JP2006286701A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2006286701A
JP2006286701A JP2005101012A JP2005101012A JP2006286701A JP 2006286701 A JP2006286701 A JP 2006286701A JP 2005101012 A JP2005101012 A JP 2005101012A JP 2005101012 A JP2005101012 A JP 2005101012A JP 2006286701 A JP2006286701 A JP 2006286701A
Authority
JP
Japan
Prior art keywords
resin member
semiconductor light
light emitting
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005101012A
Other languages
Japanese (ja)
Inventor
Yasuo Imai
康雄 今井
Toshiyuki Yoneda
俊之 米田
Akio Masuda
暁雄 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005101012A priority Critical patent/JP2006286701A/en
Publication of JP2006286701A publication Critical patent/JP2006286701A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which is compact and efficient and has a superior life characteristic by increasing a joint area between a first resin member and a second resin member to enhance the adhesion between them, thereby improving the reliability, and by expanding an irradiation area on a phosphor. <P>SOLUTION: The semiconductor light emitting device comprises a semiconductor light emitting element 8 mounted on a mount member and a sealing resin member for covering the semiconductor light emitting element 8. The sealing resin member includes at least the first resin member 4 for covering the semiconductor light emitting element 8, and the second resin member 5 containing a wavelength conversion member which absorbs light emitted from the semiconductor light emitting element 8 and converts the light into one having a different wavelength. The surfaces of the first resin member 4 and the second resin member 5 on the interface are concavo-convex surfaces 4a and 5a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、発光ダイオードやレーザーダイオードなどの半導体発光素子を用いた半導体発光装置に関するものであり、特に、コンパクトで高い光出力を有し信頼性の高い半導体発光装置に関するものである。   The present invention relates to a semiconductor light emitting device using a semiconductor light emitting element such as a light emitting diode or a laser diode, and more particularly to a compact semiconductor light emitting device having high light output and high reliability.

一般的に半導体発光装置は半導体発光素子の屈折率が高く、半導体発光素子が大気中に接する状態では半導体発光素子と大気の屈折率差に起因して生じる界面反射により、半導体発光素子内部から光が外部に放出しにくいためエポキシなどの大気に比して屈折率が高い、つまり半導体発光素子に近い屈折率を示す透明樹脂で半導体発光素子を封止する必要がある。
一方、半導体発光素子の発光は単色性のピーク波長を有するため、広波長域の発光を要する白色系や該半導体発光素子の発光とは異なる波長の光を得るためには、蛍光体などの波長変換材料によって半導体発光素子が放射する光の波長を変換する必要がある。
そこで、半導体発光素子を封止する透明封止樹脂に蛍光体を含有させて色変換させる技術が検討されてきた。
In general, a semiconductor light-emitting device has a high refractive index of the semiconductor light-emitting element, and when the semiconductor light-emitting element is in contact with the atmosphere, light is reflected from the inside of the semiconductor light-emitting element due to interface reflection caused by a difference in refractive index between the semiconductor light-emitting element and the atmosphere. Therefore, it is necessary to seal the semiconductor light emitting element with a transparent resin having a higher refractive index than the atmosphere such as epoxy, that is, a refractive index close to that of the semiconductor light emitting element.
On the other hand, since the light emission of the semiconductor light emitting element has a monochromatic peak wavelength, in order to obtain white light that requires light emission in a wide wavelength range or light having a wavelength different from that of the light emission of the semiconductor light emitting element, the wavelength of a phosphor or the like It is necessary to convert the wavelength of light emitted from the semiconductor light emitting element by the conversion material.
In view of this, a technique has been studied in which a phosphor is contained in a transparent sealing resin for sealing a semiconductor light emitting element to perform color conversion.

例えば、従来の発光ダイオード及びそれを用いた表示装置では、LEDチップ上の第一のコーティング部と、第一のコーティング部上にLEDチップからの可視光によって励起され可視光を発光する蛍光物質が含まれた第二のコーティング部とを備えている(例えば、特許文献1参照)。   For example, in a conventional light emitting diode and a display device using the same, a first coating portion on the LED chip and a fluorescent material that emits visible light by being excited by visible light from the LED chip on the first coating portion. And a second coating portion included (see, for example, Patent Document 1).

特許第3065263号公報(段落0011〜0016、図2)Japanese Patent No. 3065263 (paragraphs 0011 to 0016, FIG. 2)

一般に、蛍光体を励起させる半導体発光素子としてはより高い励起エネルギーが得られる短波長の光を放射するものが用いられ、従来の半導体発光素子を使用した装置では、半導体発光素子より発光した短波長の光が、透明樹脂を透過して蛍光体に到達し、可視光へ変換され大気中に放出されるが、蛍光体に到達した一部の光が波長変換されずに半導体発光素子側へ反射し、半導体発光素子と蛍光体の間で多重反射をおこし、半導体発光素子と蛍光体の間の封止樹脂が光による劣化をおこし、短寿命化を起こしていると考えられており、また、半導体発光素子から発生する熱も封止樹脂の劣化を加速させる原因として考えられていた。   Generally, semiconductor light emitting devices that excite phosphors emit light having a short wavelength that provides higher excitation energy. In devices using conventional semiconductor light emitting devices, short wavelengths emitted from semiconductor light emitting devices are used. Light passes through the transparent resin and reaches the phosphor, is converted into visible light and emitted into the atmosphere, but some of the light that reaches the phosphor is reflected to the semiconductor light emitting element side without wavelength conversion In addition, it is considered that multiple reflection occurs between the semiconductor light emitting element and the phosphor, the sealing resin between the semiconductor light emitting element and the phosphor is deteriorated by light, and the life is shortened. Heat generated from the semiconductor light emitting element has also been considered as a cause of accelerating the deterioration of the sealing resin.

そして、これに対処するため、半導体発光素子と第二の樹脂に混合された蛍光体の間に第一の樹脂として透明樹脂層を配置し、半導体発光素子と蛍光体の距離を設けることにより半導体発光素子と蛍光体との間の多重反射による局所的な劣化を軽減させる方法が考えられている。
しかしながら、第一の樹脂を硬化させた後、第二の樹脂を硬化させた場合、特別に第一の樹脂と第二の樹脂の間で化学結合を生じるような材料選定をしない限りは、両樹脂間の接着力は、接着面に生じるファンデルワールス力(分子間力)のみによる。
従って、第一の樹脂と第二の樹脂が充分に密着する、いわゆる「ぬれ」が良い状態であるとしても、第一の樹脂と第二の樹脂の単位体積当りの接触面積が小さい場合、充分な接着力を得ることができないために、熱膨張率の異なる樹脂を使用した場合などに生じる界面応力や、半導体発光装置の製造プロセスで発生する機械的な応力が第一の樹脂と第二の樹脂の界面に加わることによって、第一の樹脂と第二の樹脂との界面が剥離するという問題が発生する。
In order to cope with this, a transparent resin layer is disposed as the first resin between the semiconductor light emitting device and the phosphor mixed in the second resin, and the semiconductor light emitting device and the phosphor are provided with a distance therebetween. A method of reducing local deterioration due to multiple reflection between the light emitting element and the phosphor is considered.
However, when the second resin is cured after the first resin is cured, both materials are selected unless a material is selected so that a chemical bond is generated between the first resin and the second resin. The adhesive force between the resins depends only on van der Waals force (intermolecular force) generated on the adhesive surface.
Therefore, even when the first resin and the second resin are in close contact with each other, so-called “wetting” is in a good state, if the contact area per unit volume between the first resin and the second resin is small, it is sufficient. Interface stress generated when using resins with different coefficients of thermal expansion and mechanical stress generated in the manufacturing process of the semiconductor light emitting device, the first resin and the second resin By adding to the resin interface, there arises a problem that the interface between the first resin and the second resin peels off.

そして、第一の樹脂と第二の樹脂の間に剥離が発生すると、剥離した界面には、第一の樹脂と空気層の界面、及び空気層と第二の樹脂の界面が生じ、その双方で界面反射が発生するため、第二の樹脂に半導体発光素子から発生した光が到達しづらくなって第二の樹脂に含まれる蛍光体の励起光が少なくなり、結果的に光束が減少するばかりでなく、第一の樹脂内で半導体発光素子からの光が多重反射する割合が増え、第一の樹脂の劣化につながり結果的に短寿命化となってしまうという問題があった。   And when peeling occurs between the first resin and the second resin, an interface between the first resin and the air layer and an interface between the air layer and the second resin are generated at the peeled interface, both of them. In this case, the interface reflection occurs, so that it is difficult for the light generated from the semiconductor light emitting element to reach the second resin, and the excitation light of the phosphor contained in the second resin is reduced, resulting in a decrease in the luminous flux as a result. In addition, the ratio of multiple reflection of light from the semiconductor light-emitting element in the first resin increases, leading to deterioration of the first resin, resulting in a short life.

また、近年半導体発光素子の性能が向上してきていることと、素子サイズの大型化により半導体発光素子からの光出力量は大幅に増えてきていることから、蛍光体の単位面積あたりにおける励起光の量が増えている。現状レベルの励起光の密度では大きな問題ではないが、今後、更に励起光の密度が上がることは容易に予測でき、その場合には輝度飽和現象を生じる領域に達する可能性がある。このため、蛍光体層の被照射面積を広げることにより、励起光の密度を低下させて飽和現象が生じない条件とし、蛍光体の負荷を軽減させる技術が必要となる。   In recent years, the performance of semiconductor light emitting devices has improved and the amount of light output from semiconductor light emitting devices has increased significantly due to the increase in device size. The amount is increasing. Although the density of the excitation light at the current level is not a big problem, it can be easily predicted that the density of the excitation light will further increase in the future, and in that case, there is a possibility of reaching a region where the luminance saturation phenomenon occurs. For this reason, a technique for reducing the load on the phosphor is required by expanding the irradiation area of the phosphor layer so that the density of the excitation light is reduced and the saturation phenomenon does not occur.

ここで、輝度飽和現象とは、励起光密度対輝度特性が非線形であって、励起光密度の増大に比例して輝度が増大せず飽和を起こす現象を指す。さらに、半導体発光装置用途に用いられる蛍光体の中には、励起光によって輝度劣化を生じるもの、例えば、ZnS、Cu、Auなども存在し、これらの蛍光体を用いた場合には、高密度の励起光が照射されると、蛍光体の劣化が加速され、つまり蛍光体の発光効率の急激な低下が生じ、半導体発光装置の寿命が短くなるという問題がある。   Here, the luminance saturation phenomenon refers to a phenomenon in which excitation light density vs. luminance characteristics are nonlinear, and saturation does not increase in proportion to an increase in excitation light density. Further, among phosphors used for semiconductor light emitting device applications, there are those that cause luminance degradation due to excitation light, for example, ZnS, Cu, Au, etc., and when these phosphors are used, the density is high. When the excitation light is irradiated, deterioration of the phosphor is accelerated, that is, there is a problem that the luminous efficiency of the phosphor is sharply reduced, and the lifetime of the semiconductor light emitting device is shortened.

この発明は、前記課題を解決するためになされたものであり、第一の樹脂と第二の樹脂の接合面積を大きくし、接着力を高めることで信頼性を向上させるとともに、蛍光体への照射面積を広げコンパクトで効率が良く、寿命特性に優れた半導体発光装置を得ることを目的としている。   The present invention has been made to solve the above-mentioned problems. The bonding area between the first resin and the second resin is increased, the reliability is improved by increasing the adhesive force, and the phosphor is applied to the phosphor. The object is to obtain a semiconductor light emitting device with a wide irradiation area, compact and efficient, and excellent lifetime characteristics.

この発明に係る半導体発光装置は、実装部材上に搭載された半導体発光素子と、この半導体発光素子を被覆する封止樹脂部材を備えた半導体発光装置において、前記封止樹脂部材は、少なくとも前記半導体発光素子を被覆する第一の樹脂部材と、前記半導体発光素子から放射される光を吸収して異なる波長の光に変換する波長変換材料を含有する第二の樹脂部材とを備え、前記第一の樹脂部材と前記第二の樹脂部材との界面を凹凸面としたものである。   A semiconductor light-emitting device according to the present invention includes a semiconductor light-emitting element mounted on a mounting member and a sealing resin member that covers the semiconductor light-emitting element, wherein the sealing resin member includes at least the semiconductor A first resin member that covers the light emitting element; and a second resin member that contains a wavelength conversion material that absorbs light emitted from the semiconductor light emitting element and converts it into light of a different wavelength. The interface between the resin member and the second resin member is an uneven surface.

この発明は、半導体発光素子を被覆する封止樹脂部材を備え、前記封止樹脂部材は、少なくとも前記半導体発光素子を被覆する第一の樹脂部材と、前記半導体発光素子から放射される光を吸収して異なる波長の光に変換する波長変換材料を含有する第二の樹脂部材とを備え、前記第一の樹脂部材と前記第二の樹脂部材との界面を凹凸面としたので、第一と第二の樹脂部材の接合面積を大きくし、接着力を高めることで信頼性を向上させるとともに、蛍光体への照射面積を広げコンパクトで効率が良く、寿命特性に優れた半導体発光装置を得ることができる。   The present invention includes a sealing resin member that covers a semiconductor light emitting element, and the sealing resin member absorbs at least a first resin member that covers the semiconductor light emitting element and light emitted from the semiconductor light emitting element. And a second resin member containing a wavelength conversion material that converts light of different wavelengths, and the interface between the first resin member and the second resin member is an uneven surface. To increase the bonding area of the second resin member and improve the adhesive strength, improve the reliability, expand the irradiation area to the phosphor, obtain a compact and efficient semiconductor light emitting device with excellent lifetime characteristics Can do.

実施の形態1.
図1はこの発明の実施の形態1を示す半導体発光装置の分解斜視図、図2は半導体発光装置の対称軸における縦断面図、図3は第二の樹脂部材を除いたときの斜視図である。
図1、図2において、半導体発光装置は、前面に凹部を有するパッケージ1に、外部電極2が形成され、凹部の底面中央に配設された半導体発光素子8の電極と電気的な接続がされている。また、凹部の内側にリフレクター7が設けられている。
また、半導体発光素子8は開口面が凹凸に形成された第一の樹脂部材4で封止され、この上に、半導体発光素子8から放射される光を吸収して異なる波長の光に変換する波長変換材料を含有する第二の樹脂部材5が形成されている。この第二の樹脂部材5の発光面5sは平面である。
このように、第一の樹脂部材4と第二の樹脂部材5との界面が凹凸面4a、5aをなしている。
Embodiment 1 FIG.
1 is an exploded perspective view of a semiconductor light emitting device showing Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view along the axis of symmetry of the semiconductor light emitting device, and FIG. 3 is a perspective view when a second resin member is removed. is there.
1 and 2, the semiconductor light emitting device has an external electrode 2 formed on a package 1 having a recess on the front surface, and is electrically connected to an electrode of a semiconductor light emitting element 8 disposed at the bottom center of the recess. ing. A reflector 7 is provided inside the recess.
In addition, the semiconductor light emitting element 8 is sealed with a first resin member 4 having an opening formed in a concavo-convex shape, on which light emitted from the semiconductor light emitting element 8 is absorbed and converted to light of a different wavelength. A second resin member 5 containing a wavelength conversion material is formed. The light emitting surface 5s of the second resin member 5 is a flat surface.
Thus, the interface between the first resin member 4 and the second resin member 5 forms the uneven surfaces 4a and 5a.

半導体発光素子8は、窒化ガリウム系化合物であり360〜410nm程度にピーク波長を有する光を発光するものである。尚、窒化ガリウム系化合物半導体はインジウムの濃度を調節などにより360〜410nm以外にも発光することが可能であり460nm付近のピーク波長を有する青色光を発光することもできるため、使用する蛍光体により青色光を発光する半導体発光素子を使用してもよい。   The semiconductor light emitting device 8 is a gallium nitride compound and emits light having a peak wavelength of about 360 to 410 nm. The gallium nitride compound semiconductor can emit light other than 360 to 410 nm by adjusting the concentration of indium, and can emit blue light having a peak wavelength near 460 nm. A semiconductor light emitting element that emits blue light may be used.

また、第一の樹脂部材4は、エポキシやアクリル、ポリカーボネート、シリコーンなどの透明性のある樹脂が使用される。
また、第二の樹脂部材5は、蛍光体が所定の発光色になるように赤色蛍光体と緑色蛍光体、青色蛍光体を混合し、蛍光体スラリーとしたものである。
The first resin member 4 is made of a transparent resin such as epoxy, acrylic, polycarbonate, or silicone.
The second resin member 5 is a phosphor slurry in which a red phosphor, a green phosphor, and a blue phosphor are mixed so that the phosphor has a predetermined emission color.

次に、第一の樹脂部材4と第二の樹脂部材5との界面の凹凸面4a、5aについて図1、図4、図5により説明する。図4は第二の樹脂部材5の凹凸面5aに関する各軸の説明図、図5は対称軸の数による配光曲線の比較図である。図5(a)は一軸対称、(b)は2軸対称の場合であり、第二の樹脂部材5の凹凸面5aが四角推が同一形状の場合の正面図とX、Y軸の各々方向から見たときの配光曲線を示す。   Next, the uneven surfaces 4 a and 5 a at the interface between the first resin member 4 and the second resin member 5 will be described with reference to FIGS. 1, 4, and 5. FIG. 4 is an explanatory diagram of each axis related to the uneven surface 5a of the second resin member 5, and FIG. 5 is a comparison diagram of light distribution curves by the number of symmetry axes. FIG. 5 (a) shows a case of uniaxial symmetry, and FIG. 5 (b) shows a case of biaxial symmetry. The front and rear views in the case where the concave and convex surface 5a of the second resin member 5 has the same square shape and the respective directions of the X and Y axes. Shows the light distribution curve when viewed from above.

図1、図4に示すように、凹凸面4a、5aは半導体発光素子8から放射される一次放射光の配光分布が最大となる中心軸Zと直交する面として、例えば、第二の樹脂部材5の発光面5sとしたとき、発光面5sが交差する中心点Oを通る発光面5s上の少なくとも一つの軸XまたはYに対して、略対称となるようにしている。なお、中心軸Zと直交する発光面5sが交差する中心点は、中心点Oの近傍としてもよい。   As shown in FIGS. 1 and 4, the uneven surfaces 4a and 5a are surfaces orthogonal to the central axis Z where the light distribution of primary radiation emitted from the semiconductor light emitting element 8 is maximized. When the light emitting surface 5s of the member 5 is used, the light emitting surface 5s is substantially symmetrical with respect to at least one axis X or Y on the light emitting surface 5s passing through the central point O where the light emitting surface 5s intersects. The center point where the light emitting surface 5s orthogonal to the center axis Z intersects may be in the vicinity of the center point O.

具体的には、例えば、図4(a)に示すように、第二の樹脂部材5の凹凸面5aの四角推はX軸に対して左右に4個有り、X軸に対して対称なので、配光曲線が対称となるが、Y軸に対しては四角推がY軸に対して右に4個、左に5個有りY軸に非対称なので、配光曲線が非対称となる。
一方、図4(b)に示すように、第二の樹脂部材5の凹凸面5aの四角推はX軸及びY軸に対して各々左右に4個有り、X軸及びY軸に対して各々対称なので、配光曲線がX軸及びY軸方向に対して対称となる。
Specifically, for example, as shown in FIG. 4 (a), there are four squares of the concave and convex surface 5a of the second resin member 5 on the left and right with respect to the X axis, and is symmetrical with respect to the X axis. Although the light distribution curve is symmetric, there are four square guesses on the right and five on the left with respect to the Y axis, and the light distribution curve is asymmetric because the Y axis is asymmetric.
On the other hand, as shown in FIG. 4 (b), there are four squares of the concave and convex surface 5a of the second resin member 5 on the left and right with respect to the X axis and the Y axis, respectively with respect to the X axis and the Y axis. Since it is symmetric, the light distribution curve is symmetric with respect to the X-axis and Y-axis directions.

なお、図1は凹凸面4a、5aが側面が正三角形で構成された四角錘の例を示しているが、三角錐、円錐、半球等でもよい。また、図3は任意の軸に対して軸対称(中心点Oに対して点対称)な場合の形状を示し、第一の樹脂部材4の凹凸面4aは、中心軸Zを中心とする円錐面とその周囲が複数の切頭円錐面で形成されている。
また、凹凸面4a、5aの深さは少なくとも使用する蛍光体の粒径以上とする必要がある。
Although FIG. 1 shows an example of a quadrangular pyramid in which the concavo-convex surfaces 4a and 5a are configured by equilateral triangles, a triangular pyramid, a cone, a hemisphere, or the like may be used. FIG. 3 shows the shape in the case of axial symmetry with respect to an arbitrary axis (point symmetry with respect to the center point O), and the uneven surface 4a of the first resin member 4 is a cone centered on the central axis Z. The surface and its periphery are formed by a plurality of frustoconical surfaces.
Further, the depth of the uneven surfaces 4a and 5a needs to be at least equal to the particle diameter of the phosphor to be used.

次に、半導体発光装置の材料の選定及び形成方法について説明する。
まず、半導体発光素子の接続方法は、図示してないが、フェースアップ型素子を使用する場合、半導体発光素子8をエポキシ樹脂などを主成分としたダイボンド材により接着および硬化させ、Auワイヤーを用いて外部電極2と半導体発光素子8を電気的に接続する。
また、フリップチップ型素子を用いた場合、パッケージ1の電極または半導体発光素子8の電極にバンプを形成し外部電極2と半導体発光素子8の電極を接続する。また、リフレクター7部分に銀やアルミなどの金属蒸着により反射率を高めたパッケージ1を用いてもよい。
Next, a method for selecting and forming a material for the semiconductor light emitting device will be described.
First, although a semiconductor light emitting element connection method is not illustrated, when a face-up type element is used, the semiconductor light emitting element 8 is bonded and cured with a die bond material mainly composed of an epoxy resin and the like, and an Au wire is used. Thus, the external electrode 2 and the semiconductor light emitting element 8 are electrically connected.
When a flip chip type device is used, bumps are formed on the electrode of the package 1 or the electrode of the semiconductor light emitting device 8 and the external electrode 2 and the electrode of the semiconductor light emitting device 8 are connected. Moreover, you may use the package 1 which raised the reflectance by metal vapor deposition, such as silver and aluminum, in the reflector 7 part.

次に、第一の樹脂部材4によりパッケージ1の開口部が凹凸になるように、第一の樹脂部材をパッケージ内に導入したのち、予め所望の凹凸形状が形成された型を押し付けた状態で硬化するなどの方法で半導体発光素子8を封止する。封止する材料はエポキシやアクリル、ポリカーボネート、シリコーンなどの透明性のある樹脂が使用できるが、最も半導体発光素子8から発光する光の強度が強く、発熱温度も高くなる半導体発光素子8近傍に使用する樹脂としては耐候性が優れ、扱いやすいシリコーンを用いることが好ましい。   Next, after the first resin member is introduced into the package so that the opening of the package 1 becomes uneven by the first resin member 4, a mold in which a desired uneven shape is formed is pressed in advance. The semiconductor light emitting element 8 is sealed by a method such as curing. Transparent materials such as epoxy, acrylic, polycarbonate, and silicone can be used as the sealing material, but they are used in the vicinity of the semiconductor light emitting device 8 where the intensity of light emitted from the semiconductor light emitting device 8 is the strongest and the heat generation temperature is high. As the resin to be used, it is preferable to use silicone that has excellent weather resistance and is easy to handle.

また、凹凸部の形成の際に用いる型としては、硬化樹脂との離型性の良い材質の選定、樹脂による投錨効果が生じない平滑な表面処理を予め行っておくことが肝要である。
この封止樹脂により電気的に接続された半導体発光素子8が発光した光は、第一の樹脂部材4が空気層以上の屈折率を有することから、半導体発光素子8から、直接空気層に放出される場合と比すると、第一の樹脂部材4内へ効率良く放出される。シリコーン樹脂は、屈折率が1.5程度の高屈折率のものを選択することが好ましい。
In addition, it is important to select a material having a good releasability from the cured resin and perform a smooth surface treatment that does not produce an anchoring effect with the resin as a mold used when forming the uneven portion.
The light emitted from the semiconductor light emitting element 8 electrically connected by the sealing resin is directly emitted from the semiconductor light emitting element 8 to the air layer because the first resin member 4 has a refractive index higher than that of the air layer. Compared with the case where it does, it discharge | releases in the 1st resin member 4 efficiently. It is preferable to select a silicone resin having a high refractive index of about 1.5.

ここで、屈折率が高い樹脂は分光透過率が低くなることもあることから、使用される半導体発光素子8が放射する光の波長における分光透過率と屈折率を考慮し選択することが必要である。   Here, since a resin having a high refractive index may have a low spectral transmittance, it is necessary to select the resin in consideration of the spectral transmittance and the refractive index at the wavelength of the light emitted from the semiconductor light emitting element 8 to be used. is there.

次に、第二の樹脂部材5を形成するが、第二の樹脂部材5には蛍光体が所定の発光色になるように赤色蛍光体と緑色蛍光体、青色蛍光体を混合し、蛍光体スラリーとする。第二の樹脂部材5は第一の樹脂部材4、第二の樹脂部材5の熱膨張差による界面の応力緩和、および界面反射の抑制のため同一のものを使用することが望ましいが、硬化後の第一の樹脂部材4とのぬれや蛍光体とのぬれを考慮し、適当な樹脂を選択しても良い。その場合、第一の樹脂部材4と第二の樹脂部材5の界面に生じる反射によって蛍光体に到達する励起光量が大きく減少しないために、第一の樹脂部材4と同じ屈折率、あるいは近い屈折率の樹脂を選定することが好ましく、屈折率差が生じる場合にも、第一の樹脂部材4から第二の樹脂部材5に入射する光がどのような入射角であっても全反射が発生しないために、第一の樹脂部材4と比して屈折率が高い樹脂を選定することが好ましい。   Next, the second resin member 5 is formed. In the second resin member 5, a red phosphor, a green phosphor, and a blue phosphor are mixed so that the phosphor has a predetermined emission color. Use slurry. It is desirable to use the same second resin member 5 for the purpose of stress relaxation at the interface due to the difference in thermal expansion between the first resin member 4 and the second resin member 5, and suppression of interface reflection. An appropriate resin may be selected in consideration of the wetting with the first resin member 4 and the wetting with the phosphor. In that case, the amount of excitation light reaching the phosphor is not greatly reduced by reflection occurring at the interface between the first resin member 4 and the second resin member 5, so that the same refractive index as that of the first resin member 4 or near refraction. It is preferable to select a resin having a refractive index, and even when a difference in refractive index occurs, total reflection occurs regardless of the incident angle of light incident on the second resin member 5 from the first resin member 4. Therefore, it is preferable to select a resin having a higher refractive index than the first resin member 4.

また、第二の樹脂部材5としては、第一の樹脂部材4に形成された凹凸面4aの全領域についても充分なぬれが得られ、空隙のない光学密着状態が得られるように、表面張力、硬化した後の第一の樹脂部材4との接触角、蛍光体スラリーとした場合の粘度などが適当である蛍光体とのなじみが良く、蛍光体を均一に分散できる蛍光体スラリーとした場合の起泡性が低いなどの要件を満たす材料が好ましく、これらを充分に考慮した上で材料を選定することが肝要である。   Further, the second resin member 5 has a surface tension so that sufficient wetting can be obtained for the entire region of the concavo-convex surface 4a formed on the first resin member 4, and an optical contact state without voids can be obtained. In the case of a phosphor slurry that has good contact with the phosphor having a suitable contact angle with the first resin member 4 after curing, viscosity of the phosphor slurry, etc., and can uniformly disperse the phosphor A material that satisfies the requirements such as low foaming property is preferable, and it is important to select the material after taking these into consideration.

そして、以上のような蛍光体が混入された第二の樹脂部材5を第一の樹脂部材4の凹凸面4aに塗布し、発光面5sが平面となるようにして熱などを加え硬化させて第二の樹脂部材5を形成する。   Then, the second resin member 5 mixed with the phosphor as described above is applied to the uneven surface 4a of the first resin member 4, and cured by applying heat or the like so that the light emitting surface 5s becomes a flat surface. A second resin member 5 is formed.

以上のように、例えば、図1に示す凹凸形状を側面が正三角形で構成された四角錘を用いた場合、第二の樹脂部材5における蛍光体層の表面積は、従来のように平面で構成した場合に比べ約1.7倍の表面積が実現できる。尚、同様に凹凸形状を三角錐、円錐、半球などにしても平面形状に比べ表面積を増やすことができる。
また、凹凸面4a、5aを少なくとも一軸について略対象とした場合は発光面内の輝度ムラや色ムラが少なく、良好な配光形状にすることができる。
また、凹凸面4a、5aを二軸について略対象とした場合は発光面内の輝度ムラや色ムラがより少なく、とり良好な配光形状にすることができる。
As described above, for example, in the case of using the quadrangular pyramid whose side surface is formed of a regular triangle in the uneven shape shown in FIG. 1, the surface area of the phosphor layer in the second resin member 5 is configured as a plane as in the prior art. A surface area approximately 1.7 times that of the case can be realized. Similarly, the surface area can be increased compared to the planar shape even if the irregular shape is a triangular pyramid, a cone, a hemisphere, or the like.
In addition, when the concave and convex surfaces 4a and 5a are substantially targeted with respect to at least one axis, there is little luminance unevenness and color unevenness in the light emitting surface, and a good light distribution shape can be obtained.
Further, when the concave and convex surfaces 4a and 5a are substantially targeted with respect to two axes, the luminance unevenness and the color unevenness in the light emitting surface are less, and a favorable light distribution shape can be obtained.

このため、前記輝度飽和、及び蛍光体劣化を軽減させ半導体発光装置を長寿命化する効果がある。また、単位体積あたりの接着面積が大きくなることにより、熱膨張率の異なる第一の樹脂部材4と第二の樹脂部材5を使用しても接着強度が増えることから、第一の樹脂部材4と第二の樹脂部材5の剥離が防止でき、信頼性の高い半導体発光装置を提供できる。   For this reason, there is an effect of extending the life of the semiconductor light emitting device by reducing the luminance saturation and phosphor deterioration. Further, since the bonding area per unit volume is increased, the bonding strength is increased even when the first resin member 4 and the second resin member 5 having different thermal expansion coefficients are used. And the second resin member 5 can be prevented from peeling off, and a highly reliable semiconductor light emitting device can be provided.

更に、使用する半導体発光素子8が360〜410nmの範囲にピーク波長がある場合、基本的には青色、緑色、赤色の3種類の蛍光体を使用し、所定の光源色になる比率で混合したものを使用するが、緑色と赤色の蛍光体の発光スペクトルの間である550〜600nmの間の発光波長を追加する。つまり、黄緑色や黄色、橙色に発光する蛍光体を追加することで演色性を高めることもできる。   Furthermore, when the semiconductor light-emitting element 8 to be used has a peak wavelength in the range of 360 to 410 nm, basically, three types of phosphors of blue, green and red are used and mixed at a ratio of a predetermined light source color. Use one, but add an emission wavelength between 550 and 600 nm, which is between the emission spectra of the green and red phosphors. In other words, the color rendering can be enhanced by adding a phosphor that emits yellowish green, yellow, or orange light.

また、460nm付近の青色に発光する半導体発光素子8を使用した場合は、補色関係にある黄色に発光する蛍光体を使用してもよい。
例えば、360〜410nmの範囲にピーク波長を有する半導体発光素子8で使用できる蛍光体は赤色蛍光体の場合、La2O2S:EuやY2O2S:Euなどがあり、緑色蛍光体にはZnS:Cu、AlやBaMgAl10O17:Eu、Mnなどがあり、青色蛍光体にはBaMgAl10O17:Euなどがある。
このように第一の樹脂部材4と第二の樹脂部材5の界面に凹凸の形状を設けることで、第一と第二の樹脂部材5の接合面積を大きくし、接着力を高めて信頼性を向上させるとともに、蛍光体の被照射面積を広げコンパクトで効率の良く寿命特性に優れた半導体発光装置を得ることができる。
When the semiconductor light emitting element 8 that emits blue light near 460 nm is used, a phosphor that emits yellow light having a complementary color relationship may be used.
For example, when the phosphor that can be used in the semiconductor light emitting device 8 having a peak wavelength in the range of 360 to 410 nm is a red phosphor, there are La2O2S: Eu and Y2O2S: Eu, and the green phosphor includes ZnS: Cu, Al, and the like. BaMgAl10O17: Eu, Mn and the like, and blue phosphors include BaMgAl10O17: Eu and the like.
Thus, by providing an uneven shape at the interface between the first resin member 4 and the second resin member 5, the bonding area between the first and second resin members 5 is increased, and the adhesive force is increased to increase reliability. In addition, it is possible to obtain a semiconductor light-emitting device that is compact, efficient, and excellent in lifetime characteristics.

実施の形態2.
図6はこの発明の実施の形態2を示す半導体発光装置の対称軸における縦断面図である。図において 第一の樹脂部材4と第二の樹脂部材5との界面は、半導体発光素子8を中心とし、半径ri、r2、r3が順次大きくなる複数の扇形を、中心軸Zから横方向の平面に沿って順次並べて形成された各円弧と各円弧の半径線からなる外形線を中心軸Zの回りに1回転させて形成された球面4a1(5a1)、切頭円錐面4a2(5a2)、球面4a3(5a3)、切頭円錐面4a4(5a4)、球面4a5(5a5)からなる凹凸の複合面から構成される。
Embodiment 2. FIG.
FIG. 6 is a longitudinal sectional view taken along the axis of symmetry of a semiconductor light-emitting device showing Embodiment 2 of the present invention. In the figure, the interface between the first resin member 4 and the second resin member 5 has a plurality of fan shapes with the radii ri, r2 and r3 sequentially increasing from the central axis Z in the lateral direction with the semiconductor light emitting element 8 as the center. A spherical surface 4a1 (5a1), a truncated conical surface 4a2 (5a2) formed by rotating the outline formed by sequentially arranging arcs and radial lines of the arcs around the central axis Z around the central axis Z; It is composed of an uneven composite surface including a spherical surface 4a3 (5a3), a truncated conical surface 4a4 (5a4), and a spherical surface 4a5 (5a5).

このように、半導体発光素子8の構造中心を中心として、半径r1をr2、r3と順次大きくした球面を、中心軸Zから外側に順次ずらした球面4a(5a)、4a3(5a3)、4a5(5a5)を主面とし、球面の半径が変わる部分において、各曲面間を結ぶ面である切頭円錐面4a2(5a2)、4a4(5a4)を副面とした主面と副面の複合によって形成される形状とし、半導体発光素子8から放射される一次放射光が第一の樹脂部材4と第二の樹脂部材5の界面に垂直に入射するように設定する。
なお、他の構成は実施の形態1の図1と同じであり説明を省略する。
As described above, the spherical surfaces 4a (5a), 4a3 (5a3), 4a5 (with the radius r1 sequentially increased from r2 and r3 sequentially shifted outward from the central axis Z with the structure center of the semiconductor light emitting element 8 as the center. 5a5) is the main surface, and in the part where the radius of the spherical surface changes, it is formed by the combination of the main surface and the sub surface with the truncated conical surfaces 4a2 (5a2) and 4a4 (5a4) as the sub surfaces that connect the curved surfaces. The primary radiation light emitted from the semiconductor light emitting element 8 is set so as to be perpendicularly incident on the interface between the first resin member 4 and the second resin member 5.
Other configurations are the same as those of the first embodiment shown in FIG.

このような形状は、実施形態1に記載の方法と同様の方法を用いて形成することができるので説明を省略する。   Such a shape can be formed using a method similar to the method described in the first embodiment, and thus description thereof is omitted.

このような構成において、第一の樹脂部材4と第二の樹脂部材5の界面での反射を軽減させ、第一の樹脂部材4を透過した半導体発光素子8からの光を効率良く第二の樹脂部材5の蛍光体層に照射させることができ、発光効率を高めることができる。   In such a configuration, reflection at the interface between the first resin member 4 and the second resin member 5 is reduced, and the light from the semiconductor light emitting element 8 that has passed through the first resin member 4 is efficiently transmitted to the second resin member 4. The phosphor layer of the resin member 5 can be irradiated, and the luminous efficiency can be increased.

実施の形態3.
実施の形態2では、第二の樹脂部材5の発光面が平面であるが、本実施の形態は第二の樹脂部材5を第一の樹脂部材4と第二の樹脂部材5の界面の凹凸面に合わせて発光面方向も凹凸にしたものである。
従来の半導体発光装置は、蛍光体層の半導体発光素子8側に配置された蛍光体で波長変換された光は、蛍光体層内を通過するときに、その光路に配置された蛍光体表面で遮られるために直進できない成分が生じ、その成分については蛍光体表面で散乱され、蛍光体層内で蛍光体間を多重反射する成分が発生して光の取り出し効率を低下させる問題がある。
また、蛍光体層に体色を持つ蛍光体が含有される場合には、蛍光体によって波長変換された一部の波長の光が吸収される(例えば、ZnS:Cu、AuやYAG蛍光体は黄から黄緑の体色を持ち、そのために青色の光は吸収される)ことによって、光の取り出し効率を低下させる問題もある。従って、従来例のように半導体発光素子8から放射された光の蛍光体層における光路長に放射角度依存性がある場合には、半導体発光装置からの取り出し光に輝度むらや色むらが生じる場合がある。
本実施の形態は、上記の問題を抑制する構造としたものである。
Embodiment 3 FIG.
In the second embodiment, the light emitting surface of the second resin member 5 is a flat surface. However, in the present embodiment, the second resin member 5 is made uneven in the interface between the first resin member 4 and the second resin member 5. The light emitting surface direction is also uneven according to the surface.
In the conventional semiconductor light emitting device, when the wavelength converted light by the phosphor disposed on the semiconductor light emitting element 8 side of the phosphor layer passes through the phosphor layer, the light is transmitted on the phosphor surface disposed in the optical path. There is a problem that a component that cannot go straight due to the shielding is generated, and the component is scattered on the surface of the phosphor, and a component that multi-reflects between the phosphors is generated in the phosphor layer, thereby reducing the light extraction efficiency.
In addition, when a phosphor having a body color is contained in the phosphor layer, a part of light having a wavelength converted by the phosphor is absorbed (for example, ZnS: Cu, Au and YAG phosphors are There is also a problem of reducing the light extraction efficiency by having a body color of yellow to yellow-green, and thus blue light is absorbed. Therefore, when the optical path length of the light emitted from the semiconductor light emitting element 8 in the phosphor layer is dependent on the radiation angle as in the conventional example, unevenness in brightness or color occurs in the extracted light from the semiconductor light emitting device. There is.
The present embodiment has a structure that suppresses the above problem.

図7はこの発明の実施の形態3を示す半導体発光装置の対称軸における縦断面図である。
図7において、第一の樹脂部材4と第二の樹脂部材5との界面は、実施の形態2の図6と同じであり、第二の樹脂部材5の発光面を、第一の樹脂部材4の凹凸面4aのうち各球面4a1、4a3、4a5から一次放射光の照射方向の厚みが所定の厚さになるようにした球面5s1、8s3及び切頭円錐面5s2、5s4の凹凸の複合面から構成される。
なお、他の構成は実施の形態1の図1と同じであり説明を省略する。
FIG. 7 is a longitudinal sectional view taken along the axis of symmetry of a semiconductor light emitting device showing Embodiment 3 of the present invention.
In FIG. 7, the interface between the first resin member 4 and the second resin member 5 is the same as in FIG. 6 of the second embodiment, and the light emitting surface of the second resin member 5 is replaced with the first resin member. 4 of the four concavo-convex surfaces 4a, and the concavo-convex composite surfaces of the spherical surfaces 5s1, 8s3 and the truncated conical surfaces 5s2, 5s4 so that the thickness in the irradiation direction of the primary radiation from the spherical surfaces 4a1, 4a3, 4a5 becomes a predetermined thickness. Consists of
Other configurations are the same as those of the first embodiment shown in FIG.

材料選択と形成方法は、まず、実施形態1に記載の方法で第一の樹脂部材4を形成し硬化させた後、蛍光体を含有させた第二の樹脂部材5を第一の樹脂部材4の凹凸面4aに注入したのち、予め所望の凹凸面が形成された型を押し付けた状態で硬化することによって、第二の樹脂部材5の表面に凹凸面5s1〜5s5を形成する。
なお、凹凸面を成形する型及び第二の樹脂部材5を選定する場合に注意することは、実施形態1に示すとおりであるが、特に、本実施の形態では、第二の樹脂部材5として凹凸面が保持可能で硬化後の強度が得られる樹脂を選定することが好ましい。
The material selection and formation method is as follows. First, after the first resin member 4 is formed and cured by the method described in the first embodiment, the second resin member 5 containing the phosphor is changed to the first resin member 4. After being injected into the concavo-convex surface 4a, the concavo-convex surfaces 5s1 to 5s5 are formed on the surface of the second resin member 5 by curing in a state in which a mold on which a desired concavo-convex surface has been formed is pressed.
In addition, although it is as showing in Embodiment 1 to be careful when selecting the type | mold which molds an uneven surface, and the 2nd resin member 5, in this Embodiment, especially as the 2nd resin member 5 It is preferable to select a resin that can retain the uneven surface and can provide strength after curing.

この構成において、半導体発光素子8から第二の樹脂部材5に向けて放射された光が、第一の樹脂部材4と第二の樹脂部材5の界面に垂直に入射し、かつ、第二の樹脂部材5、つまり蛍光体層内における光路長を、一次放射光の放射角度によらず均一となる。   In this configuration, the light emitted from the semiconductor light emitting element 8 toward the second resin member 5 is perpendicularly incident on the interface between the first resin member 4 and the second resin member 5, and the second The optical path length in the resin member 5, that is, the phosphor layer is uniform regardless of the radiation angle of the primary radiation.

以上のように、第二の樹脂部材5を第一の樹脂部材4と第二の樹脂部材5の界面の凹凸に合わせて発光面方向も凹凸にしたので、第一の樹脂部材4と第二の樹脂部材5の接着強度を向上するのみならず、半導体発光素子8から第二の樹脂部材5に向けて放射された光が、第一の樹脂部材4と第二の樹脂部材5の界面に垂直に入射し、かつ、第二の樹脂部材5、つまり蛍光体層内における光路長を、一次放射光の放射角度によらず均一となり、半導体発光装置からの取り出し光の発光面内における輝度および色の均一性に優れ、効率が良く、寿命特性に優れた半導体発光装置を得ることができる。
なお、実施の形態1の図2において、第二の樹脂部材5の発光面5sを、第一の樹脂部材4と第二の樹脂部材5の界面に設けた凹凸面4a、5aと同じ形状の凹凸面としてもよい。
As described above, since the second resin member 5 is made uneven in accordance with the unevenness of the interface between the first resin member 4 and the second resin member 5, the first resin member 4 and the second resin member 5 are also made uneven. In addition to improving the adhesive strength of the resin member 5, the light emitted from the semiconductor light emitting element 8 toward the second resin member 5 is incident on the interface between the first resin member 4 and the second resin member 5. The optical path length in the second resin member 5, that is, the phosphor layer is uniform regardless of the radiation angle of the primary radiation, and the luminance in the light emission surface of the light extracted from the semiconductor light emitting device and A semiconductor light emitting device having excellent color uniformity, high efficiency, and excellent lifetime characteristics can be obtained.
In FIG. 2 of the first embodiment, the light emitting surface 5s of the second resin member 5 has the same shape as the concave and convex surfaces 4a and 5a provided at the interface between the first resin member 4 and the second resin member 5. It may be an uneven surface.

実施の形態4.
一般に、発光面サイズが点光源に近くなればなるほど、光学レンズなどを用いて光の配光特性をより容易に、より精度良く制御することが可能となる。
半導体発光装置のサイズは、発光・放熱などの特性や生産性などを考慮した適正なサイズに決められるが、前述した蛍光体劣化や輝度飽和を回避するために、半導体発光素子8からの放射光に対する蛍光体の被照射面積を第一の樹脂部材4と第二の樹脂部材5の界面に凹凸を設けず平面的に拡大するような対策をとった場合には、上記のような理由から、半導体発光装置からの取り出し光の配光性を制御することが難しかった。
Embodiment 4 FIG.
In general, the closer the light emitting surface size is to a point light source, the easier it is to control the light distribution characteristics of light using an optical lens or the like.
The size of the semiconductor light emitting device is determined to an appropriate size in consideration of characteristics such as light emission and heat dissipation, and productivity. In order to avoid the phosphor deterioration and luminance saturation described above, the emitted light from the semiconductor light emitting element 8 is used. In the case of taking measures to expand the irradiated area of the phosphor with respect to the plane without providing irregularities at the interface between the first resin member 4 and the second resin member 5, for the above reasons, It has been difficult to control the light distribution of the light extracted from the semiconductor light emitting device.

しかしながら、実施の形態1乃至3に示した半導体発光装置を用いれば、光源、つまり半導体発光装置の発光面の面積は、本来設定すべき適正なサイズとすることができるため、光学レンズの設計上、および実際の配光制御上、好適である。
そこで、本実施の形態は実施の形態1乃至3に示した半導体発光装置に光学レンズを設けたものである。
However, if the semiconductor light emitting device described in Embodiments 1 to 3 is used, the area of the light source, that is, the light emitting surface of the semiconductor light emitting device can be set to an appropriate size that should be originally set. And in actual light distribution control.
Therefore, in this embodiment, an optical lens is provided in the semiconductor light emitting device shown in Embodiments 1 to 3.

図8はこの発明の実施の形態4を示す半導体発光装置の対称軸における縦断面図である
。図8は実施の形態1に示した半導体発光装置に光学レンズ6を設けている。他は、実施の形態1の図1と同じなので説明を省略する。
この場合、実施形態1乃至2に記載の半導体発光装置に用いる光学レンズ6としては、例えば、別途形成した環状オレフィン樹脂やポリカーボネート樹脂、メタクリル樹脂などの熱可塑性樹脂によって形成された樹脂レンズが使用でき、第二の樹脂部材5が硬化する前に樹脂レンズ6を圧着することで半導体発光装置と樹脂レンズ6の光学密着を得、その後、第二の樹脂部材5を硬化させることで、光学レンズ付き半導体発光装置を得ることができる。
FIG. 8 is a longitudinal sectional view taken along the axis of symmetry of a semiconductor light-emitting device showing Embodiment 4 of the present invention. In FIG. 8, an optical lens 6 is provided in the semiconductor light emitting device shown in the first embodiment. Others are the same as those of the first embodiment shown in FIG.
In this case, as the optical lens 6 used in the semiconductor light emitting device described in the first and second embodiments, for example, a resin lens formed of a thermoplastic resin such as a separately formed cyclic olefin resin, polycarbonate resin, or methacrylic resin can be used. Then, the resin lens 6 is pressure-bonded before the second resin member 5 is cured to obtain an optical contact between the semiconductor light emitting device and the resin lens 6, and then the second resin member 5 is cured to provide an optical lens. A semiconductor light emitting device can be obtained.

一方、実施形態3に示した半導体発光装置に用いる光学レンズ6としては、エポキシ樹脂などの熱硬化性樹脂が例えば使用でき、第二の樹脂部材5を硬化させて所望の凹凸形状を形成して実施形態3に記載の半導体発光装置を作成し、所望の光学レンズ形状が予め形成された成形型の中にこの半導体発光装置を設置したのち、成形型の内部にエポキシ樹脂を導入して熱硬化させることで、光学レンズ付き半導体発光装置を得ることができる。   On the other hand, as the optical lens 6 used in the semiconductor light emitting device shown in the third embodiment, a thermosetting resin such as an epoxy resin can be used, for example, and the second resin member 5 is cured to form a desired uneven shape. After producing the semiconductor light emitting device described in the third embodiment and installing the semiconductor light emitting device in a mold in which a desired optical lens shape is formed in advance, an epoxy resin is introduced into the mold and thermosetting is performed. By doing so, a semiconductor light emitting device with an optical lens can be obtained.

以上のように、光学レンズ6を備えたので、発光する面積が点光源に近くなり、所望の配光分布とする光学レンズを設置することで、良好な配光制御をすることができる。
なお、図8に示した半導体発光装置は、実施の形態2、3に示したものでもよい。
As described above, since the optical lens 6 is provided, the light emitting area is close to that of a point light source, and a good light distribution control can be performed by installing an optical lens having a desired light distribution.
The semiconductor light emitting device shown in FIG. 8 may be the one shown in the second and third embodiments.

この発明の実施の形態1を示す半導体発光装置の分解斜視図である。1 is an exploded perspective view of a semiconductor light emitting device showing Embodiment 1 of the present invention. FIG. この発明の実施の形態1を示す半導体発光装置の対称軸における縦断面図である。It is a longitudinal cross-sectional view in the symmetry axis of the semiconductor light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す半導体発光装置の第二の樹脂部材を除いたときの斜視図である。It is a perspective view when the 2nd resin member of the semiconductor light-emitting device which shows Embodiment 1 of this invention is remove | excluded. この発明の実施の形態1を示す半導体発光装置の第二の樹脂部材の凹凸面に関する各軸の説明図である。It is explanatory drawing of each axis | shaft regarding the uneven surface of the 2nd resin member of the semiconductor light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す半導体発光装置の対称軸の数による配光曲線の比較図である。It is a comparison figure of the light distribution curve by the number of the symmetrical axes of the semiconductor light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態2を示す半導体発光装置の対称軸における縦断面図である。It is a longitudinal cross-sectional view in the symmetry axis of the semiconductor light-emitting device which shows Embodiment 2 of this invention. この発明の実施の形態3を示す半導体発光装置の対称軸における縦断面図である。It is a longitudinal cross-sectional view in the symmetry axis of the semiconductor light-emitting device which shows Embodiment 3 of this invention. この発明の実施の形態4を示す半導体発光装置の対称軸における縦断面図である。It is a longitudinal cross-sectional view in the symmetry axis of the semiconductor light-emitting device which shows Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 パッケージ、2 外部電極、4 第一の樹脂部材、4a、5a 凹凸面、4a1、4a3、4a5、5a1、5a3、5a5、球面、4a2、4a4、5a2、5a4 切頭円錐面、5 第二の樹脂部材、5s 発光面、5s1、5s3、5s5 球面、5s2、5s4 切頭円錐面、6 光学レンズ、7 リフレクター、8 半導体発光素子。
1 package, 2 external electrode, 4 first resin member, 4a, 5a uneven surface, 4a1, 4a3, 4a5, 5a1, 5a3, 5a5, spherical surface, 4a2, 4a4, 5a2, 5a4 frustoconical surface, 5 second Resin member, 5s light emitting surface, 5s1, 5s3, 5s5 spherical surface, 5s2, 5s4 frustoconical surface, 6 optical lens, 7 reflector, 8 semiconductor light emitting element.

Claims (9)

実装部材上に搭載された半導体発光素子と、この半導体発光素子を被覆する封止樹脂部材を備えた半導体発光装置において、
前記封止樹脂部材は、少なくとも前記半導体発光素子を被覆する第一の樹脂部材と、
前記半導体発光素子から放射される光を吸収して異なる波長の光に変換する波長変換材料を含有する第二の樹脂部材とを備え、
前記第一の樹脂部材と前記第二の樹脂部材との界面を凹凸面としたことを特徴とする半導体発光装置。
In a semiconductor light emitting device including a semiconductor light emitting element mounted on a mounting member and a sealing resin member covering the semiconductor light emitting element,
The sealing resin member includes at least a first resin member that covers the semiconductor light emitting element;
A second resin member containing a wavelength conversion material that absorbs light emitted from the semiconductor light emitting element and converts it into light of a different wavelength;
A semiconductor light emitting device characterized in that an interface between the first resin member and the second resin member is an uneven surface.
前記第一の樹脂部材と前記第二の樹脂部材との前記界面の前記凹凸面を略対称形状とする少なくとも一つの対称軸を前記凹凸面近傍に有し、
前記対称軸は、前記半導体発光素子から放射される一次放射光の配光分布が最大となる中心軸と略直交するまたは前記中心軸近傍を通り前記中心軸と略直交するようにしたことを特徴とする請求項1記載の半導体発光装置。
Having at least one symmetry axis in the vicinity of the concavo-convex surface, the concavo-convex surface of the interface between the first resin member and the second resin member being substantially symmetrical.
The symmetry axis is configured to be substantially orthogonal to a central axis at which a light distribution of primary radiation emitted from the semiconductor light emitting element is maximized, or is substantially orthogonal to the central axis passing through the vicinity of the central axis. The semiconductor light-emitting device according to claim 1.
前記第一の樹脂部材と前記第二の樹脂部材との前記界面の前記凹凸面を略対称形状とするとともに互いに交差する少なくとも二つの対称軸を前記凹凸面近傍に有し、
前記対称軸は、前記半導体発光素子から放射される一次放射光の配光分布が最大となる中心軸と略直交するまたは前記中心軸近傍を通り前記中心軸と略直交するようにしたことを特徴とする請求項1記載の半導体発光装置。
The concavo-convex surface of the interface between the first resin member and the second resin member has a substantially symmetrical shape and has at least two symmetry axes intersecting each other in the vicinity of the concavo-convex surface,
The symmetry axis is configured to be substantially orthogonal to a central axis at which a light distribution of primary radiation emitted from the semiconductor light emitting element is maximized, or is substantially orthogonal to the central axis passing through the vicinity of the central axis. The semiconductor light-emitting device according to claim 1.
前記第二の樹脂部材の発光面を前記第一の樹脂部材と前記第二の樹脂部材の界面に設けた凹凸面と同じ形状の凹凸面としたことを特徴とする請求項1乃至3のいずれかに記載の半導体発光装置。   4. The light emitting surface of the second resin member is an uneven surface having the same shape as the uneven surface provided at the interface between the first resin member and the second resin member. A semiconductor light emitting device according to claim 1. 前記第一の樹脂部材と前記第二の樹脂部材の前記界面に設けた凹凸面を、前記半導体発光素子からの一次放射光が前記界面に対して垂直に照射可能な形状としたことを特徴とする請求項1乃至4のいずれかに記載の半導体発光装置。   The uneven surface provided at the interface between the first resin member and the second resin member has a shape that allows primary radiation from the semiconductor light emitting element to be irradiated perpendicularly to the interface. The semiconductor light-emitting device according to claim 1. 前記凹凸面は、前記半導体発光素子を中心とし、半径が順次大きくなる複数の扇形を前記中心軸から横方向の平面に沿って順次並べて形成された各円弧とこの各円弧間を結ぶ半径線からなる外形線を前記中心軸の回りに1回転させて形成された球面と切頭円錐面からなることを特徴とする請求項5記載の半導体発光装置。   The uneven surface is centered on the semiconductor light emitting element, and a plurality of sectors having a radius increasing sequentially from each arc formed by sequentially arraying along a horizontal plane from the central axis, and a radius line connecting the arcs 6. The semiconductor light emitting device according to claim 5, comprising a spherical surface and a frustoconical surface formed by rotating the outer shape line once around the central axis. 前記第二の樹脂部材の発光面を、前記第一の樹脂部材の凹凸面のうち各球面から前記一次放射光の照射方向の厚みが所定の厚さになるような凹凸面としたことを特徴とする請求項5または請求項6記載の半導体発光装置。   The light emitting surface of the second resin member is a concavo-convex surface such that the thickness in the irradiation direction of the primary radiation light from each spherical surface is a predetermined thickness among the concavo-convex surfaces of the first resin member. The semiconductor light emitting device according to claim 5 or 6. 前記第一の樹脂部材と前記第二の樹脂部材の屈折率が同等、または、前記第二の樹脂部材の屈折率が前記第一の樹脂部材の屈折率よりも高いことを特徴とする請求項1乃至7のいずれかに記載の半導体発光装置。   The refractive index of the first resin member and the second resin member are equal, or the refractive index of the second resin member is higher than the refractive index of the first resin member. 8. A semiconductor light emitting device according to any one of 1 to 7. 前記第二の樹脂部材の発光面から照射された光を配光制御する光学レンズを備えたことを特徴とする請求項1乃至8のいずれかに記載の半導体発光装置。
The semiconductor light-emitting device according to claim 1, further comprising an optical lens that controls light distribution from the light-emitting surface of the second resin member.
JP2005101012A 2005-03-31 2005-03-31 Semiconductor light emitting device Withdrawn JP2006286701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101012A JP2006286701A (en) 2005-03-31 2005-03-31 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101012A JP2006286701A (en) 2005-03-31 2005-03-31 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2006286701A true JP2006286701A (en) 2006-10-19

Family

ID=37408315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101012A Withdrawn JP2006286701A (en) 2005-03-31 2005-03-31 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2006286701A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809207B1 (en) * 2007-03-19 2008-03-03 삼성전기주식회사 Method for fabricating a light emitting diode package
JP2008153612A (en) * 2006-12-13 2008-07-03 Samsung Electro Mech Co Ltd Light emitting diode package and its manufacturing method
KR100849813B1 (en) * 2007-03-22 2008-07-31 삼성전기주식회사 Menufacturing method of light emitting device package and mold for menufacture of light emitting device package
US7503676B2 (en) * 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
WO2009028807A3 (en) * 2007-08-27 2009-04-23 Lg Innotek Co Ltd Light emitting device package and method for fabricating the same
JP2010056462A (en) * 2008-08-29 2010-03-11 Kyocera Corp Light-emitting device, and lighting system using light-emitting device
WO2010143093A1 (en) * 2009-06-04 2010-12-16 Koninklijke Philips Electronics N.V. Efficient light emitting device and method for manufacturing such a device
CN102163676A (en) * 2010-02-12 2011-08-24 Lg伊诺特有限公司 Light emitting diode, light emitting package and lighting system incorporating the same
CN103777447A (en) * 2012-10-17 2014-05-07 深圳市绎立锐光科技开发有限公司 Light source system, wavelength conversion device and relevant projection system
JP2014158054A (en) * 2009-07-22 2014-08-28 Philips Lumileds Lightng Co Llc Light emitting diode package and method of manufacturing the same
JP2019212699A (en) * 2018-06-01 2019-12-12 日亜化学工業株式会社 Light-emitting device
US10884172B2 (en) 2018-09-21 2021-01-05 Nichia Corporation Light emitting device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503676B2 (en) * 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
US8368097B2 (en) 2006-12-13 2013-02-05 Samsung Electronics Co., Ltd. Light emitting diode package and method of manufacturing the same
JP2008153612A (en) * 2006-12-13 2008-07-03 Samsung Electro Mech Co Ltd Light emitting diode package and its manufacturing method
KR100809207B1 (en) * 2007-03-19 2008-03-03 삼성전기주식회사 Method for fabricating a light emitting diode package
KR100849813B1 (en) * 2007-03-22 2008-07-31 삼성전기주식회사 Menufacturing method of light emitting device package and mold for menufacture of light emitting device package
WO2009028807A3 (en) * 2007-08-27 2009-04-23 Lg Innotek Co Ltd Light emitting device package and method for fabricating the same
JP2010538450A (en) * 2007-08-27 2010-12-09 エルジー イノテック カンパニー リミテッド Light emitting device package and manufacturing method thereof
KR101383357B1 (en) * 2007-08-27 2014-04-10 엘지이노텍 주식회사 Light emitting device package and method of making the same
US8624280B2 (en) 2007-08-27 2014-01-07 Lg Innotek Co., Ltd. Light emitting device package and method for fabricating the same
CN101785122B (en) * 2007-08-27 2012-02-29 Lg伊诺特有限公司 Light emitting device package and method for fabricating the same
JP2010056462A (en) * 2008-08-29 2010-03-11 Kyocera Corp Light-emitting device, and lighting system using light-emitting device
US8690395B2 (en) 2009-06-04 2014-04-08 Koninklijke Philips Electronics N.V. Efficient light emitting device and method for manufacturing such a device
WO2010143093A1 (en) * 2009-06-04 2010-12-16 Koninklijke Philips Electronics N.V. Efficient light emitting device and method for manufacturing such a device
JP2014158054A (en) * 2009-07-22 2014-08-28 Philips Lumileds Lightng Co Llc Light emitting diode package and method of manufacturing the same
CN102163676A (en) * 2010-02-12 2011-08-24 Lg伊诺特有限公司 Light emitting diode, light emitting package and lighting system incorporating the same
CN103777447A (en) * 2012-10-17 2014-05-07 深圳市绎立锐光科技开发有限公司 Light source system, wavelength conversion device and relevant projection system
CN103777447B (en) * 2012-10-17 2016-03-16 深圳市绎立锐光科技开发有限公司 A kind of light-source system, Wavelength converter and relevant projecting system
JP2019212699A (en) * 2018-06-01 2019-12-12 日亜化学工業株式会社 Light-emitting device
JP7100246B2 (en) 2018-06-01 2022-07-13 日亜化学工業株式会社 Luminescent device
US10884172B2 (en) 2018-09-21 2021-01-05 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
JP2006286701A (en) Semiconductor light emitting device
US10305001B2 (en) High-power white LEDs
US20180158995A1 (en) Wavelength coinventor, fluorescent color wheel, and light-emitting device
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5707697B2 (en) Light emitting device
JP5676599B2 (en) LED package having scattering particle region
JP4590905B2 (en) Light emitting element and light emitting device
JP5113820B2 (en) Light emitting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
US20060091788A1 (en) Light emitting device with a thermal insulating and refractive index matching material
US20130039617A1 (en) Optoelectronic Component and Method for Producing an Optoelectronic Component
JP2013042166A (en) Textured encapsulant surface in led packages
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP2007201301A (en) Light emitting device using white led
US11996504B2 (en) Light-emitting device and method of manufacturing the same
JP2011096740A (en) Light-emitting device
JP2011171504A (en) Light-emitting device
JP2015099940A (en) Light-emitting device
JP2009070892A (en) Led light source
JP6997869B2 (en) Wavelength conversion element and light source device
JP2005332951A (en) Light emitting device
JP2018190771A (en) Light-emitting device and method for manufacturing the same
JP2014063832A (en) Semiconductor light-emitting device and manufacturing method of the same
JP5931006B2 (en) Light emitting device
JP2018078327A (en) Light-emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603