JP2005332951A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2005332951A
JP2005332951A JP2004149488A JP2004149488A JP2005332951A JP 2005332951 A JP2005332951 A JP 2005332951A JP 2004149488 A JP2004149488 A JP 2004149488A JP 2004149488 A JP2004149488 A JP 2004149488A JP 2005332951 A JP2005332951 A JP 2005332951A
Authority
JP
Japan
Prior art keywords
light
scattering particles
emitting device
led lamp
light scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004149488A
Other languages
Japanese (ja)
Other versions
JP2005332951A5 (en
Inventor
Yoshiki Saito
義樹 齋藤
Naoki Shibata
直樹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004149488A priority Critical patent/JP2005332951A/en
Publication of JP2005332951A publication Critical patent/JP2005332951A/en
Publication of JP2005332951A5 publication Critical patent/JP2005332951A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of realizing high luminance by suppressing absorption loss at a light scattering material. <P>SOLUTION: Light scattering particles 50 each having a diameter smaller than the wavelength of an LED element 2 are mixed into epoxy resin 5 to seal the LED element 2 , so that absorption loss of blue light radiated from the LED element 2 by the light scattering particles 50 is decreased to enhance luminance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光装置に関し、特に、光散乱材での吸収による光ロスを抑えて高輝度化を実現することのできる発光装置に関する。   The present invention relates to a light emitting device, and more particularly, to a light emitting device capable of realizing high luminance by suppressing light loss due to absorption by a light scattering material.

従来の発光装置として、光源となるLED(Light-Emitting Diode:発光ダイオード)素子をエポキシ樹脂等の光透過性を有する封止材料で砲弾形状等の光学形状を有するように封止したものがある。このような発光装置において、封止材料からの光取出し性を高めるために光散乱材を封止材料に混ぜたものがある(例えば、特許文献1参照。)。   2. Description of the Related Art As a conventional light emitting device, an LED (Light-Emitting Diode) element serving as a light source is sealed with a light-transmitting sealing material such as an epoxy resin so as to have an optical shape such as a bullet shape. . In such a light emitting device, there is one in which a light scattering material is mixed with a sealing material in order to improve light extraction from the sealing material (see, for example, Patent Document 1).

特許文献1に記載される発光装置は、エポキシ樹脂等の透明樹脂で円柱状に形成された封止部の周囲に、光散乱材としてシリカやダイヤモンドの微粒子を混入した透明樹脂で砲弾型に形成された樹脂レンズを設けており、LEDチップから発光された光は封止部の透明樹脂の中を減衰することなく伝播し、光散乱材の入った樹脂レンズに入る。   The light emitting device described in Patent Document 1 is formed in a shell shape with a transparent resin in which silica or diamond fine particles are mixed as a light scattering material around a sealing portion formed in a cylindrical shape with a transparent resin such as an epoxy resin. The light emitted from the LED chip propagates without being attenuated through the transparent resin in the sealing portion and enters the resin lens containing the light scattering material.

特許文献1に記載された発光装置によると、樹脂レンズに混入された光散乱材がLEDチップから発光された光を拡散させて指向角を広げることにより、光度の低下を抑制し、高光度の光を広く視認させることができる。
特開2003−69081号公報([0016]〜[0017])
According to the light-emitting device described in Patent Document 1, the light scattering material mixed in the resin lens diffuses the light emitted from the LED chip and widens the directivity angle, thereby suppressing the decrease in luminous intensity and high luminous intensity. Light can be viewed widely.
JP 2003-69081 A ([0016] to [0017])

しかし、従来の発光装置によると、LED素子から放射された光が光散乱材に入射すると散乱されるとともに一部が吸収され、吸収分は熱エネルギーに変換されて損失分となる。この光の吸収損失は光の波長と光散乱材の粒径の差に依存し、特に、光散乱材の粒径の差が光の波長に対して大になるにつれて光の吸収損失も大になる。   However, according to the conventional light emitting device, when the light emitted from the LED element is incident on the light scattering material, it is scattered and partly absorbed, and the absorbed amount is converted into heat energy and becomes a loss. This light absorption loss depends on the difference between the wavelength of the light and the particle size of the light scattering material. In particular, the light absorption loss increases as the particle size difference of the light scattering material increases with respect to the wavelength of the light. Become.

LED素子の場合、発光波長はナノオーダーであるのに対し、光散乱材の粒径がミクロンオーダーであるため、光散乱材に光が当たることにより光の吸収損失が生じ、輝度の低下が生じるという問題がある。   In the case of an LED element, the emission wavelength is in the nano order, but the particle size of the light scattering material is in the micron order, so that when the light hits the light scattering material, light absorption loss occurs, resulting in a decrease in luminance. There is a problem.

従って、本発明の目的は、光散乱材での吸収損失を抑えて高輝度化を実現することのできる発光装置を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device capable of realizing high luminance while suppressing absorption loss in a light scattering material.

第1の発明は、上記の目的を達成するため、発光素子から放射される光を散乱させる光散乱体を有した発光装置において、前記光散乱体は、前記発光素子から放射される前記光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置を提供する。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a light emitting device having a light scatterer that scatters light emitted from a light emitting element, wherein the light scatterer emits the light emitted from the light emitting element. There is provided a light emitting device including light scattering particles formed with a size smaller than a wavelength.

また、第2の発明は、上記の目的を達成するため、発光素子から放射される光を受けて励起されることにより励起光を放射する蛍光体と、前記光を散乱させる光散乱体とを有した発光装置において、前記光散乱体は、前記発光素子から放射される前記光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置を提供する。   In order to achieve the above object, the second invention includes a phosphor that emits excitation light when excited by receiving light emitted from a light emitting element, and a light scatterer that scatters the light. In the light-emitting device, the light-scattering body includes light-scattering particles formed with a size smaller than the wavelength of the light emitted from the light-emitting element.

また、第3の発明は、上記の目的を達成するため、発光素子から放射される青色光を受けて励起されることにより黄色の励起光を放射する蛍光体と、前記青色光を散乱させる光散乱体とを有し、前記青色光と前記励起光との混合に基づいて白色光を生じる発光装置において、前記光散乱体は、前記発光素子から放射される前記青色光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置を提供する。   In order to achieve the above object, the third invention provides a phosphor that emits yellow excitation light when excited by receiving blue light emitted from a light emitting element, and light that scatters the blue light. A light emitting device that generates white light based on a mixture of the blue light and the excitation light, wherein the light scatterer has a size smaller than a wavelength of the blue light emitted from the light emitting element. The light-emitting device characterized by including the light-scattering particle | grains formed by.

本発明によれば、光散乱材における吸収損失の原因となる光の波長より小なるサイズの光散乱粒子を用いて光を散乱させるので、吸収損失を小にでき、そのことによって熱エネルギーとして損失していた分の光を取り出すことが可能となって高輝度化が図れる。   According to the present invention, since light is scattered by using light scattering particles having a size smaller than the wavelength of light that causes absorption loss in the light scattering material, the absorption loss can be reduced, thereby causing loss as thermal energy. As a result, it is possible to extract the amount of light that has been used, and the luminance can be increased.

(第1の実施の形態)
(発光装置10の構成)
図1は、本発明の第1の実施の形態に係る発光装置であり、(a)は発光装置の正面図、(b)はセグメントを構成するLEDランプの縦断面図である。この発光装置10は、図1(a)に示すように黒色に塗装された金属材料からなる本体部11と、本体部11の正面に設けられるLEDランプ1R(赤色),1G(緑色),および1B(青色)によってフルカラーを出力可能に構成されるセグメント1と、セグメント1間に設けられるルーバー12とを有し、セグメント1は複数のセグメント1を横方向および縦方向に集積して形成されている。
(First embodiment)
(Configuration of Light Emitting Device 10)
1A and 1B show a light emitting device according to a first embodiment of the present invention, in which FIG. 1A is a front view of the light emitting device, and FIG. 1B is a vertical sectional view of an LED lamp constituting a segment. As shown in FIG. 1A, the light emitting device 10 includes a main body 11 made of a metal material painted in black, LED lamps 1R (red), 1G (green) provided on the front of the main body 11, and 1B (blue) has a segment 1 configured to be able to output a full color, and a louver 12 provided between the segments 1. The segment 1 is formed by integrating a plurality of segments 1 in the horizontal direction and the vertical direction. Yes.

(LEDランプ1Bの構成)
図1(b)は、LEDランプ1Bの縦断面図である。セグメント1を構成するLEDランプ1R,1G,および1Bは同一の構成を有しており、以下の説明ではLEDランプ1B(青色)について説明する。このLEDランプ1Bは、GaN系半導体化合物によって形成されて青色光(発光波長約460nm)を放射するフェイスアップ型のLED素子2と、LED素子2をカップ部30の底部31に固定されるとともにワイヤ4によって電気的に接続される銅合金からなるリード部3Aと、LED素子2の電極(図示せず)とワイヤ4を介して電気的に接続される銅合金からなるリード部3Bと、LED素子2から放射される光を散乱させる光散乱粒子50を含み、リード部3Aのカップ部30を封止するエポキシ樹脂5と、リード部3A,3B、およびワイヤ4を一体的に封止するとともに半球状の光学形状面6Aを形成されたエポキシ樹脂等の封止樹脂6とを有する。
(Configuration of LED lamp 1B)
FIG. 1B is a longitudinal sectional view of the LED lamp 1B. The LED lamps 1R, 1G, and 1B constituting the segment 1 have the same configuration. In the following description, the LED lamp 1B (blue) will be described. The LED lamp 1B includes a face-up type LED element 2 that is formed of a GaN-based semiconductor compound and emits blue light (emission wavelength of about 460 nm), and the LED element 2 is fixed to the bottom 31 of the cup portion 30 and a wire. A lead part 3A made of a copper alloy electrically connected by a wire 4; a lead part 3B made of a copper alloy electrically connected to an electrode (not shown) of the LED element 2 via a wire 4; The epoxy resin 5 including the light scattering particles 50 that scatter the light emitted from the lead 2 and sealing the cup part 30 of the lead part 3A, the lead parts 3A and 3B, and the wire 4 are integrally sealed and a hemisphere. And an encapsulating resin 6 such as an epoxy resin on which an optically shaped surface 6A is formed.

LED素子2は、サファイア(Al)基板上にAlNバッファ層を設け、その上にn−GaN層、発光層、p−GaN層を結晶成長させた後、p−GaN層、発光層、およびn−GaN層の一部をエッチングして除去することによって表出したn−GaN層にn電極を設けている。また、p−GaN層上にはITO(Indium Tin Oxide)等の透明電極、およびパッド電極が設けられる。 In the LED element 2, an AlN buffer layer is provided on a sapphire (Al 2 O 3 ) substrate, and after an n-GaN layer, a light emitting layer, and a p-GaN layer are grown on the crystal, a p-GaN layer and a light emitting layer are formed. And an n electrode is provided on the n-GaN layer exposed by etching and removing a part of the n-GaN layer. A transparent electrode such as ITO (Indium Tin Oxide) and a pad electrode are provided on the p-GaN layer.

リード部3A、3Bは、加工性および放熱性に優れる銅合金をプレス加工することによって形成されており、リード部3Aのカップ部30は、プレス加工時に傾斜した底部31および側壁部32を有するように圧痕形成される。   The lead portions 3A and 3B are formed by pressing a copper alloy that is excellent in workability and heat dissipation, and the cup portion 30 of the lead portion 3A has a bottom portion 31 and a side wall portion 32 that are inclined during pressing. Indentation is formed.

エポキシ樹脂5は、LED素子2から放射される青色光の波長と同等あるいは小なる粒径の光散乱粒子50を含有している。この光散乱粒子50はシリカによって形成されており、カップ部30に充填されてLED素子2を封止している。なお、光散乱粒子50は超微粒子材料であるが、説明を容易にするために拡大して図示している。   The epoxy resin 5 contains light scattering particles 50 having a particle diameter equal to or smaller than the wavelength of the blue light emitted from the LED element 2. The light scattering particles 50 are formed of silica and are filled in the cup portion 30 to seal the LED element 2. The light scattering particle 50 is an ultrafine particle material, but is enlarged and illustrated for easy explanation.

(LEDランプ1Bの製造方法)
まず、銅合金をプレス加工することによりリード部3A、3Bを形成されたリードフレームを用意し、リード部3Aのカップ部30内にLED素子2を搭載する。LED素子2はカップ部30の底部31に絶縁性接着剤等によって接着固定される。
(Manufacturing method of LED lamp 1B)
First, a lead frame having lead portions 3A and 3B formed by pressing a copper alloy is prepared, and the LED element 2 is mounted in the cup portion 30 of the lead portion 3A. The LED element 2 is bonded and fixed to the bottom portion 31 of the cup portion 30 with an insulating adhesive or the like.

次に、LED素子2のパッド電極とリード部3B、n電極とリード部3Aとをそれぞれワイヤ4で電気的に接続する。次に、別工程で予め形成しておいた光散乱粒子50を含むエポキシ樹脂5をカップ部30にポッティング注入して熱処理を行うことによりLED素子2を封止する。   Next, the pad electrode of the LED element 2 and the lead portion 3B, and the n electrode and the lead portion 3A are electrically connected by the wire 4, respectively. Next, the LED element 2 is sealed by potting the epoxy resin 5 containing the light scattering particles 50 previously formed in a separate process into the cup portion 30 and performing a heat treatment.

次に、LED素子2を封止されたリード部3Aとリード部3Bを光学形状面6Aに応じた形状を有する型に挿入し、型内にエポキシ樹脂を注入する。   Next, the lead portion 3A and the lead portion 3B in which the LED element 2 is sealed are inserted into a mold having a shape corresponding to the optical shape surface 6A, and epoxy resin is injected into the mold.

次に、エポキシ樹脂を硬化させるための熱処理を行って封止樹脂6を熱硬化させた後、型から分離してリードフレームからリード部3A,3Bを切断する。   Next, a heat treatment for curing the epoxy resin is performed to thermally cure the sealing resin 6, and then separated from the mold and the lead portions 3A and 3B are cut from the lead frame.

(LEDランプ1Bの動作)
リード部3A,3Bに図示しない電源部に接続して電圧を印加すると、LED素子2の発光層においてホール及びエレクトロンのキャリア再結合が発生して面状に発光する。発光に基づく青色光は透明電極を介してLED素子2の外部へ放射される。
(Operation of LED lamp 1B)
When a voltage is applied by connecting the lead portions 3A and 3B to a power supply unit (not shown), hole and electron carrier recombination occurs in the light emitting layer of the LED element 2 to emit light in a planar shape. Blue light based on light emission is emitted to the outside of the LED element 2 through the transparent electrode.

LED素子2からエポキシ樹脂5に入射した青色光の一部は光散乱粒子50に入射し、光散乱粒子50中を透過する際に進行方向が変化することに基づいて散乱を生じる。ここで、光散乱粒子50が青色光の波長よりも小なる粒径で形成されていることにより、青色光はレイリー散乱に基づいて吸収の発生が抑えられた状態で散乱される。   Part of the blue light incident on the epoxy resin 5 from the LED element 2 is incident on the light scattering particles 50, and scattering occurs based on the change of the traveling direction when passing through the light scattering particles 50. Here, since the light scattering particles 50 are formed with a particle size smaller than the wavelength of the blue light, the blue light is scattered in a state where the generation of absorption is suppressed based on Rayleigh scattering.

エポキシ樹脂5から直接、あるいはカップ部30の側壁部32で反射されることにより封止樹脂6に入射した青色光は、光学形状面6Aから所定の方向に外部放射される。   The blue light incident on the sealing resin 6 by being reflected directly from the epoxy resin 5 or by the side wall portion 32 of the cup portion 30 is radiated outside in a predetermined direction from the optical shape surface 6A.

(第1の実施の形態の効果)
第1の実施の形態によると、LED素子2の波長より小なる粒径の光散乱粒子50をエポキシ樹脂5に混合してLED素子2を封止しているので、LED素子2から放射される青色光の光散乱粒子50による吸収損失が小になり、そのことによって輝度を向上させることができる。本実施の形態で説明した発光装置10に上記したLEDランプ1Bを用いることにより、約10%の輝度の向上を実現できる。
(Effects of the first embodiment)
According to the first embodiment, the light scattering particles 50 having a particle diameter smaller than the wavelength of the LED element 2 are mixed with the epoxy resin 5 to seal the LED element 2, so that the LED element 2 emits the light. Absorption loss due to the light-scattering particles 50 of blue light is reduced, thereby improving the luminance. By using the LED lamp 1B described above for the light emitting device 10 described in the present embodiment, it is possible to realize about 10% improvement in luminance.

なお、上記した第1の実施の形態では、青色光を放射するLED素子2を有したLEDランプ1Bについて説明したが、緑色光(発光波長520〜530nm)を放射するLED素子2を有したLEDランプ1G、あるいは赤色光(発光波長630nm)を放射するLED素子2を有したLEDランプ1Rについて、同様に波長より小なる粒径の光散乱粒子50をエポキシ樹脂5に混合してLED素子2を封止しても同様の効果が得られる。   In the first embodiment, the LED lamp 1B having the LED element 2 that emits blue light has been described. However, the LED having the LED element 2 that emits green light (emission wavelength: 520 to 530 nm). Similarly, for the LED lamp 1R having the lamp 1G or the LED element 2 that emits red light (emission wavelength 630 nm), light scattering particles 50 having a particle diameter smaller than the wavelength are mixed with the epoxy resin 5 to form the LED element 2. Even if sealed, the same effect can be obtained.

また、上記した第1の実施の形態では、光散乱粒子50にシリカを用いた構成を説明したが、シリカ以外の他の超微粒子材料を用いることも可能である。このような材料として、例えば、板状アルミナ、繊維状アルミナ、ジルコニア、スピネル、タルク、ムライト、コージェライト、炭化ケイ素等のセラミックス材料がある。   In the first embodiment described above, the configuration in which silica is used for the light scattering particles 50 has been described. However, other ultrafine particle materials other than silica can be used. Examples of such materials include ceramic materials such as plate-like alumina, fibrous alumina, zirconia, spinel, talc, mullite, cordierite, and silicon carbide.

また、LED素子2についても、上記したフェイスアップ型に限定されず、フリップチップ型のLED素子2を用いて基板側から青色光を放射させるようにしても良い。   Also, the LED element 2 is not limited to the face-up type described above, and blue light may be emitted from the substrate side using the flip chip type LED element 2.

(第2の実施の形態)
(LEDランプ1Bの構成)
図2は、第2の実施の形態に係るLEDランプの縦断面図である。なお、以下の説明において第1の実施の形態と同一の構成を有する部分については共通する引用数字を付している。第2の実施の形態のLEDランプ1Bは、第1の実施の形態で説明した封止樹脂6に光散乱粒子50を混合してリード部3A,3Bとともに一体的に封止した構成において第1の実施の形態と相違している。
(Second Embodiment)
(Configuration of LED lamp 1B)
FIG. 2 is a longitudinal sectional view of an LED lamp according to the second embodiment. In the following description, common reference numerals are assigned to portions having the same configuration as that of the first embodiment. The LED lamp 1B according to the second embodiment has a configuration in which the light scattering particles 50 are mixed with the sealing resin 6 described in the first embodiment and integrally sealed together with the lead portions 3A and 3B. This is different from the embodiment.

(第2の実施の形態の効果)
第2の実施の形態によると、第1の実施の形態の好ましい効果に加えて、封止樹脂6の全体で青色光の吸収損失を抑えながら効率良く光を散乱させることができ、発光むらを抑えて高輝度化を図ることができる。
(Effect of the second embodiment)
According to the second embodiment, in addition to the preferable effect of the first embodiment, the entire sealing resin 6 can efficiently scatter light while suppressing the absorption loss of blue light, and uneven light emission. High luminance can be achieved by suppressing the brightness.

(第3の実施の形態)
(LEDランプ1Bの構成)
図3は、第3の実施の形態に係るLEDランプの縦断面図である。第3の実施の形態のLEDランプ1Bは、第1の実施の形態で説明した封止樹脂6の外側に光散乱粒子50を混合したエポキシ樹脂からなる薄膜状のキャップ部7を設けた構成において第1の実施の形態と相違している。
(Third embodiment)
(Configuration of LED lamp 1B)
FIG. 3 is a longitudinal sectional view of an LED lamp according to the third embodiment. The LED lamp 1B according to the third embodiment has a configuration in which a thin-film cap portion 7 made of an epoxy resin in which light scattering particles 50 are mixed is provided outside the sealing resin 6 described in the first embodiment. This is different from the first embodiment.

(第3の実施の形態の効果)
第3の実施の形態によると、封止樹脂6の表面に薄膜状に光散乱粒子50を配置することにより、LEDランプの製造工程を複雑化することなく光散乱性の良好なLEDランプ1Bを容易に製造することができる。キャップ部7の製造は、例えば、光散乱粒子50を含有したエポキシ樹脂の塗布、封止樹脂6への滴下により行うことができる。
(Effect of the third embodiment)
According to the third embodiment, by arranging the light scattering particles 50 in a thin film on the surface of the sealing resin 6, the LED lamp 1B having a good light scattering property can be obtained without complicating the manufacturing process of the LED lamp. It can be manufactured easily. The cap part 7 can be manufactured, for example, by applying an epoxy resin containing the light scattering particles 50 and dropping the resin into the sealing resin 6.

なお、キャップ部7に光散乱粒子50と蛍光体とを混合して波長変換型のLEDランプ1Bとしても良い。   In addition, the light scattering particles 50 and the phosphor may be mixed in the cap portion 7 to form the wavelength conversion type LED lamp 1B.

(第4の実施の形態)
(LEDランプ1Bの構成)
図4は、第4の実施の形態に係るLEDランプの縦断面図である。第4の実施の形態のLEDランプ1Bは、第1の実施の形態で説明したカップ部30のエポキシ樹脂5に光散乱粒子50および蛍光体51を混合した波長変換型の白色LEDランプである構成において第1の実施の形態と相違している。
(Fourth embodiment)
(Configuration of LED lamp 1B)
FIG. 4 is a longitudinal sectional view of an LED lamp according to the fourth embodiment. The LED lamp 1B of the fourth embodiment is a wavelength conversion type white LED lamp in which the light scattering particles 50 and the phosphors 51 are mixed with the epoxy resin 5 of the cup part 30 described in the first embodiment. However, this is different from the first embodiment.

蛍光体51は、青色光によって励起されて黄色光を放射する、例えば、YAG(Yttrium Aluminum Garnet)を用いることができる。   For example, YAG (Yttrium Aluminum Garnet) that emits yellow light when excited by blue light can be used as the phosphor 51.

(第4の実施の形態の効果)
第4の実施の形態によると、カップ部30にポッティングされるエポキシ樹脂5に光散乱粒子50と蛍光体51とを混合することにより、蛍光体51が光散乱粒子50による散乱光によって効率良く励起されて高輝度の白色光を得ることができる。光散乱粒子50は波長変換に基づいて長波長側に変換された白色光に対しては光吸収を生じにくいことから、少ない量の蛍光体51であっても波長変換効率の向上に基づいて高輝度が得られる。
(Effect of the fourth embodiment)
According to the fourth embodiment, by mixing the light scattering particles 50 and the phosphors 51 with the epoxy resin 5 potted on the cup portion 30, the phosphors 51 are efficiently excited by the scattered light from the light scattering particles 50. Thus, high brightness white light can be obtained. The light scattering particles 50 are unlikely to absorb light with respect to white light converted to the long wavelength side based on the wavelength conversion, so even a small amount of the phosphor 51 has a high wavelength conversion efficiency. Brightness is obtained.

また、波長変換の効率アップを図れることから、蛍光体51の量を低減でき、高輝度のLEDランプ1Bを実現しながら製造コストを安価にできる。   Moreover, since the efficiency of wavelength conversion can be increased, the amount of the phosphor 51 can be reduced, and the manufacturing cost can be reduced while realizing the high-intensity LED lamp 1B.

なお、第4の実施の形態では、カップ部30のエポキシ樹脂5に光散乱粒子50と蛍光体51とを混合した構成を説明したが、例えば、カップ部30のエポキシ樹脂5に光散乱粒子50を混合し、封止樹脂6に蛍光体51を混合する構成の白色LEDランプとしても良い。   In addition, in 4th Embodiment, although the structure which mixed the light-scattering particle 50 and the fluorescent substance 51 in the epoxy resin 5 of the cup part 30 was demonstrated, for example, the light-scattering particle 50 is added to the epoxy resin 5 of the cup part 30. It is good also as a white LED lamp of the structure which mixes fluorescent substance 51 in sealing resin 6, and is mixed.

(第5の実施の形態)
(LEDランプ1Bの構成)
図5は、第5の実施の形態に係るLEDランプの縦断面図である。このLEDランプ1Bは、SMD(Surface Mount Device)型のLEDランプであり、タングステン(W)によってパターン形成された配線部3C、3Dを有するセラミック基板9と、セラミック基板9と一体的に成形される無機材料の焼結体からなる本体80と、光放射方向に拡大された形状を有する側壁部80Aと、本体80の底部に露出した配線部3C、3DにAuバンプ40を介して電気的に接続されたLED素子2と、光散乱粒子50およびYAGからなる蛍光体51を含み、LED素子2を封止するシリコーン樹脂90とを有する。
(Fifth embodiment)
(Configuration of LED lamp 1B)
FIG. 5 is a longitudinal sectional view of an LED lamp according to a fifth embodiment. This LED lamp 1B is an SMD (Surface Mount Device) type LED lamp, and is integrally formed with a ceramic substrate 9 having wiring portions 3C and 3D patterned with tungsten (W), and the ceramic substrate 9. Electrically connected via Au bumps 40 to a main body 80 made of a sintered body of an inorganic material, a side wall portion 80A having a shape enlarged in the light emission direction, and wiring portions 3C and 3D exposed at the bottom of the main body 80 LED element 2, and a silicone resin 90 that includes phosphor 51 made of light scattering particles 50 and YAG and seals LED element 2.

本体80は、配線部3C、3Dに電気的に接続されたLED素子2を光散乱粒子50および蛍光体51を含んだシリコーン樹脂90で一体的に封止して形成されており、シリコーン樹脂90は青色光と黄色光との混合に基づいて白色光を生じる波長変換部を構成している。   The main body 80 is formed by integrally sealing the LED element 2 electrically connected to the wiring portions 3 </ b> C and 3 </ b> D with a silicone resin 90 including the light scattering particles 50 and the phosphors 51. Constitutes a wavelength converter that generates white light based on a mixture of blue light and yellow light.

(第5の実施の形態の効果)
第5の実施の形態によると、SMD型のLEDランプ1Bであっても第1の実施の形態で説明した光散乱粒子50を蛍光体51とともにシリコーン樹脂90に混合することによって、蛍光体51が光散乱粒子50による散乱光によって効率良く励起されて高輝度の白色光を得ることができる。
(Effect of 5th Embodiment)
According to the fifth embodiment, even in the SMD type LED lamp 1B, the phosphor 51 is mixed by mixing the light scattering particles 50 described in the first embodiment with the phosphor 51 together with the silicone resin 90. Highly bright white light can be obtained by being efficiently excited by light scattered by the light scattering particles 50.

なお、配線部3C、3Dに電気的に接続されるLED素子2については、フリップチップ接合に限定されず、フェイスアップ実装でワイヤを介してLED素子2の電極と配線部3C、3Dとを接合するようにしても良い。   In addition, about the LED element 2 electrically connected to wiring part 3C, 3D, it is not limited to flip chip joining, The electrode of LED element 2 and wiring part 3C, 3D are joined via a wire by face-up mounting. You may make it do.

(第6の実施の形態)
(LEDランプ1Bの構成)
図6は、第6の実施の形態に係るLEDランプの縦断面図である。第6の実施の形態のLEDランプ1Bは、第5の実施の形態で説明したシリコーン樹脂90の表面部分に層状に波長変換部53を設けた構成において第5の実施の形態と相違している。
(Sixth embodiment)
(Configuration of LED lamp 1B)
FIG. 6 is a longitudinal sectional view of an LED lamp according to a sixth embodiment. The LED lamp 1B of the sixth embodiment is different from the fifth embodiment in the configuration in which the wavelength conversion unit 53 is provided in a layered manner on the surface portion of the silicone resin 90 described in the fifth embodiment. .

波長変換部53は、光散乱粒子50を蛍光体51とをエポキシ樹脂で一体化して形成されている。この波長変換部53は、本体80へのシリコーン樹脂90の充填後に予め別工程で所望の厚さを有するように形成されたシート状のものを表面部分に固定している。   The wavelength converter 53 is formed by integrating the light scattering particles 50 and the phosphor 51 with an epoxy resin. The wavelength converter 53 is fixed to a surface portion of a sheet-like member that is formed in advance in a separate process so as to have a desired thickness after the main body 80 is filled with the silicone resin 90.

なお、波長変換部53は、上記したシート状以外の形態として、本体80へのシリコーン樹脂90の充填硬化後にシリコーン樹脂90の表面に上記した光散乱粒子50および蛍光体51含む液状のエポキシ樹脂を滴下し、これを硬化させることによって形成するようにしても良い。   In addition, the wavelength conversion part 53 is a liquid epoxy resin containing the light scattering particles 50 and the phosphors 51 on the surface of the silicone resin 90 after filling and curing the silicone resin 90 in the main body 80 as a form other than the above-described sheet shape. You may make it form by dripping and hardening this.

(第6の実施の形態の効果)
第6の実施の形態によると、波長変換部53をシリコーン樹脂90の表面に層状に形成したので、第5の実施の形態の好ましい効果に加えて、波長変換部53を容易かつ薄く形成することができ、光散乱粒子50によって良好に散乱された青色光に基づいて蛍光体51の励起が促進されて波長変換効率に優れるLEDランプ1Bが得られる。
(Effect of 6th Embodiment)
According to the sixth embodiment, since the wavelength converting portion 53 is formed in a layered manner on the surface of the silicone resin 90, in addition to the preferable effect of the fifth embodiment, the wavelength converting portion 53 can be easily and thinly formed. Thus, excitation of the phosphor 51 is promoted based on the blue light scattered favorably by the light scattering particles 50, and the LED lamp 1B having excellent wavelength conversion efficiency can be obtained.

(第7の実施の形態)
(LEDランプ1Bの構成)
図7は、第7の実施の形態に係るLEDランプの縦断面図である。第7の実施の形態のLEDランプ1Bは、LED素子2の表面に薄膜状に波長変換部53を設けた構成において第5の実施の形態と相違している。
(Seventh embodiment)
(Configuration of LED lamp 1B)
FIG. 7 is a longitudinal sectional view of an LED lamp according to a seventh embodiment. The LED lamp 1B of the seventh embodiment is different from the fifth embodiment in the configuration in which the wavelength conversion unit 53 is provided in a thin film shape on the surface of the LED element 2.

波長変換部53は、光散乱粒子50と蛍光体51とをエポキシ樹脂中に混合し、このエポキシ樹脂をLED素子2の表面に薄く塗布して熱硬化させることによって形成されている。   The wavelength conversion unit 53 is formed by mixing the light scattering particles 50 and the phosphor 51 in an epoxy resin, and thinly applying the epoxy resin to the surface of the LED element 2 and thermosetting it.

(第7の実施の形態の効果)
第7の実施の形態によると、波長変換部53をLED素子2の表面に薄膜状に形成したので、LED素子2の発光時に見かけ上の光源サイズを大にすることなく、かつ、光散乱粒子50および蛍光体51による波長変換性に優れた高輝度のLEDランプ1Bが得られる。また、光散乱粒子50および蛍光体51の使用量を最小限に抑えることができるので、コストダウンに有効である。
(Effect of 7th Embodiment)
According to the seventh embodiment, since the wavelength conversion unit 53 is formed in a thin film shape on the surface of the LED element 2, the apparent light source size is not increased when the LED element 2 emits light, and the light scattering particles Thus, a high-intensity LED lamp 1 </ b> B excellent in wavelength conversion by 50 and phosphor 51 is obtained. Moreover, since the usage-amount of the light-scattering particle 50 and the fluorescent substance 51 can be suppressed to the minimum, it is effective for cost reduction.

本発明の第1の実施の形態に係る発光装置であり、(a)は発光装置の正面図、(b)はセグメントを構成するLEDランプの縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a light-emitting device which concerns on the 1st Embodiment of this invention, (a) is a front view of a light-emitting device, (b) is a longitudinal cross-sectional view of the LED lamp which comprises a segment. 第2の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 2nd Embodiment. 第3の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 3rd Embodiment. 第4の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 4th Embodiment. 第5の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 5th Embodiment. 第6の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 6th Embodiment. 第7の実施の形態に係るLEDランプの縦断面図である。It is a longitudinal cross-sectional view of the LED lamp which concerns on 7th Embodiment.

符号の説明Explanation of symbols

1、セグメント 1R,1G,1B,LEDランプ 2、LED素子
3A,3B、リード部 3C,3D、配線部 4、ワイヤ
5、エポキシ樹脂 6、封止樹脂 6A、光学形状面
7、キャップ部 9、セラミック基板 10、発光装置
11、本体部 12、ルーバー 30、カップ部 31、底部
32、側壁部 40、Auバンプ 50、光散乱粒子 51、蛍光体
53、波長変換部 80、本体 80A、側壁部 90、シリコーン樹脂
1, segment 1R, 1G, 1B, LED lamp 2, LED element 3A, 3B, lead part 3C, 3D, wiring part 4, wire 5, epoxy resin 6, sealing resin 6A, optical shape surface 7, cap part 9, Ceramic substrate 10, light emitting device 11, main body portion 12, louver 30, cup portion 31, bottom portion 32, side wall portion 40, Au bump 50, light scattering particles 51, phosphor 53, wavelength conversion portion 80, main body 80 </ b> A, side wall portion 90 ,Silicone resin

Claims (5)

発光素子から放射される光を散乱させる光散乱体を有した発光装置において、
前記光散乱体は、前記発光素子から放射される前記光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置。
In a light emitting device having a light scatterer that scatters light emitted from a light emitting element,
The light scattering device, wherein the light scatterer includes light scattering particles formed with a size smaller than a wavelength of the light emitted from the light emitting element.
発光素子から放射される光を受けて励起されることにより励起光を放射する蛍光体と、前記光を散乱させる光散乱体とを有した発光装置において、
前記光散乱体は、前記発光素子から放射される前記光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置。
In a light emitting device having a phosphor that emits excitation light by being excited by receiving light emitted from a light emitting element, and a light scatterer that scatters the light,
The light scattering device, wherein the light scatterer includes light scattering particles formed with a size smaller than a wavelength of the light emitted from the light emitting element.
発光素子から放射される青色光を受けて励起されることにより黄色の励起光を放射する蛍光体と、前記青色光を散乱させる光散乱体とを有し、前記青色光と前記励起光との混合に基づいて白色光を生じる発光装置において、
前記光散乱体は、前記発光素子から放射される前記青色光の波長より小なるサイズで形成された光散乱粒子を含むことを特徴とする発光装置。
A phosphor that emits yellow excitation light by being excited by receiving blue light emitted from a light emitting element; and a light scatterer that scatters the blue light, wherein the blue light and the excitation light In a light emitting device that produces white light based on mixing,
The light scattering device, wherein the light scatterer includes light scattering particles formed with a size smaller than a wavelength of the blue light emitted from the light emitting element.
前記光散乱体は、前記光散乱粒子を含んで前記発光素子を封止する光透過性の封止樹脂であることを特徴とする請求項1から3の何れかに記載の発光装置。   The light-emitting device according to claim 1, wherein the light scatterer is a light-transmitting sealing resin that includes the light-scattering particles and seals the light-emitting element. 前記光散乱体は、前記光散乱粒子および蛍光体を含んで前記発光素子の周囲に薄膜状に設けられる光透過性の封止樹脂であることを特徴とする請求項2又は3記載の発光装置。   The light-emitting device according to claim 2, wherein the light scatterer is a light-transmitting sealing resin that includes the light-scattering particles and the phosphor and is provided in a thin film around the light-emitting element. .
JP2004149488A 2004-05-19 2004-05-19 Light emitting device Withdrawn JP2005332951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149488A JP2005332951A (en) 2004-05-19 2004-05-19 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149488A JP2005332951A (en) 2004-05-19 2004-05-19 Light emitting device

Publications (2)

Publication Number Publication Date
JP2005332951A true JP2005332951A (en) 2005-12-02
JP2005332951A5 JP2005332951A5 (en) 2006-11-02

Family

ID=35487394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149488A Withdrawn JP2005332951A (en) 2004-05-19 2004-05-19 Light emitting device

Country Status (1)

Country Link
JP (1) JP2005332951A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227679A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light-emitting device
JP2007227932A (en) * 2006-02-22 2007-09-06 Samsung Electro Mech Co Ltd Light emitting diode package
JP2007287962A (en) * 2006-04-18 2007-11-01 Nichia Chem Ind Ltd Semiconductor light-emitting device
WO2008087918A1 (en) * 2007-01-15 2008-07-24 Sanyo Electric Co., Ltd. Semiconductor light emitting device
JP2008198997A (en) * 2007-01-15 2008-08-28 Sanyo Electric Co Ltd Semiconductor light-emitting apparatus
JP2008277828A (en) * 2007-05-07 2008-11-13 Neovison Pnv Co Ltd Light emitting diode mounted on electric sign
JP2012089652A (en) * 2010-10-19 2012-05-10 Panasonic Corp Semiconductor light emitting device
CN102544319A (en) * 2012-01-05 2012-07-04 深圳雷曼光电科技股份有限公司 LED bracket, LED and LED packaging technology
JP2013254972A (en) * 2006-08-03 2013-12-19 Intematix Corp Led lighting arrangement including light emitting phosphor
CN103515512A (en) * 2012-06-29 2014-01-15 四川柏狮光电技术有限公司 LED secondary packing process and LED pixel tube manufactured through process
JP2014239073A (en) * 2006-03-21 2014-12-18 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2015019099A (en) * 2007-09-27 2015-01-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light source with adjustable emission characteristics
WO2016035311A1 (en) * 2014-09-01 2016-03-10 パナソニックIpマネジメント株式会社 Wavelength conversion filter and solar cell module using same
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227932A (en) * 2006-02-22 2007-09-06 Samsung Electro Mech Co Ltd Light emitting diode package
JP2007227679A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light-emitting device
JP2014239073A (en) * 2006-03-21 2014-12-18 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2007287962A (en) * 2006-04-18 2007-11-01 Nichia Chem Ind Ltd Semiconductor light-emitting device
US9595644B2 (en) 2006-08-03 2017-03-14 Intematix Corporation LED lighting arrangement including light emitting phosphor
JP2013254972A (en) * 2006-08-03 2013-12-19 Intematix Corp Led lighting arrangement including light emitting phosphor
US8384101B2 (en) 2007-01-15 2013-02-26 Sanyo Electric Co., Ltd. Semiconductor light-emitting device
JP2008198997A (en) * 2007-01-15 2008-08-28 Sanyo Electric Co Ltd Semiconductor light-emitting apparatus
WO2008087918A1 (en) * 2007-01-15 2008-07-24 Sanyo Electric Co., Ltd. Semiconductor light emitting device
JP2008277828A (en) * 2007-05-07 2008-11-13 Neovison Pnv Co Ltd Light emitting diode mounted on electric sign
JP2015019099A (en) * 2007-09-27 2015-01-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light source with adjustable emission characteristics
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
JP2012089652A (en) * 2010-10-19 2012-05-10 Panasonic Corp Semiconductor light emitting device
CN102544319A (en) * 2012-01-05 2012-07-04 深圳雷曼光电科技股份有限公司 LED bracket, LED and LED packaging technology
CN103515512A (en) * 2012-06-29 2014-01-15 四川柏狮光电技术有限公司 LED secondary packing process and LED pixel tube manufactured through process
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components
WO2016035311A1 (en) * 2014-09-01 2016-03-10 パナソニックIpマネジメント株式会社 Wavelength conversion filter and solar cell module using same
JPWO2016035311A1 (en) * 2014-09-01 2017-05-25 パナソニックIpマネジメント株式会社 Wavelength conversion filter and solar cell module using the same

Similar Documents

Publication Publication Date Title
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
JP5326837B2 (en) Light emitting device
US9048400B2 (en) Light-emitting device with a wavelength converting layer and method for manufacturing the same
JP6331389B2 (en) Light emitting device
JP5109226B2 (en) Light emitting device
JP4417906B2 (en) Light emitting device and manufacturing method thereof
JP5895598B2 (en) Light emitting device
JP2005093712A (en) Semiconductor light emitting device
JP5895597B2 (en) Light emitting device
JP2007335798A (en) Light-emitting device
JP2007123438A (en) Phosphor plate and light emitting device with same
JP2010034184A (en) Light-emitting device
JP6583764B2 (en) Light emitting device and lighting device
JP2010034183A (en) Light-emitting device
JP2007080872A (en) Light emitting device
WO2014122888A1 (en) Light-emitting module
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP2005332951A (en) Light emitting device
JP2006100543A (en) Method for manufacturing semiconductor light-emitting device
JP2009016689A (en) Illuminator
JP2011096740A (en) Light-emitting device
JP2007294621A (en) Led lighting system
JP2009070892A (en) Led light source
JP2007243056A (en) Light emitting device
JP2007005549A (en) White-light emitting diode lamp

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080326