JP4702711B2 - Metallized film and metal foil - Google Patents
Metallized film and metal foil Download PDFInfo
- Publication number
- JP4702711B2 JP4702711B2 JP2001223657A JP2001223657A JP4702711B2 JP 4702711 B2 JP4702711 B2 JP 4702711B2 JP 2001223657 A JP2001223657 A JP 2001223657A JP 2001223657 A JP2001223657 A JP 2001223657A JP 4702711 B2 JP4702711 B2 JP 4702711B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- film
- foil
- release layer
- metallized film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ビルドアップ多層配線板やPDP電磁波シールド材等に用いられるファインパターン用極薄金属箔の製造に好適に使用される金属化フィルムと、その金属化フィルムから剥離される金属箔に関するものである。
【0002】
【従来の技術】
一般的に金属箔の製造方法としては、圧延法と呼ばれる金属板を加熱して狭いロールギャップ間を通して成型し金属箔を得る方法と、特許公開2001−81592号公報で提案されているような電解法と呼ばれる、金属ドラムに金属メッキを施し、そのメッキを剥がして金属箔を得る方法が知られている。
【0003】
しかしながら、通常、極薄金属箔を作成する場合、厚み精度が厳しくなりまた機械強度が弱くなるため、圧延方式では18μm以下の厚みの金属箔は生産が困難であり、電解法で作られるのが一般的である。
【0004】
一方、ビルドアップ多層配線板やPDP電磁波シールド材等に用いられる金属箔は、通常ファインパターン加工と呼ばれる数十〜数μmの極めて細かい加工を行うため、例えば、10μmの穴あけ等では金属箔の厚みは10μm以下の厚みが要求される。
【0005】
しかしながら、例えば、多層配線板の配線に一般的に用いられる銅箔などでは、電解法で厚みが10μm以下の極薄箔は作成可能であるものの、銅箔自体の機械強度が低下するため銅箔単体として生産出来る厚みは9μmが下限となっており、またキャリア付きでも3μmが下限となっている状況である。
【0006】
また、3μm厚銅箔では、キャリアとして銅箔35μmを用いることが一般的であり、目的の3μm厚の箔を剥離後は、キャリア材としての35μmの銅箔は破棄されるため必要以上の銅材を使用することとなり、極めて高価なものにならざる得ない。
【0007】
【発明が解決しようとする課題】
そこで、本発明の目的は、上記の問題に鑑み、好適には、多層配線板やPDP電磁波シールド材等に用いられるファインパターン加工用の極薄銅箔を得るための金属化フィルムを提供することにある。
【0008】
本発明の他の目的は、上記金属化フィルムから金属層を剥離して得られる金属箔、特に好適にはファインパターン用極薄金属箔を提供することにある。
【0009】
【課題を解決するための手段】
上述の問題を解決するための本発明の金属化フィルムは、片面または両面にメラミン樹脂を含む離型層を有する基材フィルムの該離型層の上に、厚さ0.3μm〜4μmで密着力が1g/cm〜100g/cmの金属層を設けてなる金属化フィルムである。
【0010】
また、本発明の金属化フィルムにおいて、基材フィルムの離型層は、尿素樹脂、シリコン樹脂、セルロース樹脂、アクリル樹脂またはワックスのいずれかを含むことが好ましく、更に、金属層が、AL、金、銀、銅、ニッケルもしくはクロムのいずれか単体、または合金を含み、導電性を有することが好ましい。
【0011】
本発明の金属化フィルムは、離型層を有する基材フィルムの離型層上に、蒸着により蒸着金属膜を設け、その金属膜をメッキ法で成長させ金属層を形成することにより製造することができる。
【0012】
また、金属化フィルムを構成する金属層は、この金属化フィルムから容易に剥離ができ、金属箔のみとすることも可能である。
【0013】
【発明の実施形態】
本発明の金属化フィルムは、離型層を片面または両面に設けた基材フィルムの離型層上に、厚さ0.3μm〜8μmで剥離力が1g/cm〜100g/cmの金属層を設けてなるものである。
【0014】
以下、図面を用いて本発明の金属化フィルムを詳細に説明する。
【0015】
図1は、一般に電解法と呼ばれる、従来の電解箔生産工程を説明するための概略側面図である。この図1においては、電解ドラム(1)と呼ばれる電極ロールを陰極にして、この電解ドラム(1)を、被メッキ金属を溶解した電解液(2)に浸し、この電解液(2)が入っている電解液容器(3)を陽極としている。この電解ドラム(1)と電解液容器(3)の間に電解液を通して電流を流すことによって、電解ドラム(1)上に金属被膜が析出する。この電解ドラム(1)の上に析出した金属箔は電解ドラム(1)から剥離され、水洗層(4)で水洗されてからドラムに巻き取られる。また、銅箔などの場合は、必要に応じて水洗後酸化防止のため防錆処理を施すこともある。
【0016】
図1において、電解ドラム(1)の胴面は、導電性金属でなければならない。また仕上がった金属箔の胴面に接した面は実質的に胴面と同じ粗さとなるため、電解ドラム(1)の胴面は、一般的には鏡面仕上げになる。更に、電解ドラム(1)の端面は非導電体で絶縁処理がされていなければ、電解ドラム(1)の胴面析出された金属を引き剥がす際に破れが生じてしまうことがある。
【0017】
ここでは電解ドラム(1)の胴面に金属を析出させるメッキ方法として、電解メッキ法を用いたが、無電解メッキ法で作成することも可能である。
【0018】
また、従来の方法において、例えば、銅箔の厚みが9μm未満の銅箔を作成する際には、銅箔を電解ドラム(1)の胴面から剥がす際に、銅箔の絶対強度が低く銅箔が破れてしまうため、図2aに示すように、あらかじめ用意されたキャリア用銅箔(5)を電解ドラム(1)に抱かせて、キャリア用銅箔の上に析出させ、そのまま水洗、巻き取りを行い、最終ユーザーにて所望の加工がされた後、キャリア銅箔から剥がされる。図2aは、従来のキャリア箔を用いた電解箔の生産装置を説明するための概略側面図であり、図2bは、図2aの生産装置を用いて作られた電解箔の構成を示す断面図である。
【0019】
図4は、本発明の金属化フィルムの構成を例示する断面図である。図4において、あらかじめ基材となるプラスチックフィルム(6)にコーティング処理等により離型層(7)を設けて基材フィルムとし、その離型層(7)上に金属蒸着を行い基材フィルムの表面を蒸着金属膜(8)で覆ってから、メッキ法により金属被膜(9)を成長させ、厚さ0.3μmから8μmの金属層(10)を有した金属化フィルムとしている。
【0020】
本発明で用いられる基材フィルムを構成するプラスチックフィルム(1)は、特に限定されないが、低価格であり、耐酸性、耐アルカリ性の良好な点から、特にポリエステルフィルム、またはポリエチレンフィルムやポリプロピレンフィルム等のポリオレフィンフィルム等からなるプラスチックフィルムが好適である。このプラスチックフィルム(1)の厚さは、素材によっても異なるが、5〜100μmが好ましい。特にポリエステルフィルムなどでは12〜75μmが好適である。
【0021】
また、本発明においては、基材フィルムの片面または両面に離型層(2)が形成される。離型層(2)としては、通常シリコン系の離型層やフッ素系の離型層が用いられるが、特に材質を限定するものではなく離型層の上に金属が蒸着可能なものであればよい。本発明においては、離型層(2)としては、尿素樹脂、シリコン樹脂、セルロース樹脂、アクリル樹脂またはワックスのいずれかを含むコーティング剤を適用することができ、金属箔(金属層)の厚みや材質によって使い分けることも可能である。離型層(2)は、プラスチックフィルム(1)上に好適にはコーティングで形成することができる。この離型層(2)の厚さは、好ましくは0.01〜3μm程度である。
【0022】
本発明においては、離型層(7)上に、金属層が形成される。本発明において金属層は、蒸着により形成された金属膜(8)をメッキ法等で成長させ形成することができる。
【0023】
金属層の材質としては、蒸着が可能な金属であって、通常電極として用いられる金属であれば、特に限定されないが、例えば、アルミニウム、亜鉛、金、銀、銅、ニッケル、クロム等の単一金属または合金金属が好適である。
【0024】
本発明において、金属層(8)の厚さは、ファインパターン化が可能となるために0.3μm〜8μmの範囲にすることが重要である。特に近年のパターン精度向上の観点から0.3〜4μmとすることが好ましい。
【0025】
また、本発明の金属化フィルムにおいては、離型層(7)の上に、形成された金属層の密着力が1g/cm〜100g/cmであることが重要である。密着力が1g/cm以下では、フィルム上の金属箔をパターン加工するに容易に金属箔が剥がれてしまい取り扱いが困難であり、また、100g/cm以上では極薄金属箔の絶対強度が不足し、金属箔を剥離する際に金属箔の破れが発生する。
【0026】
本発明における金属膜は、高周波加熱方式、抵抗加熱方式、EB加熱方式などの一般的な真空蒸着法やスパッター方式、イオンプレーティング方式による蒸着で500〜3000オングストロームの金属層をフィルム上に作成し、その後電解メッキ法にて必要な厚みまで成長させることが出来る。
【0027】
本発明においては、金属層は単層に限らず、防食等の目的で複数の金属を重ねても良く、また、防食層として、Au、CrやSiOX等の無機膜、ポリシロキサン、シラザン、フッ素化合物等の有機膜膜を設けることも可能である。
【0028】
本発明の金属化フィルムから、上記金属層を剥離し、金属箔を得ることができる。金属箔は、ビルドアップ多層配線板やPDP電磁波シールド材、あるいは小型電子部品の電極等に用いられるファインパターン用極薄金属箔の製造に好適に使用することができる。
【0029】
【実施例1】
(実施例1)
厚さ50μmの2軸延伸されたポリエチレンテレフタレートフィルムに、グラビヤコート法でメラニン樹脂を0.1μmの厚さにコーティングし、離型層をもつ基材フィルムを作成した。この基材フィルムのメラニン樹脂コート面に、銅を1000オングストロームの厚さに誘導加熱方式で真空蒸着し、フィルムの表面を導体として、その後電解メッキ法にて銅を析出させた。電解メッキの電流密度は、10A/cm2にて行い、メッキ時間を変更しすることでメッキ厚さを0.3μm、1μm、3μmとした3種類の金属化フィルムし、メッキ仕上がり状態、剥離性、密着力、及び加工性について評価をした。
【0030】
メッキ仕上がり状態は、金属化フィルムのメッキ仕上り外観を目視で、メッキ層の色、浮き上がり等について確認した。仕上がり状態は、いずれの厚みにおいても良好で、メッキ層の浮き等も特に認められなかった。○を良好、×を不良で表示した(表1)。
【0031】
剥離性については、直角に切り出した金属化フィルムの角から5mmの部分を三角状に折り曲げて、金属箔(銅箔)の折れの有無を確認した。メッキ厚さが0.3μm、1μm、3μmのいずれの厚みでも、銅箔である金属層に折れが発生したものの容易に剥離が出来た。◎を優、○を良好、×を不良で表示した(表1)。
【0032】
密着力については、金属化フィルムを10mmの幅に切り出し、図3に示すように、金属層(金属箔)を粘着フィルム(ニチバン製セロテープ(登録商標) No.405)に貼り付けて、金属化フィルムから剥がした金属箔と基材フィルムの密着力をテンシロン(ミネビア(株) TG−500N)にて180°剥離で測定した。図3は、本発明における基材フィルムと金属箔の密着力を測定する状況を示す概略側面図であり、また、図5は、本発明の金属化フィルムから金属箔を剥がす状態を示す斜視図である。その測定結果を表1に示す。
【0033】
加工特性の評価は、基材フィルムから剥がした銅箔を、フォトリソ法にてφ10μmの円状にエッチングして、銅箔の穴あけ加工のマスク寸法に対する再現性を評価した。評価に用いたレジストは、FPPR−30(富士薬品(株)製/商品名)で、塗布はバーコート法で行い、乾燥後のレジスト厚みが1μmとなるように塗布した。レジストを塗布後、80℃で2分間乾燥し、φ10μmの円形マスクをかぶせて、マスクの上からUV露光を10秒間行った上で、現像を1%の常温KOH水溶液で45秒間行い水洗した。その後エッチングは、濃度0.5°Beの塩化第二鉄溶液に5秒間、10秒間、20秒間浸積して行った。メッキ厚さが0.3μmでは5秒間、1μmでは10秒間、3μmでは20秒間のエッチングで銅箔にφ10〜12μmの穴あけ加工が可能であった。○を良好、×を不良で表示した(表1)。
【0034】
(比較例1)
実施例1と同様にして、メッキ時間を変更しすることでメッキ厚さを5μmにした金属化フィルムを作成し、実施例1と同様に評価した。仕上がり状態は、メッキ層の色は良好であったが、メッキ浴中に析出した銅箔が浮き上がる現象が認められた。また、剥離性は銅箔が折れることなく剥離が可能で、また密着力についても表1に示すとおりやや強いが、エッチング加工での穴あけは5秒では穴があかず、10秒ではφ7μmと小さく、20秒ではφ16μmと大きすぎ、加工条件は極めて狭く加工が困難なものと推定された。結果を表1に示す。
【0035】
(比較例2)
実施例1と同様にして基材フィルムを作成し、基材フィルムに銅を1000オングストロームの厚さに誘導加熱方式で真空蒸着を施した金属化フィルム(メッキ処理なし)とし、実施例1と同様の評価をした。蒸着のみのため色、浮き上がり等の仕上がり状態は良好であるが、銅層の厚みが極めて薄いため剥離性の確認では、金属層が基材フィルムと一緒に折れてしまい、また密着力の測定においても銅箔が薄過ぎて測定中に箔が破れてしまい測定が出来なかった。加工特性の確認では5秒間のエッチングで銅箔にφ12μmの穴あけ加工が可能であった。結果を表1に示す。
【0036】
(比較例3)
厚さ35μmの銅箔に離型剤としてシリコーンオイルを塗布し、250℃で焼き付け後アルコール洗浄を施してから電解メッキ法にて銅をメッキ厚さが2μmまで析出させ、キャリア銅箔付きの銅箔を作成した。仕上がり状態は外観色、浮き上がり等はなく良好であるが、キャリア材が銅箔のため剥離性の確認では、キャリア材の銅箔と金属層が基材フィルムと一緒に折れてしまい、また密着力の測定においても銅箔となる金属層が薄いため測定中に箔が破れてしまい測定が出来なかった。加工特性の確認では、5秒間のエッチングで銅箔にφ11μmの穴あけ加工が可能であった。結果を表1に示す。
【0037】
【表1】
【0038】
【発明の効果】
以上のように本発明の金属化フィルムは、離型層をもつプラスチックフィルムを基材フィルムとしてその離型層の上に蒸着で金属層を設け、その金属層をメッキ法で成長させるため、容易に精度良く薄い金属層(金属箔)を基材フィルムの上に持たせることができる。
【0039】
また、蒸着金属膜と離型層の間の接着力は、蒸着方法や蒸着金属膜と離型層の材質によって調整が可能であり、基材フィルムから金属層を剥離することで従来にない極薄金属箔を得ることが可能となり、金属箔の微細加工精度を大幅に向上させることが可能となる。
【図面の簡単な説明】
【図1】 図1は、従来の電解箔生産工程を説明するための概略側面図である。
【図2】 図2aは、従来のキャリア箔を用いた電解箔の生産装置を説明するための概略側面図である。図2bは、図2aの生産装置を用いて作られた電解箔の構成を示す断面図である。
【図3】 図3は、本発明における基材フィルムと金属箔との密着力を測定する状況を示す概略側面図である。
【図4】 図4は、本発明の金属化フィルムの構成を例示する断面図である。
【図5】 図5は、本発明の金属化フィルムから金属箔を剥がす状態を示す斜視図である。
【符号の説明】
(1) 電解ドラム
(2) 電解液
(3) 電解液容器
(4) 水洗漕
(5) キャリア用銅箔
(6) プラスチックフィルム
(7) 離型層
(8) 蒸着金属膜
(9) 金属被膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metallized film suitably used for producing an ultrathin metal foil for fine patterns used for build-up multilayer wiring boards, PDP electromagnetic shielding materials, and the like, and a metal foil peeled from the metallized film It is.
[0002]
[Prior art]
In general, as a method for producing a metal foil, a metal plate called a rolling method is heated and molded through a narrow roll gap to obtain a metal foil. There is known a method called a method, in which a metal drum is subjected to metal plating and the plating is removed to obtain a metal foil.
[0003]
However, normally, when producing an ultrathin metal foil, the thickness accuracy becomes severe and the mechanical strength becomes weak. Therefore, a metal foil having a thickness of 18 μm or less is difficult to produce by a rolling method, and is produced by an electrolytic method. It is common.
[0004]
On the other hand, metal foils used for build-up multilayer wiring boards, PDP electromagnetic wave shielding materials, and the like perform extremely fine processing of several tens to several μm, usually called fine pattern processing. For example, in the case of drilling 10 μm, the thickness of the metal foil Is required to have a thickness of 10 μm or less.
[0005]
However, for example, in the case of a copper foil generally used for wiring of a multilayer wiring board, although an ultrathin foil having a thickness of 10 μm or less can be produced by an electrolytic method, the mechanical strength of the copper foil itself is lowered. The minimum thickness that can be produced as a single unit is 9 μm, and 3 μm is the lower limit even with a carrier.
[0006]
In addition, in the case of a 3 μm thick copper foil, it is common to use a copper foil of 35 μm as a carrier, and after peeling the desired 3 μm thick foil, the 35 μm copper foil as a carrier material is discarded, so that more copper than necessary. The material will be used, and it must be extremely expensive.
[0007]
[Problems to be solved by the invention]
Therefore, in view of the above problems, an object of the present invention is to provide a metallized film for obtaining an ultrathin copper foil for fine pattern processing that is preferably used for multilayer wiring boards, PDP electromagnetic wave shielding materials, and the like. It is in.
[0008]
Another object of the present invention is to provide a metal foil obtained by peeling a metal layer from the metallized film, particularly preferably an ultrathin metal foil for fine patterns.
[0009]
[Means for Solving the Problems]
The metallized film of the present invention for solving the above-mentioned problem is formed with a thickness of 0.3 μm to 4 μm on the release layer of the base film having a release layer containing a melamine resin on one or both sides. It is a metallized film provided with a metal layer having an adhesion force of 1 g / cm to 100 g / cm.
[0010]
In the metallized film of the present invention, the release layer of the base film preferably contains any of urea resin, silicon resin, cellulose resin, acrylic resin, or wax, and the metal layer is made of AL, gold, or the like. In addition, any one of silver, copper, nickel, and chromium, or an alloy is preferable, and it is preferable to have conductivity.
[0011]
The metallized film of the present invention is manufactured by providing a vapor-deposited metal film by vapor deposition on a release layer of a base film having a release layer and growing the metal film by a plating method to form a metal layer. Can do.
[0012]
Moreover, the metal layer which comprises a metallized film can be easily peeled from this metallized film, and it is also possible to use only a metal foil.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the metallized film of the present invention, a metal layer having a thickness of 0.3 μm to 8 μm and a peeling force of 1 g / cm to 100 g / cm is formed on the release layer of the base film provided with the release layer on one side or both sides. It is provided.
[0014]
Hereinafter, the metallized film of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic side view for explaining a conventional electrolytic foil production process, generally called an electrolysis method. In FIG. 1, an electrode roll called an electrolytic drum (1) is used as a cathode, the electrolytic drum (1) is immersed in an electrolytic solution (2) in which a metal to be plated is dissolved, and the electrolytic solution (2) enters. The electrolyte container (3) is used as the anode. By passing an electric current through the electrolytic solution between the electrolytic drum (1) and the electrolytic solution container (3), a metal film is deposited on the electrolytic drum (1). The metal foil deposited on the electrolytic drum (1) is peeled off from the electrolytic drum (1), washed with a water washing layer (4), and wound around the drum. Moreover, in the case of copper foil etc., a rust prevention process may be given as needed after washing with water to prevent oxidation.
[0016]
In FIG. 1, the body surface of the electrolysis drum (1) must be a conductive metal. Further, since the surface of the finished metal foil in contact with the body surface has substantially the same roughness as the body surface, the body surface of the electrolytic drum (1) is generally mirror-finished. Furthermore, if the end surface of the electrolytic drum (1) is not insulated with a non-conductive material, tearing may occur when the metal deposited on the body surface of the electrolytic drum (1) is peeled off.
[0017]
Here, the electrolytic plating method is used as a plating method for depositing metal on the body surface of the electrolytic drum (1), but it can also be formed by an electroless plating method.
[0018]
Further, in the conventional method, for example, when preparing a copper foil having a thickness of less than 9 μm, the copper foil has a low absolute strength when the copper foil is peeled off from the body surface of the electrolytic drum (1). Since the foil is torn, as shown in FIG. 2a, the carrier copper foil (5) prepared in advance is held on the electrolytic drum (1) and deposited on the copper foil for carrier, and is washed with water and wound as it is. After the desired processing is performed by the end user, the carrier copper foil is peeled off. FIG. 2a is a schematic side view for explaining an electrolytic foil production apparatus using a conventional carrier foil, and FIG. 2b is a cross-sectional view showing a configuration of the electrolytic foil made using the production apparatus of FIG. 2a. It is.
[0019]
FIG. 4 is a cross-sectional view illustrating the configuration of the metallized film of the present invention. In FIG. 4, a release layer (7) is provided in advance on a plastic film (6) as a base material by a coating process or the like to form a base film, and metal deposition is performed on the release layer (7). After the surface is covered with the vapor-deposited metal film (8), a metal film (9) is grown by a plating method to obtain a metallized film having a metal layer (10) having a thickness of 0.3 μm to 8 μm.
[0020]
The plastic film (1) constituting the base film used in the present invention is not particularly limited, but is low in price and particularly good in acid resistance and alkali resistance, particularly a polyester film, a polyethylene film, a polypropylene film, or the like. A plastic film made of a polyolefin film or the like is suitable. The thickness of the plastic film (1) varies depending on the material, but is preferably 5 to 100 μm. In particular, a polyester film or the like is preferably 12 to 75 μm.
[0021]
Moreover, in this invention, a release layer (2) is formed in the single side | surface or both surfaces of a base film. As the release layer (2), a silicon release layer or a fluorine release layer is usually used. However, the material is not particularly limited, and any metal can be deposited on the release layer. That's fine. In the present invention, as the release layer (2), a coating agent containing any of urea resin, silicon resin, cellulose resin, acrylic resin or wax can be applied, and the thickness of the metal foil (metal layer) It is also possible to use properly depending on the material. The release layer (2) can be preferably formed by coating on the plastic film (1). The thickness of the release layer (2) is preferably about 0.01 to 3 μm.
[0022]
In the present invention, a metal layer is formed on the release layer (7). In the present invention, the metal layer can be formed by growing a metal film (8) formed by vapor deposition by a plating method or the like.
[0023]
The material of the metal layer is not particularly limited as long as it is a metal that can be vapor-deposited and is usually used as an electrode. For example, a single material such as aluminum, zinc, gold, silver, copper, nickel, or chromium is used. Metal or alloy metal is preferred.
[0024]
In the present invention, the thickness of the metal layer (8) is important to be in the range of 0.3 μm to 8 μm in order to enable fine patterning. In particular, the thickness is preferably 0.3 to 4 μm from the viewpoint of improving pattern accuracy in recent years.
[0025]
In the metallized film of the present invention, it is important that the adhesion of the metal layer formed on the release layer (7) is 1 g / cm to 100 g / cm. If the adhesive strength is 1 g / cm or less, the metal foil on the film is easily peeled for patterning and is difficult to handle, and if it is 100 g / cm or more, the absolute strength of the ultrathin metal foil is insufficient. When the metal foil is peeled off, the metal foil is torn.
[0026]
The metal film in the present invention is formed by forming a metal layer of 500 to 3000 angstroms on a film by vapor deposition by a general vacuum deposition method such as a high frequency heating method, a resistance heating method, an EB heating method, a sputtering method, or an ion plating method. Then, it can be grown to a required thickness by electrolytic plating.
[0027]
In the present invention, the metal layer is not limited to a single layer may be stacked a plurality of metal for the purposes of corrosion protection, etc., and, as a corrosion protection layer, Au, Cr and SiO X such inorganic film, polysiloxanes, silazanes, An organic film such as a fluorine compound can be provided.
[0028]
The metal layer can be peeled off from the metallized film of the present invention to obtain a metal foil. The metal foil can be suitably used for production of an ultrathin metal foil for fine patterns used for build-up multilayer wiring boards, PDP electromagnetic wave shielding materials, or electrodes of small electronic components.
[0029]
[Example 1]
(Example 1)
A biaxially stretched polyethylene terephthalate film having a thickness of 50 μm was coated with a melanin resin to a thickness of 0.1 μm by a gravure coating method to prepare a base film having a release layer. On the melanin resin-coated surface of this base film, copper was vacuum-deposited to a thickness of 1000 angstrom by induction heating, and the film surface was used as a conductor, and then copper was deposited by electrolytic plating. The current density of electrolytic plating is 10 A / cm 2, and by changing the plating time, three types of metallized films with a plating thickness of 0.3 μm, 1 μm, and 3 μm are formed, and the finished plating state and peelability The adhesion strength and workability were evaluated.
[0030]
The plating finish state was confirmed by visually observing the plating finish appearance of the metallized film, such as the color of the plating layer and the lifting. The finished state was good at any thickness, and no plating layer lift was observed. ○ was indicated as good and × as poor (Table 1).
[0031]
About peelability, the part of 5 mm from the corner of the metallized film cut out at right angles was bent in a triangle shape, and the presence or absence of the folding of metal foil (copper foil) was confirmed. Even if the plating thickness was 0.3 μm, 1 μm, or 3 μm, the metal layer, which is a copper foil, was broken, but could be easily peeled off. “Excellent”, “Good”, and “Poor” were indicated as “Excellent” (Table 1).
[0032]
For adhesion, the metallized film was cut out to a width of 10 mm, and as shown in FIG. 3, the metal layer (metal foil) was attached to an adhesive film (Nichiban cello tape (registered trademark) No. 405) for metallization. The adhesion between the metal foil peeled from the film and the base film was measured by 180 ° peeling with Tensilon (Minbia Co., Ltd. TG-500N). FIG. 3 is a schematic side view showing a situation in which the adhesion between the base film and the metal foil in the present invention is measured, and FIG. 5 is a perspective view showing a state in which the metal foil is peeled off from the metallized film of the present invention. It is. The measurement results are shown in Table 1.
[0033]
Evaluation of the processing characteristics was performed by etching the copper foil peeled off from the base film into a circular shape of φ10 μm by a photolithographic method, and evaluating the reproducibility of the copper foil perforating mask size. The resist used for the evaluation was FPPR-30 (manufactured by Fuji Pharmaceutical Co., Ltd./trade name). The coating was performed by a bar coating method, and the resist thickness after drying was 1 μm. After applying the resist, it was dried at 80 ° C. for 2 minutes, covered with a circular mask of φ10 μm, subjected to UV exposure for 10 seconds from the top of the mask, and then developed with 1% room temperature KOH aqueous solution for 45 seconds and washed with water. Etching was then performed by immersing in a ferric chloride solution having a concentration of 0.5 ° Be for 5 seconds, 10 seconds, and 20 seconds. When the plating thickness was 0.3 μm, it was possible to drill holes of φ10 to 12 μm in the copper foil by etching for 5 seconds, 1 μm for 10 seconds, and 3 μm for 20 seconds. ○ was indicated as good and × as poor (Table 1).
[0034]
(Comparative Example 1)
In the same manner as in Example 1, a metallized film having a plating thickness of 5 μm was prepared by changing the plating time and evaluated in the same manner as in Example 1. As for the finished state, although the color of the plating layer was good, a phenomenon that the copper foil deposited in the plating bath floated was observed. In addition, the peelability can be peeled off without breaking the copper foil, and the adhesion is somewhat strong as shown in Table 1, but in the etching process, there is no hole in 5 seconds, and the diameter is as small as 7 μm in 10 seconds. In 20 seconds, the diameter was too large at φ16 μm, and it was estimated that the processing conditions were extremely narrow and difficult to process. The results are shown in Table 1.
[0035]
(Comparative Example 2)
A base film was prepared in the same manner as in Example 1, and a metallized film (no plating treatment) in which copper was vacuum-evaporated to a thickness of 1000 angstroms by induction heating method was used. Was evaluated. Finished condition such as color and lift is good due to deposition only, but the copper layer is very thin, so in the confirmation of peelability, the metal layer breaks together with the base film, and in the measurement of adhesion force However, since the copper foil was too thin, the foil was torn during measurement, and measurement was not possible. In confirming the processing characteristics, it was possible to drill a φ12 μm hole in the copper foil by etching for 5 seconds. The results are shown in Table 1.
[0036]
(Comparative Example 3)
Silicone oil is applied as a mold release agent to a 35 μm thick copper foil, baked at 250 ° C. and then washed with alcohol, and then copper is deposited to a thickness of 2 μm by electrolytic plating. A foil was created. The finished state is good with no appearance color, no lifting, etc., but the carrier material is copper foil, so when confirming the peelability, the copper foil and metal layer of the carrier material break together with the base film, and the adhesion force Also in this measurement, since the metal layer to be a copper foil was thin, the foil was torn during the measurement and the measurement could not be performed. In the confirmation of the processing characteristics, it was possible to drill a φ11 μm hole in the copper foil by etching for 5 seconds. The results are shown in Table 1.
[0037]
[Table 1]
[0038]
【The invention's effect】
As described above, the metallized film of the present invention is easy because a plastic film having a release layer is used as a base film, a metal layer is formed on the release layer by vapor deposition, and the metal layer is grown by plating. A thin metal layer (metal foil) can be accurately provided on the base film.
[0039]
In addition, the adhesive force between the deposited metal film and the release layer can be adjusted by the deposition method and the material of the deposited metal film and the release layer. A thin metal foil can be obtained, and the fine processing accuracy of the metal foil can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic side view for explaining a conventional electrolytic foil production process.
FIG. 2a is a schematic side view for explaining an electrolytic foil production apparatus using a conventional carrier foil. FIG. 2b is a cross-sectional view showing the configuration of an electrolytic foil made using the production apparatus of FIG. 2a.
FIG. 3 is a schematic side view showing a situation in which an adhesion force between a base film and a metal foil in the present invention is measured.
FIG. 4 is a cross-sectional view illustrating the configuration of a metallized film of the present invention.
FIG. 5 is a perspective view showing a state in which the metal foil is peeled off from the metallized film of the present invention.
[Explanation of symbols]
(1) Electrolytic drum (2) Electrolytic solution (3) Electrolyte container (4) Washing bowl (5) Copper foil for carrier (6) Plastic film (7) Release layer (8) Vapor deposited metal film (9) Metal coating
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223657A JP4702711B2 (en) | 2001-07-24 | 2001-07-24 | Metallized film and metal foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223657A JP4702711B2 (en) | 2001-07-24 | 2001-07-24 | Metallized film and metal foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003033994A JP2003033994A (en) | 2003-02-04 |
JP4702711B2 true JP4702711B2 (en) | 2011-06-15 |
Family
ID=19056956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001223657A Expired - Fee Related JP4702711B2 (en) | 2001-07-24 | 2001-07-24 | Metallized film and metal foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4702711B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080131590A1 (en) * | 2006-12-04 | 2008-06-05 | Illinois Tool Works Inc. | Method for printing electrically conductive circuits |
JP5565764B2 (en) * | 2009-04-01 | 2014-08-06 | 東レフィルム加工株式会社 | Electromagnetic wave interference prevention transfer film |
JP5175992B1 (en) * | 2012-07-06 | 2013-04-03 | Jx日鉱日石金属株式会社 | Ultrathin copper foil, method for producing the same, and ultrathin copper layer |
JP5907389B2 (en) * | 2012-10-05 | 2016-04-26 | 東レKpフィルム株式会社 | Copper foil with release film and copper foil |
JP5347074B1 (en) * | 2013-01-17 | 2013-11-20 | Jx日鉱日石金属株式会社 | Ultra-thin copper foil and manufacturing method thereof, ultra-thin copper layer, and printed wiring board |
JPWO2022255438A1 (en) * | 2021-06-02 | 2022-12-08 | ||
CN114188543A (en) * | 2021-11-15 | 2022-03-15 | 深圳市宝明科技股份有限公司 | Composite conductive copper foil and preparation method thereof |
JP7427044B2 (en) * | 2022-03-31 | 2024-02-02 | 古河電気工業株式会社 | Surface treated copper foil, copper foil roll, copper clad laminate and printed wiring board |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141233A (en) * | 1988-11-22 | 1990-05-30 | Toyo Metaraijingu Kk | Laminated transfer film for printed wiring board |
JPH04314876A (en) * | 1990-11-05 | 1992-11-06 | Murata Mfg Co Ltd | Thin metal film having superior transferability and production thereof |
-
2001
- 2001-07-24 JP JP2001223657A patent/JP4702711B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141233A (en) * | 1988-11-22 | 1990-05-30 | Toyo Metaraijingu Kk | Laminated transfer film for printed wiring board |
JPH04314876A (en) * | 1990-11-05 | 1992-11-06 | Murata Mfg Co Ltd | Thin metal film having superior transferability and production thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003033994A (en) | 2003-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5679230A (en) | Copper foil for printed circuit boards | |
TWI304716B (en) | Double-sided wiring board fabrication method, double-sided wiring board, and base material therefor | |
CN106304668B (en) | A kind of production method using enhanced semi-additive process production printed wiring board | |
JP4129429B2 (en) | Composite foil and manufacturing method thereof | |
JP6545854B2 (en) | Method of manufacturing porous copper foil and porous copper foil using the same | |
JP3641632B1 (en) | Conductive sheet, product using the same, and manufacturing method thereof | |
JP5346054B2 (en) | Copper foil for printed wiring board and laminated board using the same | |
KR20070094607A (en) | Flexible circuits and method of making same | |
JP4702711B2 (en) | Metallized film and metal foil | |
TW503680B (en) | Method of forming chromium coated copper for printed circuit boards | |
KR100649783B1 (en) | conductive sheet having improved adhesive property for conductive layer | |
KR20000077381A (en) | Copper foil for printed wiring board | |
KR960001355B1 (en) | Printed circuit precursor | |
US20040075528A1 (en) | Printed circuit heaters with ultrathin low resistivity materials | |
JP5702942B2 (en) | Copper foil for printed wiring board excellent in etching property and laminate using the same | |
WO2018155088A1 (en) | Conductive film manufacturing method and conductive film | |
JPH11243296A (en) | Transparent electromagnetic shield member and manufacture thereof | |
JP2000073170A (en) | Production of metallized substrate material | |
JP5558437B2 (en) | Copper foil for printed wiring board and laminated board using the same | |
JP2012028517A (en) | Resist formation wiring substrate and method of manufacturing electronic circuit | |
JP3645926B2 (en) | Circuit forming method and conductive circuit forming component | |
JP5406099B2 (en) | Copper foil and laminate for printed wiring board with excellent etching properties | |
JP5524671B2 (en) | Copper foil and laminate for printed wiring board with excellent etching properties | |
JP2004314568A (en) | Copper foil for printed wiring board | |
JPH0710028B2 (en) | Printed board manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080228 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110117 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110228 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |