟性に欠けてハンドリング時に割れたり、フィルムの値段が上がるため加工製品のコストが上昇する原因となり、工業的に適さない。   The film serving as the substrate in the present invention is desired to have sufficient strength to withstand various processes for forming a thin film. Specific examples include polyester resins, polyolefin resins, polyamide resins, acrylic resins, polyvinyl alcohol resins, polyurethane resins, etc., but ease of handling, durability against heat and tension, low unit price, etc. From this point, a polyester resin, particularly polyethylene terephthalate is preferable. The thickness of the film is preferably 12 μm to 188 μm, and more preferably 25 μm to 100 μm. If it is too thin, there is a high possibility that folds, wrinkles, and peeling will occur during handling, and if it is too thick, it will be inflexible, cracking during handling, and the price of the film will increase, which will increase the cost of processed products. Not suitable.

本発明での離型層は、離型材層と中間層からなり、基材側と金属薄膜層側からこれらを引き剥がそうとする外力が働いた時には離型材層と中間層の界面で容易に剥離することを特徴とする。剥離界面が離型材層と中間層の界面であることにより、軽剥離性と同時に後加工での接着性を大幅に改善することができるのである。この特徴は、以下のように離型材層と中間層の材質を選ぶことによって実現される。   The release layer in the present invention is composed of a release material layer and an intermediate layer. When an external force is applied to peel them from the base material side and the metal thin film layer side, the release layer is easily formed at the interface between the release material layer and the intermediate layer. It is characterized by peeling. Since the peeling interface is the interface between the release material layer and the intermediate layer, it is possible to significantly improve the adhesiveness in the post-processing as well as the light peeling property. This feature is realized by selecting the material of the release material layer and the intermediate layer as follows.

本発明での離型材層は、中間層との軽剥離性を実現するために、中間層の材質とは相溶性が低い材質であることが好ましく、一方で基材となるフィルムとの密着性が良いことが望まれる。離型材層と中間層の界面で容易に剥離するためには、中間層の材質に対して相溶性が低い、熱硬化型メラミン系樹脂が好ましい。   The release material layer in the present invention is preferably a material having low compatibility with the material of the intermediate layer in order to realize light release properties with the intermediate layer, while on the other hand, the adhesiveness with the film as the base material It is desirable that it is good. In order to easily peel off at the interface between the release material layer and the intermediate layer, a thermosetting melamine resin having low compatibility with the material of the intermediate layer is preferable.

本発明において、離型材層の厚さは0.1〜1μmが好ましく、より好ましくは0.1〜0.5μmである。薄すぎると塗膜の強度を維持することが難しくなるために、剥離時に離型材層の破壊が生じて軽く剥離できなくなる恐れがある。厚すぎると、軽剥離性などの物性は向上しないにも関わらず離型材の材料費が上昇してしまい、工業的に不適である。   In this invention, 0.1-1 micrometer is preferable and, as for the thickness of a mold release material layer, More preferably, it is 0.1-0.5 micrometer. If it is too thin, it will be difficult to maintain the strength of the coating film, so that the release material layer may be destroyed at the time of peeling, and it may be difficult to peel lightly. If it is too thick, the material cost of the mold release material will increase despite the fact that physical properties such as light releasability are not improved, which is industrially unsuitable.

本発明での中間層は、離型材層との軽剥離性を実現するために、離型材層の材質とは相溶性が低い材質であることが好ましく、一方でフレキシブル基板との密着性を得るために接着剤との相溶性が良いことが望まれる。電子部品同士の接着には高耐久性や高密着力が必要なことから、一般にエポキシ系接着剤が好ましく使用されているため、中間層の材質としてはエポキシ系接着剤と相溶性が良いアクリル系樹脂が好ましい。また、メラミン樹脂層との剥離性が良好であるアクリル系樹脂層を形成することで、剥離後のメラミン樹脂層の残留を抑えることができる。   The intermediate layer in the present invention is preferably a material having low compatibility with the material of the release material layer in order to achieve light release properties with the release material layer, while obtaining adhesion with the flexible substrate. Therefore, it is desired that the compatibility with the adhesive is good. Since high durability and high adhesion are required for bonding electronic components, generally an epoxy adhesive is preferably used, so the intermediate layer material is an acrylic resin that is compatible with the epoxy adhesive. Is preferred. Moreover, the residual of the melamine resin layer after peeling can be suppressed by forming the acrylic resin layer having good peelability from the melamine resin layer.

本発明において、中間層の厚さは0.1〜1μmが好ましく、より好ましくは0.1〜0.5μmである。薄すぎると塗膜の強度を維持することが難しくなるために、剥離時に中間層の破壊が生じて軽く剥離できなくなる恐れがある。厚すぎると、軽剥離性などの物性は向上しないにも関わらず中間層の材料費が上昇してしまい、工業的に不適である。
中間層と離型材層の間の剥離強度は、0.001〜0.1N/cmが好ましく、より好ましくは0.005〜0.02N/cm程度である。剥離強度が大き過ぎると、剥離時に金属薄膜層が破壊し易く、割れやハガレが起きて転写できない恐れがあり、剥離強度が小さ過ぎると、いわゆる箔落ち現象により、転写する前に金属薄膜層が剥がれて壊れてしまう恐れがある。離型材層の樹脂種類とその塗工厚さとから、剥離力0.001〜0.1N/cmを得ることが出来る。
In the present invention, the thickness of the intermediate layer is preferably from 0.1 to 1 μm, more preferably from 0.1 to 0.5 μm. If it is too thin, it becomes difficult to maintain the strength of the coating film, so that there is a possibility that the intermediate layer may be destroyed at the time of peeling and cannot be lightly peeled off. If it is too thick, the material cost of the intermediate layer will increase although physical properties such as light peelability will not be improved, which is industrially unsuitable.
The peel strength between the intermediate layer and the release material layer is preferably 0.001 to 0.1 N / cm, more preferably about 0.005 to 0.02 N / cm. If the peel strength is too high, the metal thin film layer is likely to break during peeling, and there is a risk of cracking or peeling, and transfer may not be possible.If the peel strength is too low, the metal thin film layer will not be transferred before transfer due to the so-called foil dropping phenomenon. There is a risk of peeling and breaking. A peeling force of 0.001 to 0.1 N / cm can be obtained from the resin type of the release material layer and its coating thickness.

離型材層および中間層の作成方法としては、CVDなどのドライコーティング法も存在するが、真空装置が不要で加工速度が速くてコストの低い、ウェットコーティング法が好ましい。また、ウェットコーティング法の塗工方式にはスリットダイやグラビアなど既知の方法があり特に限定されるものではないが、薄い塗膜表面での平滑性を得やすいことから、マイクログラビア法が好ましく用いられる。   A dry coating method such as CVD exists as a method for forming the release material layer and the intermediate layer, but the wet coating method is preferable because it does not require a vacuum device, has a high processing speed, and is low in cost. In addition, there are known methods such as a slit die and gravure in the coating method of the wet coating method, but it is not particularly limited, but the microgravure method is preferably used because it is easy to obtain smoothness on a thin coating surface. It is done.

本発明での金属薄膜層は、EMIの原因となる電磁波を遮断する目的で設けられるもので、Cu、Ag、Al、Cr、Fe、Ni、Pd、Zn、Snから選ばれた少なくとも1種類の金属からなり、これらの金属同士あるいはその他の金属を含んだ合金でもかまわないが、Cu、Al及びNiが好ましい。また、金属や合金からなる薄膜層は単層に限らず複数重ねた構成で実施することができる。コストや加工しやすさから、単層または2層が好ましい。   The metal thin film layer in the present invention is provided for the purpose of blocking electromagnetic waves causing EMI, and is at least one selected from Cu, Ag, Al, Cr, Fe, Ni, Pd, Zn, and Sn. It is made of metal and may be an alloy containing these metals or other metals, but Cu, Al and Ni are preferable. Further, the thin film layer made of metal or alloy is not limited to a single layer, and can be implemented in a stacked structure. From the viewpoint of cost and ease of processing, a single layer or two layers are preferable.

金属薄膜層の厚さは0.1〜5μmが好ましく、より好ましくは0.5〜5μmであり、さらに好ましくは0.5〜1μmである。薄くなるにつれて表面抵抗値が高くなって充分なEMIシールド性を得ることが難しくなる。一方厚すぎると、蒸着によって得られた金属膜の内部歪みなどにより、蒸着膜の劈開および割れが生じるために、金属薄膜が割れやすくなって耐屈曲性が低くなる。   The thickness of the metal thin film layer is preferably 0.1 to 5 μm, more preferably 0.5 to 5 μm, and still more preferably 0.5 to 1 μm. As the thickness decreases, the surface resistance value increases and it becomes difficult to obtain sufficient EMI shielding properties. On the other hand, if it is too thick, the vapor deposition film will be cleaved and cracked due to the internal strain of the metal film obtained by vapor deposition, so that the metal thin film is easily broken and the flex resistance is lowered.

金属薄膜層の作成方法としては、電解及び無電解メッキ、圧延、およびスパッタなどのPVD法があるが、低抵抗な金属薄膜を比較的高速度で作成できる蒸着法が好ましい。金属粉を用いたウェットコーティング法もあるが抵抗値が高く、EMIシールド用途には適さない。また、蒸着法としてはEB加熱蒸着、抵抗加熱蒸着、誘導加熱蒸着、スパッタリング、イオンプレーティングなどの既知の方法を用いることができるが、大蒸発量を得やすいという特徴から誘導加熱蒸着が好適である。   As a method for producing the metal thin film layer, there are PVD methods such as electrolysis and electroless plating, rolling, and sputtering, but a vapor deposition method capable of producing a low resistance metal thin film at a relatively high speed is preferable. There is also a wet coating method using metal powder, but the resistance value is high and it is not suitable for EMI shielding applications. Moreover, as a vapor deposition method, known methods such as EB heating vapor deposition, resistance heating vapor deposition, induction heating vapor deposition, sputtering, and ion plating can be used. However, induction heating vapor deposition is preferable because it is easy to obtain a large evaporation amount. is there.

また、金属薄膜層の作成方法において、金属薄膜層の蒸着装置と同一系内で同時に、または別系で基材フィルムに対してプラズマ処理を施し、その後に金属薄膜層の蒸着を行なうことが好ましい。基材フィルムの金属薄膜層形成面にプラズマ処理を施すことで、耐屈曲性を著しく向上させることができる。   In addition, in the method for forming a metal thin film layer, it is preferable to perform plasma treatment on the base film simultaneously in the same system as the metal thin film layer deposition apparatus or in another system, and then deposit the metal thin film layer. . Bending resistance can be remarkably improved by performing a plasma treatment on the metal thin film layer forming surface of the base film.

本発明において、プラズマ放電処理は公知の方法で構わないが、特に放電ガスを酸素ガスとした高周波グロー放電とすると、耐屈曲性に関して高い効果が得られ、さらにその際のプラズマ放電の強度を5〜50W・min/m2とすると、より好適な効果が得られる。 In the present invention, the plasma discharge treatment may be performed by a known method. However, when the discharge gas is a high-frequency glow discharge using oxygen gas as the discharge gas, a high effect is obtained with respect to the bending resistance. When it is set to ˜50 W · min / m 2 , a more preferable effect is obtained.

本発明において、プラズマ処理する際、プラズマ発生のためのカソード電極はCu、Ag、Al、Cr、Fe、Ni、Pd、Zn、Snから選ばれた少なくとも1種類の金属からなる事が好ましく、これらの金属同士あるいはその他の金属を含んだ合金でもかまわないが、Cu、Al及びNiが好ましい。   In the present invention, when performing plasma treatment, the cathode electrode for generating plasma is preferably made of at least one metal selected from Cu, Ag, Al, Cr, Fe, Ni, Pd, Zn, and Sn. These metals or alloys containing other metals may be used, but Cu, Al and Ni are preferred.

上記の電磁波障害防止用転写フィルムは、例えば、携帯電話や、ノート型パソコン等のフレキシブル基板に組み込まれる。フレキシブル基板の表面に貼り付けられる場合、電磁波障害防止用転写フィルムから基体フィルムを剥離した後、離型層の中間層側に接着剤からなる粘着層を設け、該粘着層を介して接合される。該粘着層の接着剤は公知のものを用いることができる。   The above-mentioned transfer film for preventing electromagnetic interference is incorporated into a flexible substrate such as a mobile phone or a notebook computer. When affixed to the surface of a flexible substrate, after peeling the substrate film from the electromagnetic interference prevention transfer film, an adhesive layer made of an adhesive is provided on the intermediate layer side of the release layer and bonded via the adhesive layer. . A known adhesive can be used for the adhesive layer.

以下に本発明の実施様態を実施例をもって説明するが、本発明はこれらの実施例によって限定されるものではない。本発明の実施例における評価方法は、次のとおりである。   Embodiments of the present invention will be described below with reference to examples, but the present invention is not limited to these examples. Evaluation methods in the examples of the present invention are as follows.

<評価方法1>
離型材層、中間層および金属薄膜層の厚さは、アンリツ社製デジタルマイクロメータ「K351C」を用いてA4版サンプルの幅方向3カ所を測定して平均値を求めた。
<Evaluation method 1>
The thicknesses of the release material layer, the intermediate layer, and the metal thin film layer were obtained by measuring three points in the width direction of the A4 plate sample using an Anritsu digital micrometer “K351C” and obtaining an average value.

<評価方法2>
表面抵抗値は、ダイアインスツルメンツ社製「ロレスタ MCP−T350」を用い、A4版サンプルの幅方向3カ所を4探針法にて測定して平均値を求めた。EMI防止効果の点から、表面抵抗値は低い方が適当であり、1Ω以下が好ましい。
<Evaluation method 2>
The surface resistance value was determined by measuring the three points in the width direction of the A4 plate sample by a four-probe method using “Loresta MCP-T350” manufactured by Dia Instruments. From the viewpoint of the EMI prevention effect, a lower surface resistance value is appropriate, and 1Ω or less is preferable.

<評価方法3>
離型層の剥離強度は、電磁波障害防止用転写フィルムを1cm幅、長さ15cmに切断し、基材フィルム側を両面テープで垂直の壁に固定してから、ニチバン製「セロテープNo.405」(登録商標)で金属薄膜層に分銅を貼り付けたとき、金属薄膜層が基材フィルムから自然に剥離して落下するときの分銅の重量から算出した。転写加工の容易さの点から剥離強度は低い方が適当であり、0.049N以下が好ましい。
<Evaluation method 3>
The peel strength of the release layer is determined by cutting the transfer film for preventing electromagnetic interference into a 1 cm width and a length of 15 cm, fixing the base film side to a vertical wall with double-sided tape, and then “Cello Tape No. 405” made by Nichiban When a weight was affixed to the metal thin film layer with (Registered Trademark), the weight was calculated from the weight of the weight when the metal thin film layer naturally peeled off from the base film and dropped. From the viewpoint of ease of transfer processing, a lower peel strength is appropriate, and 0.049 N or less is preferable.

<評価方法4>
EMI防止効果は、マイクロウェーブ・ファクトリー社製の評価装置を用い、「KEC法」に準じて電界強度の減衰比を測定した。
<Evaluation method 4>
For the EMI prevention effect, the attenuation ratio of the electric field strength was measured according to the “KEC method” using an evaluation device manufactured by Microwave Factory.

<評価方法5>
耐屈曲性は信越エンジニアリング株式会社製「SEK−31B4S」を用い、JIS C 6471−1995の(参考3 耐屈曲性)に準じた評価を行い、サンプルに屈曲を与えて抵抗値が急激に上昇したときの屈曲回数を測定した。
<Evaluation method 5>
Bending resistance was evaluated using “SEK-31B4S” manufactured by Shin-Etsu Engineering Co., Ltd. according to JIS C 6471-1995 (Reference 3 Bending Resistance). The sample was bent and the resistance increased rapidly. The number of times of bending was measured.

<評価方法6>
電磁波障害防止用転写フィルムを転写対象物へ接着した後の密着強度は、A4版に切り出した電磁波障害防止用転写フィルムの金属薄膜層側に「セロテープNo.405」(登録商標)を貼り付けた後、基体フィルムを剥離し、離型層の中間層側にアトムボンド製「エポキシ接着剤5分硬化タイプ」を塗布し、ABS板に貼り付けて24時間室温で放置後、「セロテープNo.405」(登録商標)を金属薄膜層から引き剥がして金属薄膜層を観察した。電磁波障害防止用転写フィルムから基材フィルムを剥離した際に、中間層に離型材層が残留していると「セロテープNo.405」(登録商標)を引き剥がした際に、離型材層が残留した部分が剥がれる。金属薄膜層がABS板に残っていれば合格とする。
<Evaluation method 6>
The adhesion strength after adhering the electromagnetic interference prevention transfer film to the object to be transferred was obtained by attaching “Cello Tape No. 405” (registered trademark) to the metal thin film layer side of the electromagnetic interference prevention transfer film cut out on the A4 plate. After that, the base film was peeled off, and “epoxy adhesive 5 minute curing type” manufactured by Atombond was applied to the intermediate layer side of the release layer, adhered to an ABS plate and allowed to stand at room temperature for 24 hours. (Registered trademark) was peeled off from the metal thin film layer, and the metal thin film layer was observed. When the base material film is peeled from the transfer film for preventing electromagnetic interference, if the release material layer remains in the intermediate layer, the release material layer remains when the cello tape No. 405 (registered trademark) is peeled off. The part that has been peeled off. If the metal thin film layer remains on the ABS plate, it is considered acceptable.

〔実施例1〕
A4版の東レ株式会社製ポリエチレンテレフタレートフィルム“ルミラー”T62(厚さ50μm)を基材フィルムとし、片面に離型材層としてバーコーターにて三羽研究所製メラミン系樹脂塗料「RP−50」を乾燥後の厚さが0.5μmになるように塗布した。「RP−50」を塗布した上に中間層としてバーコータにて大日本インキ化学工業株式会社製アクリル系塗料「MCS5041 DC No.2」を乾燥後の厚さが0.7μmになるように塗布した。「MCS5041 DC No.2」の表面を銅製のカソード電極を用いてプラズマ処理後、誘導加熱方式にて1μmの厚さになるように銅を真空蒸着した。
[Example 1]
A4 version of Toray's polyethylene terephthalate film “Lumirror” T62 (thickness 50 μm) is used as a base film, and a melamine-based resin paint “RP-50” manufactured by Miwa Laboratory is used as a release material layer on one side with a bar coater. It was applied so that the thickness after drying was 0.5 μm. After applying “RP-50”, an acrylic paint “MCS5041 DC No. 2” manufactured by Dainippon Ink & Chemicals, Inc. was applied as an intermediate layer with a bar coater so that the thickness after drying was 0.7 μm. . After the surface of “MCS5041 DC No. 2” was subjected to plasma treatment using a copper cathode electrode, copper was vacuum deposited by an induction heating method so as to have a thickness of 1 μm.

〔実施例2〕
実施例1において、「MCS5041 DC No.2」の乾燥後の厚さを0.1μmとしたこと以外は、実施例1と同様にして実施して、転写フィルムを得た。
[Example 2]
A transfer film was obtained in the same manner as in Example 1 except that the thickness after drying of “MCS5041 DC No. 2” was 0.1 μm in Example 1.

〔実施例3〕
実施例1において、銅層の厚さを0.1μmとしたこと以外は、実施例1と同様にして実施して、転写フィルムを得た。
Example 3
In Example 1, a transfer film was obtained in the same manner as in Example 1 except that the thickness of the copper layer was 0.1 μm.

参考例4〕
実施例1において、「MCS5041 DC No.2」の表面をプラズマ処理しなかったこと以外は、実施例1と同様にして実施し、転写フィルムを得た。
[ Reference Example 4]
A transfer film was obtained in the same manner as in Example 1 except that the surface of “MCS5041 DC No. 2” was not plasma-treated in Example 1.

〔実施例5〕
実施例1において、銅層の厚さを0.01μmとしたこと以外は、実施例1と同様にして実施し、転写フィルムを得た。
Example 5
In Example 1, it carried out like Example 1 except having made thickness of a copper layer into 0.01 micrometer, and obtained the transfer film.

〔比較例1〕
実施例1において、「RP−50」の上に「MCS5041 DC No.2」を塗布せずに直接銅を真空蒸着したこと以外は、実施例1と同様にして実施し、転写フィルムを得た。
[Comparative Example 1]
In Example 1, it carried out like Example 1 except not having applied "MCS5041 DC No.2" on "RP-50", and having directly vacuum-deposited copper, and obtained the transfer film. .

〔比較例2〕
A4版の東レ株式会社製ポリエチレンテレフタレートフィルム“ルミラー”T62(厚さ50μm)を基材フィルムとし、片面に離型材層としてバーコーターにて三羽研究所製セルロース系樹脂塗料「1000クリア」を乾燥後の厚さが0.5μmになるように塗布した。中間層は作成せず、「1000クリア」の表面を銅製のカソード電極を用いてプラズマ処理後、誘導加熱方式にて1μmの厚さになるように銅を真空蒸着した。
[Comparative Example 2]
A4 version of Toray's polyethylene terephthalate film “Lumirror” T62 (thickness 50 μm) is used as a base film, and a cellulose resin paint “1000 clear” made by Miwa Laboratory is dried with a bar coater as a release layer on one side. It was applied so that the subsequent thickness was 0.5 μm. The intermediate layer was not formed, and the surface of “1000 clear” was subjected to plasma treatment using a copper cathode electrode, and then copper was vacuum deposited by an induction heating method to a thickness of 1 μm.

上記の実施例1〜3、、参考例4および比較例1〜2の評価結果を、まとめて次の表1に示す。
The evaluation results of the above Examples 1 to 3, 5 , Reference Example 4 and Comparative Examples 1 to 2 are collectively shown in Table 1 below.

Figure 0005565764
Figure 0005565764

表1に示すように、比較例1〜2で得られた転写フィルムは、剥離強度が非常に大きかったり、接着後の密着評価で一部剥がれるなど、EMIシールド材用の転写フィルムとしては決定的な欠点がある。一方、実施例1〜5で得られた転写フィルムは、EMIシールド材用の転写フィルムとして総合的に良好な物性のフィルムを得ることができる。特に実施例1〜3については好適なものとなった。   As shown in Table 1, the transfer films obtained in Comparative Examples 1 and 2 are decisive as transfer films for EMI shield materials, such as very high peel strength or partial peeling in adhesion evaluation after adhesion. There are some disadvantages. On the other hand, the transfer films obtained in Examples 1 to 5 can obtain a film having excellent physical properties as a transfer film for an EMI shield material. In particular, Examples 1 to 3 were suitable.

1 基板フィルム
2 離型材層(離型層)
3 中間層(離型層)
4 金属薄膜層
5 中間層の離型材側 界面
6 金属薄膜層の外面
1 Substrate film 2 Release material layer (release layer)
3 Intermediate layer (release layer)
4 Metal thin film layer 5 Release material side of intermediate layer Interface 6 External surface of metal thin film layer

Claims (3)

基材フィルムの少なくとも片面に、離型材層と中間層とからなる離型層と金属薄膜層が積層され、該離型層表面にプラズマ処理後、金属薄膜層を蒸着してなる電磁波障害防止用転写フィルムであって、基材フィルム、離型材層、中間層、金属薄膜層の順に積層されており、該離型材層が熱硬化型メラミン系樹脂からなり、中間層がアクリル樹脂からなり、中間層の離型材層と反対側表面にプラズマ処理が施こされ、該中間層と該離型層の間の剥離強度が0.001〜0.1N/cmであることを特徴とする電磁波障害防止用転写フィルム。 On at least one surface of a substrate film, a release layer and a metal thin film layer made of a release material layer and the intermediate layer is a product layer, after the plasma treatment the releasing layer surface, electromagnetic interference formed by depositing a metal thin film layer a transfer film for preventing, base film, release material layer, the intermediate layer, are laminated in this order of the metal thin film layer, Ri the releasing material layer Do from thermosetting melamine resin, an intermediate layer of an acrylic resin Do Ri, plasma treatment on the opposite side surface and the release agent layer of the intermediate layer is strained facilities, and wherein the peel strength between the intermediate layer and the mold release layer is 0.001~0.1N / cm Transfer film for preventing electromagnetic interference. 前記金属薄膜層は、厚さが0.1〜5μm、かつ抵抗値が1Ω以下であり、Cu、Ag、Al、Cr、Fe、Ni、Pd、ZnおよびSnからなる群より選ばれた少なくとも1種類の金属からなり、蒸着法によって形成された、請求項1に記載の電磁波障害防止用転写フィルム。 The metal thin film layer has a thickness of 0.1 to 5 μm and a resistance value of 1Ω or less, and is at least one selected from the group consisting of Cu, Ag, Al, Cr, Fe, Ni, Pd, Zn, and Sn. The transfer film for preventing electromagnetic interference according to claim 1, wherein the transfer film is made of various kinds of metals and formed by a vapor deposition method. 基材フィルムに積層された離型層に対してプラズマ処理を施し、該離型層のプラズマ処理面に金属薄膜層を蒸着する請求項1または2に記載の電磁波障害防止用転写フィルムの製造方法。 The method for producing a transfer film for preventing electromagnetic interference according to claim 1 or 2, wherein the release layer laminated on the base film is subjected to plasma treatment, and a metal thin film layer is deposited on the plasma treatment surface of the release layer. .
JP2009088829A 2009-04-01 2009-04-01 Electromagnetic wave interference prevention transfer film Expired - Fee Related JP5565764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088829A JP5565764B2 (en) 2009-04-01 2009-04-01 Electromagnetic wave interference prevention transfer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088829A JP5565764B2 (en) 2009-04-01 2009-04-01 Electromagnetic wave interference prevention transfer film

Publications (2)

Publication Number Publication Date
JP2010240863A JP2010240863A (en) 2010-10-28
JP5565764B2 true JP5565764B2 (en) 2014-08-06

Family

ID=43094488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088829A Expired - Fee Related JP5565764B2 (en) 2009-04-01 2009-04-01 Electromagnetic wave interference prevention transfer film

Country Status (1)

Country Link
JP (1) JP5565764B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707216B2 (en) * 2011-04-26 2015-04-22 藤森工業株式会社 Electromagnetic wave shielding material for FPC
JP5993666B2 (en) * 2012-09-03 2016-09-14 国立大学法人埼玉大学 Manufacturing method of laminate
CN112410729B (en) * 2020-11-09 2022-12-06 中国科学院宁波材料技术与工程研究所 Ultrathin liquid metal film, preparation method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702711B2 (en) * 2001-07-24 2011-06-15 東レフィルム加工株式会社 Metallized film and metal foil
JP2003053888A (en) * 2001-08-10 2003-02-26 Toyo Metallizing Co Ltd Metal film transferring film for electronic component
JP2005056906A (en) * 2003-08-05 2005-03-03 Reiko Co Ltd Electromagnetic wave shielding transfer film
JP2006119345A (en) * 2004-10-21 2006-05-11 Dainippon Printing Co Ltd Near infrared absorbing transfer sheet and method of manufacturing composite electromagnetic wave shield filter using the same
JP4853852B2 (en) * 2006-03-16 2012-01-11 東レフィルム加工株式会社 Transfer foil
JP4067109B2 (en) * 2006-06-08 2008-03-26 株式会社麗光 Insulating transfer film with excellent corrosion resistance and molded product obtained using the same
JP2008006709A (en) * 2006-06-29 2008-01-17 Dainippon Printing Co Ltd Transfer foil
JP2008273127A (en) * 2007-05-07 2008-11-13 Toray Advanced Film Co Ltd Transfer foil

Also Published As

Publication number Publication date
JP2010240863A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5712095B2 (en) Electromagnetic wave shielding material for FPC
TWI627881B (en) Shielding film and shielding printed circuit board
JP2017195278A (en) Electromagnetic wave shielding film and printed wiring board with the same
WO2008044698A1 (en) Wiring member and process for producing the same
JP5565764B2 (en) Electromagnetic wave interference prevention transfer film
TWM445836U (en) Electromagnetic interference shielding structure
JP6978994B2 (en) Transfer film
JP7022900B2 (en) Graphite composite film and its manufacturing method
JP2006007589A (en) Laminated film with metallic film and adhesive layer and method for manufacturing laminated film
JP6813944B2 (en) Conductive film and electromagnetic wave shield sheet using it
KR101411978B1 (en) The fabrication method of adhesive tape for thin electromagnetic shield with color layer in polymer film and adhesive tape thereby
JP2005277262A (en) Electromagnetic wave shield film
KR102669973B1 (en) electromagnetic wave shielding film
JP6671051B2 (en) Metallized film and method for producing metallized film
KR20190084851A (en) Electromagnetic wave shield film
WO2018142876A1 (en) Graphite composite film and manufacturing method therefor
JP5606687B2 (en) Method for producing transparent resin foil, and method for producing electromagnetic wave shielding material using the transparent resin foil
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
TW201942369A (en) Surface-treated copper foil and copper-clad laminate
JP7256869B2 (en) electromagnetic wave shielding film
JP2020061486A (en) Electromagnetic wave shield film, manufacturing method of the same, and print circuit board with electromagnetic wave shield film
JP7382259B2 (en) Electromagnetic shielding film and printed wiring board with electromagnetic shielding film
JP3794167B2 (en) Transparent conductive transfer material
JP7230556B2 (en) Adhesive sheet, conductive material
JP2005317689A (en) Metallized film for electromagnetic wave shield material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5565764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees